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Chapter 1:  Introduction 
 
The objective of this research is the statistical evaluation of variable selection 
methodologies in Partial Least Squares regression, with the goal of identifying a method 
that can be applied across varying data analysis problems.  Generally speaking, these 
problems can often be classified into two areas:  real-time and off-line applications.  
Real-time applications involve multivariate process monitoring and control activities, 
whereas off-line applications can encompass process optimization, root cause 
determination for process changes, and product development activities.  This research 
centers on off-line applications and is driven by the need to better understand, 
troubleshoot and optimize industrial manufacturing processes, using methods that reliably 
identify important variables driving the current manufacturing performance.  Although 
off-line applications are the focus of this research, many of the conclusions presented 
here can be considered for real-time applications. 
 
An integral part of interpreting process performance for subsequent optimization is a 
multivariate understanding of the manufacturing process where process parameters are 
linked to product critical quality attributes.  In many instances process performance 
information can be gained via the analysis of historical data.  The application of robust 
variable importance metrics to these historical datasets helps ensure continued process 
knowledge throughout the life of the product.  This knowledge can then be more 
confidently applied to either correct or optimize the manufacturing process.  Failure to 
continuously understand process performance can lead to situations where products are 
no longer capable of consistently meeting product specifications.  This unfavorable 
situation can have a large impact to a company’s ability to meet market demand.  In the 
context of pharmaceutical manufacturing, this inability can translate into public health 
concerns where patients are unable to receive needed medications. 
 
A common hindrance to understanding process performance in historical data is the 
varying degrees of autocorrelation observed in batch manufacturing wherein the current 
batch is correlated to some degree with previous batches. This autocorrelation may result 
in a higher false positive rate in identified non-important variables.  As such, the 
overarching goal of this research is to determine which variable selection methods 
perform best in the presence of autocorrelation, and determine if an autocorrelation 
correction factor provides any positive adjustment as a function of increasing 
autocorrelation.   
 
Traditional linear regression methods, such as ordinary least squares, have been popular 
among data analysts for many years.  With the explosion of data being generated and 
captured as part of routine batch manufacturing, issues associated with missing data, 
multicollinearity, noisy predictor variables, and the number of monitored process 
variables being greater than the number of batches, has made the use of traditional linear 
regression methods prohibitive.  Consequently, Partial Least Squares (PLS) has gained 
popularity within industry for its ability to relate a set of manufacturing processing 
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predictor variables (i.e. input parameters, intermediate performance and controllable 
parameters) to a products quality attribute(s).  This is accomplished via a multivariate 
linear model capable of modeling data in the presence of the aforementioned data 
concerns and challenges, while at the same time being able to accommodate multiple y-
variables, as needed.  Beyond being able to provide a predictive model, PLS offers the 
ability to not only identify important process variables with respect to a particular quality 
attribute, but also provides a better understanding of the internal X-data structure in both 
object and variable space.   
 
Within the area of variable importance selection methods, such as the VIP, there has been 
limited research on the impact to said metrics in the presence of auto-correlation, varying 
correlation between predictors, and varying signal to noise ratio.  Often times, the 
aforementioned predictor space conditions coalesce to produce a model in which many 
parameters are deemed important.  Adding further complexity to the problem, given the 
duality of PLS where X is both characterized and related to Y [1], it is possible that any 
weak relationship between X and Y could be masked. In the case of the VIP, this has 
made a practical interpretation of assigned important variables very difficult, thus 
diminishing the benefits of employing Partial Least Squares analysis for certain problems 
in manufacturing.  This has required the use of additional data mining methods, such as 
Random Forest, in order to build consensus around identified important variables [2].  
However, given that the main focus of many data mining methods is on minimizing 
prediction error, they alone may not provide a good understanding of the internal relevant 
X-structure that improves model interpretation.  This problem if often brought to bear in 
industrial manufacturing processes wherein the signal-to-noise ratio is very small and 
process engineers are attempting to understand the current manufacturing process 
performance in the presence of special cause variation associated with either favorable or 
unfavorable process performance.  Given that predicting future process performance in 
the presence of special cause variation is analogous to setting process control limits on an 
out-of-control process, and as such not recommended, the focus of this research is on 
methods that help identify the most important variables correlated with the observed 
process performance.   
 
Although work has been done to determine improved measures of variable importance 
for predictors [3, 4, 5, 6], these have predominantly focused on regression coefficients.  
This again points to a central focus on minimizing prediction error; an approach that as 
stated above may not be aligned with the goal of understanding current process 
performance.  As alluded to above, the Variable Importance in the Projection (VIP) 
statistic is one metric that has proven to be very useful in understanding what are the 
reduced X space variables that may explain changes in process performance [2, 7] .  
Given its incorporation of information from both the predictor matrix, X, and the 
response(s), Y, the VIP became a good initial candidate metric for assessment in our goal 
of determining an optimal important variable selection method.   
 
The initial approach in this research was the statistical evaluation of strategies based on 
resampling methods such as the Jackknife and Bootstrap for calculating the uncertainty 
around the estimate of a variables VIP.  Permutation tests were also used in order to make 
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a straightforward comparison in the resampled VIP estimate as compared to its randomly 
permuted estimate.  Our initial research indicated that a parameter uncertainty approach 
using the lower-bound of the 95% jackknife confidence interval being greater than the 
recommended PLS-VIP cut-off value of 1 provided a reasonable estimate of the most 
important variables in a model. Given that the jackknife is a linear approximation to the 
bootstrap [8], that can in some instances under-estimate the variability around an estimate 
[9], further research was performed as to whether the jackknife estimate of uncertainty is 
comparable to several bootstrap confidence interval approaches. 
 
During this latter investigation it was discovered that with the addition of new latent 
variables the performance of the VIP around an important variable was degraded.  This 
problem was found to result from the decomposition of orthogonal variances common to 
latent modeling methods such as PLS regression and PCA [10]; an orthogonalization 
mechanism that has been recently used as a basis for model interpretation in Orthogonal-
PLS, Target Projection [11] and variable selection in Selectivity Ratio [11]. A focus to 
understand this orthogonalization mechanism, and its impact to PLS modeling and related 
methods, was subsequently ensued.   
 
It is ultimately shown in this work that the aforementioned orthogonalization can result in 
not only regression bias in PLS, but also biased estimation of orthogonal variances in 
filtering based methods such as Target Projection, SR, and the VIP, due to the use of the 
cross-product score matrix. We find that this bias is dependent on the degree of rotation 
away from the regression vector to what we term a basic vector, in which the resultant 
rotation can result in misinterpretation of a predictor variables importance. 
 
As a result of this finding, the method Significant Multivariate Correlation (SMC) was 
proposed for the purpose of statistically assessing a predictor variables importance for 
PLS regression, and classification, taking into account a better understanding of the basic 
rotation effect presented in this work.  In addition, an adjustment factor formulation for 
the error term of the SMC, used in an associated F-test for determining a variables 
importance, was presented and resulted in a substantial improvement in controlling the 
increased Type I error rate that can result from moderately to highly autocorrelated data. 
 
An outline of this thesis proceeds is as follows.  In Chapter 2 a study is presented of how 
the use of bootstrapping, in conjunction with permutation tests, can provide avenues for 
improving the selection of variables responsible for manufacturing process changes via 
the Variable Importance in the Projection statistic.  Chapter 3 extends the work of 
Chapter 2 by providing an  assessment of the performance of seven resampling based 
methods of uncertainty estimation with the goal of assessing which method performes 
best in reducing the false positive rate, while at the same time not impacting the true 
positive rate.  The results and conclusion presented in Chapter 3 prompted the work 
presented in Chapter 4 in order to better understand the relationship between the 
regression coefficients and orthogonally decomposed variances in PLS in both prediction 
and model interpretation, and resulted in the introduction of the Significant Multivarete 
Correlation (SMC) as a novel method of determining variable importance.  Chapter 5 
extends the work of Chapter 4 by performing an assessment of the SMC method on both 
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simulated and real data sets in order to illustrate its performance over several commonly 
used important variable selection methods.  Finally, Chapter 6 presents presents an 
autocorrelation correction formulation that is shown to provide a favorable correction as a 
function of increasing autocorrelation.   
 
As alluded to above, this research was driven by the need to better understand, 
troubleshoot and optimize industrial manufacturing processes.  Our goal was to further 
advance the application of robust variable importance metrics, accounting for both 
multicolliniearity and autocorrelation, in order to improve the process knowledge needed 
to more confidently correct or optimize the current manufacturing process.  Given these 
objectives, the stated goals of this research were accomplished through a better 
understanding of resampling based methods for determining the uncertainty in the 
estimation of PLS parameters and the VIP, the introduction of a new variable importance 
method, Significant Multivariate Correlation (SMC), and an autocorrelation adjustment 
formulation for the SMC to better control the increased false positive rate associated with 
autocorrelated data. 
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Chapter 2:  Use of the Bootstrap and 
Permutation Methods for a more Robust 
Variable Importance in the Projection 
Metric for PLS 

Abstract 
 
Bio-pharmaceutical manufacturing is a multifaceted and complex process where in the 
manufacture of a single batch hundreds of processing variables and raw materials are 
monitored.  In these processes, identifying the candidate variables responsible for any 
changes in process performance can prove to be extremely challenging.  Within this 
context, Partial Least Squares (PLS) has proven to be an important tool in helping 
determine the root cause for changes in biological performance, such as cellular growth 
or viral propagation.  In spite of the positive impact PLS has had in helping understand 
bio-pharmaceutical process data, the high variability in measured response ( Y ) and 
predictor variables ( X ), and weak relationship between X and Y , has at times made root 
cause determination for process changes difficult.  Our goal is to demonstrate how the 
use of bootstrapping, in conjunction with permutation tests, can provide avenues for 
improving the selection of variables responsible for manufacturing process changes via 
the Variable Importance in the Projection (PLS-VIP) statistic.  Although applied uniquely 
to the PLS-VIP in this article, the generality of the aforementioned methods can be used 
to improve other variable selection methods, in addition to increasing confidence around 
other estimates obtained from a PLS model. 
 
 
 
 
 
 
 
 
 
 
 
 
N.L. Afanador, T.N. Tran, L.M.C. Buydens, Analytica Chimica Acta, vol. 768 (2013), pp. 
49-56. 
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Introduction 
 
Vaccine manufacturing, within the bio-pharmaceutical industry, is a complex process 
where information on hundreds of processing variables and raw materials is monitored 
and collected [1].  In order to better troubleshoot or optimize a vaccine manufacturing 
process it is important to both the scientist and engineer to have functional parsimonious 
models in the subset of important predictor variables that provide good measures of 
model fit as well as being predictive of future performance.  PLS has gained popularity 
within the pharmaceutical industry for its ability to relate  and  via a multivariate 
linear model that is able to model data in the presence of multicollinearity [2], and 
instances in which the number of cases is less than the number of predictor variables.  A 
standard Partial Least Squares analysis provides model fit statistics, in addition to model 
parameter estimates and Variable Importance in the Projection (PLS-VIP) statistics.  It is 
this measure, the PLS-VIP, which has been found to be useful in understanding the 
reduced  space predictor variables that best explain process performance.   
 
Although the PLS-VIP is provided as part of a PLS analysis there are few guidelines 
about its performance or cut-off value under varying predictor space conditions, namely 
the proportion of relevant predictors, structure of regression coefficients, magnitude of 
correlation between predictors, and magnitude of signal-to-noise [3].   Often times, the 
aforementioned predictor space conditions coalesce to produce a model in which many 
parameters are deemed important, as per PLS-VIP cut-off guidelines, thus making a 
practical interpretation of the PLS-VIP challenging.  
 
Our goal is to demonstrate how the use of tools common to machine learning and 
classical statistics, namely bootstrapping and permutation methods as applied to the PLS-
VIP, may provide avenues for improvement of the important variable selection process.   
 

Methods 
Partial Least Squares 
 
PLS has gained popularity for its ability to relate  and   via a multivariate linear model 
that is able to model data in the presence of multicollinearity, and instances in which the 
number of cases is less than the number of predictor variables.  In the case where we have 
a single response variable, y, the PLS regression model with h latent variables can be 
expressed as per Eq.'s (1, 2) [3]: 
 
(1)   = +  (1) 
 
(2)   = +  (2) 
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Where ( × ) is the matrix of predictors, ( × ) is the X-score matrix of latent 
variables, ( × )  is the matrix of X-loadings, ( × )  is the univariate response 
variable, ( × ) are the y-loadings, and where ( × ) and ( × ) are the random 
errors of X and y, respectively.   
 
The goal of PLS is to maximize the covariance between T and y [4].  This maximization 
is achieved as per Eq's (3 – 8), , where , , , stand for the k-th column of T, P, and 
W, respectively ( = 1, 2, . . . , ).  It is assumed that both X and y have been either mean-
centered [4], wherein the mean of each column is subtracted from each of the 
observations within that column, or standardized to unit variance, wherein the mean of 
each column is subtracted from each of the observations within that column, and then 
divided by the corresponding column standard deviation.   The practice of standardizing 
to unit-variance is common in the analysis of manufacturing process data given the 
varying scales of the predictor variables.  As demonstrated in Eq.'s (3 – 8), when there is 
only one y-variable, the PLS algorithm converges after one iteration, and the need to loop 
between steps 1 – 4 is removed [4].   
 
(3)   = ( ) ( )/ ( ) ( )  
 
(4)   = ( )  
 
(5)   = ( )/  
 
(6)   = ( )/  
 
(7)   ( ) = ( )  
 
(8)   ( ) = ( )  
 
The algorithm is then repeated beginning with step 1 using ( ) and ( )until the 
required number of latent variables, T, are obtained.  This step is determined by the data 
analyst, depending on the application, and is often supported by the use of cross-
validation. 

Variable Importance in the Projection 
 
The variable importance in the projection method (PLS-VIP) [3], scores the importance 
of the jth variable per Eq. (9) where p in this instance is equal to the number of predictor 
variables. 
 

(9)   = ( ) ( ) /    
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The PLS-VIP measures the contribution of each predictor variable to the model by taking 
into account the covariance between ( ) and ( ), as expressed by , weighted by 
the proportion of ( ) that is explained by the kth dimension .  The average of the 
squared PLS-VIP scores is equal to one; hence the "VIP scores greater than one" rule is 
generally used as the criterion for important variable selection.  For this study, the 95% 
jackknife confidence interval for the PLS-VIP was calculated and is subsequently used 
for important variable selection.   

Jackknife Procedure 
 
The jackknife procedure works by repeatedly re-computing the statistic of interest, i

ˆ , 
by leaving out the ith observation from the dataset.  It then calculates the overall 
parameter estimate, ˆ , by taking the average of the aforementioned replicate estimates.  
An estimate for the standard deviation of said statistic, jˆ , can then be calculated using 

both ˆ  and the replicates from the repeated re-computations, i
ˆ .  The overall estimate 

for the parameter of interest, ˆ , and corresponding standard deviation, jˆ , was 
calculated per Eq.'s (10, 11) [5]:  
 

(10)   
n

i
in

1

ˆ)/1(ˆ  

 

(11)   
2/1

1

2ˆˆ/1ˆ n

i ij nn  

 
where jVIPˆ , 

jvipj ˆˆ , and j jth predictor variable.  Using the above estimate for

jˆ , 95% confidence intervals were calculated using the appropriate quantile from the t-
distribution, 1,2/1 nt .   

Bootstrapping and Permutation for VIP Overview 
 
Bootstrapping can aid statistical modeling by addressing the multiplicity-of-models 
phenomenon [6] and estimation of a parameter's sampling distribution [5].  It has been 
stated for decision trees that a very different tree (i.e. model), with almost the same cross-
validation error, could be obtained by just slightly perturbing the original dataset by 
randomly removing 2-3% of the data [6].  This could be attributed to many different 
models being clustered together with approximately the same cross-validated error [6], 
but very different model structures, resulting in a different subset of important variables.  
Hence, performing the analysis over a large set of pseudo-independent datasets, like those 
generated by bootstrapping, with competing models, could reduce the non-uniqueness 
problem [6]; fitting individual models to each of these datasets allows for a distribution of 
the parameter of interest, in our case the PLS-VIP, which takes into account all the 
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potential realizations of the dataset with respect to the parameter.  A variable that is truly 
important can be expected to remain important across the multitude of datasets being 
analyzed.  In order to add more confidence with respect to the variables true importance, 
after fitting the model to the bootstrap dataset, the effect of randomly permuting each 
variable in turn, capturing the permuted variables PLS-VIP, and comparing this to the 
original PLS-VIP, via measuring its difference, generates the analogue of a matched pairs 
analysis; one can then examine the magnitude of the differences relative to zero 
difference.   

Bootstrapping Procedure 
 
Bootstrapping involves sampling ( ) datasets, each consisting of n observations 
randomly selected with replacement from the original dataset.  These ( )datasets are 
termed "bootstrap datasets".  Given that bootstrapping follows a Poisson distribution, 
approximately 63% ( 11 e ) of the original cases will be in each bootstrap dataset.  
Parameter estimation follows a straightforward approach wherein one sequentially fits 
independent models to each of the bootstrap datasets.  The overall estimate for the 
parameter of interest, *ˆ , and corresponding standard deviation, bˆ , is calculated per 
Eq.'s (12, 13) [5], where B is the number of bootstrap datasets: 
 

(12)   
B

b*
*

ˆ
ˆ  

 

(13)   
2/1

1

2
** 1/ˆˆˆ B

b

b
b B  

 
where jVIP*ˆ , 

jvipb ˆˆ , and j jth predictor variable; 95% confidence intervals are 

calculated by multiplying bˆ  by the appropriate quantile from the t-distribution, 1,2/1 nt .   
 

Permutation Procedure 
 
The rationale behind randomly permuting each predictor variable in turn is that its 
original relationship with the response variable is disrupted.  If the permuted variable is 
important it is expected that the PLS-VIP value will decreases substantially. Thus, a 
reasonable measure for variable importance is the difference between the actual PLS-VIP 
and the randomly permuted PLS-VIP.  As defined in Eq. 14, the permutation method 
corresponds to a null hypothesis of independence between the randomly permuted 
variable, , and both the response, y,  and the remaining non-permuted predictor 
variables, Z, [7]: 
 
(14)   :  ,   
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The bootstrap and permutation method is applied to the PLS-VIP as follows: 
 
1)  Using the original dataset, a priori determine the number of PLS components (latent 
variables) required. 
 
2)  Obtain, via bootstrapping, ( )bootstrap datasets. 
 
3)  PLS models are fit to each of the bootstrap datasets using the number of PLS 
components determined in Step 1, and the PLS-VIP for each predictor variable is 
obtained. 
 
4)  Immediately following Step 3, randomly permute each variable in turn and re-fit PLS 
models to the modified dataset, where each variable is randomly permuted in sequence 
within each bootstrap dataset.   
 
5)  Calculate the PLS-VIP score difference between the non-permuted bootstrap variable 
(Step 3) and the randomly permuted bootstrap dataset for that variable (Step 4).   
 
6)  Normalize the difference vector for each variable obtained from Step 5 to its 
corresponding standard deviation and construct 95% confidence intervals around the 
differences.  This normalization has the effect of penalizing those sets of differences with 
higher variability by scaling down their individual difference scores, and rewarding those 
with lower variability.  As stated, the 95% lower-bound confidence interval around the 
individual differences is used to determine the importance of a variable per the guidelines 
listed below.   
 

