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Samenvatting

We leven in een wereld waarin computers een steeds grotere rol spelen. Daarom
wordt het alsmaar belangrijker om gebruikers en objecten digitaal te kunnen iden-
tificeren. Om dit te bereiken gebruiken veel bestaande systemen unieke nummers,
denk bijvoorbeeld aan je burgerservicenummer (BSN). Dit is een eenvoudige oplos-
sing, maar dit maakt het ook eenvoudig om iemands handelingen te volgen. Een
privacyvriendelijker alternatief is om attributen te gebruiken voor authenticatie en
autorisatie in de digitale wereld. Deze attributen, of eigenschappen, kunnen gecom-
bineerd worden in een soort cryptografische container die dan gecertificeerd wordt
door een bevoegde autoriteit. Met behulp van deze attributen kan een gebruiker dan
geauthentiseerd worden, om toegang te krijgen tot bepaalde systemen of om gebruik
te maken van een dienst, door enkel de relevante gebruikerseigenschappen te delen.

In dit proefschrift bespreken we drie privacyvriendelijke technologieën die au-
thenticatie op basis van attributen mogelijk maken. Deze technologieën, waarvoor
we efficiënte implementaties voor op een chipkaart hebben ontwikkeld, zijn:

Self-blindable Credentials Deze technologie maakt gebruik van cryptografie op
basis van elliptische krommen. Het systeem laat de meeste berekeningen door de
kaartlezer uitvoeren, wat een zeer compacte implementatie op de chipkaart mogelijk
maakt. Helaas is de ondersteuning voor elliptische kromme cryptografie op chipkaar-
ten beperkt tot de standaard algoritmen. Dit maakt de ontwikkeling van varianten
op deze technologie lastig. In vergelijking met de andere technologieën bieden de
Self-blindable Credentials slechts beperkte mogelijkheden.

U-Prove De uitgifte- en verificatieprotocollen van U-Prove zijn gebaseerd op de
methode voor geblindeerde handtekeningen van Schnorr en zijn zero-knowledge proofs
(bewijzen waarbij geen kennis overgedragen wordt). Deze technologie biedt op dit
moment de snelste implementatie voor verificatie met attributen. Met betrekking
tot privacy is er echter een groot probleem: U-Prove beschermt niet tegen het aan
elkaar koppelen van meerdere verificatiesessies. Dit betekent dat de verificatiegege-
vens functioneren als een pseudoniem voor de gebruiker.

Identity Mixer Deze technologie is gebaseerd op het werk van Camenisch en Ly-
syanskaya dat een methode voor digitale handtekeningen definieert. Deze methode
bevat protocollen voor geblindeerde handtekeningen en zero-knowledge proofs, die
gebruikt worden voor de uitgifte en verificatie van de attributen. In vergelijking
met de andere implementaties behalen we hier niet de beste prestaties, maar deze
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technologie biedt wel uitgebreide mogelijkheden en geeft een goede bescherming. Zo
kunnen de attributen bijvoorbeeld meerdere keren gebruikt worden zonder dat de
verschillende verificatiesessies traceerbaar worden.

Het doel van het onderzoek in dit proefschrift was om efficiënte chipkaart imple-
mentaties te ontwikkelen voor op attributen gebaseerde authenticatie en het verge-
lijken van de verschillende technologieën. Dit heeft geresulteerd in een gedetailleerde
beschrijving en bespreking van de bovengenoemde technologieën en de bijbehorende
chipkaart implementaties1. Deze implementaties bieden, ten tijden van het schrijven
van dit proefschrift, de beste prestaties voor attributen op een chipkaart.

Daarnaast heeft de succesvolle ontwikkeling van deze chipkaart implementaties
de basis gelegd voor het IRMA project. Dit is een lopend onderzoeks- en ontwik-
kelingsproject dat zich richt op authenticatie op basis van attributen en de toe-
passing daarvan in de praktijk. Voor meer informatie over het IRMA project, zie
https://www.irmacard.org/.

1De broncode van deze implementaties is beschikbaar op https://github.com/pimvullers/.
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Abstract

In a world where computers are involved in most aspects of our lives, it becomes
more and more important to digitally identify entities. To achieve this goal, many
existing systems use unique identifiers. This is a simple solution, but also makes it
easy to trace the user’s actions. A privacy-friendly alternative is to use attribute-
based credentials as a basis for authentication and authorisation. Such credentials
serve as a cryptographic container for attributes, that is, properties of the user, which
are certified by an authority. With these attributes the user can be authenticated
to access a resource or receive a service solely on the properties that are relevant for
that specific resource or service.

In this thesis we discuss three attribute-based credential technologies for which
we have developed efficient smart card implementations. These technologies are:

Self-blindable Credentials These credentials are based on elliptic curve crypto-
graphy with bilinear pairings. This technology shifts the computational burden to
the terminal which makes a very compact smart card implementation possible. Un-
fortunately the support for elliptic curve cryptography on smart cards is limited to
standard algorithms, which made it hard to develop other variants of this technology.
This results in a minimal feature set compared to the other technologies.

U-Prove The U-Prove issuance and verification protocols are, respectively, based
on Schnorr’s blind signature scheme and zero-knowledge proofs. This technology
offers the fastest implementation for attribute verification. With respect to privacy
there is only one important drawback: U-Prove does not protect against linking mul-
tiple verification sessions to each other. This means that these credentials basically
act as a pseudonym for the user.

Identity Mixer This technology is based on the Camenisch-Lysyanskaya signa-
ture scheme which provides a blind signature protocol, which can be used for creden-
tial issuance, and zero-knowledge proofs for attribute verification. The performance
of this implementation is not the best among these technologies, but this technology
provides a broad feature set and offers proper unlinkability. This makes it possible
to use a credential multiple times without becoming traceable.

The goal of the research presented in this thesis has been to develop efficient
smart card implementations of attribute-based credentials and compare various cryp-
tographic systems for attribute-based credentials. This has resulted in a detailed
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description and discussion of the technologies listed above and the smart card im-
plementations2 for each of these technologies, which are the most efficient imple-
mentations at the time of writing.

Furthermore, the successful development of these implementations laid the found-
ation for the IRMA project. This is an on-going research and development project
focusing on attribute-based credentials and their use in practice. For more inform-
ation concerning the IRMA project, please visit https://www.irmacard.org/.

2The source code of these implementations is available at http://github.com/pimvullers/.
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Chapter 1

Introduction

The world is moving into a digital era. Computers are becoming more and more
intertwined in our daily lives. Many people spend time on the Internet, not just
for fun or gathering information, but also for social interaction, shopping or on-line
banking. Not only do our activities take place in a digital world, existing systems
are also moving to digital alternatives. Paper train tickets are being replaced by
electronic public transport cards. Identity documents, such as passports and identity
cards, are equipped with electronic chips to hold digital copies of the identity data
printed on the document. Sometimes even additional information is stored in these
chips, such as fingerprints or other biometric data.

Unfortunately, most digital systems use a simple approach to identify entities,
including users; they just associate them with a unique identifier. While this is
convenient for bookkeeping, it also has a big drawback with respect to privacy.
Using these unique identifiers, it is easy to trace the user. This was already the case
for tracking activities on the Internet, but now real world actions can easily be traced
as well through the use of public transport cards or digital identity documents.

In a security context, these unique identifiers are used to identify entities during
authentication and/or authorisation processes, but in many use cases identification is
not necessary during such a transaction. For instance, when you want to buy liquor,
a merchant only needs to verify that you are of a certain age. The same holds when
boarding a train; the public transport system only needs to know whether or not
you are allowed to do so, and there is no direct need for the system to know exactly
who you are.

A more privacy-friendly approach is possible by using only specific properties of
the user, or attributes, as an alternative to identities. Instead of providing lots of
identity information to a service provider, the user can just provide the required
attributes, such that the service can be accessed without the user revealing his
identity. For example, when you want to buy a bottle of wine you just prove that
you are over 18 (or 21) years of age, which is sufficient to authorise the transaction,
without revealing who you are. To be more precise, it does not matter who you
are, where you live, or even what your age actually is. You are allowed to buy the
wine, as long as you satisfy the property that you have reached a certain age. This
illustrates that it is often more important what you are than who you are.
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1.1 Attributes and Credentials
Within this thesis, an attribute will be understood as a property or statement con-
cerning a person. Examples of attributes are:

• I am a student (or senior citizen)

• I am over 12 (or 18, or 21, or 65)

• I have a second class train pass

• My gender is male / female

• My loyalty status for company . . . is
bronze / silver / gold / . . .

• My name is . . .

• My date of birth is . . .

• My address is . . .

• My social security number is . . .

• I own the bank account with num-
ber . . .

Note that some of these attributes, like your bank account or social security
number, can be used to uniquely identify you, while other attributes are not uniquely
identifying: they apply to other people as well.

Informally, a person’s identity can be seen as the collection of all attributes that
hold for this person. In practice, many transactions can be based on a minimal set
of attributes, namely exactly those attributes which are relevant or required to carry
out the transaction. For example one can think of the following scenarios:
• If you wish to get a cheaper meal, show the student attribute, and for cheaper
public transport you show that you are a senior citizen.

• If you buy an item in an on-line shop you need to reveal your bank account
and address attributes, and possibly also your loyalty status attribute.

• When you buy a certain type of game or video on-line, you need to prove that
you possess the attribute over 12, or over 18.

Note that in the last scenario, instead of using an attribute with the over 12 or over 18
statement, this property can also be proved based on the date of birth attribute. This
is then called a derived attribute.

There are several cryptographic systems for dealing with identities based on at-
tributes. Typically these systems distinguish attributes and credentials. Informally,
a credential is a cryptographic container of attributes. As a first approximation,
one can think of a credential as depicted in Figure 1.1. Examples of credentials
are [AJ13]:
• An address credential, containing for example the street, zipcode, city and
country attributes.

• A (citizen) identity credential, containing for example the name, gender, date
of birth, and social security number attributes.

• A student credential, containing for example the student number, field of study,
enrolment year and university/college attributes.

• A festival credential, containing for example the festival name and date/time
attributes.

2



issuer's signature

user's key attributes

Figure 1.1: A visual representation of an attribute-based credential.

1.1.1 Credential Issuance and Verification
Credentials are issued and verified, whereas attributes can be disclosed or proved
during verification. A credential is issued by an authority, the issuer , which can
assess that the attribute statements in the credential hold for the individual they
are issued to. This individual, the user, can subsequently use this credential to prove
to another party, the verifier , that she has a certain qualification, competence, or
property.

An issuer and a user together construct a new credential using the issuance pro-
cedure. First the user authenticates to the issuer in some reliable but (for this
description) unspecified manner (which may be face-to-face). Once the authentica-
tion succeeds, the issuer collects the attributes for this user from its trusted sources.
The user and issuer then carry out a cryptographic protocol in which the attributes
are combined into a credential signed by the issuer. The resulting credential contains
the attributes concerning the user and also the user’s personal key (as depicted in
Figure 1.1).

The fact that the attributes hold for the owner of a credential is guaranteed both
by the issuer’s signature and by the embedded personal key of the owner. The secret
key embedded in the credential plays an essential role in the verification procedure
of the credential, since it is supposed to be only known by the credential owner.
Therefore this secret key, if properly protected, ensures that a credential cannot be
transferred from one user to another.

1.1.2 Selective Disclosure of Attributes
A user may have several credentials, each containing some collection of attributes.
When requesting a service from a service provider, the user is required to authentic-
ate using one (or more) of her credentials. In the verification process the user can
choose to only provide certain credentials; also, given a specific credential, the user
may choose to reveal only a selection of the attributes contained in the credential. By
doing this, authentication becomes more privacy friendly. This verification process
is called selective disclosure, involving a verification protocol in which only a subset
of the credential attributes is revealed to the verifier while the other attributes are
only proved to be present in the credential. This allows a user to reveal only the ne-
cessary attributes and prove that the credential belongs to her. The service provider
can verify all information that has been sent, including the issuer’s signature.
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The roles of a service provider and an issuer can also be combined: after verifying
one credential, a new one can be issued. For instance, after verifying an over 18
attribute from an identity credential, a liquor shop might choose to issue a loyalty
credential.

In this thesis we stick to a simplistic approach to selective disclosure in which an
attribute index set AD ⊆ A determines which of the attributes {ai}i∈A contained in
the credential will be revealed to the verifier. Note that more advanced proofs about
attributes can be generated [IBM12]. For example, the over 18 statement derived
from date of birth attribute mentioned above, or that the current date is within the
validity period specified in a train pass attribute [Rog11]. This is, however, out of
scope for this thesis.

1.1.3 Security and Privacy
The cryptographic nature of the credential-as-container concept includes the follow-
ing four security aspects.

• The issuer’s digital signature ensures authenticity: the credential originates
from the issuer, and this issuer asserts that the attributes hold for the user.

• This signature also guarantees integrity: the attributes contained in the cre-
dential have not been altered since they were issued.

• A credential is non-transferable as it is bound to the secret key of the person
involved in the issuance protocol. This secret key should be well protected, for
instance via storage in the secure memory of a smart card with a PIN.

• A credential hides its content, so it does not reveal the attributes it contains,
unless these attributes are revealed during verification.

Furthermore, a credential can protect the privacy of its owner through the following
two cryptographic properties.

• Issuer unlinkability ensures that any information that the issuer gathers during
the issuing procedure cannot be used to link a verification of the credential to
its issuance.

• Multi-show unlinkability guarantees that when a credential is verified multiple
times, these sessions cannot be linked.

The privacy of users is protected by these unlinkability properties even if the cre-
dential issuer and all verifiers collude. These properties can be achieved in a variety
of ways, as can be seen by the different attribute-based credential technologies that
have been proposed.

1.2 Attribute-based Credential Technologies
A number of technologies have been developed based on ideas described above, but
the main focus has been on the cryptography that enables such systems and less
on (efficient) implementations and their use cases. The implementations which have
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been developed are mainly for ordinary computers, while our research focuses on
implementing such technologies on smart cards. This approach offers various new
usage scenarios, like privacy-friendly public transport cards and identity documents,
but also faces difficulties due to the limited capabilities of smart card platforms and
hardware (see Section 1.3).

The first attribute-based credentials have been described by Chaum [Cha85] in
1984. In this section we introduce a number of recent technologies which provide
attribute-based credentials, which use various cryptographic methods to achieve the
security and privacy properties mentioned above.

1.2.1 Randomisable Certificates
Credentials based on randomisable certificates, such as Verheul’s self-blindable cre-
dentials [Ver01], employ special cryptographic techniques enabling the certificate
structures to be randomised using blinding factors while preserving their verifiabil-
ity. The benefit of this approach is that the use of such credentials is untraceable.
To achieve this, the users can blind their credentials before they are verified, such
that two occurrences of the same credential cannot be recognised.

These credentials, as proposed by Verheul [Ver01], are discussed in detail in
Chapter 3 as well as our efficient smart card implementations [BHJ+10, HJV10]
using elliptic curve cryptography.

1.2.2 Single-show Credentials
Another approach is to use single-show credentials in combination with a blind
signature protocol. Here the issuance involves creating a blind signature which
conceals the resulting credential from the issuer. Therefore, the verification instances
of this credential cannot be related to the issuing phase. These credentials are called
single-show since they do not provide the multi-show unlinkability property1 and
can therefore be linked when they are used multiple times. Hence these credentials
serve as a pseudonym.

Examples of this approach are the credentials proposed by Brands [Bra00], which
are used in Microsoft’s U-Prove technology [PZ13], and the light-weight credentials
described by Baldimtsi and Lysyanskaya [BL12].

A previous attempt to implement such technology on a smart card by Tews and
Jacobs [TJ09], based on Brands’ description [Bra00], resulted in a highly involved
application with running times in the order of 5–10 seconds which make it not really
usable in practice. Our smart card implementation [MV11] of U-Prove not only
has a much better performance but is also, except for some minimal limitations,
compatible with the development kits provided by Microsoft. We discuss this im-
plementation and the U-Prove technology [PZ13] in detail in Chapter 4.

1.2.3 Multi-show Credentials
The use of zero-knowledge proofs allows a user to prove ownership of a credential
without revealing the credential itself. This achieves multi-show unlinkability, as

1Multi-show unlinkability for these schemes can be realised by issuing multiple credentials for
the same set of attributes which can later be verified independently.
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the verifier does not see the credential. Camenisch and Lysyanskaya [CL01, CL03]
combine such proofs with randomisation of the issuer’s signature to provide issuer
unlinkability. Their credential scheme was used as the basis for IBM’s Identity
Mixer technology [IBM12] and the direct anonymous attestation scheme [BCC04a]
which has been adopted in the Trusted Platform Module specification [Tru07] as the
method for remote authentication of a hardware module.

In 2009 Bichsel et al. [BCGS09] implemented Identity Mixer on a Java Card
whereas Sterckx et al. [SGPV09] did the same for direct anonymous attestation.
They provide the first proper implementations of attribute-based credentials on
smart cards. The major drawback of these implementations is the running time
of several seconds which is still too much for being really practical.

Our efficient implementation [VA13] of the Identity Mixer technology is described
in Chapter 5, together with a detailed description of the underlying technology.

1.2.4 Shared Keys
The schemes that we have described so far are (to the best of our knowledge) the only
candidates that provide privacy by design and could be implemented on a smart card.
However, we should also briefly mention the approach used by the German national
identity card (nPA)2, where a limited form of (anonymous) attribute use is achieved
by altering the existing elliptic curve based electronic identity protocols by sharing
private keys across large batches3 of cards [BKMN10]. The protocol itself provides
restricted access to the card by means of the so-called card verifiable certificate
mechanism [Bun10] and allows for selective disclosure of attributes, depending on
the rights specified in the certificate (for example, a liquor store is only authorised
to check for the over 18 attribute). Signed attributes are partly anonymous because
of the sharing of the signing keys between batches of cards, such that a signature
cannot be linked to a single card.

1.3 Smart Cards
During our research we try to assess how fast privacy-friendly protocols can be ex-
ecuted when run on a modern smart card. Hence implementing our prototypes
requires an open smart card platform that also provides the necessary cryptographic
hardware support, as previous research [TJ09] clearly shows that, in terms of per-
formance, purely software-based prototypes4 are not sufficient for realistic use. In
practice that leaves us with two possible smart card platforms, Java Card and MUL-
TOS, described below.

Regardless of the software platform operating the card, all smart cards provide
the same external functionality. A smart card is an embedded device that communic-
ates with the environment through Application Protocol Data Units (APDUs), byte
arrays formatted according to the ISO7816-4 specification [ISO05]. Most notably,
the APDUs constrain the communication payload to roughly 256 bytes in each dir-
ection for a single APDU exchange. The permanent storage of the card (EEPROM

2http://www.personalausweisportal.de/
3The size of these batches is in the order of a million cards per batch.
4These prototypes are implemented without the use of dedicated cryptographic routines.
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memory) is considered highly secure, accessible only through the APDU commands
offered by the application, which in turn are subject to any authentication and secure
messaging requirements that the card application may impose.

1.3.1 Java Card

Java Card [Che00] is a now well-established smart card platform based on a tailored,
cut-down version of the Java platform. One of the main features of Java Card is
software interoperability. This allows a developer to write a smart card application,
or applet, in Java which can be executed on the Java Card virtual machine. The
Java Card API can then be used as an interface to the (cryptographic) hardware
of the smart card, making the applet (almost) fully independent of the underlying
hardware and operating system of the actual smart card.

Virtual Machine

The Java Card virtual machine specification [Sun06b] defines a restricted subset of
the Java programming language, though it preserves many of the object-oriented
features including inheritance, interfaces, and exceptions. The specification also
defines a Java-compatible virtual machine for smart cards which consists of two
parts; one part external to the card and the other running on the card itself. The on-
card virtual machine interprets the bytecodes and manages the classes and objects.
The other part is a converter tool, that loads, verifies, and further prepares the Java
classes in a card applet for on-card execution.

Memory Management

On a Java Card device, memory is the most valuable resource5. In most Java Card
implementations a garbage collector is not available. When an object is created, the
object and its contents are preserved in non-volatile memory (EEPROM), making it
available across sessions. Access to the volatile memory (RAM) is provided through
the Java Card API, which defines methods that allow you to create transient data
storage at run-time.

In a Java Card environment a few rules should be taken into account to prevent
wasting memory at run-time. Arrays and primitive types should be allocated at
object creation time, and object creation should be minimised in favour of object
reuse. All arrays and objects that an applet needs during its lifetime should be
created all in one go, when an applet is installed, such that no additional dynamic
memory allocation is needed once the applet is up and running. To promote reuse,
objects should remain in scope or referenced for the life of the applet, and their state
reset as appropriate before reuse.

5A typical modern smart card only has 36 to 144 KB of EEPROM for storing data and 4 to
8KB of RAM (which is only partially available to an application developer) for session data and
computations.
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Application Programming Interface

The Java Card API is carefully designed to support the smart card environment
and has several built-in security features. For example, it provides predefined Java
classes for hardware supported cryptographic key storage (with possible internal
encryption). To account for different hardware profiles of a card, parts of the Java
Card API implementation are made optional. For example, our development cards
based on NXP SmartMX chips support both RSA and elliptic curve cryptography in
hardware and expose this functionality through the API, while other cards may only
support RSA, in which case all method calls related to elliptic curve cryptography
result in a Java exception.

This brings us to the main shortcoming of the Java Card platform from our
point of view. The Java Card API is predefined and aimed at high-level functional-
ity. For example, for RSA based cryptography it is only possible to generate keys
of predefined RSA lengths (such as 512 and 1024 bits) and perform RSA opera-
tions according to standard specifications, such as PKCS #1 [RSA12]. The under-
lying mathematical operations, such as modular exponentiation, are not available
to a developer. Since all of the protocols that we are interested in require access
to such cryptographic operations (in large modulo prime and/or elliptic curve do-
mains), this is a practical show stopper. Similar problems have been reported by
others [BCGS09, SGPV09] regarding the implementation of cryptographic protocols
on a Java Card. Even more, an efficient implementation of the e-passport stand-
ard [Bun10] on a Java Card also requires cryptographic routines not anticipated by
the standard Java Card API. In this case, due to high demand, Java Card produ-
cers decided to enrich the Java Card API with proprietary extensions to support
e-passport standards [NXP09]. But this only solves the problem for one application
type and, moreover, makes the platform non-interoperable.

1.3.2 MULTOS
The goal of the MULTOS platform is to provide a secure hardware-independent ex-
ecution platform for smart cards. To this end, they developed a specification for the
execution and memory models, explained in more detail below, that all MULTOS
implementations must provide. Besides this mandatory part of the specification
there are also a number of optional elements, mostly concerning cryptographic func-
tionality that may or may not be available on a specific hardware platform. An
overview of which functionality is provided by which card can be found in the MUL-
TOS implementation reference [MIR12].

Execution Model

Applications on a MULTOS card are executed in a virtual machine, called the applic-
ation abstract machine. The functionality of this virtual machine is defined by the
MULTOS specification to assure that applications are portable, that is, independent
of the actual chip used6. The application abstract machine is a stack machine that
interprets instructions from the MULTOS executable language (MEL).

6Application portability can be limited due to specific memory requirements or dependencies
on optional parts of the MULTOS specification.

8



Memory Model

The virtual machine provides each application with its own memory space. Within
an application the code space, residing on non-volatile EEPROM storage, and data
space, divided over EEPROM (for persistent storage) and volatile RAM, are handled
independently of each other. The memory of an application is protected by a strong
firewall. This means that applications cannot access each others memory. The data
of an application is divided over three distinct memory areas, listed below.

Static memory is the non-volatile storage for an application. It is private to
the application and cannot be accessed by the terminal or any other application.
MULTOS offers mechanisms to avoid corruption of the static memory area such
that this data remains consistent.

Public memory is the volatile input/output buffer for an application. Incoming
command APDUs are held in public memory and outgoing response APDUs are
placed here. This buffer is also used to pass information from one application to
another when delegation is used. MULTOS guarantees that data in this memory
remains private to the running application until it exits or delegates to another
application. This means that it can be used as temporary work space.

Dynamic memory is the volatile storage for an application. It is used to store
session data, if any. The size of the session data area is fixed when an application is
loaded onto a card and it depends on the number of variables declared. Furthermore,
the dynamic memory contains the stack, which is the application’s work area. As
mentioned before, the application abstract machine operates as a stack machine,
which means that this memory area is used to perform many functions (and provide
input for these functions). The size of the stack is limited by the size of the session
data in the dynamic memory. Therefore, applications have to ensure that their
dynamic memory use does not exceed the the limit of the used chip [MIR12].

Application Programming Interface

Similar to the Java Card API routines, some of the instructions are specified to be op-
tional, mostly ones responsible for cryptographic operations. A particular MULTOS
card may or may not support the optional instructions. For our implementation we
used development cards based on the SLE66 and SLE78 chips from Infineon. These
particular cards [MIR12] support a wide range of modulo arithmetic operations, a
range which is sufficient to fully support all of the required calculations. The more
low-level and flexible MULTOS API, as opposed to the less flexible and more high
level Java Card API, is the main reason to choose the MULTOS platform for the
prototype implementations of the cryptographic protocols discussed in this thesis.

For our prototypes we used the MULTOS C interface and bits of MEL assembly.
For simple smart card applications the C interface seems to provide an easier pro-
gramming environment than Java, and allows for a more flexible (byte-level) memory
management. Although C programming platforms are not type safe by definition
(as opposed to Java), per application memory safety is guaranteed by the MULTOS
platform, regardless of the high-level language used during development.
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1.4 Contributions
The goal of the research presented in this thesis has been to

develop efficient smart card implementations of attribute-based credentials

and

compare various cryptographic systems for attribute-based credentials.

This has resulted in a detailed description and discussion of the technologies listed
below, which can be found in Chapters 3, 4, 5 and 6. Additionally, a large and
essential part of this thesis consists of the efficient smart card implementations for
each of these technologies. The implementations themselves will not be described
in detail in this thesis; we refer the interested reader to the source code repositories
mentioned below. Instead, we concentrate on performance results, and on general
issues or problems that came up during the implementation work.

The implementations developed during this research are available as open source
software, under the GNU General Public License7, version 3, unless stated otherwise
in the LICENSE file included in the root of each repository. The source code of these
implementations can be found in their respective repositories, as specified below, at
https://github.com/pimvullers/.

Self-blindable Credentials

The third chapter is based on two papers, Developing Efficient Blinded Attribute
Certificates on Smart Cards via Pairings [BHJ+10] which is joint work with Lejla
Batina, Jaap-Henk Hoepman, Bart Jacobs and Wojciech Mostowski, and Privacy
and Security Issues in e-Ticketing – Optimisation of Smart Card-based Attribute-
proving [HJV10] which is joint work with Jaap-Henk Hoepman and Bart Jacobs. I
presented this work at the 9th IFIP WG 8.8/11.2 International Conference on Smart
Card Research and Advanced Applications (CARDIS 2010).

Contribution My contribution in this chapter is the development and analysis of
the first efficient smart card implementation of the self-blindable credentials techno-
logy as well as the implementation of the corresponding host software. This consists
of:

• the Java Card applet (sbcred_javacard repository8), which provides the cryp-
tographic operations on the smart card;

• the terminal software (sbcred_terminal repository9), which provides the cryp-
tographic operations for the issuer and verifier as well as the protocol interac-
tion with the smart card; and

• an extension, (bouncycastle-ext repository10), to the Bouncy Castle crypto-
graphic library11, which adds support for elliptic curve bilinear pairings.

7https://www.gnu.org/copyleft/gpl.html
8https://github.com/pimvullers/sbcred_javacard/
9https://github.com/pimvullers/sbcred_terminal/

10https://github.com/pimvullers/bouncycastle-ext/
11http://bouncycastle.org/java.html
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U-Prove

The fourth chapter is based on the paper Efficient U-Prove Implementation for
Anonymous Credentials on Smart Cards [MV11] which is joint work with Wojciech
Mostowski. I presented this work at the 7th International ICST Conference on
Security and Privacy in Communication Networks (SecureComm 2011).

Contribution My contribution in this chapter is the analysis of the efficient smart
card implementation of the U-Prove technology as well as the development of the
terminal software (uprove_terminal repository12), which builds upon the U-Prove
SDK13 and takes care of the protocol interaction with the smart card. Furthermore
I provided the pseudo code that allowed my co-author to develop the MULTOS
application (uprove_multos repository14), which provides the cryptographic opera-
tions on the smart card.

Identity Mixer

The fifth chapter is based on the paper Efficient Selective Disclosure on Smart Cards
using Idemix [VA13] which is joint work with Gergely Alpár. I presented this work
at the 3rd IFIP WG 11.6 Working Conference on Policies and Research in Identity
Management (IDMAN 2013).

Contribution My contribution in this chapter is the development and analysis of
the efficient smart card implementation of the Identity Mixer technology, which is
the first smart card implementation to include selective disclosure of the attributes,
as well as the implementation of the corresponding host software. This consists of:

• the MULTOS application15 (idemix_multos repository16), which provides the
cryptographic operations on the card; and

• the terminal software (idemix_terminal repository17), which provides the
protocol interaction between the smart card and our patched version of the
Identity Mixer cryptographic library18 (idemix_library repository19).

This implementation is the most complicated and challenging one in this thesis.
Because of the complicated nature of the Identity Mixer operations it was, at first,
not expected that a fast implementation could be realised on a smart card. The
successful development of this implementation laid the foundation for the IRMA
project. This is an on-going research and development project focusing on attribute-
based credentials and their use in practice.

12https://github.com/pimvullers/uprove_terminal/
13http://archive.msdn.microsoft.com/uprovesdkjava/
14https://github.com/pimvullers/uprove_multos/
15This has evolved into the IRMA application (https://github.com/pimvullers/irma_card/)

which provides additional functionality, like secure messaging and an interface which allows the
user to manage the credentials stored on the card.

16https://github.com/pimvullers/idemix_multos/
17https://github.com/pimvullers/idemix_terminal/
18https://prime.inf.tu-dresden.de/idemix/
19https://github.com/pimvullers/idemix_library/
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This thesis does not described the IRMA project in great detail but concen-
trates on the smart card implementations of the underlying attribute-based creden-
tial technologies. For more information concerning the IRMA project, please visit
https://www.irmacard.org/.
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Chapter 2

Cryptographic Preliminaries

This chapter provides some cryptographic background information which is relevant
for the attribute-based credential systems which we describe in the next chapters.
In particular we focus on public-key cryptography in which a key consists of a public
and a private part. These key pairs are constructed such that deriving the private
part of the key from the public part is equivalent to solving a computational problem
that is considered extremely difficult.

2.1 RSA Cryptography
In an RSA-based cryptosystem [RSA78] a key pair consists of a public part (n, e)
and a private part d. The RSA modulus n = p·q is the product of two primes p and q
and the public exponent e is a value that satisfies 1 < e < φ(n) and gcd(e, φ(n)) = 1
where φ(n) = (p − 1)(q − 1) is Euler’s totient function1. The private exponent d
is a value that satisfies 1 < d < φ(n) and e · d = 1 mod φ(n), hence it can be
computed as d = e−1 mod φ(n). When p and q are know, this computation is easy,
but computing d based on just n and e is proved to be computationally equivalent
to determining the prime factors p and q of n, which is known as the integer fac-
torisation problem, a number-theoretic problem which is considered intractable for
large integers.

2.1.1 Encryption Scheme
Such an RSA key pair can then be used to encrypt a message m into an RSA
ciphertext c = me mod n using Algorithm 2.1. Decryption of such a ciphertext
using Algorithm 2.2 is based on the fact that

cd = (me)d = me·d = m mod n.

The problem of recovering a random message m based on the ciphertext me

mod n and public key (n, e) is known as the RSA problem. This is equivalent
1Euler’s totient function φ(n) computes the number of positive integers less then or equal to n

that are relatively prime to n. An integer k is relatively prime to n if gcd(k, n) = 1.
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Algorithm 2.1 Basic RSA encryption.
1: function RSA-encrypt((n, e),m)
2: c← me mod n

3: return c

Algorithm 2.2 Basic RSA decryption.
1: function RSA-decrypt((n, e), c, d)
2: m← cd mod n

3: return m

to finding eth roots modulo n which is assumed to be as difficult as the integer
factorisation problem. Hence, the RSA assumption states that the probability that
an attacker can solve the RSA problem is negligible.

Note that the algorithms described in this thesis are the basic textbook versions,
which are vulnerable to a range of attacks [Hås86, Cop97]. To prevent such attacks,
practical RSA implementations typically include some form of randomised padding
into the value m before encrypting it. For example, for encryption one would nor-
mally use the OAEP padding scheme from the PKCS #1 standard [RSA12]. The
same holds for RSA signatures, as described below, where usually the PSS padding
scheme [RSA12] is used to securely pad messages before signature generation.

2.1.2 Signature Schemes

In a similar fashion, this construction can also be used to create digital signatures.
To generate an RSA signature with Algorithm 2.3, the signer computes the message
digest h = Hash(m) of the message to be signed m using a cryptographic hash
function Hash. This h, which serves as a fingerprint of the original message, is
then raised to the private exponent. The result of this operation is the signature
s = hd mod n over the message m. Such an RSA signature can be verified using
Algorithm 2.4. The verifier recovers the fingerprint ĥ = se mod n from the signa-
ture value s using the public exponent e and checks whether this matches with the
message digest of the message m. If they match, the signature is valid, otherwise
the signature is invalid. The security of this RSA signature scheme is also based on
the RSA assumption.

Algorithm 2.3 Basic RSA signature generation.
1: function RSA-sign((n, e),m, d)
2: h← Hash(m)
3: s← hd mod n

4: return s
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Algorithm 2.4 Basic RSA signature verification.
1: function RSA-verify((n, e),m, s)
2: ĥ← se mod n

3: if ĥ 6= Hash(m) then
4: return Invalid
5: return Valid

Some other signature schemes based on the RSA cryptosystem, such as the
Camenisch-Lysyanskaya scheme [CL03] which is described in Section 5.1, only use
the RSA modulus n as the public part of the key, whereas the private part consists
of the primes p and q. This allows them to generate a fresh exponent e for each
signature which will then become part of the signature. Since an attacker can now
control both the signature and the exponent, solving the RSA problem has become
easier. Hence a stronger assumption is needed. This strong RSA assumption states
that the probability that an attacker can solve the RSA problem is negligible, even
when the attacker can chose the public exponent e.

2.2 Discrete Logarithm Cryptography
In a discrete logarithm-based cryptosystem [DH76, EG85] a key pair is accompanied
with a description of the prime-order group in which the computations take place.
As an example we use (p, q, g), where p is a prime, q is a prime divisor of p− 1, and
g is a generator, with order q, of a subgroup of Z∗p. A private part of the key in such
system is a random value x and the corresponding public part is h = gx mod p.
The problem of computing the private part x = logg h, based on the description of
the group (p, q, g) and the public part h, is known as the discrete logarithm problem.