 95% confidence interval lower-bound > 1,2/1 nt  = Important 
 95% confidence interval lower-bound > 0 = Marginally Important 
 95% confidence interval lower-bound < 0 = Not Important 

 

Experimental 
 
Important variable selection is performed in one of two ways [8]:  dimension-wise, where 
one determines important variables one PLS component at a time; and model-wise, where 
the PLS model is first obtained and then a variable selection procedure is applied.  For 
this study the model-wise approach was used with the PLS-VIP and BP-VIP methods 
being applied to four datasets used in [8] and [9], in addition to a dataset obtained from a 
vaccine manufacturing process.  All dataset variables were standardized to unit-variance 
prior to performing the analyses and applying the variable selection methods. 
 
Important variable selection using the PLS-VIP method was effected using the criterion 
that the lower-bound on the 95% jackknife confidence interval did not encompass one.  
The BP-VIP method was implemented using a total of 300 bootstrap datasets, using the 
important variable selection criterion that the 95% confidence interval lower-bound for 



Chapter 2 
 

Page 19 of 101 
 

the standardized differences was > 1,2/1 nt .  Once the most important predictor variables 
were selected using both PLS-VIP and BP-VIP, and to avoid the introduction of any bias 
in the selection of the relevant PLS components, SIMCA-P+ v12.0.1.0 [10] was used to 
determine the final PLS model in the subset of important predictor variables.  These 
models were then used to obtain the comparison metrics listed in Table 1, with the 
exception of OLS-CV-R2, which was performed in R [11].   
 
For this study, the PLS analysis, PLS-VIP calculation, and graphical display were done 
using [12, 13].  The jackknife procedure for the PLS-VIP, the BP-VIP bootstrap and 
permutation procedures, and BP-VIP variable selection were performed using a script 
written by the first author in the R programming language [14]. 
 
Note:  These types of studies across multiple datasets require a large number of graphs.  
Due to a lack of space the graphs presented will be solely based on the VACCINE dataset.  
Additional graphs will be provided upon request addressed to the first author. 

Datasets 
 
Each dataset listed below was split into a calibration dataset (training dataset) and test 
dataset for the purpose of determining how well the model in the subset of selected 
important variables predicted an entirely new dataset (test dataset). 
 
ADPN 
 
The ADPN dataset is taken from the industrial manufacturing process of adiponitrile 
(ADPN), an intermediary of the chemical synthesis of Nylon 6-6. This process is 
described by the explanatory variables of flow, pressure, temperature and of 
compositions of reactional mixtures evolving in time, in addition to the response "nickel 
loss" [9]. 
 

 ADPN data set with n = 57, y = 1, p = 100 (training dataset) 
 ADPN data set with n =  14, y = 1, p = 100 (test dataset) 

 
LATEX 
 
The LATEX dataset is taken from emulsion polymerisation batch operations of the 
industrial manufacturing process for latex.  The explanatory variables are temperature, 
level time, monomer input rate, catalyst level and reactive concentration. The response 
variable, "insoluble products" is the amount of secondary products [9]. 
 

 LATEX data set with n = 210, y = 1, p = 117 (training dataset) 
 LATEX data set with n = 52, y = 1, p = 117 (test dataset) 
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OXY 
 
The OXY dataset is taken from the industrial manufacturing process of titanium oxide, a 
chemical product with very high tonnage that enters into the composition of many 
finished goods, particularly, paint. One of the responses, the whiteness property, can be 
explained as a function of the variables of the hydrolysis, maturity and calcination phases 
[9]. 
 

 OXY data set with n = 20, y = 1, p = 95 (training dataset) 
 OXY data set with n =  5, y = 1, p = 95  (test dataset) 

 
SPIRA 
 
The SPIRA dataset is taken from the fermentation process used to manufacture 
Spiramycine, an antibiotic. Observations were made of fermentation operations in several 
fermentation reactors described by process variables such as stirring power, temperature 
level, oxygen consumption peaks and the times at which these peaks occur; information 
recorded over a period of 240 h at regular intervals [9]. 
 

 SPIRA data set with n = 115, y = 1, p = 96 (training dataset) 
 SPIRA data set with n = 30, y = 1, p = 96 (test dataset) 

 
VACCINE 
 
The VACCINE dataset is obtained from a vaccine manufacturing process wherein 
process variables pertaining to cellular growth and viral propagation are monitored.  With 
respect to the VACCINE dataset, the two most important predictor variables, in their 
order of importance, are C_CONC and S_E_.   
 

 VACCINE dataset with n = 50, y = 1, p = 67 (training dataset) 
 VACCINE dataset with n =  16, y = 1, p = 67 (test dataset) 

Results 
 
The goal of the following experiment is to determine whether the BP-VIP method or 
PLS-VIP using the lower-bound on the 95% jackknife confidence interval, is more 
successful at identifying the most important variables that are driving the manufacturing 
process that is being modeled.  Once the most important variables have been selected by 
each method (Ref. Table 1 – Variables Selected), subsequent higher value metric results, 
as can be found in the Test Set CV R2 column in Table 1, imply that the variables chosen 
by a particular method were indeed the ones that were the most important variables in 
predicting y .  Table 1 summarizes the comparative results between the PLS-VIP and 
BP-VIP variable selection approaches.   
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The following criteria were used in order to determine the performance of the variables 
selection methods: 

 Variables Selected – Number of important variables selected by either the PLS-
VIP or BP-VIP method.  These were determined using the training dataset where 
all predictor variables were considered candidate variables for importance 
selection. 

 OLS-CV-R2 – Ordinary least squares cross-validated R2 explains how well the 
variables chosen by the respective method performs using ordinary least squares 
regression (as measured by the cross-validated R2).1   

 LV – Number of relevant components, N, shows the complexity of the PLS model 
in the subset of the most important variables selected. 1 

 R2X – Cumulative X-variation modeled after N components illustrates how well 
the PLS model in the subset of important variables explains variation in X. 1 

 R2Y – Cumulative Y-variation modeled after N components shows how much 
variation is explained in the response variable via the PLS model in the subset of 
important variables selected. 1 

 Q2(cum) – Cumulative overall cross-validated R2Y is the cross-validated R2 for 
the PLS model in the subset of important variables selected. 1 

 Test Set CV R2 – The prediction R2 demonstrates how well the PLS model, in the 
subset of important variables selected, generalizes to an entirely new dataset. 2 

1Calculated using the training dataset and only the most important variables selected 
within each variable selection method. 

2Calculated using the test dataset and only the most important variables selected within 
each variable selection method. 

Dataset Variable 
Selection 
Method 

Variables 
Selected 

OLS-CV-
R2 

LV R2X R2Y Q2 Test Set 
CV R2 

VACCINE PLS-VIP 11 .67 2 .70 .71 .63 .47 
BP-VIP 2 .60 1 .72 .63 .62 .53 

SPIRA PLS-VIP 10 .50 2 .65 .52 .48 .51 
BP-VIP 7 .47 2 .66 .52 .49 .50 

LATEX PLS-VIP 20 .76 3 .73 .70 .68 .47 
BP-VIP 26 .76 4 .75 .72 .67 .57 

ADPN PLS-VIP 15 .69 2 .73 .70 .64 .26 
BP-VIP 3 .52 1 .76 .55 .55 .43 

OXY PLS-VIP 2 .44 1 .69 .63 .53 -.56 
BP-VIP 2 .44 1 .69 .63 .53 -.56 

Table 1:  A discussion of the results listed in Table 1, and relevant Figures, will only be 
done for the VACCINE dataset, with the exception of the Test Set CV R2 results, where 

the results across all the datasets used in the analysis are briefly discussed. 
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Discussion 

 
Figure 1:  VACCINE Dataset PLS-VIP Important Variables with 95% jackknife 

confidence intervals for each predictor variable in the VACCINE dataset.  Variables 
whose 95% jackknife confidence interval lower-bound did not encompass one were 

designated important variables.  The horizontal line corresponds to the average of the 
squared PLS-VIP scores for the non-permuted predictor variables. 

With respect to the BP-VIP method, Figure 2 displays the 95% confidence intervals 
between the non-permuted and permuted PLS-VIP scores, whereas Figure 3 displays the 
actual differences between the bootstrapped PLS-VIP scores and its corresponding 
randomly permuted PLS-VIP scores, sorted by the magnitude of the mean of this 
difference vector.  The approach detailed in the Materials and Methods section in which 
the differences displayed in Figure 3 are normalized to their corresponding standard 
deviation are displayed in Figure 4.   The horizontal line in this graph corresponds to the 
cut-off limit specified in the importance guidelines in the Materials and Methods section, 
wherein a variable is scored as important if the 95% confidence interval lower-bound > 

1,2/1 nt . 
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Figure 2:  VACCINE Dataset Bootstrapped and Randomly Permuted PLS-VIPs. 

Bootstrapped PLS-VIP scores (red) and their corresponding randomly permuted scores 
(blue), with 95% bootstrap confidence intervals around the individual scores, sorted on 
the magnitude of the PLS-VIP mean.  The horizontal line corresponds to the average of 

the squared PLS-VIP scores for the non-permuted predictor variables. 
 

 
Figure 3:  VACCINE Dataset Non-normalized Bootstrapped and Permuted PLS-VIP. 

Difference Scores Difference vectors between the bootstrapped PLS-VIP scores and their 
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corresponding randomly permuted scores, with 95% confidence intervals.  Variables are 
sorted on the magnitude of the mean of the difference vector.  The color groupings 

correspond to the Wilcoxon-Sign Rank statistic, which is solely being used to group 
variables, by color, that lie at approximately the same distance from zero (horizontal 

line). 

 
Figure 4:  VACCINE Dataset BP-VIP Important Variables.  Normalized difference 
vector between the bootstrapped PLS-VIP scores and their corresponding randomly 

permuted scores with 95% confidence intervals.  Given the normalization, the y-axis can 
be interpreted as the distance from zero, in standard deviations.  The horizontal line in 
this graph corresponds to the cut-off limit specified in the importance guidelines in the 

Materials and Methods section for an important predictor variable. 
 
*For the OXY dataset, neither the BP-VIP nor PLS-VIP methods identified important 
variables using their respective criteria.  The values displayed in Table 1 for this dataset 
reflect the results obtained using the same two variables ranked as 1st and 2nd in 
importance by both methods based solely on the magnitude of their PLS-VIP score.  
Although these two variables appear to explain a significant proportion in the overall 
variability in terms of OLS-CV-R2, LV, R2X, R2Y, and Q2, they do not predict well 
when using a new dataset (Test Set CV R2).  Hence, applying the criteria explained 
above using either the BP-VIP or PLS-VIP methods may help in identifying only those 
variables that are predictive of y .  

VARIABLES SELECTED (VACCINE DATASET) 
 
From Figure 4 we can see that two variables, namely C_CONC and S_E_, meet the BP-
VIP criterion that the lower-bound on the 95% confidence interval for the standardized 
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differences not encompass 2.01 ( 1,2/1 nt ).  With respect to the PLS-VIP method, from 
Figure 1 we find that 11 variables meet the criterion that the 95% lower-bound on the 
jackknife confidence interval not encompass one.  Hence, a lesser number of variables 
were chosen as important by the BP-VIP method.  For the VACCINE dataset we are 
privy to the actual important variables, namely C_CONC and S_E_, and can see from 
Figure 4 that the BP-VIP method identified said variables in their corresponding 
importance rank of 1 and 2 (Figure 1). 
 
OLS-CV-R2 – ORDINARY LEAST SQUARES CROSS-VALIDATED R2  (VACCINE DATASET) 
 
When calculating the OLS-CV-R2 using only the most important variables selected 
within each variable selection method we find a difference between the BP-VIP (60%) 
and PLS-VIP method (67%), wherein the PLS-VIP scores higher.  The additional gains in 
this metric by the PLS-VIP method are arrived at with 9 supplementary predictor 
variables. 
 
LATENT VARIABLES SELECTED (VACCINE DATASET) 
 
When fitting models in the subset of identified important variables, the BP-VIP method 
chose a less complex model (one latent variable) when compared to the PLS-VIP method 
(two latent variables).   
 
R2X (VACCINE DATASET) 
 
In terms of the amount of variability explained in the predictor matrix, the BP-VIP 
method (72%), with a less complex model, did just as well as the PLS-VIP method (70%) 
for the VACCINE dataset.   
 
R2Y (VACCINE DATASET) 
 
With respect to the amount of variability explained in the response variable, the BP-VIP 
method with a less complex model explains 63% of the variability in the response 
variable, whereas the PLS-VIP method explained 71%. 
 
Q2 (VACCINE DATASET) 
 
In terms of the cross-validated R2 (Q2), the BP-VIP method (62%) with a lesser number 
of identified important variables and less complex model did as well as the PLS-VIP 
method (63%). 
 
TEST SET CV R2 (ALL DATASETS) 
 
In the prediction of a test dataset in the subset of identified important predictor variables 
the BP-VIP method, with a fewer subset of important variables, either outperformed, or 
in practical terms did the same, as the PLS-VIP for the VACCINE (53% vs. 47%), ADPN 
(43% vs. 26%), and SPIRA (50% vs. 51%) datasets.   
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With respect to the LATEX dataset, although a fewer subset of variables was selected as 
important by the PLS-VIP method (47%), the Test Set CV R2 was in practical terms 
lower when compared to the BP-VIP method (57%), demonstrating that the latter method 
may have been successful in identifying additional variables that were important for 
predicting y that were omitted by the PLS-VIP method.  For the OXY dataset there was 
no difference in methods and indeed both methods did equally poorly in terms of the Test 
Set CV R2 (-.56).  The Oxy dataset results may point to the ability of both methods to be 
similarly capable of not detecting important variables for predicting y  when there are 
indeed no relevant predictors.  

Conclusion 
 
In this article we explored the use of the 95% lower-bound on the jackknife confidence 
interval for the PLS-VIP versus the combination of bootstrap and permutation methods 
(BP-VIP) for determining variable importance across five datasets.  Given the results 
listed in Table 1 it can be concluded that the use of the jackknife confidence interval 
approach is sufficient for ensuring that the correct important variables are selected.  In 
terms of the most important variables the PLS-VIP may be subject to resulting in a less 
optimal model in the subset of important variables when compared to the BP-VIP 
method.  Additionally, it can be observed from Figure 1 that the jackknife confidence 
intervals approximate the bootstrap confidence intervals of the non-permuted VIP scores 
in Figure 2.  With respect to this apparent relationship between the jackknife and 
bootstrap, the jackknife is a linear approximation to the bootstrap [5], and can be 
considered a more conservative estimate of the variance [15].  Consequently, adopting 
the bootstrap procedure for estimation of the PLS-VIP sampling distribution, and 
applying the aforementioned permutation method, combines two powerful methods for 
important variable selection.  The advantage of using the lower-bound on the jackknife 
confidence interval for the PLS-VIP currently lies in its computational efficiency, 
whereas the difficulty in implementing both bootstrap and permutation methods, as in the 
BP-VIP, is that they are computational intensive.  In the end, the need to confidently 
identify the most important variables underlying a manufacturing process may provide 
ample justification for the implementation of a more robust method of variable selection 
that is computationally intensive in lieu of a less optimal selection method.   
 
 
 
 
 
 
 
 
 
 



Chapter 2 
 

Page 27 of 101 
 

References 
 
[1]  Matthew C. Wiener; Louis Obando; Julia O'Neill, Quality Engineering, 22:157–

168 (2010) 
[2]  Svante Wold, Michael Sjostrom, Lennart Eriksson, Chemometr. Intell. Lab. Syst. 

58 (2001) 109–130.  
[3]  Il-Gyo Chong, Chi-Hyuck JunT, Chemometr. Intell. Lab. Syst. 78 (2005) 103–

112. 
[4]  Aloke Phatak, Simeon De Jong, J Chemometr, 11 (1997), 311-338 
[5]  Bradley Efron and Gail Gong, Am. Stat., Vol. 37, No. 1, (Feb., 1983), pp. 36-48. 
[6]  Leo Breiman, Stat. Sci. 2001, Vol. 16, No. 3, 199-231. 
[7]  Carolin Strobl, et. al., BMC Bioinformatics, 2008, 9:307. 
[8]  Aziz Lazraq, Robert Cleroux, Jean-Pierre Gauchi, Chemometr. Intell. Lab. Syst. 

 (2003) 117 – 126. 
[9]   Jean-Pierre Gauchi, Pierre Chagnon, Chemometr. Intell. Lab. Syst. 58 2001.171–

193. 
[10]  Umetrics©, SIMCA-P+®, Version 12.0.1.0, (2009) 
[11] Andreas Alfons (2012).  cvTools:  Cross-validation for regression models.  R 
 package version 0.0.2.  http://CRAN.R-project.org/package=cvTools 
[12] Bjorn-Hege Mevik, Ron Wehrens and Kristian Hovde Liland (2011).  pls:  Partial 
 Least Squares and Principal Component Regression.  R package version 2.3-0.  
 http://CRAN.R-project.org/package=pls 
[13]  H. Wickham. ggplot2: elegant graphics for data analysis. Springer New York,  
 2009. 
[14]  R Development Core Team (2011). R: A language and environment for  
 statistical computing. R Foundation for Statistical Computing, Vienna, Austria.  

ISBN 3-900051-07-0, URL http://www.R-project.org/. 
[15]  B. Efron, C. Stein, Ann. Stat., Vol. 9, No. 3, (May, 1981), pp. 586-596. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Chapter 3 
 

Page 28 of 101 
 

Chapter 3:  An Assessment of the 
Jackknife and Bootstrap Procedures on 
Uncertainty Estimation in the Variable 
Importance in the Projection Metric 
Abstract 
 
Industrial manufacturing processes can be very complex systems where in the 
manufacture of a single batch hundreds of processing variables and raw materials is 
monitored. In these processes, where there is a high degree of multicollinearity between 
predictor variables, identifying the candidate variables responsible for any changes in 
product quality can prove to be extremely challenging. Within this context partial least 
squares (PLS), in conjunction with the variable importance in the projection (PLS-VIP) 
metric, is currently an important tool in determining the most correlated variables and 
helping to determine the root cause for changes in a product's quality attributes. Using the 
standard ‘greater than one’ important variable cut-off rule for the PLS-VIP, our approach 
is to measure the performance of seven methods of uncertainty estimation with the goal 
of assessing which method performs best in reducing the false positive rate while at the 
same time not impacting the true positive rate. Our findings demonstrate that the 
implementation of either the normal or basic bootstrap confidence intervals for the PLS-
VIP will result in a more consistent determination of the important variables. If 
computation speed is a concern, the use of the bias-corrected jackknife confidence 
interval is recommended in place of the un-corrected jackknife. 
 