2.2.1 Key Agreement Scheme
The first discrete logarithm-based scheme was the key agreement scheme by Diffie
and Hellman [DH76]. In this scheme a key pair as described above can be used to
compute a shared key with another party that uses the same group parameters. To
this end, both parties generate such a key pair and send their public key to each
other. Next, they compute the modular exponentiation of the received value and
their private key, as depicted in Figure 2.1. The result of this computation can then
be used as a shared key since

hx1
2 = (gx2)x1 = gx2·x1 = k = gx1·x2 = (gx1)x2 = hx2

1 mod p

The problem of computing k, based on both public keys h1 and h2 and the group
description (p, q, g), is assumed to be as difficult as the discrete logarithm problem
and is called the (computational) Diffie-Hellman problem. A related problem is to
determine whether a value y is created using h1 and h2, hence whether y = gx1·x2 ,
or not. This is known as the decisional Diffie-Hellman problem.

15
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x1 ← Random( )
h1← gx1 mod p

x2 ← Random( )
h2← gx2 mod p

h1

h2

key k = hx1
2 mod p key k = hx2

1 mod p

Figure 2.1: Diffie-Hellman key agreement protocol.

2.2.2 Encryption

The first encryption scheme based on discrete logarithms was proposed by El-
Gamal [EG85]. In order to encrypt a message m, the user generates a random
value r and commits to it by computing c1 = gr mod p. The value r is then used
to randomise the public key which is multiplied with the message to obtain the en-
crypted message c2 = m · hr mod p. The resulting ciphertext consists of both c1
and c2 (see Algorithm 2.5). In contrast to the RSA encryption scheme, the ElGamal
encryption algorithm produces a different ciphertext each time although the inputs
remain the same.

The message m can be recovered from a ciphertext (c1, c2) by dividing c2 by
cx1 = gr·x = hr mod p, as described in Algorithm 2.6. An attacker, who does not
have the private key x, must determine hr = gx·r mod p based on the public key
h = gx mod p and the commitment c1 = gr mod p, that is, he must solve the
Diffie-Hellman problem.

Algorithm 2.5 ElGamal encryption.
1: function ElGamal-encrypt((p, q, g), h,m)
2: r ← Random
3: c1 ← gr mod p

4: c2 ← m · hr mod p

5: return (c1, c2)

Algorithm 2.6 ElGamal decryption.
1: function ElGamal-decrypt((p, q, g), (c1, c2), x)
2: m← c2 · c−x1 mod p

3: return m
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2.2.3 Signatures
Many signature schemes have been based on the discrete logarithm problem, for
example the Chaum-Pedersen scheme which is described in Section 3.1.1, but also
the ElGamal signature scheme [EG85] of which a variant, known as the Digital
Signature Algorithm, is part of the Digital Signature Standard of the United States
government. Like ElGamal’s encryption scheme, the signature (s1, s2) consists of two
parts generated using Algorithm 2.7. The first is a commitment to the randomisation
value r, whereas the second part commits to the fingerprint c of the message m that
is to be signed. In the unlikely case that the resulting s2 is 0, these steps have to be
repeated to obtain a usable signature.

This signature can be verified using Algorithm 2.8. We cannot recover the mes-
sage fingerprint from the signature, as was the case with RSA, but we can check it
according to the following equation:

hs1 · ss2
1 = gx·s1 · gr·s2 = gx·s1 · gr·r

−1·(c−x·s1) = gx·s1 · gc−x·s1 = gc mod p

Algorithm 2.7 ElGamal signature generation.
1: function ElGamal-sign((p, q, g),m, x)
2: c← Hash(m)
3: r ← Random( )
4: s1 ← gr mod p

5: s2 ← r−1 · (c− x · s1) mod (p− 1)
6: return (s1, s2)

Algorithm 2.8 ElGamal signature verification.
1: function ElGamal-verify((p, q, g),m, (s1, s2), h)
2: c← Hash(m)
3: if hs1 · ss2

1 6= gc mod p then
4: return Invalid
5: return Valid

2.3 Elliptic Curve Cryptography
In the previous section we described the discrete logarithm cryptography in a setting
of a prime order subgroup of Z∗p. These techniques can, however, be applied to any
finite cyclic group. Another popular setting for implementing discrete logarithm
systems is the elliptic curve setting which we describe below.

Note that it is common to use additive notation in an elliptic curve setting,
whereas multiplicative notation is typically used to denote operations in prime order
subgroups.
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2.3.1 Elliptic Curves
A finite field containing q elements, where q = pk is a prime power, is denoted as
Fq. An example of such a field is Zp, but more complex finite fields can also be used
for elliptic curves. An elliptic curve E over Fq is defined by the equation

E : y2 = x3 + a · x+ b (2.1)

where a, b ∈ Fq are the curve parameters that satisfy 4·a3+27·b2 6= 0. This condition
is required for E to be non-singular, as required for cryptographic applications. The
set of all points P = (x, y) on this curve E is denoted as

E(Fq) = {(x, y) ∈ Fq × Fq : y2 = x3 + a · x+ b} ∪ {∞}

where ∞ is a special point called the point at infinity.
On these points three basic operations can be defined: negation, addition and

doubling. These operations are detailed below and visualised geometrically in Fig-
ure 2.2.

1. Point negation, the negative R = −P , of the point P is computed according
to Algorithm 2.9. Geometrically, this is the reflection of point P in the x-axis.

Algorithm 2.9 Elliptic curve point negation: R = −P
1: function ECPointNegation(P )
2: if P =∞ then
3: return ∞
4: (xP , yP )← P
5: return (xP ,−yP )

2. Point addition, the sum R = P + Q, of the points P and Q is computed
using Algorithm 2.10. In geometry, this is the reflection in the x-axis of the
intersection of the curve and the line through the points P and Q.

Algorithm 2.10 Elliptic curve point addition: R = P +Q

1: function ECPointAddition(P , Q)
2: if P =∞ then
3: return Q

4: if P = Q then
5: return 2 · P
6: if P = −Q or Q =∞ then
7: return ∞
8: (xP , yP )← P
9: (xQ, yQ)← Q

10: x←
(
yQ − yP
xQ − xP

)2
− xP − xQ mod q

11: y ←
(
yQ − yP
xQ − xP

)
(xP − xR)− yP mod q

12: return (x, y)
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Figure 2.2: Geometric visualisation of point addition (R = P + Q), point doubling
(R′ = 2P ′) and point negation (−R) on an elliptic curve.

3. Point doubling, the double R = 2 · P is computed using Algorithm 2.11. Geo-
metrically, this is the reflection in the x-axis of the intersection of the curve
and the tangent line to the curve at the point P , see Figure 2.2.

Algorithm 2.11 Elliptic curve point doubling: R = 2 · P
1: function ECPointDoubling(P )
2: if P =∞ then
3: return P
4: (xP , yP )← P

5: xR ←
(

3x3
P + a

2yP

)2

− 2xP mod q

6: yR ←
(

3x3
P + a

2yP

)
(xP − xR)− yP mod q

7: return (xR, yR)

Furthermore, based on these basic operations we can define point multiplication
as the multiplication of a point P with an integer k, which is denoted as k · P . To
compute this multiplication various methods exist. A basic solution is the repeated-
double-and-add method given in Algorithm 2.12. The inverse of this operation is
to find an integer k such that Q = k · P for given points P and Q. This is a hard
problem which is know as the elliptic curve discrete logarithm problem.

Finally, if we know the x-coordinate of a point on the curve, the square of the
corresponding y-coordinate is known, namely as defined in (2.1). By taking the
square root of x3+a·x+b we find either y or −y. This method of point reconstruction
forms the basis of point compression, for compact representation of points.
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Algorithm 2.12 Elliptic curve point multiplication: R = k · P
1: function ECPointMultiplication(k, P )
2: (kl−1, . . . , k1, k0)← k . binary representation of k
3: R←∞
4: for i from 0 to l − 1 do
5: if ki = 1 then
6: R← R+ P

7: P ← 2P
8: return R

The points on the elliptic curve E form a finite cyclic group with point addition
as the group operation and the point at infinity as the zero-element. Hence, such
a group can be used to implement discrete logarithm-based cryptography. An ex-
ample to show how easy it is to translate the algorithms and protocols for discrete
logarithm-based cryptography to the elliptic curve setting is given in Figure 2.3.
Like its counterpart from Figure 2.1, this version of the Diffie-Hellman key agree-
ment protocol also computes a shared key K = x1 · x2 · P . The only difference is
that K is now a point instead of an integer.

2.3.2 Pairings
Besides an alternative implementation for discrete logarithm-based cryptography, el-
liptic curves also offer additional functionality, such as efficiently computable bilinear
pairings.

A bilinear pairing is a map of the form e : G1 ×G2 → GT where G1 and G2 are
typically additive groups and GT is a multiplicative group. Bilinearity means that
the map is linear in both components. This bilinearity property can be written as
follows:

e(P + P ′, Q) = e(P, Q) · e(P ′, Q)
and

e(P, Q+Q′) = e(P, Q) · e(P, Q′)

As a result, e(n · P, m ·Q) = e(P, Q)n·m.
Pairings are used for many (new) cryptographic protocols [BSS05], such as short

signatures [BLS04], three-party one-round key agreement [Jou04], identity based
encryption [BF01] and anonymous credentials [CL04]. There are different pairings
that can be used for this kind of cryptography, for example the Weil pairing, Tate
pairing, ate pairing and the recent R-ate pairing [Ver09]. For all these pairings one
often uses specific cyclic subgroups of a curve E(Fpk ) as G1 and G2 and F∗pk as GT .

Barreto-Naehrig Curves

Pairing-friendly elliptic curves are curves with a small embedding degree and a large
prime-order subgroup [FST10]. In 2005, Barreto and Naehrig discovered a new
method for constructing pairing friendly elliptic curves of prime order over a prime
field [BN06]. More precisely, Barreto-Naehrig curves are defined over Fp where
p = p(u) = 36u4 + 36u3 + 24u2 + 6u+ 1 for u ∈ Z such that p is prime. The order
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Figure 2.3: Elliptic curve version of the Diffie-Hellman key agreement protocol.

of such curve is a prime n where n = n(u) = 36u4 + 36u3 + 18u2 + 6u + 1. Hence,
a Barreto-Naehrig curve is constructed by generating integers u until both p(u) and
n(u) are prime numbers.

2.4 Proofs of Knowledge
A cryptographic concept that is frequently used in attribute-based credential is a
proof of knowledge. The goal of such proof is for the user, or prover, to convince
the verifier of a given statement. For example, the often used challenge-response
construction in which a user has to sign or decrypt a challenge to authenticate
herself, is a proof that she knows the private key corresponding to the public key
used by the verifier.

To describe such proofs of knowledge we use the notation introduced by Camen-
isch and Stadler [CS97]. For example,

PK{(α) : h = gα mod p}

denotes a proof of knowledge of a value α such that h = gα mod p, that is, a proof
of knowledge of the private part of a discrete logarithm key pair.

2.4.1 Zero-knowledge Protocols
In this section we describe zero-knowledge protocols as a way to convince a verifier.
The protocols have the property that no matter what a verifier does, he will not
be able to extract any useful information from the user. More precisely, the term
zero-knowledge refers to the fact that whatever information the verifier learns from
the user, that information could have been generated by the verifier on its own,
without the assistance of the user. However, a verifier that actually carried out the
protocol will be convinced that the user has the specified knowledge, in our example,
the private key.

A well-known example of a zero-knowledge protocol is Schnorr’s identification
protocol [Sch91], which proves knowledge of a discrete logarithm. This protocol
is depicted in Figure 2.4. To prove that the user knows the private key, she first
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u← Random( )
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gr
?
= a · hc mod p

Figure 2.4: Schnorr’s zero-knowledge identification protocol.

commits to a random value u and sends the commitment a to the verifier. The
verifier then generates a challenge c at random and sends this to the user, which
computes the response r based on the challenge. Finally, the verifier checks whether
gr = a · hc mod p.

The verifier does not learn anything from such a conversation (a, c, r), since he
could have computed such a triple himself by choosing c and r at random and
computing a = gr ·h−c mod p. This means that the zero-knowledge property holds
for this protocol. Another important property is soundness, which guarantees that
the user actually knows the the secret. Suppose that given a single commitment a the
user is able to respond to two different challenges, hence generating two conversations
(a, c, r) and (a, c′, r′) where c 6= c′. Then, from gr = a · hc mod p and g′r = a · hc′

mod p it follows that

a = gr · h−c mod p and gr
′

= gr · h−c · hc
′

mod p

which implies that
gr
′−r = hc

′−c mod p.

Hence, h = g
r′−r

c′−c mod p which means that the user actually knows the private key
x, since

x = r′ − r
c′ − c

mod q.

A similar protocol [Cam07, Section 3.5], depicted in Figure 2.5, can also be
constructed for groups in which the order of the (sub)group is not known to all
parties. This is for instance the case in an RSA setting where the order of the
group is only known by the party that knows the primes p and q. As a result the
user cannot perform the modular reduction using the order of g when computing
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Figure 2.5: Schnorr’s zero-knowledge protocol for groups of unknown order.

the response. This means that the response no longer hides the secret x as it is
not distributed uniformly. Therefore the user must choose a significantly larger2

random value u such that a is distributed statistically close to uniform over the
subgroup generated by g and x is statistically hidden in r. Hence, this protocol is
called statistical zero-knowledge [Poi00].

Using these basic building blocks, more complex protocols can be constructed.
For example, a proof for PK{(. . . ) : P1 ∧ P2}, where the statements P1 and P2
do not share any of the variables of which the knowledge is being proved, can be
built by constructing individual proofs for P1 and P2 using the same challenge c
for both protocols. Alternatively, when P1 and P2 do share a variable of which the
knowledge is being proved, a proof can be built by constructing proofs for P1 and
P2 individually, while using the same challenge c for both protocols as well as the
same random value u and response r for the shared variable,

2.4.2 Zero-knowledge Proofs
The Fiat-Shamir heuristic [FS87] can be used to transform a zero-knowledge pro-
tocol into a non-interactive zero-knowledge proof. This is often used to translate
a zero-knowledge protocol into a signature scheme, or to reduce the communic-
ation overhead of the interactive protocols. To make a zero-knowledge protocol
non-interactive the challenge c is not retrieved from the verifier but computed as
follows:

c← Hash(m, a)
2For instance, the length of the random value u should be 80-bits longer than the combined

lengths of the modulus n and the challenge n. This in contrast to just the length of the prime
order q.
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where Hash is a cryptographic hash function, m is some message to be included (to
be signed) and a is the commitment. Both the commitment a and the response r
are calculated as usual. The result is a signature (c, r) on m. This can be verified
by checking whether the following holds:

c = Hash(m, â)

where â = gr · h−c. If the proof (c, r) is valid, this holds since:

â = gr · h−c = gu+c·x · h−c = gu+c·x · (gx)−c = gu = a mod p.

Such a non-interactive zero-knowledge proof is often called a signature proof of
knowledge, because of the message that is included in the proof. To describe such
proof we use the following notation:

SPK{(α) : h = gα mod p}(m)

where m is the message that is included in the non-interactive proof of knowledge
of the private key corresponding to the public key h.
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Chapter 3

Self-blindable Credentials

The drawback of using regular public-key certificates, like X.509 certificates [ISO08],
is that they are inherently traceable. This is caused by the fixed public key and the
signature that are contained in such a certificate. The public key can be used as a
unique identifier for the user and is included in the signature, making that identifying
as well.

To circumvent this problem Verheul [Ver01] proposes a variant [BLS01, BLS04]
of the Chaum-Pedersen signature scheme [CP93] which allows these values to be
randomised, or blinded, such that they are no longer traceable, while the signature
can still be verified for its authenticity. This signature scheme can then be used
to implement a credential system which allows the users themselves to blind their
credentials in order to prevent traceability.

In this chapter we describe the underlying signature schemes and the resulting
credential system as well as our smart card implementations [BHJ+10, HJV10].

3.1 Self-blindable Signatures
Chaum and Pedersen [CP93] describe a basic signature scheme which is intended
to be used in combination with smart cards. This scheme originally operates in the
discrete logarithm setting, but is translated to the elliptic curve setting by Boneh,
Lynn and Shacham [BLS01, BLS04] and Verheul [Ver01]. The elliptic curve variant
of this scheme led to the construction of self-blindable signatures.

3.1.1 Chaum-Pedersen Signature Scheme
The public key in this scheme is a value h together with a description of the prime-
order group in which the computations take place. As an example we use (p, q, g),
which denotes a subgroup of Z∗p of prime-order q with generator g. The corresponding
private key is x = logg h.

The signature z over a message m is a single exponentiation with the private
key together with a proof that logg h = logm z. This signature can be generated
using Algorithm 3.1. Verification of the signature consists of checking the proof
according to Algorithm 3.2. When the proof is correct, the verifier is assured that
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Algorithm 3.1 Generate a Chaum-Pedersen signature.
1: function CP-sign(m, (p, q, g), x)
2: z ← mx mod p

3: a← gs mod p

4: b← ms mod p

5: c← Hash(m, z, a, b)
6: r ← s+ c · x mod q

7: return (z, a, b, r)

Algorithm 3.2 Verify a Chaum-Pedersen signature.
1: function CP-verify(m, (z, a, b, r), (p, q, g), h)
2: c← Hash(m, z, a, b)
3: if gr 6= a · hc mod p then
4: return Invalid
5: if mr 6= b · zc mod p then
6: return Invalid
7: return Valid

the message is signed using the private key corresponding to the public key used for
the verification.