 
 
 
 
 
 
 
 
 
N.L. Afanador, T.N. Tran, and L.M.C. Buydens, Chemometrics and Intelligent Laboratory 
Systems, vol. 137 (2014), pp. 162-172. 
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Introduction 
 
Partial least squares (PLS) has gained popularity within the manufacturing industry for its 
ability to relate a large number of correlated explanatory variables to a response via a 
multivariate linear model, thus proving helpful in driving at the variables most correlated 
to product quality changes. A standard PLS analysis provides model fit statistics, 
parameter estimates, and in many cases the variable importance in the projection (PLS-
VIP) statistics. It is this latter metric, the PLS-VIP, which has been found useful in 
identifying variables associated with the current manufacturing process performance [1, 
2]. However, often times complex predictor space conditions coalesce to produce a model 
in which many explanatory variables are deemed important, as per the PLS-VIP N1 cut-
off guideline [2], thus making a practical interpretation of the PLS-VIP, as related to 
changes in product quality, very challenging. In spite of this limitation [5] determined 
that a parameter uncertainty approach using the lower-bound of the 95% jackknife 
confidence interval being greater than the PLS-VIP cut-off value of 1 does indeed 
provide a reasonable estimate of the most important variables in a model. Given this 
conclusion the question arises as to whether the jackknife estimate of uncertainty is 
comparable to a general bootstrap confidence interval approach given that the jackknife is 
a linear approximation to the bootstrap [3], that can in some instances under-estimate the 
variability around an estimate [4]. As such, the goal of this study is to compare the 
coverage properties of the jackknife confidence interval, and its bias-corrected analogue, 
to five different methods of estimating confidence intervals via the bootstrap, and how 
this relates to important variable selection via the PLS-VIP. 
 
The motivation for assessing five bootstrap procedures is due to their varying approaches 
for determining confidence intervals. Hence, their inclusion in this study allows for a 
level of competition between the bootstrap confidence interval methods presented, and 
allows us to examine if one general approach is applicable for the PLS-VIP when 
compared to the jackknife. The general conclusion may be applicable for other model 
parameters too. The results from our study demonstrate that implementation of either the 
normal or basic bootstrap confidence intervals for the PLS-VIP will result in a more 
consistent determination of the important variables currently driving a manufacturing 
process.  If computation speed is a concern, the use of the bias-corrected jackknife 
confidence interval is recommended in place of the un-corrected jackknife. 
 

Methods 
Partial Least Squares 
 
In this paper we only consider the case of a single response variable, y. As such, the PLS 
regression model with h latent variables can be expressed as per Eqs. (1) and (2) [2]. 
 
(1)   = +  
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(2)   = +  
 
Where ( × ) is the matrix of predictors, ( × ) is the X-score matrix of latent 
variables, ( × )  is the matrix of X-loadings, ( × )  is the univariate response 
variable, ( × ) are the PLS regression coefficients, and where ( × ) and ( ×

) are the random errors of X and y, respectively.   
 
The goal of PLS is to maximize the covariance between T and y [6].  This maximization 
is achieved as per Eqs. (3) – (8), as per the NIPALS algorithm where , , , stand 
for the k-th column of T, P, and W, respectively ( = 1, 2, . . . , ).   
 
(3)   = ( ) ( )/ ( ) ( )  
 
(4)   = ( )  
 
(5)   = ( )/  
 
(6)   = ( )/  
 
(7)   ( ) = ( )   
 
(8)   ( ) = ( )  
 
 
The algorithm is then repeated beginning with step 1 using )1(kX  and )1(ky until the 
required number of latent variables, h , are obtained.  This step is determined by the data 
analyst and is often supported by the use of cross-validation. 

PLS-VIP 
 
The variable importance in the projection (PLS-VIP) [2], scores the importance of the jth 
predictor variable per Eq. (9) where p in this instance is equal to the number of predictor 
variables. 
 

(9)   = ( ) ( ) /     
 
 
The PLS-VIP measures the contribution of each predictor variable to the model by taking 
into account the covariance between ( ) and ( ), as expressed by ( ) , weighted by 
the proportion of  ( ) that is explained by the kth dimension .  The average of 
the squared PLS-VIP scores is equal to one; hence the "PLS-VIP score >1" rule is 
generally used as the criterion for important variable selection, wherein simply the 
magnitude of the PLS-VIP score for a variable needs to exceed this value.  Throughout 
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this paper “PLS-VIP > 1” will be used to designate this important variable selection 
criterion. 
 
We would like to note that in the classical use of the VIP a decision as to the ranking of 
the variables could be made solely on the point estimate of the VIP. As an example, one 
could choose the top 3 important variables with VIP scores greater than the cut-off 
criterion of 1 simply based on their descending VIP magnitude.  However, this assumes 
that the VIP score is perfectly estimated given the data.  When taking in account the 
degree of uncertainty in the estimation of the VIP it might be shown that its score is not 
significantly different than the cut-off criterion of 1.  In this instance, the variable should 
not be counted as an important variable because its score, from a statistical standpoint, 
could be <1 when taking into account their uncertainty.  Hence the most elevated VIP 
could possibly be discarded because of its wide confidence intervals.  Furthermore, their 
ranking can also be changed accordingly.  Our contention is that this estimate of 
uncertainty can from a theoretical stand-point be correctly estimated via the bootstrap, 
and its application can help in reducing the Type I error rate (false positives).  The 
rationale of using two-sided intervals as opposed to a one sided lower-bound is to allow 
the data analyst the ability to compare the degree uncertainty estimation between 
variables.  This comparison can inform the data analyst as to which parameters are best 
estimated given the data.  As such, rather than using the point estimate for the VIP of 
each variable, , as described above, we will now explore methods to estimate the 
confidence intervals around this estimate for the purpose of objectively determining a 
variables importance and ranking.  The scientific notation used for the confidence 
interval methods is as follows: 

NOTATION FOR CONFIDENCE INTERVAL METHODS: 
 

 = population parameter 
ˆ  = sample estimate of  
ˆ = sample estimate of the population parameter  

i
ˆ = jackknife replicate estimate of ˆ  with the ith observation removed 
ˆ = jackknife estimate of ˆ across all jackknife replicates 
 = jackknife estimate of  
 = jackknife estimate of bias 
 = bootstrap replicate sample estimate of ˆ  

*ˆ = bootstrap estimate of ˆ across all bootstrap replicates 
 = bootstrap estimate of  
 = bootstrap estimate of bias 
= statistical significance level 
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Jackknife procedure 
 
The jackknife procedure, popular in chemometric applications, works by repeatedly re-
computing the statistic of interest, i

ˆ , by leaving out the ith observation from the dataset.  

It then calculates the overall jackknife estimate of the parameter, ˆ , by taking the 
average of the aforementioned replicate estimates (10).  An estimate for the standard 
deviation of said statistic, Jˆ , can then be calculated using both ˆ  and the replicates 

from the re-computations, i
ˆ  (11) [7]. 

 

(10)   
n

i
in

1

ˆ)/1(ˆ  

 

(11)   
2/1

1

2ˆˆ/1ˆ n

i iJ nn  

 
Using the above estimate for Jˆ , 95% confidence intervals can be calculated using the 
appropriate quantiles from the t-distribution (12). 
 
(12)   Jnt ˆˆ),( )1,2/1(1  

 
An additional property of the jackknife procedure is that it allows for the estimation of 
bias between the current estimate and the target parameter (13) [8].  This bias-correction, 

*ˆ
JB , can then be applied to the jackknife estimate to obtain a bias corrected estimate (14). 

 
(13)   ( , ) = ±

,
 

where,  
 
(14)   )ˆˆ)(1(ˆ * nBJ  

Bootstrapping procedure 
 
Bootstrapping involves sampling B datasets, each consisting of n observations randomly 
selected with replacement from the original dataset.  These B datasets are termed 
"bootstrap sample replicates".  Parameter estimation follows a straightforward approach 
wherein one sequentially fits independent models to each of the bootstrap samples.  The 
overall estimate for the parameter of interest, *ˆ (Eq. (15)), and corresponding standard 
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deviation, Bˆ , is calculated as detailed in [9], where B is the number of bootstrap samples 
(Eq. (16)). 
 

(15)   
B

B

b

b

1

*

*

ˆ
ˆ  

 

(16)   
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** 1/ˆˆˆ B

b

b
B B  

Bootstrap Confidence Interval Estimation 
 
Bootstrap confidence intervals are generally classified into two types [10]:  pivotal, 
where symmetry is imposed, and non-pivotal, in which symmetry is not imposed.  The 
determination of which one to use should be preceded by an examination of the bootstrap 
distribution [12], especially when dealing with small sample sizes.  This assessment 
should take into account the extent to which the bootstrap distribution approximates a 
normal distribution and the overall estimate of bias, thus helping ensure that the correct 
bootstrap confidence intervals are chosen so as to maximize the likelihood of coverage 
for the population parameter of interest.   
 
PIVOTAL 

Pivotal methods use the quantity )
ˆ

ˆ
(1 ULP  in order to arrive at the 

desired confidence interval [8].  These methods work well when the assumption of 
normality is met, and having an unbiased estimate of , the population parameter.  
Having a biased estimate of can at times be assuaged by applying a bias-correction 
[11]. 
 
NORMAL APPROXIMATION BOOTSTRAP CONFIDENCE INTERVALS 
 
This method relies on obtaining an unbiased estimate of ˆ and the sample estimate of  
being adjusted for any bias [13].  The derivation of the normal bootstrap confidence 
intervals via the above pivotal quantity results is shown in Eq. (17)., where ˆˆˆ **B
is the bootstrap estimate of bias, and z are the appropriate quantiles from the standard 
normal distribution. 
 
(17)   BzB ˆˆˆ),( 1

*
1  

 
BASIC BOOTSTRAP CONFIDENCE INTERVAL 
 
In calculating the Basic bootstrap confidence intervals [15], the goal is to arrive at a 
lower (L) and upper bound (U) as per (18).  



Chapter 3 
 

Page 34 of 101 
 

 
(18)   )ˆ(1 ULP  

 
By replacing the parameter estimate ˆ  with the bootstrap estimate *ˆ , and the population 
parameter, , with ˆ  we arrive at Eqs. (19) and (20). 
 
(19)   )ˆˆ(1 * ULP  
 
(20)   )ˆˆˆ(1 * ULP  

 

Using the bootstrap distribution to obtain the percentiles, 
2

q and 
2

1q ,   and 

setting these equal to the endpoints of the interval defined in Eq. (18), the lower (L) and 
upper (U) bounds can be solved for algebraically (Eq. (21)): 
 

(21)   
2

ˆ2
2

1ˆ2 qq  

 
Although not obvious, there is a bias correction associated with the basic bootstrap 
confidence interval.  In the Normal approximation bootstrap confidence intervals, 

** ˆˆ2)ˆˆ( B , is the bias-corrected estimate; the basic bootstrap simply replaces 

*ˆ with the percentiles from the bootstrap distribution, 
2

1q and 
2

q , as shown 

in Eq. (21).   
 
STUDENT'S T CONFIDENCE INTERVAL 
 
The Student's t confidence interval is similar to the jackknife confidence interval with the 
difference being that the bootstrap estimate Bˆ is used as the 'plug-in' standard error 
estimate for ˆ [14].  Using, Bˆ , 95% confidence intervals can be calculated using the 
appropriate quantiles from the t-distribution (22).   
 
(22)   Bnt ˆˆ),( )1,2/1(1  
 
NON-PIVOTAL 
 
Non-pivotal methods [10] rely on the use of the percentiles from the actual bootstrap 
distribution to determine confidence intervals for the parameter of interest at some pre-
stated -level. 
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PERCENTILE BOOTSTRAP CONFIDENCE INTERVAL 
 
The Percentile bootstrap confidence interval method uses the empirical percentiles of the 
bootstrap distribution to determine the width of the confidence intervals [16].  The 
percentile method makes no assumptions about the underlying distribution of the 
parameter of interest and provides a simple and straight-forward non-parametric approach 
for determining confidence intervals (23), where B is the number of bootstrap sample 
replicates.  The quantity (B + 1) in (23) and (24) helps account for total bootstrap sample 
replications that are odd in number in order to avoid interpolation in the determination of 
the required percentiles [17]: 
 
(23)   

)]2/1)(1[(
*

]2/)1[(
* ˆˆ

B
b

B
b  

 
BOOTSTRAP BCA CONFIDENCE INTERVAL 
 
The bootstrap bias-corrected and accelerated confidence intervals (BCa) are an 
adjustment of the Percentile method that accounts for both bias and the rate of change of 
the standard error of ˆ  with respect to  [18].  Bias adjustment proceeds by estimating 
the proportion of bootstrap samples that are at or below ˆ  (24) [18],   
 

(24)   
1

)ˆˆ(
ˆ

*#
11

B
z

b
B  

 
where 1  is the inverse function of the standard-normal cumulative distribution 
function, and z represents the calculated quantile from the standard normal.  The 
acceleration parameter, â , is used to adjust for skewness in the calculation of the BCa 
confidence intervals [18].  The theoretical background with respect to how â  provides an 
estimate of the acceleration constant that adjusts for skewness can be found in [19], but 
can be shown to be well estimated by one-sixth of the jackknife estimate for skewness 
(Eq. (25)) [19]. 
 

(25)   
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After calculating the bias and acceleration correction factors we obtain the appropriate 
percentiles from the bootstrap distribution (Eqs. (26) and (27)) in order to determine the 
BCa confidence intervals (Eq. (28)) [20]. 
 

(26)   
)ˆ(ˆ1

ˆˆ
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(27)   
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(28)   
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where  is the standard-normal cumulative distribution function, and the values 2/z
and 2/1z  represent quantiles from the standard normal at the required  level.   

Experimental 
Experimental Structure 
 
The first part of this study focuses on quantifying the sensitivity and specificity of each 
method via a simulation experiment.  This portion of the study will help gauge how each 
method performs in detecting variables induced to correlate with the response variable in 
the presence of varying degrees of multicollinearity.   

The second part of this study focuses on four real manufacturing process datasets with 
process changes that are representative of those observed in processing.  With the 
exception of the VACCINE dataset, the authors are not privy to which variables are most 
correlated with the current process performance displayed in Figure 2.  As such the focus 
is to solely gauge each method’s ability to identify candidate variables that correlate with 
the observed process behavior.  Given that predicting future process performance in the 
presence of what appears to be special cause variation is analogous to setting process 
control limits on an out-of-control process the focus will be on internal cross-validation 
as the gauge of whether each of the methods investigated identify the most important 
variables correlated with the observed process performance.   

A general agreement in the results of both simulation experiment and actual process 
datasets should provide initial guidance on which approach is most suitable for assigning 
important variables in a current manufacturing process via the use of the PLS-VIP. 

For the estimation of all the bootstrap confidence intervals 999 bootstrap replications 
were performed; all confidence intervals were set at 95% confidence. 

SIMULATED MANUFACTURING PROCESS EXPERIMENTAL SECTION 
 
A factorial experiment was performed using a simulated manufacturing process 
composed of seven unit operations, 51 process variables, and 60 batches. The seven unit 
operations were chosen to adequately simulate a manufacturing batch process, wherein 
multiple processing steps are grouped within specific sequential correlated manufacturing 
operations (Diagram 1). For each unit operation the within-unit-operation correlation 
structure is listed (corr=). This correlation structure was chosen to mimic the varying 
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degrees of multicollinearity that may be observed in a multifaceted batch manufacturing 
process. In some instances there may multiple levels of multicollinearity present within 
one unit operation, as shown in Unit Operations 3, 4, and 7. The complexity of the 
simulation correlation structure has been purposefully designed in the hopes that the 
results will be more relevant and generalizable to complex manufacturing systems. At 
each simulation iteration observations intended to simulate the manufacturing process 
were sampled from a multivariate normal distribution as per the correlation structure 
defined in Diagram 1.  The three processing variables correlated to the response were 
placed in a sequence intended to simulate multiple influential events whose magnitude 
was dependent on their proximity to the end of the manufacturing process. An example of 
the predictor variable correlation structure defined as the baseline correlation is displayed 
in Fig. 1. This baseline correlation structure was varied in two ways, by first increasing 
and then decreasing it by 25%. The motivation for this was to see if any one important 
variable selection method was heavily influenced by the predictor variable correlation 
structure. One-hundred experimental replications of each factorial combination were 
performed, and the average of these results was used to assess the performance of each 
method. The performance assessment of each variable selection method in identifying the 
important variables was based on the approach outlined in [21] wherein the geometric 
mean of both sensitivity and specificity, is assessed via the metric G (34). Hence, the 
greater a method's G value, the better that method did in identifying the variables induced 
to correlate with the response. For the calculation of Eq. (29) sensitivity is defined as the 
number of true important variables identified by each method, divided by the total 
number of actual important variables.  Specificity was measured as the number of true 
unimportant variables identified by each method, divided by the total number of actual 
unimportant variables. 
 
(29)   ityyxSpecificSensitivitG  

Diagram 1 – Simulated Manufacturing Process Structure:  This simulation is designed to 
represent a manufacturing process composed of 7 unit operations.  Total number of 

simulated production batches was 60. 
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Figure 1 – Simulated Manufacturing Process Baseline Correlation Structure 
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MANUFACTURING PROCESS EXPERIMENTAL STUDY OVERVIEW 

MANUFACTURING PROCESS DATASETS 
 

Figure 2 – Run-charts of actual manufacturing process datasets. 

ADPN 

The ADPN dataset is taken from the manufacture of adiponitrile (ADPN), an 
intermediary of the chemical synthesis of Nylon 6-6. The main step in the preparation of 
ADPN lies in a complex catalyzed nickel reaction, described by flow, pressure, 
temperature and reaction mixture compositions.  The response variable for this dataset is 
specified as “nickel loss”, whose decrease as time passes, results in a decrease of the 
yield of ADPN. It can be assumed that the identification and adjustment of the levels of 
certain explanatory variables can limit the loss in nickel while at the same time 
maintaining a minimal level of productivity of ADPN.[22]. 

 ADPN data set with n = 57, y = 1, p = 100  
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LATEX 
 
The LATEX dataset is taken from an emulsion polymerization manufacturing process for 
latex.  The explanatory variables are temperature, level time, monomer input rate, catalyst 
level and reactive concentration. The response variable is the amount of undesired 
secondary products. The objective is to determine a parsimonious model of the most 
important variables that explain the amount of these secondary products [22]. 

 LATEX data set with n = 210, y = 1, p = 117 
 
SPIRA 
 
The SPIRA dataset is taken from a fermentation process used to manufacture the 
antibiotic, Spiramycine (biotechnology). Observations were made of fermentation 
operations in several fermentation reactors described by process variables such as stirring 
power, temperature level, oxygen consumption peaks and the times at which these peaks 
occur.   Given that fermentation is a long process the existence of a relevant model may 
make it possible to stop this reaction early if the content predicted by the model within 
the first 50 hours is too low in comparison with production standards [22].  

 SPIRA data set with n = 115, y = 1, p = 96 
 
VACCINE 
 
The VACCINE dataset results from the manufacture of a vaccine where the response is 
specified as “yield”, which shows an increase as time passes.  The explanatory variables 
in this dataset represent variables known to potentially impact cellular growth that viral 
propagation and can result in the observed yield increase.  It can be assumed that a there 
is a root cause for the observed increase in yield and that the identification of this root 
cause can provide increased process knowledge that may be directly linked to better 
process control.  

 VACCINE dataset with n = 50, y = 1, p = 67 

Note:  More detailed descriptions of the ADPN, LATEX, and SPIRA can be found in 
[22]. 

PLS models were built for all four datasets.  In order to avoid over-fitting in the selection 
of the relevant PLS components, cross-validation was used to determine the number of 
latent variables to model each process dataset.  The procedures outlined in the Methods 
section were then applied to each of the four process datasets and the most important 
variables designated by each method were identified.   

The primary ranking of each variable selection method was based on the magnitude of 
the CV- R2.   In instances where important variable selection methods had a final cross-
validated R2 within 3% points of one-another, indicating comparable cross-validation 
results, the method with the least number of important variables selected was chosen.  
When the number of important variables chosen was the same, the method with the least 
model complexity, as measured by the final number of latent variables, was chosen as 
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best.  The above scheme for method ranking was implemented to ensure that variable 
selection methods with a very close CV- R2 were adequately assessed in terms of their 
overall performance and results, and no one method was favored over another solely 
based on a single metric. 

Note:  These types of studies across multiple datasets require a large number of graphs.  
Due to a lack of space the graphs presented will be based on the ADPN dataset.   

Results 
 
PROCESS SIMULATION 
 
The results from the manufacturing process simulation are outlined in Table 1, wherein 
the results for Sensitivity, Specificity, and G represent the rounded average across the 
100 experimental replicates.  It can be observed from this table that the bootstrap Normal 
and Basic confidence interval approaches are consistently favored, as indicated by their G 
scores.  Although the bootstrap methods appear to be consistently favored across the 
simulated process datasets, it can also be noted that the bias-corrected jackknife 
confidence interval also did well in the three simulated datasets when compared to the 
uncorrected jackknife confidence interval approach.  Although the non-confidence PLS-
VIP approach did well (PLS-VIP > 1 rule), a high false positive rate was associated with 
using a cut-off value of one.  The uncorrected jackknife tended to have the lowest G 
score among all the methods evaluated. 
 

 
Table 1 – Results from the Manufacturing Process Simulation Experiment:  Methods with 

a high G value (bold font) are considered to have performed best within the simulation 
experiment as compared to those with a lower G metric. 

Method Correlation Sensitivity Specificity G
PLS-VIP > 1.0 Rule Base 0.74 0.74 0.74
Jackknife CI Base 0.38 0.98 0.61
Jackknife BC CI Base 0.51 0.93 0.69
Bootstrap Normal CI Base 0.65 0.95 0.78
Bootstrap Basic CI Base 0.65 0.95 0.78
Bootstrap Student CI Base 0.59 0.97 0.76
Bootstrap Percentile CI Base 0.48 0.98 0.68
Bootstrap BCa CI Base 0.48 0.86 0.65
PLS-VIP > 1.0 Rule Increased by 25% 0.72 0.72 0.72
Jackknife CI Increased by 25% 0.36 0.98 0.59
Jackknife BC CI Increased by 25% 0.49 0.92 0.67
Bootstrap Normal CI Increased by 25% 0.62 0.95 0.77
Bootstrap Basic CI Increased by 25% 0.61 0.95 0.76
Bootstrap Student CI Increased by 25% 0.56 0.97 0.74
Bootstrap Percentile CI Increased by 25% 0.46 0.98 0.67
Bootstrap BCa CI Increased by 25% 0.50 0.90 0.67
PLS-VIP > 1.0 Rule Decreased by 25% 0.73 0.73 0.73
Jackknife CI Decreased by 25% 0.46 0.97 0.67
Jackknife BC CI Decreased by 25% 0.55 0.94 0.72
Bootstrap Normal CI Decreased by 25% 0.65 0.95 0.79
Bootstrap Basic CI Decreased by 25% 0.65 0.96 0.79
Bootstrap Student CI Decreased by 25% 0.59 0.98 0.76
Bootstrap Percentile CI Decreased by 25% 0.52 0.98 0.71
Bootstrap BCa CI Decreased by 25% 0.52 0.93 0.70
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PROCESS DATASETS  

The results from the analysis of the process datasets are outlined in Table 2.  Those 
variables designated as important within each method were extracted from the overall 
dataset and sorted in descending order within each method.  For the confidence interval 
based methods the approach of using the magnitude of the lower-bound confidence 
interval was used for variable sorting.  With respect to the PLS-VIP >1 rule approach, the 
magnitude of a variables PLS-VIP score was used to sort important variables.   

After sorting the important variables within each method a forward elimination procedure 
was applied wherein the important variables were introduced into the model sequentially 
in their descending order of importance.  In this manner the effect of a newly introduced 
variable was assessed after the introduction of a previous more highly ranked variable(s).  
This was done to better determine which method performed best in selecting the most 
important variables in their correct importance rank.  During this forward selection 
procedure the cross-validated R2 was monitored; once this value began to decrease, or 
reached a plateau, the model building process was deemed complete.  The rationale for 
using a forward selection process arises from the nature of the hypothesis question.  As 
can be seen from the process response variable charts (Figure 2), we are attempting to 
assess which variable(s) are potentially responsible for the observed process 
performance.  The forward selection approach aids by ensuring that only those variables 
that explain a significant proportion of the current process variability are considered by 
the process engineer as potential important explanatory variables.  The performance of 
each method was then assessed in terms of its cross-validated R2, final number of 
important variables chosen and model complexity (number of latent variables).  If all 
methods chose the same important variables in the same importance rank, then the 
analysis results, with respect to the cross-validated R2, would be identical.   

The authors would like to note that the observed CV- R2 results in Table 2 align with 
cross-validated results observed when modeling actual process data, where the signal-to-
noise ratio is known to be much lower than in other simpler, and more well characterized, 
biological and chemical processes.   
 
With the exception of the SPIRA dataset, where all the results appear to be uniform in 
terms of the CV-R2, the Normal bootstrap confidence interval was favored in two of the 
four datasets analyzed, followed by the Basic which was favored by one of the datasets 
analyzed.  It should be noted that the bias-corrected jackknife confidence interval 
approach also fared well in two of the four datasets analyzed, followed by the PLS-VIP 
>1 rule in which only the magnitude of the VIP score was assessed.  For ADPN Figure 3 
shows the important variable results of the confidence interval approaches, whereas 
Figure 4 displays the important variables selected via the PLS-VIP >1.  Although the 
PLS-VIP >1 rule fared well in identifying the most important variables in their correct 
sequence, it can be observed from Figure 4 that it tends to initially identify a much larger 
number of important variables, as compared to the other methods.  Application of the 
forward selection process to the selected important variables in this instance, as well as in 
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the other methods, may provide an avenue for significantly decreasing the initial number 
of explanatory variables associated with the current process performance.  It can also be 
noted that the bias-corrected jackknife confidence interval approach also did well in the 
four process datasets when compared to the uncorrected jackknife analogue.   

 

 
Table 2 – Results from the Analysis of Manufacturing Process Data:  Methods 

highlighted in bold font are considered to have performed best within each of the actual 
manufacturing process datasets that were modeled. 

 
 
 
 
 
 
 
 
 

Dataset Method
Final No. of 
Important 

Variables Selected

Final Model 
Complexity (LVs)

Final CV-R2

ADPN PLS-VIP > 1.0 Rule 2 2 51%
ADPN Jackknife CI 2 2 51%
ADPN Jackknife BC CI 3 3 62%
ADPN Bootstrap Normal CI 3 3 62%
ADPN Bootstrap Basic CI 3 3 62%
ADPN Bootstrap Student CI 2 2 51%
ADPN Bootstrap Percentile CI 5 3 52%
ADPN Bootstrap BCa CI 6 4 57%
VACCINE PLS-VIP > 1.0 Rule 3 1 71%
VACCINE Jackknife CI 2 1 66%
VACCINE Jackknife BC CI 2 1 66%
VACCINE Bootstrap Normal CI 2 1 66%
VACCINE Bootstrap Basic CI 3 1 71%
VACCINE Bootstrap Student CI 2 1 66%
VACCINE Bootstrap Percentile CI 2 1 66%
VACCINE Bootstrap BCa CI 2 1 66%
LATEX PLS-VIP > 1.0 Rule 5 5 66%
LATEX Jackknife CI 8 5 72%
LATEX Jackknife BC CI 6 6 71%
LATEX Bootstrap Normal CI 6 6 71%
LATEX Bootstrap Basic CI 6 6 66%
LATEX Bootstrap Student CI 6 6 66%
LATEX Bootstrap Percentile CI 6 6 66%
LATEX Bootstrap BCa CI 6 6 66%
SPIRA PLS-VIP > 1.0  Rule 3 1 47%
SPIRA Jackknife CI 6 2 47%
SPIRA Jackknife BC CI 5 1 47%
SPIRA Bootstrap Normal CI 5 1 47%
SPIRA Bootstrap Basic CI 5 1 47%
SPIRA Bootstrap Student CI 3 1 47%
SPIRA Bootstrap Percentile CI 3 1 47%
SPIRA Bootstrap BCa CI 5 1 47%
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Figure 3 – Important Variable Results via the Confidence Interval Method:  The x-axis 

lists all the variables that were deemed important across all the confidence interval 
approach methods.  Vertical lines represent the width of the calculated confidence 

intervals within each method.  Where a confidence interval is present within a method, 
the corresponding predictor variable on the x-axis was deemed important.  Where a 

confidence interval is omitted, the corresponding predictor variable on the x-axis was 
deemed not important by that method. 

 

 
Figure 4 – Important Variables Selected via the PLS-VIP >1 Rule:  The x-axis lists all the 

variables that were deemed important using the magnitude of the PLS-VIP > 1 rule.  
Vertical lines are representative of the magnitude of the PLS-VIP. 
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Discussion 
In both the simulation study and actual process datasets the bootstrap Normal and Basic 
confidence intervals appear to be the most consistent methods for identifying the 
variables most correlated with the response.  An aspect of the PLS-VIP that appears to be 
mitigated against by the bootstrap Normal, and to some extent the Basic and bias-
corrected Jackknife, is the degree to which a variables importance may be either 
upgraded or downgraded as model complexity increases.    This downgrading is inherent 
in the way the PLS-VIP is calculated wherein variability present in an explanatory 
variable that may no longer be meaningful in explaining  y  is incorporated into that 
variables final PLS-VIP estimate.  This phenomenon is inherent in latent variable 
modeling methods such as PLS wherein the X-loadings used to decompose  ( ) result in 
outer-product matrices,   ( ) , that are  rotated towards the largest eigenvector of 

( ) ( ) (6).  Consequently, given that the VIP incorporates the weight vectors ( ), 
calculated from   ( ) ,  it may contain irrelevant information pertaining solely 
to ( ), and not its relationship to y.  This rotation away from the explained variance in 
could result in biasing the variances in favor of the explained variance in )(kX , and may 
lead to misinterpretation of a variables importance.  In this case, as latent variables are 
incorporated into the PLS-VIP, the rotation due to the subsequent component loadings 
may result in an explanatory variable that was important in the first latent variable being 
down-weighted in the PLS-VIP as subsequent information regarding that variable is 
added to the model (Figure 5).  A much more detailed discussion of this phenomenon is 
provided in [23].   
 
As observed in this study the bias-correction properties of the aforementioned methods 
appear to provide a sufficient adjustment to overcome this inherent downgrading in PLS-
VIP calculation, as is further validated when one compares the jackknife confidence 
intervals to its bias-corrected analogue.   
 
We can also note that if the realizations from the VIP can be assumed to be independent 
and identically distributed, with )( iXE  and 2)( iXVar , and where 2  is 
estimated via the bootstrap procedure, then the distribution function, nU , will converge to 
a standard normal distribution as n   
 

(30)   XnU n   

where 
n

i
iX

n
X

1

1 .  Given that 
n

U n constitutes a pivotal quantity, the bootstrap 

confidence estimation method (22) appears to works well in large sample size datasets, 
resulting bootstrap distributions are approximately normal (Figure 6).  Consequently, the 
estimate of the standard error obtained, coupled with the bias correction on ˆ , suitably 
provides an unbiased estimate of the VIP.   
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The performance of the PLS-VIP >1 rule, which is currently treated as a popular method 
for important variable selection, demonstrated that while this approach is capable of 
providing a reasonable estimate of the most important variables, its inherent high false 
positive rate (Figure 4) makes it a sub-optimal approach for obtaining an initial 
parsimonious list of the most important variables.  In the absence of any confidence 
interval driven method, the application of the forward selection process used in this work 
may help assuage this result by helping the engineer focus on the first few important 
variables.  We would like to also note that a pooled estimate of the overall standard 
deviation across all the VIP scores for all variables is not recommended in that it does not 
represent the individual uncertainty around a particular variable.  Both the bootstrap and 
jackknife show that the uncertainty in the estimation of the VIP of each variable is 
different.  When there is no agreed upon analytical solution for the standard deviation of 
a weighted mean [25], wherein the VIP is simply a weighted average, the bootstrap can 
be safely used, especially in small sample sizes.  Though the calculation of bootstrapped 
estimates may at times be computationally intense, they forgo having to come up with 
analytical approximations, or incorrect assumptions, for standard errors.   

 
Figure 5  – ADPN Bootstrap Normal, Bias-Corrected Jackknife, Jackknife: In this Figure 

the vertical bars represent the confidence intervals associated with each identified 
important variable via the aforementioned methods; horizontal panels represent 

increasing model complexity for a three latent variable model.  The x-axis lists all the 
variables that were deemed important across the above confidence interval approach 

methods.  The smooth fit within each panel is provided as a reference line to highlight the 
on-average decrease in the PLS-VIP estimate as model complexity increases. 
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Figure 6  – Normal Quantile Plots of ADPN Un-corrected Bootstrap Results 

Conclusion 
The PLS-VIP '>1' rule along with seven different uncertainty estimation methods were 
presented, along with their resulting ability for detecting  important variables in simulated 
and actual process data sets.  The performance of the PLS-VIP >1 rule demonstrated that 
while this approach is capable of providing a reasonable estimate of the most important 
variables, it has an inherent high false positive rate. As shown in this work, in most 
instances, the bootstrap methods for estimating confidence intervals resulted in more 
positive metrics, signaling that a general bootstrap approach is to be recommended for 
determining the uncertainty around the PLS-VIP estimate.  However, not all the bootstrap 
approaches had the same performance.  In this study both the Normal and Basic 
confidence interval approaches performed best.  As stated, this result may be due to the 
large sample sizes used in this study, in conjunction with the inherent bias-correcting 
properties within these methods.  This is further validated by the results of the bias-
corrected jackknife when compared to its un-corrected estimate.  Although there is an 
inherent bias correction in the calculation of the BCa confidence intervals, as can be seen 
from Figure 3, this bias correction appears to not be sufficiently large to mitigate against 
the inherent down-weighting that occurs in the PLS-VIP calculation.   
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Given these results, and in the absence of the ability to assess the bootstrap distribution in 
each circumstance, it is the recommendation of the authors that when working with large 
datasets, such as those often encountered in industrial processes, the implementation of 
either the Normal or Basic bootstrap confidence interval for the PLS-VIP will result in a 
more consistent determination of the important variables currently driving a 
manufacturing process.   
 
If computation speed is a concern, the authors recommend the use of the bias-corrected 
jackknife confidence interval in place of its un-corrected jackknife.  Future work 
examining bootstrap confidence intervals when dealing with sample sizes much smaller 
than the ones presented here, and in conjunction with varying cut-off values for the PLS-
VIP, should be undertaken. 
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Chapter 4:  (SMC) Significant 
Multivariate Correlation – Evaluating 
Variable Importance Selection in PLS 
Regression and Classification  
Abstract 
 
Identifying important variables for PLS regression has been a difficult task due to the 
complexity of PLS where there are varying combinations of rotations and projections 
between different spaces. By better understanding the relationship between the regression 
(coefficients), the orthogonally decomposed variances, and the behavior of biased 
regression, the new method, so called significant multivariate correlation (SMC), has 
been developed for statistically assessing variable importance for PLS regression and 
classification. This article summarizes the SMC method, with a focus on the evaluation 
of the method on simulated and real data sets in order to illustrate its performance over 
several commonly used method; i.e. Variable importance in the projection (VIP) and 
Selectivity Ratio (SR). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
T.N. Tran, N.L. Afanador, and L.M.C. Buydens, Analytical Chemistry, (n.d.). 
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Introduction 
 
Partial least square (PLS) has become a common regression method for data with highly 
collinear variables. The application of this method has allowed the analytical chemist to 
get a better hold of increasingly complex data and extract the relevant information 
embedded within hundreds of spectra or chromatograms. However, the crucial 
interpretation step is often hampered by the challenging task of identifying the important 
variables and providing a ranking of their contribution to the PLS regression model.  This 
is because in taking into account the degree of collinearity between predictor variables, 
these same variables are summarized and projected onto a reduced orthogonal space 
defined by a number of limited latent variables that forms the basis within which the 
regression is performed.  
 
The decomposition of orthogonal variances is at the heart of latent modeling methods 
such as PLS regression and PCA [2]. This orthogonalization has been recently used as a 
basis for model interpretation in Orthogonal-PLS and Target Projection [5] and variable 
selection in Selectivity Ratio [5] using the concept of Orthogonal Filtering Method [4]. 
Therefore it is extremely important to understand the orthogonalization mechanism and 
its impact to PLS modeling and related methods.  
 
The appearance of these methods can be traced back to the early 20th century beginning 
via the use of the power sequence [1] or Krylov sequence which can be seen as an 
iterative method for determining the dominant eigenvector of a large symmetric matrix. 
The sequence collects vectors with the property that the vector element is in turn rotated 
toward and converges to the dominant eigenvector approximated by the last vector. When 
the Krylov sequence is applied to the cross-product matrix ( ), the sequence vector 
property is extended with the additional property of orthogonally decompose variances; 
and it is therefore used for geometric interpretation of PCA and PLS [2, 3]. In this work, 
we call this as a basic sequence to distinguish it from the general power sequence and 
highlight its additional property. Here, the basic vector is not only rotated toward the 
dominant eigenvector but also satisfies the conditions for orthogonality; the total data 
variance is decomposed into two orthogonal variances, explained and residual. 
 
We show in our work that this orthogonalization can result in not only regression bias in 
PLS but also biased estimation of orthogonal variances in filtering based methods such as 
Target Projection which directly influences the interpretation of the PLS model. In 
particular, the bias is dependent on the degree of rotation away from the regression vector 
to the first basic vector, in which the resultant rotation can result in misinterpreting a 
predictor variables importance due to the biased estimates of both the explained and 
residual variances that are used for assessing statistical significance. Readers can find 
detail discussion on this topic in [3]. 
 
For this reason, we developed in this article and in [3] the method, so called significant 
multivariate correlation (SMC) for the purpose of statistically assessing a predictor 
variables importance for PLS regression, and classification, taking into account a better 
understanding of the basic rotation effect.   
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We will show that the SMC has the following two required features for variable selection 
in PLS: it provides a complete list of important variables and ranks them according to 
their F-distribution test statistic, while taking into account the degree of bias present in 
the regression model. 
 
Readers are referred to [3] for more detail theoretical discussion of the SMC method, the 
focus of this article is on the evaluation, illustration of the methods properties on 
simulated and real data sets and a comparison with Variable Importance in the Projection 
(VIP) and Selectivity Ratio (SR). 

Methods 
Significance multivariate correlation – (SMC) 
 
The concept underlying SMC is briefly described below; a more detailed methodological 
and theoretical discussion will be presented in [3].   
 
The decomposition of orthogonal variances is at the heart of latent modeling methods 
such as PLS regression, PCA and the extensions toward the better interpretation and 
variable selection TP [5]. 
 
In general, given a PCA or PLS model, orthogonal filtering method [4] (OFM) can be 
seen as a rotation step applied to a vector representing the relevant information of the 
data;  i.e. the 1st eigenvector in PCA or the normalized regression coefficients in PLS. 
The irrelevant or orthogonal information estimated by OFM is defined as the variation 

 according to the following: 
 
 
(1)   =  
 
(2)   = /( )  
 
(3)   =      
 
Here,  and  are the new (orthogonal) score and loading estimated by OFM. 
 