3.1.2 Boneh-Lynn-Shacham Signature Scheme
Since the signature scheme of Chaum and Pedersen operates in the discrete logar-
ithm setting it can also be used with elliptic curve cryptography. Boneh, Lynn and
Shacham [BLS01, BLS04] present a signature scheme that works on elliptic curves
with bilinear pairings (see Section 2.3.2) and resembles the scheme by Chaum and
Pedersen, but omits the equality proof in order to achieve short signatures.

At the same time Verheul [Ver01] gives a similar description of this proofless vari-
ant of the Chaum-Pedersen scheme for groups in which the decisional Diffie-Hellman
problem is easy while the computational Diffie-Hellman and discrete logarithm prob-
lems are hard. Elliptic curves with bilinear pairings provide such groups. The proof
of equality can in this case be substituted by a bilinear pairing equation to be checked
by the verifier.

The public key is a point Q = x · P2 on the elliptic curve E2 together with a
description of that curve, of which P2 is the generator. The private key in this scheme
is the scalar value x. To sign a message m the signer transforms it into a point Pm
on the curve E1 which is simply multiplied with the private key as described in
Algorithm 3.3.

To verify the signature the verifier has to perform the same check as with the
Chaum-Pedersen scheme, that is, whether the private key used to generate the signa-
ture corresponds to the public key used for the verification. Instead of using a proof,
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Algorithm 3.3 Generate a Boneh-Lynn-Shacham signature.
1: function BLS-sign(m,E1, x)
2: Pm ← HashToPoint(E1,m)
3: Z ← x · Pm
4: return Z

Algorithm 3.4 Verify a Boneh-Lynn-Shacham signature.
1: function BLS-verify(m,Z,E1, Q)
2: Pm ← HashToPoint(E1,m)
3: if e(Pm, Q) 6= e(Z,P2) then
4: return Invalid
5: return Valid

this can be achieved by checking the following equation (as used in Algorithm 3.4):

e(Pm, Q) = e(Pm, x · P2) = e(x · Pm, P2) = e(Z,P2) (3.1)

where e : E1 × E2 → G is a bilinear pairing as described in Section 2.3.2.
Verheul [Ver01] points out a powerful aspect about these signatures: they are

invariant under blinding. When this signature is used to sign points on the curve,
instead of arbitrary messages, there is no need to transform the message into a
point, such that the HashToPoint operation can be omitted. Now the user can
choose a random number b as blinding factor, and multiply both the message Pm
and signature Z with this factor. The resulting pair (b ·Pm, b ·Z) can still be verified
using the verification equation (3.1):

e(b · Pm, Q) = e(b · Pm, x · P2) = e(b · x · Pm, P2) = e(b · Z,P2)

Hence the signature remains valid. Since the user can perform this blinding all by
itself, Verheul calls these signatures self-blindable.

3.2 Verheul’s Self-blindable Certificates
Verheul proposes to use the self-blindable signatures to construct public-key certific-
ates which allow the user to randomise its key pair and the corresponding certificate.
Such certificates can be used to circumvent traceability based on the public key or
the signature. A certificate of a user’s public key PU from an identity provider with
public verification key PID takes the form

{PU , Sig(PU , sID)}, (3.2)

where sID is the private signing key of the identity provider corresponding to PID.

27



aP
U

Ca

Figure 3.1: A visual representation of a self-blindable credential.

3.2.1 Attribute Certificates
Attribute certificates are digital certificates that bind attributes to users known by
a public key. Proof of possessing an attribute is given by proving possession of the
private key related to the public key referenced in the certificate.

{PU , [Sig(PU , sa), Cert(Qa, "Attribute statement")]}

Here, the public key PU of the user is signed using a private key sa of the issuer
of the attribute. The corresponding public key Qa of the issuer is included in a
(conventional PKI) certificate which contains the attribute statement corresponding
to this public key. In the context of attribute-based credentials such a self-blindable
attribute certificate can be considered as a self-blindable credential.

When we consider only a single attribute statement per public key, the certificates
with the statements can be stored in a public database. This allows for more compact
credentials, since this information can be omitted from the credential, given that the
corresponding public key can be identified through some reference. Such compact
credentials are beneficial for devices with limited storage capacities, like smart cards.
To summarise, a self-blindable credential, as depicted in Figure 3.1, will consist of:

• the user’s public key PU ,

• a reference to the attribute statement a, and

• a signature Ca = Sig(PU , sa) = sa ·PU over the public key using the attribute
signing key sa.

The database will then contain:

• a reference a,

• the public verification key Qa corresponding to sa, and

• the actual attribute statement.

3.2.2 Alternative Public Key Construction
Verheul also describes an alternative construction [Ver01] which provides more ro-
bustness. This construction is based on Okamoto’s public key scheme [Oka93] where
the key is constructed using two generators and two private key values instead of a
single generator and private key value.
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Figure 3.2: Issuance of self-blindable credentials.

The self-blindable certificates still have the same structure as given in (3.2),
except that the public key of the user is constructed slightly different. While this
scheme is very similar, we could not implement this variant due to the restrictions
of the Java Card API which we discuss in Section 3.5. Hence, in the remainder of
this work we only consider the simple construction described above.

3.3 Credential Issuance
To obtain a self-blindable credential from a credential issuer the user must provide
the issuer with its public key and prove possession of the corresponding private key.
This public key can be signed by an identity provider in order to increase the trust
level of the system. When the credential issuer has verified the authenticity of the
user he will verify eligibility for the requested attribute. Once this has been verified
the issuer signs the user’s public key using the private key corresponding to the
requested attribute and send this signature to the user as depicted in Figure 3.2.

3.4 Credential Verification
When the user wants to utilise an attribute stored in a credential it has to show the
credential to a verifier. To prevent the verifier from tracing her based on the public
key the user first blinds her key pair and the credential as shown in Figure 3.3.
Next, she sends the results from this blinding operation to the verifier and proves
possession of the (blinded) private key. This last step is easily achieved by signing
a challenge received from the verifier using this private key. The verifier can then
verify this signature using the public key it received earlier.

3.5 Smart Card Implementation
To understand the practical limitations and estimate the performance of our pro-
tocols, we implemented the protocol from Figure 3.3 in Java (for the terminal-side
application) and Java Card [Che00] (for the card-side application). Our implement-
ation involves the following components:
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Proof of possession of kb = b · kU

Figure 3.3: Verification of self-blindable credentials.

Java Card applet1,2

The protocol on the card-side is implemented as a Java Card applet and loaded
onto a development smart card. This implementation will be explained in more
detail below.

Bouncy Castle cryptographic library3 with an extension4 for pairings
The Bouncy Castle library is a collection of cryptographic APIs for the C#
and Java programming languages. It provides full support for elliptic curve
cryptography and an interface to the common Java Cryptography Extension
API. However, it does not implement bilinear pairings or elliptic curves over
fields other than Fp and F2m . Thus we have added our own implementations
of Fp2 and Fp12 , and the Tate, ate, and R-ate pairings.
This work greatly benefited from an ate pairing in Java that Paulo Barreto
kindly made available5, and algorithms published by Hankerson et al. [HMS09].
To minimise maintenance overhead we strived to keep our extensions purely
on top of the Bouncy Castle library, that is, we did not change anything in the
original library. This allows for easy integration in newer library releases.

Terminal application6

The protocol on the terminal-side is implemented using the aforementioned
cryptographic library and the smart card IO library offered by the standard
Java Development Kit7. This library offers support for communication with
smart cards by providing the javax.smartcardio package. We used it for the
protocol communication with the Java Card smart card on which our client
applet was installed.

1https://github.com/pimvullers/sbcred_javacard/
2An implementation of self-blindable credentials for the MULTOS platform is under development

at: https://github.com/pimvullers/sbcred_multos/
3http://bouncycastle.org/
4https://github.com/pimvullers/bouncycastle-ext/
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3.5.1 Available Elliptic Curve Operations on Java Card
In order to implement the verification protocol on Java Card we need support for
elliptic curve cryptography. In this section we summarise the operations available
on the Java Card platform and how they can be used to implement the protocol.

Elliptic Curve Diffie-Hellman

This functionality is provided by the javacard.security.KeyAgreement class. This
class can be instantiated using the getInstance() method which returns a Key-
Agreement object that implements a certain algorithm. The generateSecret()
method can then be used to actually perform the Diffie-Hellman operation, in our
case an elliptic curve multiplication.

The standard Java Card API provides two algorithms [Sun06a]:

ALG_EC_SVDP_DH: Elliptic curve secret value derivation primitive, Diffie-Hellman
version, as per IEEE P1363.

ALG_EC_SVDP_DHC: Elliptic curve secret value derivation primitive, Diffie-Hellman
version, with cofactor multiplication, as per IEEE P1363.

Unfortunately, the implementation of these algorithms has two drawbacks:

1. According to the IEEE P1363 standard [IEE00] the shared secret computation
by means of ECSVDP-DH and ECSVDP-DHC only returns the x-coordinate
of the computed point.

2. The Java Card implementation of these algorithms computes the SHA-1 mes-
sage digest of the output of the derivation primitive to yield a 20 byte res-
ult [Sun06a].

Especially this last transformation of the point multiplication result prevents it
from being useful for any further computation, other than using it as a secret key.

JCOP Extension Luckily the NXP JCOP platform contains some extensions to
the standard Java Card API. In particular there is an extension which provides an
additional algorithm:

ALG_EC_SVDP_DH_PLAIN: the same as ALG_EC_SVDP_DH but without SHA-1 post-
computation.

This removes the second drawback as mentioned before and only leaves us with
the x-coordinate of the point multiplication result instead of a point. However, the
point can be reconstructed from this coordinate using the elliptic curve formula. By
putting in the x value we can compute the corresponding y value. The only unknown
in this point reconstruction is the sign of the y-coordinate, hence we end up with
two candidate points for the multiplication result.

5https://code.google.com/p/bnpairings/
6https://github.com/pimvullers/sbcred_terminal/
7Since version 6.0.
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kU , b

User
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Verifier

fresh nonce n

n

kb← b · kU
r ← ECDSA-sign(n, kb)

r

ECDSA-verify(n, r, Pb)

Figure 3.4: Proof of possession of kb using ECDSA.

3.5.2 Public Key and Credential Blinding
The first step of the protocol is fairly straightforward. The card has to select the
correct credential for the attribute to reveal and blind it together with the public
key. As described in Algorithm 3.5 this can be done by calling the Diffie-Hellman
operation once for each value. The resulting blinded values Pb and Cb are then
returned to the terminal.

Algorithm 3.5 Public Key and Credential Blinding.
1: function SBC-blind(b, PU , Ca)
2: Pb ← generateSecret(PU , b)
3: Cb ← generateSecret(Ca, b)
4: return Pb, Cb

3.5.3 Proof of Possession of the Private Key
Of course, when a terminal receives such a pair Pb, Cb it should not only check
that Cb is a proper signature on Pb, but also that the card knows the private key
corresponding to the public key Pb. This can be done via standard challenge-response
exchange, for example using ECDSA.

Using the ECDSA Signature Scheme

As the ECDSA digital signature algorithm is supported by the Java Card API, it has
been our first choice for implementing the challenge-response protocol to establish
proof of possession. As input for this algorithm we need the blinded private key
kb = b · kU .

Since modular multiplication is not provided by the Java Card API we used the
NatLib library developed by Hendrik Tews [TJ09]. This library implements modular
arithmetic on Java Card using basic byte operations as the RSA operations available
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R← b · kU ·N
R

verify R
?
= n · Pb

Figure 3.5: Proof of possession of kb using minimal Boneh-Lynn-Shacham.

on the platform do not support the short values used in our protocol. The resulting
proof of possession protocol is depicted in Figure 3.4 and the implementation is
described by Batina et al. [BHJ+10]. However, the NatLib library causes most of
the running time of the protocol, as discussed in Section 3.6. This made us look into
other alternatives for this protocol, where the use of this library is no longer needed.

Using a minimal variant of the Boneh-Lynn-Shacham Signature Scheme

A feasible alternative to the ECDSA scheme is what we call a minimal variant of
the Boneh-Lynn-Shacham signature scheme. Since it consists of only a single point
multiplication using the private key the workload on the card is minimal. We can
also exploit the structure of the message to be signed to reduce the verification
algorithm to a single point multiplication as well. The resulting proof of possession
protocol is depicted in Figure 3.5.

This approach requires us to compute b·kU ·N . This can be split up in two ways, in
a modular multiplication and a point multiplication or in two point multiplications.
Since the modular multiplication caused a slow-down in the previous approach we
perform the point multiplications. For this we exploit the elliptic curve cryptographic
key generation functionality8 provided by the Java Card API. This functionality is
used to generate the blinding factor and blind the received challenge at the same
time. This allows us to simply sign the blinded challenge with the private key using
the Diffie-Hellman operation, as shown in Algorithm 3.6.

3.5.4 Terminal Application
The terminal application needs to cope with the shortcomings of the Java Card
applet. This comes down to the fact that the terminal has to reconstruct the points
Pb, Cb and R received from the card before they can be processed any further.

8Using the Diffie-Hellman operation twice is not an option due to the first drawback mentioned in
Section 3.5.1: the function does not return a point that can be used for another point multiplication
directly, and performing the point reconstruction on the card would be to costly.
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Algorithm 3.6 Self-blindable credential verification.
1: function SBC-prove(PU , kU , Ca, N)
2: (b,Nb)← GenerateKey(N)
3: R← GenerateSecret(Nb, kU )
4: Pb ← GenerateSecret(PU , b)
5: Cb ← GenerateSecret(Ca, b)
6: return Pb, Cb, R

If we know the x-coordinate of a point on the curve, the square of the corres-
ponding y-coordinate is known, namely as y2 = x3 + ax + b. By taking the square
root of x3 + ax+ b we find either y or −y.

This reconstruction is a simple guess work, trying different signs for the y-
coordinates of the points. For the proof of possession verification guessing the sign is
not a real issue since this verification is only a single point multiplication, although
performing this multiplication twice is of course not optimal. For the pairing sig-
nature verification (3.1) simple guessing is not desirable. Therefore we exploit the
bilinearity of the pairing to avoid computing more than two pairings, as would be
the case without point reconstruction.

First we calculate e1 = e(Pb, Qa) and e2 = e(Cb, P2) where we take any sign
for the y-coordinate of Cb. If e1 = e2, which happens if we have two right, or two
wrong, signs in the first parameters of the pairing, the verification succeeds. In
the remaining case, which means we took one right and one wrong sign, we check
whether e1 · e2 = 1 holds. If it holds, the verification also succeeds. This is true
because of the following. If e1 6= e2, the error is caused by the wrong sign resulting
in one pairing being the inverse of the other, that is, e2 = e−1

1 . Here we can use that
e1 · e2 = e1 · e−1

1 = 1 to avoid an extra pairing calculation for the negated point of
Cb.

3.6 Performance Results
For our test we selected three Barreto-Naehrig curves (see Section 2.3.2) for keys of
length 128, 160 and 192 bits. The domain parameters p and n for these curves are
generated by the Barreto-Naehrig indices u = 1678770247, u = 448873116367 and
u = 105553250485267 respectively. The curve E is defined as y2 = x3 + 3, that is,
take a = 0 and b = 3 in the general form y2 = x3 +ax+b, with the default generator
P = (1, 2).

These key lengths have been chosen to indicate performance for various levels
of security, that is, protection against fraud. A key length of 128 bits provides
borderline security, whereas 160 and 192 bits provide, respectively, a minimal and a
standard level of security [ECR09].

The results of our tests are summarised in Table 3.1. These values are the average
of ten test runs for each configuration. The table shows the (accumulated) duration
(in milliseconds) of the requests to the card.

When we compare the two implementations it can be seen that the duration of
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Table 3.1: Test results for various key lengths.

key length ECDSA minimal Boneh-Lynn-Shacham communication
(bits) (ms) (ms) (bytes)

192 2748 787 155
160 1860 645 135
128 1599 535 115

the ECDSA variant is significantly larger than the minimal Boneh-Lynn-Shacham
solution. This contrast can be explained by the available support from the crypto-
graphic coprocessor. For the blinding operations in the latter the applet only uses
elliptic curve primitives provided by the coprocessor to perform the required point
multiplications. The blinding for the ECDSA variant, which requires a modular
multiplication, has to be calculated without the help of the coprocessor.

In theory it is possible to abuse the RSA cipher (and hence use the coprocessor)
to do large part of the modular multiplication by using the fact that 4ab = (a +
b)2− (a− b)2, as in [SGPV09, TJ09]. The squares in this equation can be performed
by doing an RSA encryption/exponentiation with a suitable RSA public key, that
is, one with the exponent 2 and the required modulus. The numbers a+ b and a− b
are then just messages to be encrypted using the RSA cipher, which is provided by
the Java Card API.

We tried this approach, but unfortunately with no success. The main obstacle is
that the RSA cipher on the card operates only within valid bit lengths for RSA keys,
starting with 512 bit keys. Although the number to be multiplied (the message) can
be any value, the number of non-zero bits in the modulus has to be at least 488
bits for 512 bit keys according to our tests. Since our modulus is only 192 bit long
the card refused to perform an RSA encryption with such a short modulus value.
However, we believe that a more flexible RSA implementation on the card would
allow this optimisation.

To get some more information about how the running time of the improved
implementation is spent on the card we measured how long it takes to perform the
individual operations. The results of these measurements can be found in Table 3.2.
The columns indicate the time needed to perform a single operation. The processing
overhead is determined by subtracting one key generation and three key agreements
from the protocol duration.