In can be seen that OFM - after the normalization - is the first element of the basic 
sequence defined as follows [3]: 
 
(4)   =

( )
 

 
With =  and = . 
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This is a common algorithm that can be related back to the power method [1], the Krylov 
sequence, NIPALS [6], SIMPLS [7], and the discussion found in [2]. Here, the cross-
product matrix  is used instead of a general symmetric matrix in the power sequence 
to introduce the orthogonality of variances property for every sequence vectors where the 
residual variance  will be orthogonal to the explained variance component 
represented by  and  except at the initial vector =  [3]. 
 
As shown by (1) and (2) the weight vector, , is rotated to the loading , basic 
vector, and hence towards largest eigenvector of  via a basic rotation. This is actually 
the purpose of the basic sequence in PCA to find eigenvectors and eigenvalues and to 
allow orthogonal decomposition in PLS.  However, this rotation produces an undesired 
effect for the interpretation of variable importance when the explained variance and the 
residual in  obtained from (4) is used. This X variances from PLS model are not 
necessarily relevant because the rotation of the loading toward the dominant eigenvector. 
Accepting these irrelevant variances can bias the results and leads to in an increased false 
positive rate in the determination of variable importance. In other terms, any evaluation 
of the variable importance based directly or indirectly on the explained X-variance and 
the X-residual would be negatively affected by a large irrelevant variance in X, taken 
accidentally into account in the rotation step. Indirect use of the loadings corresponds to 
situations where the explained variance in X is underlying the assessment of the 
importance of the variables. More illustration of this feature is provided in the 
simulations in the next section. 
 
We propose a new method called Significance Multivariate Correlation (SMC) for 
variable selection in PLS by simply discard the basic rotation in orthogonal filtering and 
target projection. SMC uses directly the normalized regression coefficients so that the 
right source of variances are used and hence SMC is not a part of the basic sequence 
which is known in this work that creates variance bias and increase false positive in the 
model interpretation. 
 

(5)   =   

 
With = ( ) =  and = ( )  

 

(6)   = =  as such     

 
Therefore the reconstruction of X can be represented in the regression form (without 
actual regression of X onto ) within the score space constructed using the PLS 
regression coefficients . 
 

(7)   = + =  +   

 
Or for each variable in a form of regression of  on : 
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(8)   = + = +    

 
Lacking the actual regression step (of  on ) in equations (7)-(8) as the SR method, 
SMC is not a complete basic rotation and the explained variance (or regression variance) 

 in equation (9) may not be orthogonal to the estimated residual variance 
  in equation (10) however it reflects the relevant variation in the predicted 

response projected back onto the original X-variable space via the PLS regression vector.  
 

(9)   , = =     

(10)   , _ = =    

(11)   , = , _ /1  

(12)   , _ = , _  /( 2)  

(13)   =  
,

, _
=

( )

 

 
 

 
We should note that the impact to the threshold value for the SMC test is dependent on 
the actual rotation effect. As stated above, due to the lack of the regression step 
(orthogonal variance decomposition) in equations (16)-(17), the variance decomposition 
is biased in that the , + , _  may not always be equal to the total 
sum of squares   and will only do so when the basic rotation effect is negligible with 

.  
 

Variable importance in the projection (VIP) 
 
With respect to the VIP [8], variable importance is established using projection 
information from X  and y as follows: 
 

(14)   = ( ) /      
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VIP is the proportion of the fraction of the explained variance of  expressed by = 

 weighted by the covariance between X and y, represented by , for each 
variable  over all latent variables.  
 
The average of the squared PLS-VIP scores is equal to one, hence the cutoff threshold for 
the VIP, "VIP scores >1", rule is generally used as the criterion for important variable 
selection.  

Selectivity ratio (SR) 
 
Similar to the concept of orthogonal filtering [4], non-relevant (orthogonal) variance with 
respect to y is estimated in TP by performing an eigenvalue decomposition using the 
normalized regression coefficients, producing the single score vector   and loading 
vector  via (1)-(2). As stated before, the rotation step involving the loadings might be 
unfavorably influence by irrelevant variance present in X. The sums of squares of the 
explained variance and the residual variance are calculated accordingly:  
 
(15)   , =   
 
(16)   , =  

 
The Selectivity Ratio (SR) [5] can be calculated as a F-test with respect to the columns of 
(15, 16).  
 
(17)   Selectivity ratio = =

,

,
  

 
In terms of the degrees of freedom associated with the F-test in (17), this can be 
improved, but these aspects are beyond the scope of this paper and will be discussed with 
more detail in [3]. 

Results and Discussion 
 

SIMULATION 
 
The simulated data was constructed around a simple structure based on two X blocks. 
The first one X1 is related to the response y with the first 19 variables ordered in function 
of their correlation to y, starting from 0.95 until 0.05, 11 random variables are then 
appended.  This data was generated using Approximation of a DIstribution for a given 
COVariance (ADICOV) [10]. The second block, is X2, is constructed in a similar fashion 
but in relation to another response uncorrelated to the one of interest. These two data 
blocks contain roughly the same amount of variance. The relative variance contribution 
of the blocks is set by multiplying X2 
two blocks, X1 and X2, are then concatenated into a single data matrix X. The obtained 
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correlation structure of 1000 simulated samples is represented in Figure 1A. As stated 
before, PLS aims at explaining the covariance structure between X and y, therefore one 
could expect that the performance of the model to explain Y will drop when X contains 
more unrelated variance.  
 

 
Figure 1: A) Correlation structure of the simulated data. B). Comparison of the evaluation 

of variable importance by the VIP, SR and SMC. 
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FAVORABLE SITUATION Y RELATED INFORMATION DOMINATES IN X 
 
All generated data sets were then analyzed using PLS and the variable importance in each 
model was evaluated using the VIP, SR and finally the newly introduced SMC. All 
results for the simulation are regrouped in Figure 1B. The number of true and false 

 = 5). In a favorable case where the data block related to the response (X1) 

most correlated to y. However one can already notice that the SR is very conservative and 
only selects the 5 most correlated variables whereas the VIP selects the 12 most 
correlated ones.  Finally SMC picks up 19 variables related to Y and the two variables 
from X2 (false positives). The number of false positives obtained via SMC is the highest. 
This might sounds alarming but it only reflects the significance level chosen here (0.05). 
Interestingly SR was set with the same significance level and yet not false positive arise. 
This illustrates again the conservativeness of SR. The explanation for this 
conservativeness of the SR lies in the application of the F-test with the incorrect use of 
the degrees of freedom which is explored in greater detail in [3]. In the case of the VIP, 
the situation is more complex: the number of false positive might greatly depend on the 
fixed cutoff value of 1. This fixed threshold does not reflect the change of situation from 
a clean to a noisy data set. As shown by Wehrens et al. the correct cutoff value is very 
case dependent [13].  

 
Table1: Number of true positives and false positives selected by the different methods. 

 True positive False positive 
  = 0.01  = 5  = 0.01  = 5 
VIP 12 12 2 0 
SR 5 4 0 0 
SMC 19 19 2 3 

 
UNFAVORABLE SITUATION Y UNRELATED INFORMATION DOMINATES IN X 
 

in X is dominated by unrelated structure and therefore the covariance between X and y is 
less optimal in terms of regression. In this instance the regression becomes more biased 
for the true positive variables due to the rotation of the regression coefficients toward the 
expanded variance in X2.  
 
Hence increased variance (unrelated to y) should lead to a higher false positive rate in 
most methods. The SR distinguishes itself by not selecting any false positive but this is 
due to its conservativeness which can be seen by the fact no true positives are selected. 
The bias effect leading to higher false positive rate is increased with a smaller sample 
size.  
 
The results obtained on this simple simulation provide some insight on the sensibility (or 
lack thereof) of the different methods. We’ve shown that the SR tends to be too 
conservative. The classical VIP and SMC resist well the addition of extra variance. The 
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performance of the VIP is however dependent on the sample size and reproducing these 
calculations with a smaller population (of 100 samples from 1000 in this case) – see 
supplementary figure S1 - leads to the higher selection rate of false positive by the VIP 
going from (maximally) 2 false positives when using 1000 samples to 8 false positives 
when using only 100 samples. This may explain the unstable cutoff value of the VIP 
when compared with the other methods. 
 
The next sections will prove that similar results can be obtained on real data. 

 
NEAR INFRARED DATA SETS 
 
OCTANE DATA 
 
The behavior of all methods was further evaluated using a well-known benchmark data 
set. The octane data set consist of 60 Near Infrared spectra of gasoline measured between 
900 and 1700 nm at a 2 nm interval. A complete description of the experimental settings 
can be found in [11].  
 
To further investigate the influence of unrelated variance in X we add 400 noise variables 
with high and low noise variances to these spectra, as represented in Figure 2. All 
calculations were then performed on both the original octane data and the augmented 
version including the extra noise variables.  

 
Figure 2: Octane data set used with and without addition of noise variables. 
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The variable importance was evaluated using the three methods and is shown in Figure 3 
for the augmented octane data. The SR is once again the most conservative approach. The 
selection of too few variables by the SR leads to a poor predictive power. The VIP and 
SMC in contrast select more variables and both methods focus on similar set of bands. 
Note that the VIP selects extra variables around wavelength 1680 which is not selected 
by SMC. This may indicate the false positive variables due to the bias correction 
procedure in the inclusion of X-variance in the VIP. 

 

 
Figure 3: Variable importance evaluated by the VIP, SR and SMC on the octane data set 
augmented by noise variables. Note that the selected wavelengths left of the red dashed 

lines are similar to the results are obtained on the original octane data set, see 
supplementary Figure S2. The black dashed lines represented the critical values above 

which variables are selected as important. 
 

Further assessing the quality of these variable selections is difficult without entering into 
chemical interpretation, it is however possible to compare them according to the 
prediction performance obtained using PLS on selected variables. Table 2 reports the 
prediction error for each case. Clearly the PLS model based on variables selected by 
SMC out-performs the other ones, which indicates that the relevant variables were better 
determined by the SMC. Interestingly SMC leads to a RMSECV of 0.33 using only 85 
variables.  

 
Table 2: Prediction performance evaluated by cross validation of PLS models (2 LVs) 

based on selected variables on the real and augmented octane data sets. 

 
 

 Octane data Augmented data 
 RMSECV Number of 

variables 
RMSECV Number of 

variables 
All 
variables 

0.46 401 1.29 801 

VIP 0.38 88 1.01 192 
SR 0.59 11 0.64 12 
sMC 0.33 85 0.57 103 
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FALSE POSITIVE RATE 
 
The rate of false positives, i.e. the selection of non-important variables, can be assessed 
using the octane data set augmented with noise variables. The noise variables are 
themselves divided in two blocks: the first one corresponds to noise with a high standard 
deviation and the second one with low standard deviation; as can be seen in Figure 2. 
Given the significance level chosen here, one can expect all methods to select 
approximately 20 false positives (5% of 400 noise variables). First, as expected, one can 
notice that all approaches are negatively affected by the presence of these extra noise 
variables. Interestingly the VIP only selects false positive variables if they correspond to 
high standard deviations; approximately 100 out of 200 “high” noise variables. This 
indicates that the VIP is influenced by fluctuations of the loadings themselves caused by 
unrelated sources of variance in X.  Once again the SR does not select any noise variable, 
but also very few true positives. Finally SMC is also affected by the presence of these 
extra variables and selects 18 of the random variables, but note that this is in line with the 
significance level (5%) chosen.  
 
The results obtained on the octane data and its augmented version demonstrates that SMC 
evaluates most adequately the variables importance, leading to a subset of variables 
providing the best regression model. The evaluation of the false positive rate also 
validates that only SMC is consistent with the significance level chosen here (5%). 

 
CLASSIFICATION PROBLEM 
 
Finally the applicability of our approach is generalized to a classification problem. PLS is 
indeed commonly applied as PLS Discriminant Analysis (PLS-DA) where the response y 
is not a continuous one but a dummy variable consisting of 0s and 1s. The important 
variables in such a PLS model are then the one allowing for the separation of two (or 
more) groups of samples from each other. Translated to omics fields such variables 
become biomarkers allowing for classification of subjects, e.g. healthy individuals from 
sick ones. To illustrate this aspect we compare the results obtained using subset of 
variables selected by the different methods mentioned earlier on a NMR metabolomics 
data set described in [12]. The data used here contains two groups: healthy and 
neurological affected animals. Table 3 summarizes these results in term of number of 
selected variables and RMSECV.  
 

Table 3: Prediction performance evaluated by cross validation of PLS models (2 LVs) 
based on selected variables of the classification data.  

  RMSECV Number of 
variables 

All variables 0.33 153 
VIP 0.29 46 
SR 0.40 20 
SMC 0.28 32 
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The lowest error is achieved using variables selected by SMC. This indicates that the 
SMC selected variables are the most relevant set for this classification problem. This 
performance is achieved based on only 32 variables out of the 153 initially available. The 
SR is selecting relevant variables (data not shown) yet is too conservative, leading to the 
exclusion of information relevant to the classification problem and increasing the error in 
prediction. The performance obtained based on the VIP selected variables is comparable 
to the ones obtained using SMC, yet 46 variables are included which suggest that some 
false positives are selected. A possible explanation can be proposed based on the cutoff 
value used with the VIP. Given that the average of the sums-of-squares of the VIP is 
equal to 1, the cutoff threshold in the VIP, "VIP scores >1" rule is generally used as the 
criterion for important variable selection. This is not a statistically justified limit and can 
be shown to be very sensitive to the presence of non-relevant information pertaining to X. 
The results obtained here are consistent with previous observations [13] that the VIP is 
negatively influence by the variance of unrelated variables when the population size is 
small. 

Conclusions 
 
The decomposition of orthogonal variances is at the heart of latent modeling methods 
such as PLS regression and PCA and it is demonstrated in our work that the orthogonal 
variances can been seen as the additional property of the basic sequence when moving 
from the old and well-known power method for finding eigenvectors and eigenvalues to 
the basic sequence which is the special case of the power method associated with the 
basic data matrix  [2, 3]. Although the sequence decomposition is particularly useful 
for decomposition and analysis of very large sparse matrices for the variable correlation 
information, this basic rotation results, however, in a biased regression in the case of PLS 
due to the oblique projections of the OLS regression coefficients [2, 3]. Understanding 
this concept of basic rotation is very important because, as shown in this work, it can 
create a bias in the estimation of the orthogonal residual variance with respect to the 
response in orthogonal correction methods, such as Target Projection in variable 
interpretation and selection [3]. The evaluation of the variable importance using the 
loadings can be negatively affected by a large irrelevant variance in X. 
 
Given the above, we proposed the SMC variable selection method to maximize the use of 
the rotation information as the source of information for identifying important variables 
in the presence of a biased regression method such as PLS, and advancing them for final 
variable selection in the case of PLS regression and classification. Variables exhibiting 
minimal bias with respect to their parameter estimation, and statistically significant in the 
model, are highlighted by the SMC method and ranked based on their respective test 
statistics relative to the F-distribution. 
 
Simulation and application of SMC to two real data sets (NIR and NMR metabolomics) 
illustrates the outstanding properties of SMC compared with several representatives of 
commonly used variable selection methods such as the VIP and Selectivity Ratio (SR). 
SMC can be expected to provide sufficient answers in the identification of important 
variables in the PLS model. In all cases, SMC provides the most optimal variable list 
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(minimal false negative and false positive errors) and improves the predictive 
performance of the PLS model due to the bias reduction property of the variable selection 
method. 

 
Supporting Information:  Additional results on simulation and NIR data are provided as 
supplementary information; this material is available free of charge via the Internet at 
http://pubs.acs.org.  
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Chapter 5:  Interpretation of Variable 

Importance in Partial Least Squares with 

Significant Multivariate Correlation 

(SMC) 

Abstract 

 
Despite gaining popularity and success in many modeling applications, Partial Least 
Squares (PLS) regression continues to provide challenges in the evaluation of important 
variables. This article describes the relationship between the regression coefficients and 
orthogonally decomposed variances in PLS. The relation between prediction, model 
interpretation, and important variable determination is described using the theory of the 
basic sequence presented here as a special case of the famous Krylov sequence (or the 
power method).  
 
Variable selection methods e.g. Selectivity Ratio (SR) and Variable Importance in the 
Projection (VIP) are also described in this framework. We show that the interpretation 
can be affected by unnecessary rotation towards the main source of variance in the X-
block. Significance Multivariate Correlation (SMC) is developed using the knowledge 
obtained from the basic sequence to minimize the effect of irrelevant X-structures. 
Simultaneously SMC highlights the variables most correlated to the response. The 
performance of SMC is demonstrated, using simulated and real data sets, against 
commonly used variable selection methods, such as the Variable Importance in the 
Projection and Selectivity Ratio. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
T.N. Tran, N.L. Afanador, and L.M.C. Buydens, Chemometrics and Intelligent Laboratory 
Systems, (n.d.). 
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Introduction 
 
Model interpretation is an important task in most applications of Partial Least Squares 
(PLS), and researchers are continuously looking for optimal interpretation tools. These 
interpretational features in both sample and variable spaces provide additional 
information that allows for a better understanding of the specificity of the PLS model in 
quantifying the contribution of predictor variables.   
 
From its nature as a latent regression method, PLS has the attractive feature of being able 
to deal with a large number of predictor variables exhibiting a high degree of multi-
collinearity.  However, the use of latent variables instead of the original variables also 
creates difficulty in model interpretation. This complexity is due to the fact that PLS 
constructs latent variables that not only maximize the correlation of X to the response y, 
but concurrently tries to maximize the explained variance in X [1]. As such, one cannot 
directly interpret the model using model parameters such as the weights and loadings. 
This is especially the case in analytical data influenced by multiple sources of variation. 
When the dominant source of variation is not related to y, the maximization of the 
explained X-variance is likely to bring irrelevant information into the PLS model. The 
interpretation of PLS model parameters and variable importance based on these 
parameters is then not a straightforward exercise.  The literature  largely discuss this issue 
and multiple approaches have been proposed to tackle this problem [2].  
 
Recently, Target Projection with Selectivity Ratio (SR) [3,4] were proposed to re-
quantify the captured X-variance to improve interpretation of variable importance via the 
target rotation or the orthogonal filtering strategy. The objective is to allocate information 
proportional to the co-variance between the X-variables and the response, and at the same 
time isolate orthogonal irrelevant variation. Using the property of the basic sequence 
theory proposed in this work, we illustrate that these methods can lead to 
misinterpretation due to biased estimation of the relevant variances. The basic sequence, 
as an extension of the Krylov sequence (or the power method) [5], describes the 
relationship between the regression coefficients and the explained X-variance via 
orthogonally decomposed variances. It also provides new insights into the causes of 
biased estimates and explains the limitation of directly using the PLS model parameters,  
such as the weights, loadings, or variance adjustment methods via orthogonal filtering, as 
exemplified by target projection. Based on this new knowledge, we developed a method, 
the Significant Multivariate Correlation (SMC), for statistically assessing variable 
importance using the correct sources of variation.  
 
The focus on this article, the interpretation of variable importance carried out using only 
parameters calculated from the original PLS model, is referred to in the literature as 
‘filter’ variable selection methods [6, 7]. The SMC method, proposed in this work, 
together with Variable Importance in the Projection (VIP) [8], SR and PLS regression 
coefficients (Beta CI) [9] are in this class of filter methods. This variable selection 
category does not require re-fitting the model on another sub-set of variables or 
modifying the original PLS calculation as in other classes of variable selection methods. 
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However, the optimal use of the existing model parameters for variable selection and 
interpretation continues to provide challenges due to the complexity of the PLS model. 
 