On the one hand, performing a scalar point multiplication (a key agreement
operation) is quite efficient, using less then 100 milliseconds for the calculation. On
the other hand, performing a scalar point multiplication, combined with generating
a random value, (a key generation operation) is disappointing, taking more than
a factor three longer than just the multiplication. A possible explanation for this
difference is that a different calculation method is used, which might also explain
the fact that a key generation can return a complete point, whereas a key agreement
can only return the x-coordinate.
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Table 3.2: Test results for the API primitives.

key length key generation key agreement processing overhead
(bits) (ms) (ms) (ms)

192 379 98 114
160 307 78 104
128 242 62 107

A large benefit of our use of elliptic curve cryptography is the small amount
of data that needs to be exchanged between the terminal and the card. For key
lengths of 192, 160 and 128 bits the total amount of bytes exchanged is 155, 135
and 115 respectively. This would allow an implementation to use a single APDU
pair (command and response) for all communication. This is in strong contrast with
discrete logarithm or RSA-based protocols [SGPV09, TJ09] which already require
multiple APDUs to transfer a single command.

When we consider the memory requirements of this implementation a credential
only needs 37 bytes of storage for a key length of 128 bits. For a key length of 192 bits
this is only 53 bytes to store the issuer’s signature and a reference to the attribute
statement. To perform the computations, using a 128-bits key, at least 130 bytes
of RAM are required to store the session variables, and just 194 bytes for a key
length of 192 bits. Taking these requirements into account a single smart card can
hold many9 credentials and has no shortage of RAM for performing the necessary
computations. Hence, the main limitation for this technology is the limited support
for elliptic curve cryptography on the current generation of smart cards.

9Given a card with 64KB of EEPROM and a key length of 192 bits, up to 1200 credentials can
be stored.
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Chapter 4

U-Prove

Stefan Brands provided the first integral description of the U-Prove technology in
his thesis [Bra00], after which he founded the company Credentica to implement
and sell this technology. Microsoft acquired Credentica and published the U-Prove
cryptographic specification [BP10, PZ13] under the Open Specification Promise1

together with open source reference software development kits in C# and Java.
The U-Prove technology is centred around a so-called U-Prove token. This token

serves as a pseudonym for the user. It contains a number of attributes which can
be selectively disclosed to a verifier. Hence the user decides which attributes to
show and which to withhold (for example, one can reveal the birth date, but not
the residence address). Finally there is the token’s public-key, which aggregates all
information in the token, and a signature from the issuer over this public-key to
ensure the authenticity.

A previous attempt to implement this technology on a smart card by Tews and
Jacobs [TJ09], based on Brands’ description [Bra00], resulted in a highly involved
Java Card applet with running times in the order of 5–10 seconds which make it not
really usable in practice. They concluded that the lack of cryptographic hardware
support through the Java Card API was the main cause of the slow performance.
Therefore, we decided to develop our application using the MULTOS platform, which
offers a much more suitable API. Our implementation, which we describe in Sec-
tion 4.5, not only has a much better performance but is also, except from some
minimal limitations, compatible with the development kits released by Microsoft.

4.1 Schnorr Signature Scheme
The Schnorr signature scheme [Sch89, Sch91] relies on the Schnorr identification
protocol [Sch89] which is a special instance of the interactive protocol of Chaum,
Evertse and Van de Graaf [CEvdG88] that proves knowledge of a discrete logarithm
key pair. It is derived from this identification scheme by replacing the verifier’s
challenge by a hash value according to the Fiat-Shamir heuristic [FS87] as can be
seen in Algorithm 4.1.

1http://www.microsoft.com/interop/osp/
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Algorithm 4.1 Generate a Schnorr signature.
1: function Schnorr-sign(m, (p, q, g), x)
2: u← Random( )
3: a← gu mod p

4: c← Hash(a,m)
5: r ← u+ c · x mod q

6: return (c, r)

Algorithm 4.2 Verify a Schnorr signature.
1: function Schnorr-verify((c, r),m, (p, q, g), h)
2: â← gr · h−c mod p

3: if c 6= Hash(â,m) then
4: return Invalid
5: return Valid

The private key is a random value x. The corresponding public key is a value
h = gx mod p together with a description of the prime-order group in which the
computations take place. As an example we use (p, q, g), which denotes a subgroup
of Z∗p of prime-order q with generator g. The signature over a message m is the
resulting pair (c, r).

Verification of such a Schnorr signature (c, r) starts with the reconstruction of
the input value for the hash function based on r, according to the following equation:

â = gr · h−c = gu+c·x · g−c·x = gu = a mod p (4.1)

If the signature is valid, that is, this equation holds, the resulting output of the hash
function matches c (see Algorithm 4.2).

4.1.1 Blind Signatures
Figure 4.1 depicts the protocol for generating blind signatures [PS96]. The steps
executed by the signer are similar to the original signing protocol. In Algorithm 4.3
the signer constructs a commitment a, to the randomisation value u, which is sent
to the recipient of the signature.

The recipient generates blinding values v and w to hide the message m that it
wants to get signed. A (blinded) commitment c to this message is generated (see
Algorithm 4.4) and sent to the signer.

Algorithm 4.3 Prepare for a blind Schnorr signature.
1: function Schnorr-prepare((p, q, g))
2: u← Random( )
3: a← gu mod p

4: return a, u
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Receiver Signer

Schnorr-prepare (Alg. 4.3)

a

Schnorr-commit (Alg. 4.4)

c

Schnorr-blind-sign (Alg. 4.5)

r

Schnorr-finish (Alg. 4.6)

Figure 4.1: Protocol for generating blind Schnorr signatures.

Algorithm 4.4 Commit to the message for a blind Schnorr signature.
1: function Schnorr-commit(m, a, (p, q, g))
2: v ← Random( )
3: w ← Random( )
4: a′ ← a · gv · hw mod p

5: c′ ← Hash(a′,m)
6: c← c′ + w mod q

7: return c, c′, v

Upon receipt of the message commitment, the signer constructs the Schnorr
signature value r according to Algorithm 4.5 and returns this value to the recipient.
Finally, the recipient checks whether the received value is correct according to (4.1)
and computes the last element of the blind Schnorr signature (c′, r′).

The resulting signature (c′, r′) can then be verified using the regular verification
procedure, Algorithm 4.2. This works since:

â = gr
′
· h−c

′
= gr+v · g−c

′·x = gu+c·x+v · g−c
′·x = gu+(c′+w)·x+v · g−c

′·x

= gu · gv · gc
′·x · gw·x · g−c

′·x = gu · gv · gx·w = a · gv · hw = a′ mod p

Algorithm 4.5 Generate a blind Schnorr signature.
1: function Schnorr-blind-sign(c, u, (p, q, g), x)
2: r ← u+ c · x mod q

3: return r
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Algorithm 4.6 Finish a blind Schnorr signature.
1: function Schnorr-finish(r, a, c, c′, v, (p, q, g), h)
2: â← gr · h−c mod p

3: if a 6= â then
4: return Invalid
5: r′ ← r + v mod q

6: return (c′, r′)

4.2 U-Prove Credentials
The U-Prove technology is built around U-Prove tokens. These tokens are in prin-
ciple a collection of attributes signed by an issuer. The issuer’s public key (g0, {gi}i∈A)
consists of a value g0 = gx mod p which commits to the private key x and a random
generator gi for each possible attribute (A denotes the set of attribute indices).

In order for the attributes {ai}i∈A, to be signed they are aggregated into what
is called the token public key h = h′s mod p where s is the user’s secret and h′ is
the aggregation of the attributes using the issuer’s public key:

h′ = g0 ·
∏
i∈A g

ai
i mod p (4.2)

The corresponding token private key s′ = s−1 mod q. Together with the issuer’s
signature (z′, c′, r′), generated during the issuance process (see Section 4.3), these
values form a U-Prove token. Such a token serves as a pseudonym for the user.
A collection of U-Prove tokens, where only the signatures differ, can be seen as a
U-Prove credential.

A U-Prove credential usually consist of multiple tokens to achieve anonymity,
since a single token acts as a pseudonym for the user. This means that whenever the
user does not want to be traced during a credential verification (see Section 4.4) she
should use a fresh token to prevent the verifier from linking the token to previous
transactions.

To summarise, a U-Prove credential, as depicted in Figure 4.2, consists of:

• a collection of attributes {ai}i∈A aggregated in h′,

• a key pair (h = h′s mod p, s′ = s−1 mod q), based on the user’s secret s, and

• a number of signatures (z′, c′, r′), over the token public key (and hence over
the user’s secret and the attributes).

s a1 a2 a3 a4

c' r'

z'

Figure 4.2: A visual representation of a U-Prove credential.
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User Issuer

UP-issuance-prepare (Alg. 4.7)

z, a, b

UP-issuance-commit (Alg. 4.8)

c

UP-issuance-sign (Alg. 4.9)

r

UP-issuance-finish (Alg. 4.10)

Figure 4.3: Protocol for U-Prove credential issuance.

4.3 Credential Issuance

Figure 4.3 depicts the issuance protocol for a U-Prove token. The issuer starts by
computing z = h′x mod p which combines its private key x with the attributes
ai∈A, aggregated according to (4.2). Next, the issuer commits to the randomisation
value u using both the generator g and the aggregated attributes h′ that are going
to be signed (see Algorithm 4.7).

Algorithm 4.7 Prepare for U-Prove issuance.
1: function UP-issuance-prepare(h′, (p, q, g), x)
2: z ← h′x mod p

3: u← Random( )
4: a← gu mod p

5: b← h′u mod p

6: return z, a, b, u

The user starts in Algorithm 4.8 by generating a fresh secret s and computes the
token private key s′. She then combines this secret with the aggregated attributes
h′ and the value z, received from the issuer, to obtain, respectively, the token public
key and the first element of the signature z′. The remaining steps compute the com-
mitment to these values similar to Schnorr’s blind signature scheme (Algorithm 4.4).

The issuer then performs the next step of Schnorr’s blind signature scheme (Al-
gorithm 4.5) and signs the commitment c received from the user according to Al-
gorithm 4.9.
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Algorithm 4.8 Commit to the attributes for U-Prove issuance.
1: function UP-issuance-commit(h′, z, a, b, (p, q, g))
2: s← Random( )
3: s′ ← s−1 mod q

4: h← h′s mod p

5: z′ ← zs mod p

6: v ← Random( )
7: w ← Random( )
8: a′ ← a · gv · gw0 mod p

9: b′ ← bs · hv · z′w mod p

10: c′ ← Hash(h, z′, a′, b′) mod q

11: c← c′ + w mod q

12: return z′, a′, b′, c, c′, v, s′

Algorithm 4.9 Sign the attributes for U-Prove issuance.
1: function UP-issuance-blind-sign(c, u, (p, q, g), x)
2: r ← u+ c · x mod q

3: return r

Finally, in Algorithm 4.10, the user computes r′, the last element of the token
signature (z′, c′, r′). Using this value she can also verify whether the values received
from the issuer are correct:

a′ · b′ = a′ · b′ · gc
′

0 · g−c
′

0 · hc
′·x · h−c

′·x

= a · gv · gw0 · bs · hv · z′w · gc
′

0 · g−c
′

0 · hc
′·x · h(−c+w)·x

= gu · gv · gw0 · h′u·s · hv · zs·w · gc
′

0 · g−c
′

0 · hc
′·x · h−c·x · hw·x

= gu · gv · gw·x · hu · hv · zw·s · gc
′·x · g−c

′

0 · hc
′·x · hw·x · z−c·s

= gu · gc
′·x · gw·x · gv · hu · hc

′·x · hw·x · hv · g−c
′

0 · z−c·s · zw·s

= gu+c′·x+w·x+v · hu+c′·x+w·x+v · g−c
′

0 · z(−c+w)·s

= (g · h)u+c′·x+w·x+v · g−c
′

0 · z′−c+w

= (g · h)u+c·x+v · g−c
′

0 · z′−c+w

= (g · h)r+v · g−c
′

0 · z′−c
′

= (g · h)r
′
· (g0 · z′)−c

′
mod p
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Algorithm 4.10 Finish U-Prove issuance.
1: function UP-issuance-finish(a′, c′, z′, v, r, (p, q, g), h)
2: r′ ← r + v mod q

3: if a′ · b′ 6= (g · h)r′ · (g0 · z′)−c
′ then

4: return Invalid
5: return (z′, c′, r′)

4.4 Credential Verification
The verification of a U-Prove credential consists of two parts. First, the verifier must
check whether the signature over the token public key is valid. To this end the user
sends the token public key and signature to the verifier as can be seen in Figure 4.3.

Algorithm 4.11 Verify a U-Prove token signature.
1: function UP-verify-token(h, (z′, c′, r′), (p, q, g))
2: â← gr

′ · g−c
′

0 mod p

3: b̂← hr
′ · z′−c′ mod q

4: if c′ 6= Hash(h, z′, â, b̂) then
5: return Invalid
6: return Valid

The verifier can then verify the validity of the signature (z′, c′, r′) using Al-
gorithm 4.11. Similar to the Schnorr signature verification, the verifier reconstructs
the input values â and b̂ for the hash function according to the following equations:

â = gr
′
· g−c

′

0 = gr+v · g−c
′·x = gu+c·x+v · g−c

′·x = gu+(c′+w)·x+v · g−c
′·x

= gu · gc
′·x · gw·x · gv · g−c

′·x = gu · gw·x · gv = gu · gv · gw0 = a · gv · gw0
= a′ mod p

User Verifier
h, (z′, c′, r′)

UP-verify-token (Alg. 4.11)UP-selective-disclosure (Alg. 4.12)

ai∈AD
, âi∈A\AD

, c′, ŝ

UP-verify-proof (Alg. 4.13)

Figure 4.4: Protocol for U-Prove credential verification.
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b̂ = hr
′
· z′−c

′
= hu+c·x+v · z−c

′·s = hu+(c′+w)·x+v · h′−c
′·s·x

= hu · hc
′·x · hw·x · hv · h−c

′·x = hu · hv · h′s·w·x = h′u·s · hv · zs·w = bs · hv · z′w

= b′ mod p

If the signature is valid, that is, both equations hold, the resulting output of the
hash function matches c′.

The second part of the credential verification protocol of Figure 4.4 consists of
selective disclosure of the attributes and a proof of knowledge of the token private
key. In this part the user sends the disclosed attributes {ai}i∈AD

, whereAD is the set
of disclosed attribute indices, to the verifier and includes the undisclosed attributes
in the proof of knowledge of the token private key. This proof of knowledge can
be generated using Algorithm 4.12. The freshness of this proof is guaranteed by a
nonce nD provided by the verifier.

Algorithm 4.12 U-Prove selective disclosure.
1: function UP-selective-disclosure({ai}i∈A, h, (z′, c′, r′), s′, nD, (p, q, g))
2: s̃← Random( )
3: a← hs̃ mod p

4: for each i ∈ A \ AD do
5: ãi ← Random( )
6: a← a · gãi

i mod p

7: c′ ← Hash(a)
8: c← Hash(c, ai∈AD

, nD) mod q

9: ŝ← s̃+ c · s′ mod q

10: for each i ∈ A \ AD do
11: âi ← ãi − c · ai mod q

12: return {ai}i∈AD
, {âi}i∈A\AD

, c′, ŝ

The selective disclosure proof can be verified using Algorithm 4.13. The verifica-
tion succeeds if the verifier can successfully reconstruct the commitment a generated
by the user. This reconstruction works because of the following equation:

â = g−c0 · hŝ ·
∏
i∈AD

g−c·ai
i ·

∏
i∈A\AD

gâi
i

= g−c0 · hs̃+c·s′ ·
∏
i∈AD

g−c·ai
i ·

∏
i∈A\AD

gãi−c·ai
i

= g−c0 · hs̃ · hc·s
′
·
∏
i∈AD

g−c·ai
i ·

∏
i∈A\AD

gãi
i ·
∏
i∈A\AD

g−c·ai
i

= g−c0 · hs̃ · h′c·s
′·s ·

∏
i∈A g

−c·ai
i ·

∏
i∈A\AD

gãi
i

= hs̃ · h′c · h′−c ·
∏
i∈A\AD

gãi
i

= hs̃ ·
∏
i∈A\AD

gãi
i

= a mod p
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Algorithm 4.13 U-Prove proof verification.
1: function UP-verify-proof({ai}i∈AD

, {âi}i∈A\AD
, c′, ŝ, nD, (p, q, g))

2: c← Hash(c′, ai∈AD
, nD)

3: â← g−c0 · hŝ mod p

4: for each i ∈ AD do
5: â← â · g−c·ai

i mod p

6: for each i ∈ A \ AD do
7: â← â · gâi

i mod p

8: if c′ 6= Hash(â) then
9: return Invalid
10: return Valid

4.5 U-Prove on Smart Cards

The use of U-Prove in combination with a smart card was already envisioned by
Brands [Bra00] and published by Microsoft in version 1.1 of the U-Prove crypto-
graphic specification [Paq11a]. Their idea is to use a smart card (or even any trusted
computing device) as a manner of protecting U-Prove tokens, which they then call
device-protected tokens. This is achieved by having the device contribute one attrib-
ute to the token. The actual value of this attribute is, like a private key, only known
by the device and will always be hidden. Therefore the device is required during
the verification protocol, since the user has to prove knowledge of all undisclosed
attributes.

Besides adding an additional layer of protection, the U-Prove technology over-
view [Paq11c] describes a number of other benefits gained when using device-protected
tokens. For example, a device can be used to enforce dynamic policies or prevent the
use of a token at a blacklisted website. It also helps to enforce non-transferability
of tokens by having the user authenticate to the device before allowing it to be used
in a transaction. Another option, especially interesting for smart cards, is to use
the device as a carrier, or secure roaming store, for entire U-Prove credentials and
not just one attribute. This way the U-Prove credentials are always available when
needed.

This last feature of a device-protected U-Prove token has one major drawback,
namely one will need to trust the device that is used to perform the proving protocol.
This is because the actual attribute values are used during the computation steps of
this protocol (see Section 4.4). Hence the device must release all information, except
its own special attribute, during a protocol run. When using a personal computer
this might be acceptable, but in scenarios where the device should be used directly
with a verifier, for example at a public transport gate, or at a vending machine
for cigarettes, this turns out to be problematic. Since these are the areas of use
which are most interesting for us, we decided to develop an implementation which
provides the full verification protocol on a smart card instead of using Microsoft’s
more limited approach.
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4.5.1 Smart Card Implementation
A very general view of our implementation of the U-Prove technology is that it
provides storage for preloaded (e.g. cryptographic domain parameters) and calcu-
lated (e.g. generated keys) values of the protocols, as well as attribute storage, and,
more importantly, a sequence of hash and modulo prime arithmetic operations to
execute the corresponding stages of the protocols. These arithmetic operations are
the core of the performance considerations of our implementation. A few hashing
operations are executed and multiple exponents over numbers in a large prime field
have to be calculated during a verification protocol run.

Considering the size of the U-Prove data that is used in the protocols and the
requirements of the MULTOS cryptographic routines (all data for a cryptographic
operation needs to be in one continuous array) the first thing to take care of is a
careful split of the card data between EEPROM and RAM. Only 960 bytes of RAM
are available on our development cards, compared to 36 kilobytes of EEPROM. The
most frequent use case of the card is the execution of the proving protocol, hence
this is where good use of RAM is highly desirable. For that we limited the maximum
number of stored attributes to 5 and then we ensured that all variables used in the
verification protocol are allocated in RAM.

The initialisation and issuance protocol require more scratch-pad memory than
the available RAM, hence we were forced to use EEPROM there. Moreover, the
issuance protocol makes use of EEPROM for permanent storage of the issued U-
Prove token and other permanent protocol parameters (prime numbers p, q, etc.).
The use of EEPROM for computations has an impact on the running time for these
operations, as can be seen in Section 4.6, but this is acceptable given that these
operations are normally only used a limited number of times.

This completes the efficiency considerations for our implementation. Otherwise
the implementation of the U-Prove protocols is rather straightforward in the MUL-
TOS environment and mostly entails direct calls to the MULTOS API.

4.5.2 Integration into the Microsoft U-Prove SDK
The previous section described the implementation of the U-Prove protocols which
mainly concerns storage and the mathematical computations. This is, however, not
sufficient to use it in combination with Microsoft’s U-Prove software development kit.
We need to bridge between the high-level Java interfaces defined in this development
kit and the low-level APDU interface of the smart card.

We designed the low-level APDU interface to be as simple as possible. Essentially
it has to provide three types of functionality:

1. sending data to the card,

2. ask the card to perform the necessary computations, and

3. retrieve the results from the card.

The second type of the interface functionality is easiest, we just defined an APDU
instruction for each of the steps in the protocols. For transferring data to and
from the card we restricted the values to the maximum amount of data that can
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be transferred in one APDU (255 bytes). This allows us to just define one APDU
instruction per variable, parametrised only with the index if needed (for example
gi), for setting or getting a value.

Finally we need to bind this low level APDU API to the interfaces and data
types provided by the U-Prove software development kit. Luckily the development
kit just uses byte arrays for the external access to the data types such that no
additional conversion is needed. The only thing that needs to be done for a data
type, for example IssuerParameters, is that the setter and getter have to be di-
vided into the individual APDU instructions, for example the setPublicKey and
setEncodingBytes instructions.

All this functionality has been combined into a single Java class which provides
setters and getters for the data stored on the card as well as methods for the protocol
steps. Using the Java built-in smart card library it serves as an interface between
our MULTOS implementation and the U-Prove software development kit.

4.6 Performance Results
The two most important factors for us to test in our U-Prove implementation were
correctness of the protocol calculations (obviously) and the speed. Testing the cor-
rectness was fairly easy. Since we interfaced our card to Microsoft’s U-Prove SDK
we could simply test it by invoking the protocol runs from the SDK and check the
results. During the first stages of the development, partial protocol calculations
were verified with the test vectors provided with the U-Prove SDK [Paq11b]. In
the whole process a few corner case problems with our calculations surfaced that
required minor corrections.

For the performance tests we are restricted by the limits of our MULTOS imple-
mentation platform. Namely, on our development cards we are limited to a modulus
size of 1024 bits for modular arithmetic,2 and SHA-1 is the only built-in hashing
algorithm available. Although this may sound restrictive, it also makes the choice
of the U-Prove protocol configuration (protocol parameters) for our tests easy. We
have simply chosen to use the domain parameters fixed to the same ones as in the
default configuration of the official U-Prove SDK reference implementation and of-
ficial U-Prove test vectors [Paq11b], that is 1024 bits for modulus size and SHA-1
for hashing to match with the capabilities of the card.

As we stated in the previous section, for speed we concentrated our implement-
ation efforts on the every day use case of the application, that is, the credential
verification protocol. However, we also strived to optimise the rest of the protocols
to maintain speed also during the initialisation and issuance parts. For the perform-
ance analysis, we executed a number of full protocol runs (initialisation, issuance,
proving) on the card in various configurations. First of all we varied the number of
stored attributes on the card, then within this attribute range we varied the number
of (un)disclosed attributes. As shown in Figure 4.5 this resulted in a running time
of 3.6 and 5.5 seconds for the issuance of a U-Prove token with respectively 2 and 5
attributes. The dark grey area on the graph indicates the core running time of the

2The card actually supports up to 2048 bits, but then during exponentiation only small enough
exponents can be used, a requirement which the U-Prove operations do not satisfy.
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Figure 4.5: U-Prove credential issuance times for various numbers of attributes
( : computation time, : overhead).

protocol calculations on the card, whereas light grey indicates the remaining over-
head. This overhead consists of transferring data to the card and communicating
the results of the protocol run between the card and PC.

Correspondingly, the cumulative results for the attribute proving protocol are
shown in Figure 4.6. What can be seen in these graphs is that under “full load” our
implementation executes the complete proving protocol in just under 0.9 seconds
(Figure 4.6d). In this worst-case scenario 5 attributes are stored on the card, none
of which are disclosed during the protocol run. In other words, the U-Prove token is
only validated for its authenticity without revealing any attributes. Such a scenario
is not very likely to occur in reality. In a more likely scenario at least one or
two attributes are going to be disclosed and we can also assume that a U-Prove
token will contain less attributes (or, that a large number of attributes can be split
into several separate U-Prove tokens). The graphs show that reducing the number
of stored attributes improves the running time at a rate of 100 milliseconds per
attribute. Furthermore, the performance increases along with increasing the number
of disclosed attributes, roughly 50 milliseconds per each extra disclosed attribute.
Overall, this brings the total execution time for a two attribute token disclosing one
attribute to under 0.5 seconds (Figure 4.6a).

One of the reasons to justify Microsoft’s device protected approach as described
in Section 4.5 is possible resource issues with smart cards (limited storage space
and limited speed). Our performance results undermine this argument. The worst
case execution time of the proving part is 869 milliseconds. This not only makes
the card implementation fast enough to be usable in general, it also makes it usable
for “field” applications, for example dispensing machines. Even more, for smaller
numbers of attributes the running times become almost acceptable for use in public
transport/e-ticketing, where the commonly required card transaction times should
stay below 350 milliseconds. We also see a potential to improve the running times
using faster smart card hardware, we elaborate on this in the upcoming section.
Overall, these good results strongly justify the idea to use U-Prove standalone on a
smart card rather than to use Microsoft’s device-protected token approach, which
has no obvious functional or performance advantages over our approach.

Our implementation requires 1KB to store a credential containing two attributes.
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Figure 4.6: U-Prove credential verification times for different configurations
( : computation time, : overhead).

For each additional attribute another 148 bytes of storage are required. This is of
course more than the 148 bytes necessary for the device-protected approach, but
this allows for full independence of the terminal. It does, however, become an issue
if many credentials have to be stored in order to achieve unlinkability, since a card
can typically only hold 50 of such credentials.

When we consider the run-time memory requirements of our implementation the
main restrictions become clear. For a credential with 2 attributes 540 bytes of RAM
are required for the session variables. An additional 40 bytes are required for each
additional attribute in a credential. These values are based on a modulus of 1024
bits and attribute values of 160 bits (the SHA-1 hashed representation of the actual
attribute values).

Based on these results we can conclude that the limitations of our implementation
are imposed by the limited resources of the MULTOS smart card. We had to limit
the prime modulus size to 1024 bits, use only SHA-1 hashing, and because of the
available RAM (less than 1KB) on the card we could only allow for the maximum of
5 attributes, each one up to 255 bytes in size. Otherwise our implementation is fully
flexible and provides full U-Prove functionality, including the smart card features
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described in Section 4.5. However, it is not uncommon for modern smart cards to
support up to 2048 bits for modulus size and 2 kilobytes of RAM, only no such
MULTOS cards were available to us.

An alternative would be to build a U-Prove implementation using elliptic curve
cryptography, as this is supported by the technology. This would drastically reduce
the communication overhead as well as the memory requirements. Unfortunately,
as mentioned in the previous chapter, support for elliptic curves on smart cards is
limited, which prevents the development of an efficient elliptic curve-based imple-
mentation for now.
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Chapter 5

Identity Mixer

Identity Mixer [CL01, IBM12] (also known as Idemix) is an attribute-based creden-
tial system, developed at IBM Research in Zürich, that enables strong authentication
and privacy at the same time. The first prototype [CvH02] was developed in 2002
and has been improved over the years [BCC04b, CG05]. An open source Java im-
plementation1 was released in 2010 as part of IBM’s open innovation initiative2.

The core of the Identity Mixer technology is the Camenisch-Lysyanskaya sig-
nature scheme [CL03, Lys02]. This scheme is an ideal building block for privacy-
preserving technologies as Camenisch and Lysyanskaya provide protocols for

1. issuing signatures on committed values (such that the signer has no information
about the signed value), that is, blind signatures [Cha83], and

2. proving knowledge of a signature on a committed value.

Furthermore this scheme supports multiple messages to be signed at once. This
allows a number of attributes to be combined into a single credential. In contrast
to the U-Prove technology, an Identity Mixer credential can be randomised (like
the self-blindable credentials) allowing it to be used multiple times while remaining
anonymous. This is also the only technology that offers provable security. This
means that all protocols have been proven formally to be secure.

In this chapter we focus on the core features of the Identity Mixer system: cre-
dential issuance and selective disclosure of attributes. The technology offers many
more features that might be interesting to users of an attribute-based credential
system, but we focus on what can currently be achieved on a smart card with an
acceptable performance [VA13]. Additional options can still be added, but at the
cost of an increased transaction time.

5.1 Camenisch-Lysyanskaya Signature Scheme
This description of the Camenisch-Lysyanskaya signature scheme [CL03, Lys02] is
based on the direct anonymous attestation explanation by Camenisch [Cam07] and

1http://prime.inf.tu-dresden.de/idemix/
2http://www.zurich.ibm.com/news/10/innovation.html
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the specification of the Identity Mixer cryptographic library [IBM12]. These docu-
ments include the efficiency improvements which have been presented by Brickell,
Camenisch, and Chen [BCC04b] and by Camenisch and Groth [CG05].

5.1.1 Keys

The private key in this scheme comprises two Sophie Germain primes p′ and q′. The
public key consists of a special RSA modulus n = p · q where p = 2 · p′ + 1 and
q = 2 · q′ + 1 are safe primes. Furthermore we need the following parameters from
QRn = {x ∈ Zn : y ∈ Zn ∧ x = y2 mod n}, the group of quadratic residues modulo
n:

• a generator S ∈ QRn, with order p′ · q′, that generates 〈S〉, the subgroup of
QRn in which all computations take place;

• a base Ri = Sxi mod n, where xi ∈R [2, p′ · q′− 1], for each message mi to be
signed using this key; and

• an auxiliary value Z = Sxz mod n, where xz ∈R [2, p′ · q′ − 1], such that all
computations remain within 〈S〉.

Hence the resulting public key is (n, S, Z, {Ri}i∈M) where M denotes the set of
message indices, and hence the maximum number of messages, supported by this
key.

In order to guarantee that such a public key has been constructed correctly,
that is, all values are elements of 〈S〉, a proof of correctness can be constructed
(Algorithm 5.1, based on [BCC04b, Appendix A]):

Algorithm 5.1 Proof correctness of a Camenisch-Lysyanskaya public key.
1: function CL-prove-key((n, S, Z, {Ri}i∈M))
2: for each j ∈ H do
3: uj ← Random( )
4: Z ′j = Suj mod n

5: for each i ∈M do
6: v(i,j) ← Random( )
7: R′(i,j) = Sv(i,j) mod n

8: c← Hash(n, S, Z, {Ri}i∈M, (Z ′j)j∈H, {R′(i,j)}i∈M,j∈H)
9: for each j ∈ H do
10: rj = uj − cj · xz mod (p′ · q′)
11: for each i ∈M do
12: s(i, j) ← v(i, j) − cj · xi mod (p′ · q′)

13: return (c, {rj}j∈H, {s(i,j)}i∈M, j∈H)
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SPK{(αz, {αi}i∈M) : Z = Sαz mod n ∧
∀i∈MRi = Sαi mod n}(n, S, Z, {Ri}i∈M)

This proof uses binary challenges, hence we need to generate commitments and
responses for all bits of the challenge {cj}j∈H, where H denotes the set of bits
generated by the Hash function. These binary challenges are necessary to satisfy
the special soundness property of the security proof [Cam07, Section 3.5]. Normally,
one could just use the challenge c in combination with the strong RSA assumption
to satisfy this property, but in this case the strong RSA assumption does not hold
since the party that generated the key knows the factorisation of n.

The proof can be verified using Algorithm 5.2, which reconstructs the input of
the hash based on the proof values and then checks whether the output of the hash
matches the given value. These values can be reconstructed because:

Zcj · Srj = (Sxz )cj · Srj = (Sxz )cj · Suj−cjxz = Suj = Z ′j mod n, and

R
cj

i · S
s(i,j) = (Sxi)cj · Ss(i, j) = (Sxi)cj · Sv(i, j)−cjxi = Sv(i,j) = R′(i,j) mod n.

Algorithm 5.2 Verify correctness of a Camenisch-Lysyanskaya public key.
1: function CL-verify-key((n, S, Z, {Ri}i∈M), (c, {rj}j∈H, {s(i,j)}i∈M,j∈H))
2: for each j ∈ H do
3: Z ′j ← Zcj · Srj mod n

4: for each i ∈M do
5: R′(i,j) ← R

cj

i · Sr(i, j) mod n

6: if c 6= Hash(n, S, Z, {Ri}i∈M, Z ′j∈H, {R′(i,j)}i∈M,j∈H) then
7: return Invalid
8: return Valid

5.1.2 Basic Signature Scheme
In order to sign a collection of messages {mi}i∈M, these mi first have to be aggreg-
ated into a single group element Q according to the following equation:

Q = Z

Sv ·
∏
i∈MRmi

i

mod n, (5.1)

where v is a random number. This value v is used in Section 5.1.3 for blinding
the messages that have to remain hidden, and in Section 5.1.4 to randomise the
signature.

The actual signature generation process is similar to the RSA signature scheme.
The first step is the generation of a random prime e which is used as the ephemeral
RSA public key for this signature. Next, the RSA private key d = e−1 mod (p′ · q′)
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Algorithm 5.3 Generate a basic Camenisch-Lysyanskaya signature.
1: function CL-sign({mi}i∈M, (n, S, Z, {Ri}i∈M), (p′, q′))
2: v ← Random( )
3: U ← Sv mod n

4: for each i ∈M do
5: U ← U ·Rmi

i mod n

6: Q← Z · U−1 mod n

7: e← RandomPrime( )
8: d← e−1 mod (p′ · q′)
9: A← Qd mod n

10: return (A, e, v)

corresponding to the public key e is computed. Finally, A = Qd mod n is the RSA
signature over the aggregated messages. As a result the Camenisch-Lysyanskaya
signature over the messages {mi}i∈M is the triple (A, e, v) (see Algorithm 5.3).

In order to verify such a Camenisch-Lysyanskaya signature (A, e, v) the RSA
signature over the aggregated messages has to be verified. That is, the verifier has
to check the following equation:

Ae = Z

Sv ·
∏
i∈MRmi

i

mod n (5.2)

This is equivalent to checking the following equation, as used in Algorithm 5.4, such
that it is not necessary to compute the inverse:

Z = Ae · Sv ·
∏
i∈MRmi

i mod n (5.3)

Algorithm 5.4 Verify a basic Camenisch-Lysyanskaya signature.
1: function CL-verify({mi}i∈M, (A, e, v), (n, S, Z, {Ri}i∈M))
2: Z ′ ← Ae · Sv mod n

3: for each i ∈M do
4: Z ′ ← Z ′ ·Rmi

i mod n

5: if Z 6= Z ′ then
6: return Invalid
7: return Valid

5.1.3 Blind Signatures
Figure 5.1 depicts the protocol for generating blind Camenisch-Lysyanskaya signa-
tures. This protocol hides the messages {mi}i∈MH

, where MH ⊆ M, from the
signer by generating a commitment to these values and blinding them according to
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(n, S, Z, {Ri}i∈M), {mi}i∈M
User

(n, S, Z, {Ri}i∈M), (p′, q′), {mi}i∈M\MH

Signer

CL-blind-commit (Alg. 5.5)

U

PK{(ν, {µi}i∈MH
) : U = Sν ·∏i∈MH

Rµi
i mod n} (Alg. 5.6 & 5.7)

CL-blind-sign (Alg. 5.8)

(A, e, v′′)

PK{(δ) : A =

(
Z

U · Sv′′ ·∏i∈M\MH
Rmi

i

)δ

mod n} (Alg. 5.9 & 5.10)

CL-blind-finish (Alg. 5.11)

Figure 5.1: Protocol for generating blind signatures.