This article presents in detail the methodology of SMC and a brief performance 
illustration of the method on both an omics related simulated dataset and a real dataset of 
NIR spectra of pharmaceutical tablets. Several commonly used methods in the filter 
variable selection category, VIP, SR, Beta CI are compared to the SMC. Note that the 
comparison to methods from other categories i.e. wrapper and embedded, are not in the 
scope of this article. Readers are referred to [10] for more discussion on this topic. 
Furthermore, one may also have a different variable selection strategy for a different data 
type such as spectral or process data. For example in the case of Interval PLS [11] for 
spectral data, the difference can be seen as an extra pre-processing step to split the 
wavelength range into smaller equal distance subintervals and in terms of core modeling, 
the PLS model with the number of input variables is unchanged. The SMC proposed in 
this work can be used as a general interpretation strategy for a PLS model as applied to 
different data types. 
 

Methods 
Theory 
 
We will begin in this section with a review of the current ‘filter’ variable selection 
methods studied in this work. The most popular filter method is most-likely the VIP, 
which was proposed in 1993 by Wold et al. [8]. As such, this method will be used as our 
benchmark. More recently the SR [12] was introduced in which the ratio between 
explained and unexplained variances is used to help focus the data analyst on the most 
relevant variables.  
 

Variable importance in the projection (VIP) 
 
With respect to the VIP [8], variable importance is established using projection 
information from X  and y as follows: 
 

(1)   = /  
 
Where d is the number of variables and h the number of latent variables in the PLS 
model. VIP is the proportion of the fraction of the explained variance of  expressed 
by =  weighted by the covariance between X and y, represented by , for 
each variable  over all latent variables. The term ck is obtained for each column of the 
PLS scores T and for the predicted response   in equation (2). 
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(2)    =
( ) 

 
Furthermore, given that the average of the sums-of-squares of the VIP is equal to 1, the 
cutoff threshold value in VIP, "VIP scores >1" rule is typically used as the criterion for 
important variable selection. This is not a statistically justified limit and can be shown to 
be very sensitive to the presence of non-relevant information pertaining to . 

Selectivity Ratio  
Given the PLS regression coefficient vector, , Target Projection is performed via the 
projection of the rows of  onto the normalized regression coefficients vector in equation 
(3);  as such  is proportional to the predicted values, . The loadings, , are 
obtained by projecting the columns of  onto the obtained score vector,  , which again 
is proportional to  in equation (3) [4]. 
 
(3)   = /   
 
(4)   = /( )  
 
The ratio of the explained variance ( , ) and the residual variance for each 
variable ( , ) as the sums-of-squares in equation (6) and (7), respectively, is used 
in the Selectivity Ratio (SR) to determine the variable importance equation (8). 
 
(5)    =  +  
 
(6)   , =  
 
(7)   , =  
 
(7)   , =     
   
(8)   =

,

,
  

 
A critical threshold value for determining variable importance was suggested in [13] 
wherein the  is assessed against the F-distribution with 2 and 3 degrees of 
freedom. 

Beta_CI 
 
For the selection of important variables, the straightforward strategy is to quantify the 
confidence intervals around the regression coefficients,  ,  for each variable, i . 
Unfortunately, given the dependence on y for formulating the PLS hat-matrix, a closed 
analytical form for the uncertainty is not available for PLS regression coefficients; hence 



Chapter 5 
 

Page 68 of 101 
 

resampling techniques such as the Jackknife [14] or bootstrap [9], are often used to 
determine the confidence intervals.  
 
The variables are considered important in the Beta_CI approach if  does not cover 
zero; aligning with the null hypothesis of not enough evidence to conclude a linear 
relationship. Various resampling techniques can be used for Beta_CI, but none offer a 
straightforward ranking of variable importance in the model.  The use of the absolute 
value of the obtained estimate can be used as a guide wherein those variables with higher 

,   that also exhibit the narrowest confidence intervals are deemed important.  A 
similar approach exists wherein ,  is tested against its corresponding bootstrap 
estimate of the standard error, and sorting on the resulting p-values. 
 
In this section, we will introduce the theory of basic sequence and demonstrate how it is a 
special case of the Krylov sequence with the vector rotation properties.  This topic is 
further developed by relating it to the Target Projection and Selectivity Ratio methods.  
We show that these methods may perform sub-optimally in important variable selection.  
We address this issue through the SMC method, which we have formulated to correct for 
the rotation effect that introduces a bias in the variability estimates produced by Target 
Projection and used in Selectivity Ratio for assessing variable importance. 

Basic sequence  
 
The theory of basic sequence is introduced and used throughout this article. The basic 
sequence [ ], [ ], … , [ ]  of a data matrix  from an initial vector [ ] is defined in this 
work as an iterative procedure used to update the vector [ ] with the cross-product 
matrix  in equation (9). The scalar k represents the number of rotation steps required 
to reach stability. As such, the basic sequence is as a special case of a Krylov sequence 
(or the power method)  for finding the dominant eigenvector and has been used to 
interpret some of the behavior of PLS in [5,15]. 
 
(9)  [ ] = ( ) [ ] , which is also denoted as [ ] [ ],  
 
The basic sequence has the property of the power method in that the basic vector [ ] is 
rotated towards the dominant eigenvector of  . Indeed, let , , … ,  be m 
eigenvectors with their eigenvalues ordered as > … . The initial vector 

[ ]  and [ ]  can be expressed as in equations (10) and (11), respectively, with 
scalars , … , .   
 
(10)    [ ] =  
 
(11)  [ ] = ( ) [ ] = ( ) = ( )  
 
Because ( ) =   holds for each eigenvector , Equation (11) can be written as 
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   [ ] = , and by a simple reordering becomes 
 

  [ ] = +  
 
Hence, as , [ ] aligns along the direction of the dominant eigenvector . 

For enhancing the convergence, the normalization [ ] =
[ ]

[ ]   is applied after each 

step  . Moving from [ ]  to [ ]  is also referred to as a rotation with its speed 
dependent on the ratio of the dominant eigenvalue to the 2nd largest eigenvalue, | |

| |
.  

Basic sequence and relation to SR 
 
We are convinced that the concept behind SR is appropriate. However, we show in this 
work that the (normalized) Target Projection loading,  is basically the basic sequence 

[ ] ,  in equation (12) determined by substituting equation (3) in equation (4). As 
the first property of the basic sequence, the TP loading is the rotation of the regression 
coefficients vector towards the dominant eigenvector of  , which may be independent 
from the response. For this reason, depending on the actual magnitude of the rotation, 

 may be less proportional the co-variance of the X-variables and the response 
variable .  
 

(12) =
 /( )

 /( )
= = [ ] ,  

 
The idea behind SR is the use of a Target Projection (TP) [2,4,12] in an attempt to 
quantify for each variable a variance that is proportional to the co-variance between the 
X-variables and the response variable y, while at the same time separating the orthogonal 
variation to the response variable. The ratio of these two variances can then be used to 
determine variable importance in the PLS regression model [4].  
 
Target Projection is, in fact, the application of the orthogonal filtering method (OFM) 
proposed in [16], but for a single component and with the normalized regression 
coefficient used as the weight vector. OFM is the application of the projection and 
regression steps in equations (3) and (4) to obtain the score of each component.  Hence 
OFM attempts to include variability originating from X while at the same time remaining 
orthogonal to  using the weight vectors corresponding to the eigenvectors of  
with = ( ) ; this is actually the deflating of  with information 
correlated to the response  via   . Readers are referred to [16]  for additional 
information on OFM. 
 
Hence, the application of an OFM procedure, as is the case in SR and Target Projection, 
may result in biased variance estimates. This bias is a direct consequence of the rotation, 
particularly the regression in equation (4) for the updated TP loading. The orthogonal 
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variance decomposition (via the regression) is necessary for OFM to ensure the 
orthogonal property of the weights and the scores in multiple OFM orthogonal 
components. However, the orthogonal variance decomposition via the regression is not 
necessary for the assessment of variable importance, and as demonstrated earlier, it 
introduces a bias with respect to the obtained variances as a consequence of the rotation 
property of the basic sequence. 

Basic sequence and relation to VIP 
 
Since the VIP in equation (23) includes the weight vectors ( ), we can explore the 
weight vector of a PLS component, a. The weight vector  can indeed be expressed as 
using the basic sequence [ ] ,  by a simple substitution of the OLS regression 
coefficients  = ( )  in equation (13).  
 

(13)    [ ] , = = =  
 
This indicates that a similar effect in orthogonal filtering can be observed for the VIP 
where the weight vector can rotate to towards the dominant eigenvector of . Hence, 
  may contain irrelevant information due to the basic rotation effect.  In VIP, the 
rotation has a higher impact compared with SR since the weight vectors of all 
components are used and hence multiple rotations are applied in VIP. As indicated 
earlier, a lower signal to noise ratio for a higher component leads to a faster rotation 
speed and a higher rotational impact to the VIP. Thus the VIP can concurrently result in 
both higher false positive and false negative rates in cases where irrelevant variation is 
dominant in the dataset or in a complex model where many latent variables are needed.   
 

Significance multivariate correlation – (SMC) 
 
With a better understanding of the current variable selection methods in light of the basic 
sequence, we developed a new method called SMC to correct for the rotation effect in 
Target Projection for variable selection purposes. The key points in SMC are to estimate 
for each variable the correct sources of variability resulting from the PLS regression (i.e. 
regression variance and residual variance), and use them for statistically determining a 
variables importance with respect to the regression model. For the estimation of 
variances, SMC uses the combination of the vector of the predicted values,  , as a new 
latent (score) vector of the PLS model in equation (15) and the regression coefficient 
vector, see equation (15). However, dissimilar to with the Target Projection procedure, 
SMC discards the orthogonal variance decomposition in equation (4) to prevent the 
influence of non-relevant information contained in X. Hence without this rotation, the 
normalized regression vector is used as the loading vector as shown in equation (14). The 
reconstruction of X can be represented in equation (16), without the actual regression, 
within the score (or predicted response) space. 
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(14)   =       

 

(15)   = =  as such     

    

 (16)   = + =  +   

   Or for each variable in a form of regression of  on : 
 

(17)   = + = +     

  
Lacking the actual regression step (of  on ) in equations (16)-(17) as the SR method 
in equation (4), SMC is not a complete basic rotation and the explained variance (or 
regression variance)  in equation (18) may not be orthogonal to the 
estimated residual variance   in equation (19) however it reflects the relevant 
variation in the predicted response projected back onto the original X-variable space via 
the PLS regression vector.  
 

 (18)   , = =    

  

(19)   , _ = =    

   
In SR the ratio of the two variance terms, the explained variance and residual variance in 
the form of sums-of-squares (SS), is compared with an F-distribution with  2 and 

3 degrees of freedom.  Those variables with F-values that exceed the F-test critical 
threshold value (as determined via the choice of significance level) are considered 
important variables. This choice is referred as the test of equality of variance of two 
(independent) sample populations, chapter 5.4 in [17] . However, in both SR and SMC, 
these two variance terms are obtained in the form of individual regressions of each X-
variable onto the common score vector, with the loadings as the regression coefficients in 
equation (5) for SR and equation (17) for SMC, respectively. Therefore the Analysis of 
Variance (ANOVA) test for the significance of the regression is most appropriate, (see 
chapter 8 in [17]) and as such, the proper degrees freedom associated with the regression 
sums-of-squares in (6) and (18) is 1; whereas for the residual variance in equation (19) it 
is 2 with  being the number of samples. We should note that in the ANOVA the F-
test is carried out using the mean-squared error, which are the raw sums of squares 
divided by the appropriate degrees of freedom.  
 
Hence, SR values can be affected not only by the rotation towards the dominant 
eigenvector of   mentioned earlier, but also due to the improper use of the F-test via 
the SR defined degrees of freedom. The latter issue seems dominant and results in very 
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low SR values that can result in very conservative estimates of variable importance, 
wherein a short list of selected variables is obtained. 
 
In SMC, an F-test is also used to assess variables which are statistically significant with 
respect to their relationship (regression) to , but for an  test value an F-distribution 
with 1 numerator and n-2 denominator degrees of freedom is used, (1 , 1, 2), 
where  is the chosen significance level. 
 
(20)   , = , _ /1  
 
(21)   , _ = , _  /( 2)  
 

(22)   =  
,

, _
=

( )

 

 
We should note that the impact to the threshold value for the SMC test is dependent on 
the actual rotation effect. As stated above, due to the lack of the regression step 
(orthogonal variance decomposition) in equations (16)-(17), the variance decomposition 
is biased in that the , + , _  may not always be equal to the total 
sum of squares   and will only do so when the basic rotation effect is negligible with 

.  
 
When the basic rotation effect is negligible, the residual variance is orthogonal to the 
explained variance and the false positive rate associated with a non-parametric Null 
distribution should approximate those of the theoretical Null, 0.05, for the stated degrees 
of freedom. Otherwise, when the rotation effect is non-negligible in the presence of large 
irrelevant variation from non-informative variables in the dataset, the regression in 
equation (4) for SR (or in equation (13) for the weight vector in VIP) by equalizing the 
decomposed variances with the total variance in X’X may positively bias the explained 
variance estimated from PLS and SMC for non-informative variables. This rotation 
impact is removed in SMC. Since in this case the estimated residual variance is not 
orthogonal to the explained variance the ratio of both mean squares  may not follow 
an F-distribution, the false positive rate in SMC can potentially be lower than the 
theoretical Null at an  of 0.05 due to the correctly estimated variances being applied to 
non-informative variables.  
 
Note that the SMC method can be directly applied to PLS2 with multiple response 
variables by simply applying SMC to each regression coefficient vector for each response 
variable. 
 
The Matlab implementation of the proposed SMC method is provided as supplementary 
material. The algorithm assumes that the data is provided centered and scaled (optional). 
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Experimental 
Permutation experiments 
 
To further demonstrate the impact to the rotation when the basic rotation effect is 
negligible vs. non-negligible, and quantify the false positive rate via the use of 
permutation tests with respect to the SMC, additional simulations were performed.  
The simulated datasets consisted of one response variable and 30 predictors (X) variables 
with 15 non-informative variables and 15 important variables with varying degrees of 
signal-to-noise ratios (SNR). A total of 1000 simulation run replicates were run in order 
to estimate the false positive rate. The PLS model was applied using cross-validation for 
determination of model rank. 
 
The first simulation was run with moderate irrelevant variation in the correlated non-
informative variables and a SNR = 0.25 with respect to the important variables. Table 1 
illustrates the angle between the different vectors of interest. One can observe that the TP 
loading, , is rotated towards the largest eigenvector of X’X, which is dominated by 
irrelevant variation, as compared to the SMC (which is proportional to PLS regression 
coefficients), while at the same time moving away from the OLS regression coefficients, 
which itself quantifies the largest degree of correlation of the X variables to the response.  
Given the lower magnitude of rotation towards the irrelevant variation in the largest 
eigenvector of X’X and a smaller angle towards the OLS regression coefficients (Beta 
OLS), we can conclude that the SMC loading is capturing the most relevant variation in 
X with respect to y, which corresponds to the performance of the PLS model. 
Table 1: Angles between the studied vectors (1st PCA loading, TP loading, SMC loading, 
PLS regression coefficients, and OLS)  
 

1st PCA 
Loading 83 85 89 

 

TP 
loading 

( ) 20 59 

  

SMC 
loading 
(or Beta 
PLS) 46 

   
Beta 
OLS 

 
The second simulation varied the number of correlated variables from 0 to 15 in 
increments of 5, while also varying the signal-to-noise ratio from .25 to 1 in increments 
of .25.  The observed permutation test false positive rate with respect to the SMC is 
shown in Figure 1. We can see that the false positive rate for non-informative variables 
(as per the non-parametric Null distribution) ranges between 0.04 – 0.06. In the moderate 
signal-to-noise level (of 25%), and without the correlation between non-informative 
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variables, the false positive rate for non-informative variables (as per the non-parametric 
Null distribution) approximates 0.05. It is interesting to note that there is a downward 
trend (lower false positive rate) as the number of correlated (non-informative) variables is 
increased.  This positive effect is due to the rotation effect in SMC as highlighted in 
Table 1, wherein more information pertaining to X’X is being captured in the residual 
vector of non-informative correlated variables. Simultaneously the explained variance is 
relatively stable for these variables. Hence the ratio of explained over unexplained 
variances is lowered, helping reduce the number of false positives. The trend is less at 
higher signal-to-noise ratios as the noise level is reduced and simultaneously more 
relevant information being captured in the explained variance.   
 

 
Figure 1: Permutation test false positive rate with respect to the SMC 

DESCRIPTION OF DATASETS 

SIMULATION 
 
The synthetic data used to compare the variable selection methods has two objectives.  It 
must be built in a simple way, yet it must also reproduce characteristics encountered in 
modern measurements, such as in metabolomics. Various blocks composed this. Each 
block relates to different (independent) responses. One response y corresponds to a 
smaller part of the X variance than other sources of influence and is only related to the 
first variables. The objective is to model only that particular response. This situation 
would correspond to a case where one would want to model e.g. the impact of a disease 
in omics data, which is principally influenced by numerous other parameters such as age, 
genetic background or diet. Moreover, each block can be decomposed into purely 
uninformative variables and variables correlated to the different responses. Figure 2 
presents the correlation structure used to simulate data matrix X. Only the first block of 
19 variables is related to the response of interest, y. A second block of variables (30 to 
49) follows a similar structure but related to another (orthogonal) response. Finally, 30 
additional variables containing only Gaussian noise are added to the data. This 
covariance structure is then used as the input for the ADICOV method [18] to generate 
1000 samples. 
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Figure 2: Correlation of each variable to the response of interest y, and correlation matrix 

of the data X. The 19 first variables related to y while the rest of the data contain one 
unrelated structure and purely random noise. 

 
NIR SHOOT OUT DATA 
 
The data set used in this study is known as the Chambersburg Shoot-out 2002 data set. 
This set contains transmission spectra of pharmaceutical tablets recorded on 
Foss/NIRSystems Multitab Spectrometers instrument over the spectral region from 600 to 
1898 nm with 2 nm increments on the wavelength scale. In this study, the 155 NIR 
spectra from Calibrate1 were used and the spectra are showed in Figure 4. More details 
about these spectra are available [19,20]. 

Results  
SIMULATION DATASET 
 
Based on the covariance structure of the synthetic data, we produced a thousand samples 
and divided them between training and test sets. The optimization of the global PLS 
model relied on cross validation, resulting in a PLS model based on 9 LVs. We can notice 
that the model is relatively complex for this simulated data. This complexity can be 
explained by the rotation of latent variable toward the non-relevant group of information 
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at each PLS component rather than focusing on the designed correlated component 
structure in X, hence additional components are needed to compensate for this.   
The application of the 4 variable selection methods permitted us to generate 4 new PLS 
models  
 
The selection obtained using all approaches is provided in Figure 3 together with the list 
of variables that should have a relation to the predicted response y. Selected variables are 
represented in white while non-selected ones are left black. Here variables 1 to 19 were 
expected to be selected. Note that the correlation of variable 1 to y is equal to 0.95 while 
variable 19 is only correlated to y with a correlation coefficient of 0.05.  
 

 
Figure 3: Correlation of the variables to the response of interest y compared with the 
variables selection obtained using VIP, SR, cSR, SMC and Beta CI. 
 