Algorithm 5.5. During this commitment phase these messages are aggregated into
a single element U and hidden by the blinding value v′. Note that the remaining
messages {mi}i∈M\MH

, that are not hidden during this phase, are known by the
signer.

Algorithm 5.5 Prepare for a blind Camenisch-Lysyanskaya signature.
1: function CL-blind-commit({mi}i∈MH

, (n, S, Z, {Ri}i∈M))
2: v′ ← Random( )
3: U ← Sv

′ mod n

4: for each i ∈MH do
5: U ← U ·Rmi

i mod n

6: return (U, v′)

In order to prove to the signer that the user actually knows the hidden messages,
the following proof of knowledge has to be carried out.

PK{(ν, {µi}i∈MH
) : U = Sν ·

∏
i∈MH

Rµi

i mod n}

This proof not only proves that the user knows the hidden messages, but also that
the value U has been constructed correctly by the user. This can be implemented
as an interactive zero-knowledge protocol or using Algorithms 5.6 and 5.7 which,
respectively, construct and verify a non-interactive proof of knowledge. The freshness
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Algorithm 5.6 Generate a proof of correctness for U .
1: function CL-prove-U((U, v′), nU , {mi}i∈MH

, (n, S, Z, {Ri}i∈M)))
2: ṽ′ ← Random( )
3: Ũ ← Sṽ

′ mod n

4: for each i ∈MH do
5: m̃i ← Random( )
6: Ũ ← Ũ ·Rm̃i

i mod n

7: c← Hash(U, Ũ , nU )
8: v̂′ ← ṽ′ + c · v′

9: for each i ∈MH do
10: m̂i ← m̃i + c ·mi

11: return (c, v̂′, m̂i∈MH
)

Algorithm 5.7 Verify the proof of correctness for U .
1: function CL-verify-U(U, (c, v̂′, {m̂i}i∈MH

), nU , (n, S, Z, {Ri}i∈M))
2: Û ← U−c · Sv̂′ mod n

3: for each i ∈MH do
4: Û ← Û ·Rm̂i

i mod n

5: if c 6= Hash(U, Û , nU ) then
6: return Invalid
7: return Valid

of this proof is guaranteed by a nonce nU provided by the signer. The verification
succeeds if the signer can successfully reconstruct the commitment Ũ on U . This
reconstruction works because of the following equation.

Û = Sv̂
′
· U−c ·

∏
i∈MH

Rm̂i
i = Sṽ

′+c·v′ · U−c ·
∏
i∈MH

Rm̃i+c·mi
i

= Sṽ
′
· Sc·v

′
· U−c ·

∏
i∈MH

Rm̃i
i ·

∏
i∈MH

Rc·mi
i

= Sṽ
′
· U−c · U c ·

∏
i∈MH

Rm̃i
i = Sṽ

′ ·
∏
i∈MH

Rm̃i
i

= Ũ mod n

The next step is the actual signing process. In this step the hidden messages, ag-
gregated in U , are combined with the remaining known messages {mi}i∈M\MH

that
will be included in the signature. This process is very similar to the basic signature
operation as given in Algorithm 5.3. The main difference in Algorithm 5.8 is the
inclusion of the value U received from the user in the previous message aggregation
step.

Furthermore, the signer provides the following proof of knowledge to show the
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Algorithm 5.8 Generate a blind Camenisch-Lysyanskaya signature.
1: function CL-blind-sign(U, {mi}i∈M\MH

, (n, S, Z, {Ri}i∈M), (p′, q′))
2: v′′ ← Random( )
3: U ← U · Sv′′ mod n

4: for each i ∈M \MH do
5: U ← U ·Rmi

i mod n

6: Q← Z · U−1 mod n

7: e← RandomPrime( )
8: d← e−1 mod (p′ · q′)
9: A← Qd mod n

10: return (A, e, v′′)

user that the signature has been constructed correctly.

PK{(δ) : A =
(

Z

U · Sv′′ ·
∏
i∈M\MH

Rmi
i

)δ
mod n}

Again, this proof of knowledge can be implemented as an interactive zero-knowledge
protocol or as a non-interactive proof of knowledge. Algorithms 5.9 and 5.10, respect-
ively, construct and verify such a non-interactive proof with a nonce nA provided
by the user to guarantee the freshness. The commitment Ã can be reconstructed to
verify the proof according to the following equation3.

Â = Ac+d̂·e = Qe
−1·(c+d̂·e) = Qc·e

−1+d̂ = Qc·e
−1+d̃−c·e−1

= Qd̃ = Ã mod n

Algorithm 5.9 Generate a proof of correctness for A.
1: function CL-prove-A((A, e, v′′), d, nA, (n, S, Z, {Ri}i∈M), (p′, q′))
2: d̃← Random( )
3: Ã← Qd̃ mod n

4: c← Hash(Q,A, Ã, nA)
5: d̂← d̃− c · d mod (p′ · q′)
6: return (c, d̂)

Finally, the user has to complete the signature according to Algorithm 5.11 which
combines the blinding values of the user and signer, v′ and v′′ respectively, to become
the randomisation value v of the Camenisch-Lysyanskaya signature (A, e, v). This
signature can now be verified using the verification procedure from the basic signa-
ture scheme (Algorithm 5.4) or it can be used to prove knowledge of this signature
as described in the following section.

3Note that in version 2.3.3 of the specification of the Identity Mixer cryptographic lib-
rary [IBM11], the reconstructed value Â is incorrect, after reporting this to the authors it has
been corrected in version 2.3.4 [IBM12].
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Algorithm 5.10 Verify the proof of correctness for A.

1: function CL-verify-A((A, e, v′′), (c, d̂), nA, (n, S, Z, {Ri}i∈M))
2: Q← Ae mod n

3: Â← Ac+d̂·e mod n

4: if c 6= Hash(Q,A, Â, nA) then
5: return Invalid
6: return Valid

Algorithm 5.11 Finish a blind Camenisch-Lysyanskaya signature.
1: function CL-blind-finish(v′, (A, e, v′′))
2: v ← v′ + v′′

3: return (A, e, v)

5.1.4 Proving Knowledge of a Signature
Blind signatures hide (a number of) the messages from the signer during signature
generation. The goal of proving knowledge of a signature is to hide (a number of) the
messages from the verifier during signature verification as well as to hide the actual
value of the signature to prevent traceability. This process, as depicted in Figure 5.2,
allows the user to prove that she has a signature over one or more (possibly hidden)
messages without revealing the actual signature to the verifier.

To hide the Camenisch-Lysyanskaya signature (A, e, v) and prevent linkability
based on the signature values A, e, and v the signature is randomised, using Al-
gorithm 5.12. First a randomisation value r is generated to randomise the RSA
signature value A. Next the value v is adjusted such that the signature remains
valid, that is, it still satisfies (5.2):

A′e = (A · Sr)e = Ae · Se·r

= Se·r · Z
Sv ·

∏
i∈MRmi

i

= S−e·r · Se·r · Z
S−e·r · Sv ·

∏
i∈MRmi

i

= Z

Sv−e·r ·
∏
i∈MRmi

i

= Z

Sv′ ·
∏
i∈MRmi

i

mod n

Algorithm 5.12 Randomise a Camenisch-Lysyanskaya signature.
1: function CL-randomise((A, e, v), (n, S, Z, {Ri}i∈M))
2: r ← Random( )
3: A′ ← A · Sr mod n

4: v′ ← v − e · r
5: return (A′, e, v′)

This randomisation operation only effectively randomises the A value of the sig-
nature. Hence it is required to hide the e and v′ values using a zero-knowledge proof
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(n, S, Z, {Ri}i∈M), (A, e, v), {mi}i∈M
User

(n, S, Z, {Ri}i∈M), {mi}i∈MD

Verifier

CL-randomise (Alg 5.12)

PK{(ǫ, ν, {µi}i∈M\MD
) : Z = A′ǫ · Sν ·∏i∈M\MD

Rµi
i ·∏i∈MD

Rmi
i mod n}

(Alg. 5.13 & 5.14)

Figure 5.2: Protocol for proving knowledge of a signature.

when revealing this randomised signature and the messages {mi}i∈MD
disclosed to

the verifier. Furthermore the following proof hides the messages {mi}i∈M\MD
that

the user does not wish to disclose to the verifier.

PK{(ε, ν, {µi}i∈M\MD
) : Z = A′ε · Sν ·

∏
i∈M\MD

Rµi

i ·
∏
i∈MD

Rmi
i mod n}

Algorithm 5.13 describes the operations that have to be performed to generate
a proof of knowledge of a signature and the hidden messages. This proof can then
be verified to check the correctness of the signature over the disclosed messages
using Algorithm 5.14. Note that the messages {mi}i∈MD

disclosed by the user are
known by the verifier and are input to the verification algorithm. Similar to the
previous proofs in this scheme the verification relies on the reconstruction of the
commitments, which in this case is possible because of the following equation.

Algorithm 5.13 Prove knowledge of a Camenisch-Lysyanskaya signature.
1: function CL-prove-D({mi}i∈M\MD

, (A′, e, v′), nD, (n, S, Z, {Ri}i∈M))
2: ẽ← Random( )
3: ṽ ← Random( )
4: Z̃ ← A′

ẽ · Sṽ mod n

5: for each i ∈M \MD do
6: m̃i ← Random( )
7: Z̃ ← Z̃ ·Rm̃i

i mod n

8: c← Hash(A′, Z̃, nD)
9: ê← ẽ+ c · e
10: v̂ ← ṽ + c · v′

11: for each i ∈M \MD do
12: m̂i ← m̃i + c ·mi

13: return (c, A′, ê, v̂, {m̂i}i∈M\MD
)
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Algorithm 5.14 Verify the signature proof of knowledge.
1: function CL-verify-D((c, A′, ê, v̂, {m̂i}i∈M\MD

, {mi}i∈MD
), nD, (n, S, Z, {Ri}i∈M))

2: Ẑ ← Z−c ·A′ê · Sv̂ mod n

3: for each i ∈MD do
4: Ẑ ← Ẑ ·Rc·mi

i mod n

5: for each i ∈M \MD do
6: Ẑ ← Ẑ ·Rm̂i

i mod n

7: if c 6= Hash(A′, Ẑ, nD) then
8: return Invalid
9: return Valid

Ẑ = Z−c ·A′ê · Sv̂ · (
∏
i∈MD

Rmi
i )c ·

∏
i∈M\MD

Rm̂i
i

= Z−c ·A′ẽ+c·e · Sṽ+c·v′ ·
∏
i∈MD

Rc·mi
i ·

∏
i∈M\MD

Rm̃i+c·mi
i

= Z−c ·A′ẽ ·A′c·e · Sṽ
′
· Sc·v

′
·
∏
i∈MD

Rc·mi
i ·

∏
i∈M\MD

Rm̃i
i ·

∏
i∈M\MD

Rc·mi
i

= Z−c · (A′e · Sv
′
·
∏
i∈MRmi

i )c ·A′ẽ · Sṽ′ ·
∏
i∈M\MD

Rm̃i
i

= (A′e · Sv
′
·
∏
i∈MRmi

i )−c · (A′e · Sv′ ·
∏
i∈MRmi

i )c ·A′ẽ · Sṽ′ ·
∏
i∈M\MD

Rm̃i
i

= A′ẽ · Sṽ
′
·
∏
i∈M\MD

Rm̃i
i

= Z̃ mod n

Note that this equation uses (5.3) and hence depends on the validity of the signature
used to generate this proof. If the triple (A, e, v) is not a valid signature, that is
(5.3) does not hold, the proof will fail.

5.2 Identity Mixer Credentials
The Identity Mixer technology is tightly built upon the Camenisch-Lysyanskaya
signature scheme and its protocols. The blind signature scheme provides the issuance
protocol where the messages become the contents of the credential. The protocol
for proving knowledge of a signature is used as the credential verification protocol.

An Identity Mixer credential contains a master secret s, which belongs to the
user and is never revealed, and a collection of attributes {ai}i∈A, where A denotes
the set of attribute indices. Hence, the sets of message indices for the issuance
protocol become {mi}i∈MH

= {s} andM = MH ∪ A. As a result of the issuance
protocol the user obtains a signature (A, e, v) over these values which completes the
credential.
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Figure 5.3: A visual representation of an Identity Mixer credential.

To summarise, an Identity Mixer credential, as depicted in Figure 5.3, consists of:
• the user’s master secret s,

• a collection of attributes {ai}i∈A, and

• a signature (A, e, v), over the user’s master secret and the attributes, where

A =
(

Z

Sv ·Rss ·
∏
i∈AR

ai
i

)d
mod n and d = e−1 mod (p′ · q′).

This credential can now be used with the protocol for proving knowledge of a
signature to selectively disclose the attributes to a verifier. In this case the set
of disclosed messages MD ⊆ A is a selection of the attributes contained in the
credential. Using Algorithm 5.13 the user can now generate a proof of knowledge
that can be sent to the verifier in order to reveal the attributes and to prove that
they are signed by the issuer.

This is the core of the Identity Mixer system that we have implemented on a
smart card, for extensions of this proof which provide more features we refer the
reader to the specification of the Identity Mixer technology [IBM12].

5.2.1 Direct Anonymous Attestation
Direct anonymous attestation [BCC04a] is a technology based on Identity Mixer, but
it omits the attributes, henceM =MH andMD = ∅. It allows a user to convince a
verifier that she uses a platform that has embedded a certified hardware module4 by
proving knowledge of the signature that certifies the module. The protocol protects
the user’s privacy: if she talks to the same verifier twice, the verifier is not able to
tell whether or not he communicates with the same user as before or with a different
one.

5.3 Identity Mixer on Smart Cards
We are not the first to develop an implementation of the Identity Mixer on a smart
card. In 2009 Bichsel etal. [BCGS09] implemented a minimal Identity Mixer system
on a Java Card whereas Sterckx etal. [SGPV09] did the same for direct anonymous
attestation. They provide the first implementations of this technology on smart
cards. The major drawback of these implementations is the running time of several
seconds which is still too much for being really practical.

4Direct anonymous attestation has been adopted in 2004 by the Trusted Computing Group in
the Trusted Platform Module specification as the method for remote authentication of a hardware
module.
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Figure 5.4: System architecture for Identity Mixer on a smart card.

Our system consists of two parts, depicted in Figure 5.4, a terminal (a) which
interacts with a card (b) using APDUs. The terminal application is written in
Java and uses the Identity Mixer cryptographic library5 provided by IBM Research.
Thanks to Patrick Bichsel, version 2.3.4 of this library provides interfaces for the
various roles in the protocols such that we could create an extension to this lib-
rary, the terminal service6, which takes care of all smart card specifics. The service
implements the user roles of the Identity Mixer issuance and verification protocols,
described by the Recipient and Prover interfaces respectively. These interfaces are
implemented by translating all Java method calls from the library into the corres-
ponding APDU commands and converting the Java data types to raw byte arrays,
suitable for APDU communication.

The Identity Mixer application7 on the card takes care of handling the incoming
APDUs and storing the values into the internal data structures. While handling the
communication with the terminal is the largest part of the application, the main
part is the implementation of the cryptographic operations for the Identity Mixer
protocols. This allows the card to perform the user roles without depending on the
terminal for any computations or proof generation. The only thing the terminal is
responsible for is providing the data in the correct format.

5.3.1 Smart Card Implementation
Just as with the U-Prove implementation, we have chosen to use the MULTOS C
interface to do our prototype implementation of Identity Mixer. The programming
environment is convenient for smart card programming and allows us some more
flexibility for memory management. It will be explained below why this is crucial.

Implementing the Identity Mixer specification did not turn out to be that hard in
the beginning, the available API makes it easy to implement the cryptographic pro-
tocol. In principle, it is a direct translation from the mathematical description to API
calls. The only API restriction we came across was that the ModularExponentiation
function does not accept exponents larger than the modulus size. In our case

5The library is available for download at https://prime.inf.tu-dresden.de/idemix/ while our
patches can be found at https://github.com/credentials/idemix_library.

6https://github.com/credentials/idemix_terminal
7https://github.com/pimvullers/idemix_multos/
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this only involves exponentiations with base S (see details in Section 5.1). Hence
we added a function SpecialModularExponentiation which implements the same
method as used by Bichsel etal. [BCGS09], that is, splitting one exponentiation up
into two8 exponentiations and one multiplication.

Our initial implementation only used static memory to store the variables. This
allowed us to work without thinking about which memory segment to use. The
drawback of this approach was a bad performance caused by the EEPROM memory
which takes a long time, compared to RAM, to write new values.

Once we had a functionally correct implementation, we started to optimise. This
was done by moving the buffer, which stores the intermediate results for larger
computations, to the public memory. The next step was to move the session variables
to the dynamic memory, which required careful organisation due to the limited
amount of available storage. However, when the dynamic memory use increased the
stack-based execution model started to cause trouble.

Initially, the stack could use the full size of the dynamic memory, such that we
had sufficient space to use functions and put the (relatively) large input values on
the stack. When using the C-interface, the compiler takes care of managing the
stack and putting input values on it when an instruction needs this. However, this
makes it difficult to get an idea on how much space the stack actually needs. By
trial and error, we discovered that we used quite some amount of memory for the
stack, which left us with only limited amount of space for session variables.

To improve this situation, we reduced the number of function calls by inlining
some convenience functions. We also switched to using global variables instead of
function parameters, such that when we use a function, it does not require much
space on the stack. To get the last few, often used, variables into RAM, we decided to
split up some computations into smaller parts such that the values to be put on the
stack also get smaller. For example, additions can be computed using addition with
carry, and multiplications using grade-school multiplication. This adds a number
of extra operations, but it is worth the memory gain which results in improved
performance.

Finally, we translated most parts of the cryptographic C code to MULTOS as-
sembly code which allowed us to optimise the use of stack and reduce the amount
of memory operations during calculations. This was required since the provided
C-functions moved the values from the stack to the variable locations, while they
are needed again in the next operation. By doing this we could reduce the amount
of memory required for intermediate values which in the end allowed us to getall
necessary variables in RAM.

5.4 Performance Results
There are two important performance measures: the time it takes to issue a new
credential to the card, and the running time of the verification protocol.

For these performance tests we’ve used, where possible, the same test vectors as
with the U-Prove implementation in order to get comparable results (see Chapter 6

8This method actually requires three exponentiations, but we can precompute one exponenti-
ation during initialisation, since we only need this method for the base S.
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Figure 5.5: Identity Mixer credential issuance times for various numbers of attributes
( : computation time, : overhead).

for a detailed comparison). Furthermore, our implementation uses a modulus size of
1024 bits, which provides a minimal level of security, but an acceptable performance.
Given the amount of RAM on the card and this size of the modulus, and hence the
size of all group elements, we can support at most 5 attributes per credential in our
implementation.

For issuance, we measured the running time of the protocol and determined how
much time was actually spent on computations and which part was used to transfer
and store the values (marked as overhead; see Figure 5.5). From these results we can
conclude that the number of attributes included in a credential has only a minimal
effect on the computations. An increase in the number of attributes does, however,
result in an increase of the overhead of approximately 100 milliseconds per attribute.
This is caused by the additional data that has to be transferred and stored on the
card.

Sterckx etal. [SGPV09] implement the direct anonymous attestation protocol,
which is derived from the Identity Mixer protocols, on a Java Card. With a 1024 bits
modulus they achieve a running time of 2.4 seconds of which 19% is overhead, which
gives a computation time of approximately 1.9 seconds. This is good, and in line
with the results we got, but unfortunately the direct anonymous attestation protocol
does not support any attributes as it is just targeted at anonymous authentication
and hence only uses a secret key.

Bichsel etal. [BCGS09] from IBM Research Zürich also implemented a variant of
the direct anonymous attestation protocol on a Java Card. They report a running
time of 7.4 seconds for a modulus size of 1280 bits, which is larger than the 1024 bits
we used. It is unclear, however, which transaction time they measured. But again,
this implementation does not include any attributes.

For selective disclosure, we measured the running times of four configurations
(see Figure 5.6). These configurations have been chosen because two is the smal-
lest number of attributes for which selective disclosure makes sense and five is the
largest number of attributes that we can currently keep in memory while not using
EEPROM for computations during the transaction. By comparing these graphs,
it is clear that each attribute that is disclosed reduces the computation time with
roughly 100 milliseconds. Also, the scenario in which all attributes are disclosed
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Figure 5.6: Identity Mixer credential verification times for different configurations
( : computation time, : overhead).

results in similar computation times, with only slightly increased overhead for the
large number of attributes that have to be sent to the terminal.

Comparing our work with the implementations by Sterckx et al. [SGPV09] and
Bichsel et al. [BCGS09] makes no real sense since they do not offer selective disclosure
of attributes. It is, however, clear that our implementation provides a significant
performance improvement over these implementations. For example, Sterckx etal.
need 4.2 seconds to hide only the secret key while our implementation can hide the
secret key and two attributes of a single credential in 1.1 seconds.

Finally, we take a look at the memory requirements for our implementation.
To store a credential with two attributes 1.4KB of EEPROM is required. Each
additional attribute for this credential requires another 160 bytes. This means that
a card can contain approximately 30 credentials (when we store five attributes per
credential). The large size of the credential values also has an impact on the amount
of memory required to perform the computations. For the verification protocol this
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amounts to 1.9KB of memory and 1.5KB for the issuance protocol. We ended up
using the APDU buffer as scratch area in order to perform all calculations in RAM.
However, recent research [dlPHV14] shows that these memory requirements can be
reduced at the expense of an increased running time. This allows the implementation
to be extended with additional functionality whereas this is not possible in the
current implementation described in this chapter.
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Chapter 6

Discussion

In the previous chapters we described the attribute-based credential technologies and
the performance of their smart card implementations individually. In this chapter
we compare them with each other to determine their (relative) strong and weak
points.

6.1 Attribute-based Credential Technologies
When we compare the technologies on the cryptographic level it is clear that different
approaches can be taken to achieve the same goal. During issuance both U-Prove and
Identity Mixer use a blind signature protocol to construct a credential, whereas the
self-blindable credentials use a regular signature scheme. This can be explained by
the fact that in the latter case the user’s public key is used for issuing the credential,
whereas the former involves the user’s secret. Another difference at this stage is that
Identity Mixer supports committed values to be included in the credential while U-
Prove and the self-blindable credentials require all the attribute values to be known
to the issuer1.

Issuer unlinkability is satisfied by each of the technologies. Identity Mixer and
the self-blindable credentials require the issuer’s signature in the credential to be
randomised to achieve this, while the U-Prove issuance protocol results in an un-
linkable signature. The signature randomisation also provides (native) multi-show
unlinkability, whereas the U-Prove technology requires multiple signatures in order
to provide this privacy property.

When it comes to credential verification, the self-blindable credentials provide
the most basic scheme. Selective disclosure of attributes is not applicable since a
credential only contains a single attribute statement. Also, because the attribute
statement is contained in a regular certificate it cannot be used to prove properties
of the attribute value, such as proving that the current date is within the validity
period specified in the attribute. Both U-Prove and Identity Mixer offer selective
disclosure of attributes and support the construction of zero-knowledge proofs in
which properties of the attributes can be proved.

1The U-Prove technology does provide an information field that is hidden from the issuer, but
this field is always disclosed during verification which makes it different form a regular attribute.
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Table 6.1: Comparison of attribute-based credential technologies.

Self-blindable
U-Prove Identity Mixer

Credentials

issuer unlinkability X X X

multi-show unlinkability X indirectly2 X

blind signatures X X

committed values X

signature randomisation X X

selective disclosure X X

zero-knowledge proofs X X

elliptic curve cryptography X not used not supported3

Another aspect is the type of cryptography used by the different technologies.
Because the self-blindable credentials are based on elliptic curve cryptography, they
are rather compact and require less communication between smart card and terminal.
U-Prove can also be implemented using elliptic curve cryptography, since it relies
on the discrete logarithm problem. While this would have been an ideal solution
to eliminate the communication overhead, we do not have any cards that provide
a proper interface which would allow us to implement U-Prove based on elliptic
curve cryptography. Still, the prime-order subgroup construction used by U-Prove
provides an advantage over the RSA-based approach used by Identity Mixer: it
allows for modular reduction of the exponents in the protocols, which results in
smaller session variables.

The above mentioned differences and similarities are summarised in Table 6.1.
Note that this overview only focuses on the aspects of the technologies that we looked
into. Other interesting overviews are provided by Lapon et al. [LKdDN11, Lap12],
focusing on revocation strategies, and Corella [Cor11a, Cor11b], focusing on the use
of attribute-based credentials in the context of the United States national strategy
for trusted identities in cyberspace.

6.2 Attribute-based Credentials on Smart Cards
While we are not the first to implement attribute-based credentials on smart cards,
we do provide, to the best of our knowledge, the most efficient implementations (see
Section 6.3) with the most functionality. When we consider the existing implement-
ations we can distinguish a few different approaches concerning the use of smart
cards.

2Multi-show unlinkability for U-Prove can be realised by issuing multiple tokens for the same
set of attributes which can later be verified independently.

3Camenisch and Lysyanskaya [CL04] also describe an elliptic curve based signature scheme
which can serve as a basis for attribute-based credentials, but this is not used in Identity Mixer.

68



Table 6.2: Comparison between the device-protection of credentials approach and
the credentials on a smart card approach.

device-protection of credentials credentials on a smart card
characteristics add-on security measure full protocol implementation
card stores only the device-protection at-

tribute or secret
all attributes, other credential
values

card computes short zero-knowledge proof for
the device-protection attribute

complete issuance and verifica-
tion protocols

advantages fast, lightweight, protect any
number credentials using a
single card pre-issued devices

independent use of the card, no
need to trust the terminal

disadvantages trusted terminal required requires more card resources

First, a smart card can be used as a means of hardware-protection for a creden-
tial. In this scenario the card performs only a fraction of the issuance and veri-
fication protocols. This is motivated by the constrained resources of smart cards.
Brands [Bra00, Chapter 6] proposes to use this method for smart card integration
in the U-Prove technology [Paq11c] (see Section 4.5), whereas Bichsel [Bic07] uses a
similar construction to implement protection for Identity Mixer credentials.

In strong contrast to the minimalist hardware-protection implementation, Tews
and Jacobs [TJ09] developed an implementation of attribute-based credentials that
performs all operations on a smart card. A comparison between these approaches
is given in Table 6.2. This credentials on a smart card approach does require more
resources on the card, but it also solves the main disadvantage of the hardware-
protection approach: the smart card cannot be used independently, since it is tied
to computational (and storage) resources external to the card. This means that it
requires a specific, card matching terminal, like the user’s PC, to run the protocols.

The remaining implementations are based on anonymous authentication of the
smart card after which it is trusted to provide valid attribute statements. To this
end, Balasch [Bal08] and Sterckx [SGPV09] have implemented direct anonymous at-
testation (see Section 5.2.1) and Bichsel et al. [BCGS09] have chosen to implement
Identity Mixer without any attributes. These solutions use the unlinkability prop-
erties of the Camenisch-Lysyanskaya signature scheme to achieve the anonymous
authentication of the card. This anonymous authentication approach is also used in
the German identity card (nPA) [BKMN10], except that a different authentication
scheme is used (see Section 1.2.4).

6.3 Smart Card Performance
When comparing the smart card implementations we have to take into account
that they have been developed on different platforms, and more importantly on
different hardware. To be precise, the self-blindable credentials applet runs on an
NXP SmartMX J3A081 chip with the Java Card platform (JCOP v2.4.1 R3), the
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Table 6.3: Performance comparison between the NXP SmartMX chip and the Infin-
eon SLE66 and SLE78 chips (time in milliseconds for 100 successive operations).

SmartMX SLE66 SLE78
contact wireless contact wireless contact wireless

SHA-1 RAM 1110 1136 5120 5274 866 943
SHA-1 EEPROM 1442 1466 6125 6308 1188 1285
RSA-1024 RAM 772 777 1016 1060 668 877
RSA-1024 EEPROM 1941 1952 2936 3041 2449 2898
RSA-2048 RAM 1926 1950 14289 14898 1055 1449
RSA-2048 EEPROM 3838 3865 17237 17956 3473 4192

U-Prove application runs on an Infineon SLE66 chip with the MULTOS platform
(I4F(1-1-2) on 360PE(M)) and the Identity Mixer application runs on the Infineon
SLE78 chip with the MULTOS platform (ML3-36K-R1).

In order to compare the raw performance of the underlying hardware we de-
veloped a small test application that performs some basic operations4 and stores
the outcome either in RAM or EEPROM. The results of these tests are summarised
in Table 6.3. From this we can conclude that the SLE66 is overall slower than the
other cards, with a huge performance penalty when computing an RSA operation
(which is basically a modular exponentiation) with a modulus of 2048 bits5. The
timings of the SLE78 and SmartMX chips are much closer to each other. Here we
notice that the SLE78 is in principle faster than the SmartMX, but also that there
is a larger difference between the contact and wireless (or contactless) interfaces as
well as between the memory used (RAM or EEPROM).

6.3.1 Credential Issuance
With this in mind we first look at the performance of the implementations during
issuance. The issuance process for the self-blindable credentials does not involve
any computations on the card, since it only has to store the credential. This makes
it the most efficient implementation at this point since both U-Prove and Identity
Mixer have to perform a blind signature protocol to issue credentials. To make
the comparison between those two easier we put their issuance performance graphs
(Figure 4.5 and Figure 5.5) next to each other in Figure 6.1.

Based on these graphs it is clear that the Identity Mixer implementation offers a
clear improvement over the U-Prove issuance times. Not only are the absolute values
better, the extra time it takes to issue more attributes does not increase as much
as with the U-Prove implementation. However, we also need to take the hardware
platform (Infineon SLE66 vs SLE78) into account, which in this case is in favour
of the Identity Mixer implementation. Furthermore, our U-Prove implementation is

4A message digest computation using SHA-1; and two RSA encryptions using a random public
key (with random exponents), one with a 1024 bits modulus and one with a 2048 bits modulus.

5Probably the cryptographic co-processor of the SLE66 chip does not support this operation
directly such that a software solution is needed to handle operations involving a 2048 bits modulus.
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Figure 6.1: Credential issuance performance for various numbers of attributes
( : computation time, : overhead).

built according to the first revision [Paq11a] of version 1.1 of the U-Prove crypto-
graphic specification, whereas later revisions [PZ13], include an optimised issuance
protocol in which the computation of the signature value z′ is mostly performed by
the issuer (as described in Section 4.3). Taking this optimisation and a switch to the
SLE78 platform into account, the U-Prove implementation should get a reasonable
improvement in its issuance performance bringing it closer to the results we got from
the Identity Mixer implementation.

6.3.2 Selective Disclosure of Attributes
Since a self-blindable credential only contains a single attribute, there is no selective
disclosure option in the credential verification protocol. In this case, the user just
chooses which attribute(s) to reveal, and hence which credential(s) to use. Thus, to
show multiple attributes the protocol has to be performed multiple times, which also
means that the transaction time is multiplied. This in strong contrast to the other
technologies, where revealing more attributes, from the same credential, actually
reduces the running time, as can be seen in Figure 6.2.

Comparing the results from Figures 6.2 and 6.3, it is clear that the U-Prove
technology offers the best verification performance. The computation time for the
verification of a U-Prove credential is overall lower than the computation times of
the other technologies, even when a U-Prove credential contains five attributes of
which only a single attribute is revealed. This performance could even be improved
when the SLE78 chip can be used instead of the SLE66. Hence we can conclude
that the signature randomisation performed by Identity Mixer and the self-blindable
credentials has a significant impact on the running time of the verification protocol.

While the multi-show unlinkability property has a negative effect on the running
time for Identity Mixer and the self-blindable credentials, it requires less storage on
the card then U-Prove. This is due to the fact that to achieve multi-show unlinkabil-
ity the card has to store multiple U-Prove tokens. Given that storage space is rather
limited on smart cards6, this is a serious drawback of the U-Prove technology.

6A typical modern smart card only has 36 to 144 KB of EEPROM for storing application data.

71



0

645

1290

0 1 2

#
d
is
cl
o
se
d

0

1000

time (ms)

(a) Self-blindable Credentials

550
487

433
372

304
245

0 1 2

#
d
is
cl
o
se
d

0

1000

time (ms)

(b) U-Prove

1099

997

895
969

869

768

0 1 2

#
d
is
cl
o
se
d

0

1000

time (ms)

(c) Identity Mixer

Figure 6.2: Credential verification performance with two attributes ( : computation
time, : overhead).

869
814

764
708

651
594

648
586

530
469

406
343

0 1 2 3 4 5

#
d
is
cl
o
se
d

0

1000

time (ms)

(a) U-Prove

1454

1352

1226
1149

1025
947

1287

1185

1063
985

864
784

0 1 2 3 4 5

#
d
is
cl
o
se
d

0

1000

time (ms)

(b) Identity Mixer

Figure 6.3: Credential verification performance with five attributes ( : computation
time, : overhead).
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6.4 Final Remarks
The goal of the research presented in this thesis has been to

develop efficient smart card implementations of attribute-based credentials

and

compare various cryptographic systems for attribute-based credentials.

Compared to the existing smart card implementations mentioned in the previous
section, we have made a clear performance improvement with all of our implement-
ations. These implementations are not only faster, but also provide full credentials
on a smart card instead of the partial solutions that have been developed to cope
with the smart card shortcomings. With transaction times around, or even below
one second we can conclude that these are, to the best of our knowledge, the first
implementations that offer an acceptable performance for practical use.

The development of these prototypes allowed us to analyse the different techno-
logies both from a technical and functional perspective. Due to the maturity and
the multi-show unlinkability feature of the Identity Mixer technology that smart
card implementation has been selected for use in a pilot project called I Reveal My
Attributes or IRMA for short. This pilot aims to gain more experience in the prac-
tical use of these kinds of privacy-preserving technologies and the usability of smart
card implementations therein. Please visit https://www.irmacard.org/ for more
information and the latest news on this project.

This IRMA project is a direct consequence of the demonstrated efficiency of
our smart card implementations, in particular for Identity Mixer. This shows the
impact and innovative power of our work in privacy-friendly identity management.
The IRMA project has the wider goal of demonstrating the broad applicability of
attribute-based credential technologies, and of the availability of a viable alternative
for current smart card-based solutions. The availability of these privacy-friendly
alternatives and the growing interest for privacy-by-design, in particular in pri-
vacy regulations, should lead to further innovations that can replace the traditional
privacy-unfriendly identity solutions (typically based on unique identifiers).
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