All methods efficiently detect the most relevant variables, however some interesting 
discrepancies can be observed. First VIP selected a larger number of variables including 
variables unrelated to y.  These false positives were selected both in the structured part of 
the data (but unrelated to y) and in the purely noisy variables (30 last variables) indicating 
that VIP tends to focus on the non-informative X-variance due to the effect of multiple 
rotations applied to the weight vectors from a model with multiple components, nine in 
this case.  Beta CI exhibited a similar behavior here with 17 false positives. The main 
disadvantage of Beta CI is that it is more intensive in terms of computation however this 
results seems to indicate that the false (positive) discovery rate of Beta Ci can be higher 
than expected given the level of significance (0.05) chosen. It may due to the additional 
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uncertainty of bootstrapping method; however, a further investigation of this issue is not 
within the scope of this article. 

In terms of false positive, SR and SMC were clearly the best methods: none were 
selected. For the case of SMC, as stated earlier in the theory section, this was expected 
due to the positive rotation effect where the basic rotation impact is removed in SMC and 
hence the rates of false positive in SMC can be lower than the theoretical Null for the 
stated degrees of freedom at an  = 0.05. This agrees with the results obtained from the 
permutation experiments in the theory section.  In term of the rotation issue in SR, as 
discussed earlier, SR and SMC are relatively close to each other form a theoretical point 
of view. The solution proposed by SR is a rotation of the SMC solution towards the 
dominant source of variance.  In this simulation the dominant sources of variation were in 
the unrelated structures represented in variables 30 to 90. It is however hard to visualize 
the effect in the final SR values due to the same reason of the degrees of freedom. 
Instead, the effect of this rotation can be seen in the explained variance with SMC and 
SR, as shown in Figure 4. The rotation for SMC to the SR solution induces the inclusion 
of irrelevant X-variance. Given this observation one would expect SR to select all 
relevant variables and a number of false positives. The result displayed in Figure 2 
contradicts this intuition. Indeed a second factor comes into play. The number of degree 
of freedom in the F-test used in SR leads to a very low SR values and hence a very 
conservative decision. The false positives are thereby excluded from the selection yet this 
come with the cost of excluding also relevant variables. The number of false negatives is 
de facto the main disadvantage of SR. 
 

 
Figure 4: Comparison of the sums-of-squares of the explained variance in SMC and SR. 
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The advantage of the simulation was that we could assess the quality of the selection 
using a gold standard. However, one could wonder how these results translate when the 
SMC is applied to real data.    
 
In term of model predictive performance comparison with the models on the selected 
variables from different methods, Table 2 regroups the numbers of selected variables, the 
complexity of the models and their Root Mean Square Error of Prediction (RMSEP). SR 
was very conservative but led to some improvement of the prediction. However VIP and 
Beta CI were all selecting a larger subset of variables, but often associated with more 
complex models (larger number of latent variables). In this simulation, being relatively 
simple, the error terms were very comparable: SMC yielded the best performance (and 
the simplest model) here followed by SR and Beta CI.SMC. However one could estimate 
that this simulation is too simplistic, thereby the differences in RMSEP are not 
meaningful. The gain in prediction on a real dataset is demonstrated in the second 
example. The main objective of the simulation is to evaluate the variable(s) selected from 
a qualitative point of view. In other words, are we selecting the correct variables? 
 

Table 2: Complexity and performance of the different PLS models respectively 
constructed on the full simulated data or on selected subsets of variables 

Methods 
Number of 
variables 

Number 
of LVs 

RMSEP 
(%) 

All 
variables 90 9 7.1 
VIP 26 6 3.8 
SR 4 3 3.1 
SMC 17 1 3.1 
Beta CI 34 5 4.2 

 
NIR SHOOT OUT DATA 
 
The complete data was first pre-processed using Savitsky Golay smoothing (windows of 
11 points, 2nd derivative) and Standard Normal Variate (SNV). Subsequently 155 NIR 
spectra were used to construct PLS models able to predict the concentration in the active 
product ingredient (API), the active compound of pharmaceutical tablets. 
 
The five approaches discussed earlier were applied to this model, and 5 new PLS models 
were constructed. The models were then compared using an independent test set 
consisting of 460 spectra of the same type of tablets measured on the same 
spectrophotometer. The number of LVs used in each model was determined by cross-
validation. Here all subsets led to models based on 4 LVs which simplify the comparison.  

 
As the model predictive performance comparison (Table 3) using models built on the 
selected variables from different methods shows, the VIP selected a relatively small 
number of variables but the prediction power remains similar as the one obtained using 
the complete dataset. SR and SMC all led to a better prediction on the test set yet SMC 
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distinguish itself with an error twice as low. This indicates that the most complete 
important variable list is obtained by SMC by maintaining the best prediction in PLS. 
 

Table 3: Complexity and performance of the different PLS models respectively 
constructed on the full NIR data or on selected subsets of variables 

Methods 

Number 
of 
variables 

Number 
of LVs RMSEP 

All 
variables 650 7 5.10 
VIP 118 4 5.35 
SR 297 4 2.58 
SMC 418 4 2.39 
Beta CI 421 4 4.71 

 
The results can also be examined from a qualitative point of view. The NIR spectra 
(Figure 5A), used here contain a region typically characterized as noisy and 
uninformative, especially the region above 1800 nm. The application of SMC eliminates 
“only” 232 variables out of 650. However, it is interesting to note that the region above 
1800 nm was completely discarded. From a visual inspection one can easily establish that 
the excluded region contains mostly irrelevant and noisy information. SR eliminated also 
this region but selected also fewer variables in the other spectral regions. This is in line 
with our previous results showing that SR tends to lead to false negative i.e. to discard 
relevant variables.  
 
For illustration of the rotation effect, in this NIR data the dominant sources of variation 
are clearly allocated in the region above 1800 nm. The effect of this rotation can be seen 
in the explained variance with SMC and SR, as shown in Figure 5B where the explained 
variance for variables in this region is much higher for SR due to the regression in 
equation (4). However, this information is not properly captured in SR value with the use 
of n-2 degrees of freedom instead of 1. Therefore, in most cases, SR tends to 
underestimate the number of important variables. The rotation has more impact to VIP 
which confirms the behavior obtained with the simulation data. Both VIP and Beta CI 
methods select many (false positive) variables from this region. In the case of Beta CI, it 
may due to the extra uncertainty added by the bootstrapping method. 



Chapter 5 
 

Page 80 of 101 
 

 
Figure 5: A) NIR calibration data, the variables selected by SMC, VIP, SR and Beta CI 

are respectively represented by black crosses, red circles, blue right pointing triangles and 
purple left pointing triangles. B) Explained variance associated with SR and SMC. 

 
This second example demonstrates on real data that the application of SMC permits the 
selection of the relevant subset of variables by minimizing both false negative and false 
positive. This would obviously have an impact of the interpretation of the results. In some 
applications, the interpretation is less relevant than the predictive power; here SMC also 
distinguishes itself since the model constructed on the SMC selected the subset of 
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relevant variables that led to the best performing model indicating the completeness of 
the selected informative variables. 

Discussion and Conclusion 
 
The interpretation of variable importance using only parameters calculated from the 
original PLS model has the advantages of being fast and easy to compute. However, the 
interpretation of the variables based on the existing model parameters remains 
challenging due to the complexity of the PLS model and the lack of complete 
understanding of the properties of PLS.  
 
Besides the advantages of the filter methods such as VIP and SR, it has been seen that 
defining a reliable threshold is the main limitation of this variable selection category. 
This limitation is formally illustrated and explained by the basic sequence theory for PLS 
in this work.  
 
We demonstrate that orthogonal filtering based methods, such as Target Projection, can 
be fully explained using the basic sequence with the properties of the Krylov sequence (or 
power method) i.e. the rotation towards the dominant eigenvector. The consequence of 
the resulting rotation is the incorporation of irrelevant variation from X that can have an 
adverse impact in the evaluation of a variable’s importance.  This impact is not trivial and 
with a high rotation magnitude it can heavily influence either the false positive or false 
negative rates. Our conclusion is that this variance orthogonal decomposition as the 
essential element of the basic rotation is not necessary for the assessment of variable 
importance.  
 
Given the above, we developed a novel approach: Significant Multivariate Correlation 
(SMC). The underlying concept of SMC permits the maximum use of the information 
obtained from the basic sequence proposed in this work for identifying important 
variables in PLS. Variables exhibiting minimal bias (with respect to their parameter 
estimation), and statistically significant in the model, are best highlighted by the SMC 
method. Moreover the variables are ranked based on their respective F-valueswith a 
defined significant threshold value. 
 
Hence, in the frame-work of filter methods category, SMC method expects to be the best-
in-class in providing a more reliable list and ranking of variable importance. For more 
discussion and comparison of this class to other variable selection methods from other 
categories i.e. wrapper and embedded, readers are referred to [6,7].  
 
Application of SMC to simulated and real data (NIR shootout) illustrates the outstanding 
properties of SMC as compared to several commonly used variable selection methods 
such as a VIP, Selectivity Ratio (SR) and Beta CI. In all tested cases, SMC provides the 
most optimal variable list, with minimal false negative and false positive errors, and 
improves the predictive performance of the PLS model due to the bias reduction property 
of the variable selection method.  
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It has also been demonstrated that both SMC and SR are more reliable for datasets with 
noisy variables when compared to the VIP. However, SR is often too conservative due to 
the improper use of the F-test on the regression and residual variances. In all cases, both 
VIP and SR may suffer from non-relevant variance with respect to y due to the unwanted 
rotation effect in the calculation of the weight vectors in VIP and the TP loading. 
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Chapter 6:  Variable Importance in PLS in 
the Presence of Autocorrelated Data 
Abstract 
 
An integral part of interpreting atypical process performance in manufacturing processes 
is a multivariate understanding of process parameters and their relationship to a product’s 
critical quality attributes.  In this endeavor, Partial Least Squares (PLS) has greatly 
advanced the analysis of data that exhibits a high level of multicollinearity, but has not 
fully explored the impact to important variable selection in the presence of 
autocorrelation, particularly in the residuals, wherein a current observation is correlated 
to some degree with the previous observation(s).  This autocorrelation provides an 
additional challenge to understanding model performance and important variable 
selection.  This paper introduces an autocorrelation correction factor formulation to PLS 
in an attempt to address this concern and illustrates its application to the recently 
proposed Significant Multivariate Correlation (SMC) variable selection method.  Our 
results demonstrate that the correction factor formulation presented in this paper has the 
desired effect of driving down the false positive rate when applied to the SMC.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
N.L. Afanador, T.N. Tran, and L.M.C. Buydens, Chemometrics and Intelligent Laboratory 
Systems, (n.d.). 
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Introduction 
 
Partial Least Squares (PLS) has gained popularity within the manufacturing industry for 
its ability to relate a large number of correlated explanatory variables to a response via a 
multivariate model. This has proved helpful in determining the important variables 
responsible for product quality changes. However, different manufacturing processes will 
exhibit varying degrees of autocorrelation wherein a current process measurement is 
correlated with previous process measurements. This generally occurs in manufacturing 
due to similar operation conditions taking place, such as the use of the same operators 
and raw materials.  Within a modeling context, this autocorrelation can manifest itself to 
some degree in the residuals resulting from a PLS analysis.  When this occurs the 
assumption of independence is violated and any statistical hypothesis tests will be biased.  
Consequently, the identification of important variables responsible for changes in process 
performance can prove challenging. While the problem of autocorrelated data has been 
explored with respect to process monitoring and control [1, 2, 3], our proposed strategy 
varies from these methods in two ways.  The first is that we correct for autocorrelation 
after the PLS model has been applied to the original raw data and focus on correcting for 
any autocorrelation in the xi-residuals, via the .  Secondly, we attempt to quantify 
the degree of autocorrelation for each variable’s xi -residuals separately, and make an 
adjustment based on the degree of statistically significant autocorrelation that is present.  
Recently, the Significant Multivariate Correlation (SMC) methodology was introduced 
[4] and showed favorable results as compared to other commonly used important variable 
determination methods:  Variable Importance in the Projection (VIP), Selectivity Ratio 
and the use of bootstrap confidence intervals for the PLS regression coefficients (Beta 
CI).  The goal of this study is to introduce and illustrate the impact of an autocorrelation 
correction factor in the important variable selection properties of the SMC, both with and 
without autocorrelation, while varying signal-to-noise ratio.  Our results demonstrate that 
the use of the correction factor formulation presented in this paper as an autocorrelation 
adjustment applied to the  obtained from the SMC has the desired effect of driving 
down the false positive rate.  We would like to note that the autocorrelation factor 
formulation presented in this paper can also be applied to other methods that employ a 
mean-squared-error term for either hypothesis tests or calculating confidence intervals. 
 

Methods 
Autocorrelation 
 
As previously stated, often-times manufacturing processes will exhibit varying degrees of 
autocorrelation wherein a current process measurement is correlated to some degree with 
previous process measurements.  This autocorrelation is not limited to processes 
measurements themselves, but can also be transmitted to the xi-residuals that result from 
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a PLS model.  The structure of this autocorrelation can oftentimes be classified as a first 
order autoregressive process (AR1), which presupposes that the contribution of process 
disturbances that occurred in the past are small in comparison to current process 
disturbances [5].  When this condition is reasonably met we can assume an infinite set of 
weights in descending order that are similar in form to an exponential decay pattern [5].  
The weights of these disturbances are then noted as , for k = 0, 1, 2, …, where k stands 
for the kth lag.  Given this general description, an AR(1) process in terms of an xi-
residual, , can then be formally defined per Eq. (1).  
 
(1)   = + +  + = +  

 
From Eq. (1), we can also have Eq. (2) for the variable at time point i-k. 
 
(2)   = +  + … 

 
Equation’s (1) and (2) can be combined for the error at time-point i as the function of the 
error time-point i-k (3) 
 
(3)   = +  

 
from which we can see that an AR(1) process is simply the regression of  on   [5].  
The assumption of independence can be assumed to be violated if the correlation 
resulting from this regression is statistically significant for some pre-stated confidence 
level.  
 
For manufacturing process data the determination of whether the assumption of 
independence has been violated is generally made via the use of the autocorrelation 
function (ACF) [5] wherein the correlation between observations at varying time lags, k,  
is both calculated, Eq. (4), and displayed graphically (Figure 1).  
 
(4)   = ( , )   

 
Hence, the assumption of independence can be assumed to be violated if any of the 
calculated correlations is significantly different from zero, where the statistical limits 
displayed in Figure 1 are determined via Eq. (5).   
 
(5)   ,  = 0 ±

(. )   
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Figure 1 – Example of Autocorrelation Function with 95% Confidence Limits.  The y-
axis is the degree of correlation, , at each lag, the x-axis is the lag, k, the horizontal 

lines are the 95% confidence limits. 

Autocorrelation Correction Factor  

There have been several approaches recommended for addressing statistically significant 
autocorrelation that generally involve some transformation of the original X-variables [6],   
[7], [8].  For this study we have chosen the Corrected OLS correction factor [9] due to its 
simplicity in application and demonstrably good results in improving the coverage error 
for confidence intervals in the presence of autocorrelation [9], without the need to resort 
to a transformation of the original variables.    A good approximation for this correction 
factor, cf, for moderate to large sample sizes is shown in terms of the population 
parameters in Eq. (6) as applied to an estimate of the xi-residual variance, where = 

( ) , resulting from some PLS model (please refer to Appendix A for the derivation 
of Eq. (6) [5], [10]),  

(6) = ( ) , cf =  

This correction helps approximate the true xi-residual variance, , for a process that 
exhibits an AR(1) autocorrelation structure.   
 
In this study we have opted for maximizing the information obtained from the ACF by 
calculating the plug-in estimate for the population parameter,  , as a weighted average, 

, of the statistically significant autocorrelations (7).  

(7) =  , = 1   
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We should note that the above correction factor is not recommended in combination with 
resampling approaches ,such as the bootstrap and jackknife, for estimation of standard 
errors for either the PLS regression coefficients or the VIP.  A naïve bootstrapping 
approach disrupts the underlying autocorrelation structure so that the ability to calculate 
the correction factor via resampling in conjunction with a resampled ACF becomes 
extremely difficult in practice. 

Significant multivariate correlation (SMC) 
 
The concept underlying SMC is briefly described below with a more detailed 
methodological and theoretical exposition in [4].  The key points in SMC are to estimate 
for each variable the correct sources of variability resulting from the PLS regression, and 
use them for statistically determining a variables importance with respect to the PLS 
regression model. For the estimation of variances, SMC uses the regression coefficient 
vector Eq. (8) to define the co-variance between the X-variables and the response variable 
y in combination with the predicted values,  , to define a new latent score vector of the 
PLS model in Eq. (9) and Eq. (10).  
 
(8)   = ( ) =  , = ( )  
 

(9)   =    

 

(10)   = =  =    

 
The reconstruction of X can be represented in (11), without the actual regression, within 
the score (or predicted response) space [4]. 
 

(14)   = + =  +    

 
An F-test is then used to assess variables that are statistically significant with respect to 
their relationship to , Eq.  (15) – Eq. (19) [4]. 
 

(15)   , = =  

 

(16)   , = =  

 
(17)   , = , /1   
 
(18)   , = ,  /( 2)  
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(19)   =
,

,
=

( )

~ (1 , 1, 2) 

Experimental 
EXPERIMENTAL STRUCTURE 
 
This study focuses on quantifying the sensitivity and specificity of each method via 
simulation experiments. Two additional datasets, obtained from an actual manufacturing 
process, will also be included.  General agreement in the results of both the simulation 
experiments and actual process dataset will provide guidance on which approach is most 
suitable for assigning variable importance in a manufacturing process in the presence of 
autocorrelation.   In order to maintain continuity with the work referenced in [4], the 
performance of the adjusted SMC was assessed against the following:  unadjusted SMC 
[4], Selectivity Ratio [11, 12], Variable Importance in the Projection (VIP) [13], 
Bootstrap VIP [14], and Bootstrap  [4]. 
 
SIMULATED MANUFACTURING PROCESS EXPERIMENTAL SECTION 
 
For the purpose of this study a first order autoregressive process that exhibits positive 
autocorrelation was simulated; as such, we will be correcting for a downward bias in the 
 with respect to the SMC.  The simulation experiment consists of a manufacturing 
process composed of 70 process variables, X, 60 process cases, and a single response 
variable, y. Among the 70 process variables, 40 variables were designated as being highly 
cross-correlated noise variables that are not correlated to y, 15 variables were designated 
as independent noise variables that are not cross-correlated to each other or to y, and 15 
variables were designated as important variables cross-correlated to each other and to y. 
All of the 70 process variables, X, and y exhibit one of the following three levels of 
autocorrelation generated from a first order autoregressive process:  0.1 (low 
autocorrelation), 0.5 (moderate autocorrelation), and 0.9 (high autocorrelation). We can 
see from Figure 2 the on-average level of autocorrelation that is being simulated for each 
of the aforementioned autoregressive levels. Within each of these autocorrelation levels, 
the signal-to-noise ratio between the response and the important variables was varied as 
follows:  0.25, 0.50, 0.75, and 1.00. This reveals if any important variable selection 
method was heavily influenced by a particular autocorrelation structure in combination 
with a specific signal-to-noise ratio. One-thousand experimental replications of each 
factorial combination were performed, and the average of these results was used to assess 
the performance of each method. The assessment was based on the approach outlined in 
[13] wherein the geometric mean of both sensitivity and specificity is assessed via the 
metric G (25). Hence, the greater a methods G value, the better that method did in 
identifying the variables induced to correlate with the response. For the calculation of 
(20) Sensitivity is defined as the number of true important variables identified by each 
method, divided by the total number of actual important variables. Specificity was 
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measured as the number of true unimportant variables identified by each method, divided 
by the total number of actual unimportant variables.    

(20) ityyxSpecificSensitivitG  

 
Figure 2 – Simulated Autocorrelation Structure (First 10 lags) with 95% Confidence 

Limits:  The ACF calculates the correlation between observations at varying time lags.  
The assumption of independence can be assumed to be violated if any of the calculated 
correlations is significantly different from zero.  This is displayed as horizontal lines in 

the figure below. 
MANUFACTURING PROCESS DATASET 

The goal of this study is to verify the simulation study results on actual data. Given that 
we are solely interested in explaining the most variability in the current manufacturing 
process, with the smallest subset of important variables, we will use as our evaluation 
metrics the total number of important variables found by the listed methods, RMSEP, and 
Test Set RMSEP. 

ADPN 
The ADPN dataset is taken from the manufacture of adiponitrile (ADPN), an 
intermediary of the chemical synthesis of Nylon 6-6. The main step in the preparation of 
ADPN lies in a complex catalyzed nickel reaction, described by flow, pressure, 
temperature and reaction mixture compositions. The response variable for this dataset is 
specified as “nickel loss”, whose decrease as time passes, results in a decrease of the 
yield of ADPN. It can be assumed that the identification and adjustment of the levels of 
certain explanatory variables can limit the loss in nickel while at the same time 
maintaining a minimal level of productivity of ADPN [15].  The cross-correlation 
structure for the training set is shown in Figure 2.  An example of the autocorrelation 
structure for one randomly sampled predictor variable and the response variable are 
showing in Figures 4 and 5, respectively. 
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 ADPN data set with n = 57, y = 1, p = 100 (training dataset) 
 ADPN data set with n =  14, y = 1, p = 100 (test dataset) 

VACCINE 
The VACCINE dataset results from the manufacture of a vaccine where the response is 
specified as “yield”, which shows an increase as time passes. The explanatory variables 
in this dataset represent variables known to potentially impact cellular growth that viral 
propagation and can result in the observed yield increase. It can be assumed that there is a 
root cause for the observed increase in yield and that the identification of this root cause 
can provide increased process knowledge that may be directly linked to better process 
control.  The test set was selected as a random sample of n = 16 from the overall 
VACCINE dataset.  An example of the autocorrelation structure for one randomly 
sampled predictor variable and the response variable are shown in Figures 3 and 4, 
respectively.  In the training set approximately the same auto-correlation structure is 
maintained as that observed in the overall dataset.  In addition, the observed shift in the 
overall dataset is adequately represented.  In the test set, due to the much smaller sample 
size, the original autocorrelation structure is dampened, but the observed shift in the 
overall dataset is adequately represented.  This approach allows us to monitor the impact 
of the correction factor in the adjusted SMC via the training set RMSEP, wherein the 
adjusted SMC is predicted to perform much better than the unadjusted SMC.  In the case 
of the test set, we are able to assess the performance of the correction factor when the 
auto-correlation structure is dampened, but the original process shift is retained.  In this 
latter approach, the adjusted SMC is predicted to also perform better than the unadjusted 
SMC given the reduced number of instances where the correction is applied, but in which 
the process shift is still maintained.  

 VACCINE dataset with n = 50, y = 1, p = 67 (training dataset) 
 VACCINE dataset with n =  16, y = 1, p = 67 (test dataset) 

 
 

 
Figure 3 – ACF of two randomly sample X-variables (First 10 lags) with 95% 

Confidence Limits:  An example of the autocorrelation structure for one randomly 
sampled predictor variable from both the ADPN and VACCINE dataset, respectively. 
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Figure 4 – ACF of y variables for the manufacturing process dataset (First 10 lags) with 
95% Confidence Limits:  The autocorrelation structure for the response variable for both 

the ADPN and VACCINE dataset, respectively. 

Results 
MANUFACTURING PROCESS SIMULATION 

The results from the manufacturing process simulation are outlined in Table 1 for a 
signal-to-noise ratio equal to 0.75, wherein the results for G, Sensitivity, and Specificity 
represent the rounded average across the 1000 experimental replicates for each 
autocorrelation and signal-to-noise ratio combination.  It can be observed from this table 
that the Significant Multivariate Correlation (SMC), adjusted for autocorrelation, is 
consistently favored among all the variable importance methods assessed. A similar trend 
was observed for other autocorrelation and SNR combinations, wherein as the level of 
autocorrelation increased the adjusted SMC was constantly favored.   
One thing to note with respect to the VIP is that it can be expected to perform well at the 
highest signal-to-noise ratio and low auto-correlation (AR = 0.1) combination. In this 
case the VIP will simply reduce to the weights from the first LV and as such will do a 
good job of correctly assigning important variables.  At a lower signal-to-noise ratio and 
low auto-correlation (AR = 0.1) combination the  can be expected to retain the 
favorable property of being a good estimate of the strength of the correlation between the 
important variables and the response, y, whereas the VIP, along with the Selectivity 
Ratio, will tend to incorporate more information pertaining to X. In all instances of low 
autocorrelation both the unadjusted SMC and adjusted SMC performed as well, or better, 
as the other methods assessed.  These results are aligned with the findings from our 
previous work as detailed in [4]. 
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  AR = .1 AR = 0.5 AR = .9 
Method SNR G G G 

adjusted SMC 

0.75 

0.99 0.99 0.95 
SMC 0.98 0.97 0.88 

Selectivity Ratio 0.10 0.09 0.06 
VIP 0.97 0.94 0.86 

VIP Bootstrap 0.93 0.91 0.76 
Bootstrap  0.94 0.91 0.81 

Table 1 – Comparison between different methods for SNR = 0.75 
 

PROCESS DATASET  

The results from the analysis of two actual process datasets are outlined in Table 2. The 
results of this analysis demonstrate that the SMC, adjusted for autocorrelation, was the 
favored method in terms of the number of important variables chosen in combination 
with its corresponding RMSEP and Test Set RMSEP.  It is important to note that 
although the RMSEP and Test Set RMSEP are in some instances are very close to each 
other across the various methods, the adjusted SMC was able to achieve lower values 
with a fewer number of important variables.   

ADPN 

Method 
No of Important Variables 

Chosen RMSEP Test Set RMSEP 
adjusted SMC 11 2.50 2.75 

SMC 22 1.70 2.64 
Selectivity Ratio 0 -- -- 

VIP 40 2.16 2.94 
VIP Bootstrap 21 2.43 3.25 
Bootstrap  56 1.59 2.61 

VACCINE 

Method 
No of Important Variables 

Chosen CV R2 Test Set R2 
adjusted SMC 16 1306.23 1249.41 

SMC 18 1352.68 1341.44 
Selectivity Ratio 0 -- -- 

VIP 24 1473.24 1253.16 
VIP Bootstrap 16 1381.73 1445.44 
Bootstrap  32 1365.58 1321.23 

Table 2 – Results from the Analysis of Manufacturing Process Data 
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Discussion and Conclusion 
In both the simulation study and actual process datasets the evaluation metrics point to 
the adjusted SMC as the most consistent method for identifying the most important 
variables.  These results help validate the joint use of the weighted average of the 
autocorrelation coefficients and the correction factor as an adjustment formulation for 
data known to be first order autocorrelated.  Furthermore, although not detailed in this 
work, aside from improving the overall final list of important variables, it can be 
expected that a more robust ranking of important variables will result due to the 
autocorrelation adjustment via the resulting F-statistic for each variable.  We should 
further note that the findings from the work in [4], as applied to new data sets, further 
validate the predicted performance improvement in important variable determination via 
the use of the SMC.    
 
In the end, it is the conclusion of the authors that when analyzing data known to be highly 
to moderately first order autocorrelated, as is common in manufacturing processes, the 
SMC, in conjunction with the correction factor formulation presented in this work, will 
result in a more consistent determination of the important variables driving a process. 
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Appendix A 
This appendix presents the theoretical derivation of the autocorrelation factor,  , 
presented in this work, as it applies to the SMC.   
 

(1)   = + = +    

 
(2)   = +     
 
(3)   = = =  
 
(4)   , =   
 
(5)   =

( , )
= , for k = 1  

 
Where  is a process variable, i the ith residual, and k = kth lag. 
 
It can now be shown that the variance, with respect to the Central Limit Theorem for 
dependent processes, converges to an unbiased estimate of  when the correction 
factor  is taken into account.  
 
(6)   = + ( ) ( , )  
 
(7)   = ( , ) 
 
(8)   = + ( )  
 
(9)   = 1 + 2   

 
where =

( )

( )
 0 and 2 ~ , as , as   

 
(10)   = 1 +   
 
(11)   =  
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Chapter 7:  Conclusion 
 
The objective of this research was the statistical evaluation of variable selection 
methodologies in Partial Least Squares regression, with the goal of identifying a method 
that can be generally applied across a multitude of problems, in the presence of 
autocorrelation.   
 
This research began with the investigation of the use of the 95% lower-bound on the 
jackknife confidence interval for the VIP, versus the combination of bootstrap and 
permutation methods for determining variable importance [Chapter 2].  Although not a 
statistically derived cut-off value, the PLS-VIP '>1' rule was used to assess which 
approach performed best in detecting important variables in actual manufacturing process 
data sets.  In this study we found that the use of the 95% lower-bound on the jackknife 
confidence interval for the VIP resulted in a less optimal subset of important variables 
when compared to a bootstrapping approach that incorporated permutation tests.  In spite 
of this result, we were able to conclude that the use of the jackknife confidence interval 
approach is sufficient, though not optimal, for ensuring that the important subset of 
important variables is being selected. 
 
Given the approximating nature of the Jackknife with respect to the bootstrap procedure 
the question arose as to which uncertainty estimation method provided the best list of 
important variables currently driving a process [Chapter 3].  Once again, the PLS-VIP 
'>1' rule was adopted and used to assess seven different uncertainty estimation methods, 
along with their resulting ability for detecting  important variables in simulated and actual 
process data sets.  Our work showed that a general bootstrap approach for estimating 
confidence intervals resulted in more positive metrics, in the absence of permutation 
tests.  However, not all the bootstrap approaches had the same positive performance.  In 
this study both the Normal and Basic confidence interval approaches performed best.  It 
should be noted, that the resampling strategy presented in this research may be valid for 
other PLS parameters, such as loadings, scores, and regression coefficients.  Additional 
research should be ensued in order to verify which bootstrapping uncertainty approach 
best estimates the sampling distribution of the aforementioned PLS parameters. 
 
This favorability of the Normal and Basic confidence interval approaches was 
predominantly attributed to the inherent bias-correcting properties within these methods.  
This bias-correction appeared to mitigate against the incorporation into the VIP of 
variability present in an explanatory variable that may no longer be meaningful in 
explaining y.  Since the VIP includes the weight vectors ( ) a similar effect to 
orthogonal filtering can be observer in the VIP.  As such, as more information from X is 
incorporated into the VIP, via the weight vectors, there is an increased false negative rate 
in the important variables, and an increased false positive rate in the un-important 
variables.   
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In light of this knowledge, a novel approach named Significant Multivariate Correlation 
(SMC), was developed. The underlying concept of SMC permits the maximum use of the 
information obtained from the basic rotation for identifying important variables in PLS 
[Chapter 4].  An F-test can then be used to assess a variables importance and ranking.  
Variables exhibiting minimal bias with respect to their parameter estimates, and 
statistically significant in the model, are correctly highlighted by the SMC method.  
Simulation and application of the SMC to two real data sets (NIR and NMR 
metabolomics) illustrated the outstanding properties of the SMC as compared with 
several commonly used variable selection methods such as the VIP and SR [Chapter 5]. 
 
Given that the SMC, and other similar methods, rely on an F-test for determining and 
ranking important variables, it will be very sensitive to the presence of autocorrelation in 
manufacturing process data.  This autocorrelation can result in the violation of the 
independence assumption associated with the error estimate used for statistical hypothesis 
tests, specifically with the F-test used in the SMC for determining a variables importance.  
As such, as an extension of the aforementioned work, and to correct for the phenomenon 
of autocorrelation present in batch manufacturing data, we explored an autocorrelation 
correction factor that uses a weighted average of statistically significant lags, as 
determined from the autocorrelation function [Chapter 6].  The SMC, along with three 
different variable selection methods were presented, along with their resulting ability for 
detecting important variables in the presence of autocorrelation in both simulated and 
actual datasets.  This work concluded that when analyzing data known to be high to 
moderately autocorrelated, as is common in manufacturing processes, the SMC, in 
conjunction with the correction factor formulation presented in this work, will result in a 
more consistent determination of the important variables driving a process. 
 
In summary, this research resulted in a better understanding of resampling based methods 
for determining the uncertainty in the estimation of PLS parameters and the VIP, a better 
understanding of the orthogonal correction in the PLS algorithm, a new variable 
importance method (SMC) capable of providing a statistical assessment of the most 
important variables currently driving a manufacturing process, and an autocorrelation 
adjustment formulation for the SMC to better control the increased false positive rate 
associated with autocorrelated data. 
 
Given the importance of properly understanding manufacturing process performance, 
especially in the context of pharmaceutical manufacturing where there is a vested public 
health interest, it is important that further research on methods that improve process 
understanding is continued.  The Chemometrics community has done an excellent job in 
developing and advancing methods that deal with the problem of multicollinearity in 
process data.  It is our hope that this research prompts more work to better understand, 
adjust, and correct for the impact of autocorrelation in latent based regression methods 
and their interpretation. 
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Summary 
 
The objective of this research was the statistical evaluation of variable selection 
methodologies in Partial Least Squares regression, with the goal of identifying a method 
that can be generally applied across a multitude of problems, in the presence of 
autocorrelation.   
 
This research began with a study of how the use of bootstrapping, in conjunction with 
permutation tests, can provide avenues for improving the selection of variables 
responsible for manufacturing process changes via the Variable Importance in the 
Projection (PLS-VIP) statistic.  In this study we found that the use of the 95% lower-
bound on the jackknife confidence interval for the VIP resulted in a less optimal subset of 
important variables when compared to a bootstrapping approach that incorporated 
permutation tests.  In spite of this result, we were able to conclude that the use of the 
jackknife confidence interval approach is sufficient, though not optimal, for ensuring that 
the important subset of important variables is being selected. 
 
This result lead to a performance assessment of seven resampling based methods of 
uncertainty estimation with the goal of assessing which method performs best in reducing 
the false positive rate, while at the same time not impacting the true positive rate.  This 
research concluded that the normal bootstrap confidence intervals, followed by the basic 
bootstrap confidence intervals, provided the most consistent coverage for the purpose of 
determining a variable’s importance.  A consequence of this research was a heightened 
awareness of the degree to which a variable’s importance may be either upgraded or 
downgraded as model complexity increases.  This is found to be due to the VIP including 
the weight vectors ( ), calculated via a sequence of residual matrices, resulting in 
more information from X being incorporated into the VIP.  As such, there is an increased 
false negative rate in the important variables, and an increased false positive rate in the 
un-important variables.   
 
In order to address this issue a new method was introduced, called the Significant 
Multivariate Correlation (SMC), for statistically assessing variable importance for PLS 
regression and classification. An evaluation of the performance of the SMC on simulated 
and real data sets demonstrating its exceptional performance over several commonly used 
methods is also presented.  Given that the SMC, and other similar methods, rely on an F-
test for determining and ranking important variables, it will be very sensitive to the 
presence of autocorrelation in manufacturing process data.  This autocorrelation can 
result in the violation of the independence assumption associated with the error estimate 
used for statistical hypothesis tests, specifically with the F-test used in the SMC for 
determining a variable’s importance.  As such, as an extension of the aforementioned 
work, and to correct for the phenomenon of autocorrelation present in batch 
manufacturing data, we successfully explored an autocorrelation correction formulation 
that improved the performance of the SMC in the presence of autocorrelation. 
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Samenvatting 
 
Het doel van dit onderzoek was de statistische evaluatie van methodologieën voor 
selectie van variabelen in Partial Least Squares regressie, met als doel een methode te 
identificeren die algemeen kan worden toegepast bij een groot aantal problemen waarbij 
autocorrelatie aanwezig is.  
 
Dit onderzoek begon met een studie van hoe het gebruik van bootstrapping, in combinatie 
met permutatietests, mogelijkheden kan bieden voor het verbeteren van de selectie van 
variabelen die verantwoordelijk zijn voor wijzigingen in productieprocessen door middel 
van de Variable Importance in Projection (PLS-VIP) schatter. In deze studie ontdekten 
we dat het gebruik van de 95% ondergrens van het jackknife betrouwbaarheidsinterval 
voor VIP resulteerde in een minder goede deelverzameling van belangrijke variabelen 
dan een bootstrapping-aanpak met permutatietests. Ondanks deze resultaten konden we 
concluderen dat de aanpak met het jackknife betrouwbaarheidsinterval, hoewel niet 
optimaal, volstaat om zeker te kunnen zijn dat de belangrijke subset van belangrijke 
variabelen wordt geselecteerd. 
 
Dit resultaat leidde tot een prestatiebeoordeling van zeven op resampling gebaseerde 
methoden van onzekerheidsschatting met als doel te beoordelen welke methode het best 
is in het verminderen van de false positive rate, maar tegelijkertijd geen invloed heeft op 
de true positive rate. Uit het onderzoek bleek dat de normal bootstrap-
betrouwbaarheidsintervallen gevolgd door de basic bootstrap-
betrouwbaarheidsintervallen, de meest consistente dekking geven voor het bepalen van 
het belang van een variabele. Een gevolg van dit onderzoek was een toegenomen besef 
van de mate waarin het belang van een variabele verhoogd danwel verlaagd kan worden 
als de complexiteit van het model toeneemt. Dit blijkt het gevolg te zijn van het feit dat 
de VIP de gewichtsvectoren (  ), berekend door middel van een reeks residumatrices, 
meeneemt, waardoor meer informatie over X in de VIP wordt opgenomen. Als zodanig is 
er een verhoogde false negative rate in de belangrijke variabelen, en een verhoogde false 
positive rate in de niet-belangrijke variabelen. 
 
Om dit probleem aan te pakken werd een nieuwe methode geïntroduceerd, genaamd de 
Significant Multivariate Correlation (SMC), om het belang van een variabele voor PLS-
regressie en -classificatie statistisch te beoordelen. Een evaluatie van de prestatie van de 
SMC op gesimuleerde en echte datasets die de uitzonderlijke prestaties van deze methode 
ten opzichte van een aantal veelgebruikte methoden aantoonde, wordt ook gepresenteerd. 
Gegeven dat de SMC en andere soortgelijke methoden afhankelijk zijn van een F-test om 
belangrijke variabelen te bepalen en te rangschikken, zal de methode zeer gevoelig zijn 
voor de aanwezigheid van autocorrelatie in productieprocesdata. Deze autocorrelatie kan 
leiden tot schending van de veronderstelling van onafhankelijkheid die samenhangt met 
de schatting van de fout die gebruikt wordt voor statistische hypothesetests, in het 
bijzonder de F-test in de SMC voor het bepalen van het belang van een variabele. Als 
zodanig, in het verlengde van het voornoemde werk en voor het corrigeren van het 
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fenomeen van autocorrelatie aanwezig in batchproductiedata, hebben we met succes een 
formulering van correctie voor autocorrelatie onderzocht die de prestaties van de SMC in 
aanwezigheid van autocorrelatie verbetert. 
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