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Chapter I

Instructive coatings for biological guidance of bone implants
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Jeroen JJP van den Beucken, John A Jansen*
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1. Introduction

Load-bearing bone implants fordental and orthopedic applications to replace hard tissue 

are generally made from bioinert materials, including titanium, stainless steel, cobalt-

chromium, alloys or certain ceramics (e.g. alumina and zirconia). Extensive efforts have 

been dedicatedto the optimization of the interaction with bone tissue at the implant

interface via surface modifications to enhance the surface biocompatibility and 

osteoconductive properties of these implants. Still, implant failure remains a problem for 

especially clinical cases characterized by compromised local or systemic conditions (e.g. 

osteoporosis and diabetes).1

Biomaterials research is evolving from the use of bioinert and biologically passive

implants toward actively interacting implants that stimulate tissue regeneration. 

Currently, there is an increasing interest in biomaterials that are capable of activating 

protein adsorption processes and specific cellular responses. Surface physico-chemical 

properties need to be modified in order to transform passive inert implantsurfaces into 

active ones able to instruct the biological environment toward regeneration of bone tissue

(Figure 1). For instance, physical surface modifications in topography or macrostructural 

properties have been reported to concentrate more bone morphogenetic proteins (BMPs) 

and stimulate osteogenesis.2, 3On the other hand, chemical surface modifications have 

been shown to play an essential role in bone tissue responses.4-10For ceramic coatings, the 

liberation of certain ions from the implant surface into the surroundings increases local 

super-saturation of the biologic fluid causing precipitation of carbonated apatite that 

incorporates calcium, phosphate and other ions, as well as proteins, and other organic 

compounds.11 Furthermore, the immobilization of biomolecules into the coating materials 

allows implants to deliver drugs and growth factors.12 In addition, when referring to 

organic coatings, the use of organic compounds derived from the extracellular matrix 
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(ECM) of boneattempts to stimulate mineralization and/or adhesion of cells onto the bone 

implant surfaces.

This review aims to provide an overview of surface modifications for load-bearing bone 

implants. Special attention is devoted to the most recent developments of inorganic and 

organic coatings for bone implantsthat actively interact with bone tissue to aid skeletal 

repair and reconstruction.

Figure 1.Schematic overview of a bone implant.
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2. Inorganic coatings

Bone tissue is a composite that exhibits a richhierarchicalstructure.The cells within bone 

tissue are embedded in an extracellular matrix made of organic and inorganic compounds,

which permit bone tissue to remodel and adapt its structure in response to mechanical 

stress (Figure 2).More specifically, the strength of bone tissue is related to the orderly 

interspersed inorganic crystals within the organic compounds.13, 14 These crystals have an 

apatite structure (i.e. Ca10(PO4)6(OH)2 for hydroxyapatite), in which calcium and 

phosphate are the most prominent elements. Synthetic inorganic materials have therefore 

been extensively explored to mimic the mineral part of bone tissue for bone 

implantologyapplications.

Figure 2. Hierarchical levels of bone structure.
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2.1. Properties and bonding mechanism of CaP-based ceramics

Calcium phosphate (CaP) ceramics are synthetic materials that share common mineral 

phase properties with bone tissue and are biodegradable, bioactive and osteoconductive.15

CaP ceramic materials are characterized by their hardness, strength, low electrical 

conductivity, brittleness and inferior mechanical properties. Due to their inferior 

mechanical properties, the application of CaP ceramics as bulk materials under load-

bearing conditions is limited. Used as implant surface coatings, these CaP ceramics

provide a physical matrix at the implant surface suitable for interaction with bone tissue.

CaP ceramics bond to bone tissue through the release of ions from the implant surface 

inducing apatite nucleation, followed by the formation of a carbonated apatite layer on the 

biomaterial surface.16 This apatite layer at the surface is chemically and 

crystallographically equivalent to the bone tissue mineral phase. As such, this carbonated

apatite layer creates an ideal environment for protein and cellular attachment and 

subsequent strongly bonded bone formation. Several parameters of CaP ceramics, either 

in bulk or coating form, have been demonstrated to alter protein binding, cell-material 

interactions and implant resorption rate. These inherent parameters include chemical 

composition, crystallinity, surface area, surface charge, surface topography and porosity, 

elasticity and fatigueof the implant surface.

2.1.1. Pure CaP-based coatings

CaP-based ceramic coatings were originally developed to improve bone-implant 

attachment and enhance surface reactivity, for example of dental implants and metallic 

prostheses, because of their favorable bioactivity and osteoconductivity. Surface 

properties of the implant material such as coatings roughness, chemical purity, and 

topography should be optimized to improve osseointegration.Bioactive materials, such as 
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CaP ceramics, several classes of bioglasses, calcium carbonates and calcium sulfates, 

evoke specific biological responses, stimulate bone tissue formation and directly bond to 

adjacent bone tissue. 

There are several CaP phases, the most commonly used for bone ingrowth has been 

hydroxyapatite (HA; Ca10(PO4)6OH2), which has crystalline and molecular structure 

similarities to the inorganic phase of bones and teeth.17-19 Other structures include 

brushite (DCPD, CaHPO4.H20),and tricalcium phosphate (α-TCP and β-TCP, Ca3(PO4)2)

have been used as bioactive coatings to modify the surface of bioinert metals or 

polymers.20At physiological pH (between 7.2-7.6), HA is the most stable CaP phase. The 

partial dissolution of the ceramic (i.e. release of ions) initiates the re-precipitation of 

biological apatite crystals and subsequent proteinsand cells attachment to the implant 

surface. Amorphous CaP coatings have higher dissolution and re-precipitation rates than 

the crystalline CaP coatings and present faster bone formation21 and produce higher cell 

differentiation in vitro studies.21, 22 However, crystalline CaP coatings are preferred when 

long-term stability of the implant is desirable. The biological properties of these CaP-

based ceramic coatings are related to their chemical composition, Ca/P ratio, 

crystallographic structures and solubility. Consequently,the release of ions and the

interaction with body fluid, cells and tissue of CaP implant coatings differs related to 

specific CaP coating structure.23, 24

2.1.2. Incorporation of active ions into CaP-based ceramic coatings

In an attempt to further increase the biological performance of CaP-based ceramic 

coatings, research focused on the incorporation of ions into the ceramic lattice.Ionic 

doping not only changes the chemical composition but also physicochemical properties,

such as morphology and crystallinity. Numerous articles have claimed that silicon (Si)
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substitution into the crystal structure of CaP ceramics, in particular HA, positively 

influences the biological response compared to pure CaP coatings.25-27For example, Patel 

et al.26compared granules of pure HA and Si-substituted HA when implanted in a rabbit 

model; more bone ingrowth and bone-implant coverage were found with the 

incorporation of silicate ions into the HA structure. Similar results were obtained by Hing 

et al.27using porous HA and silicate-substituted HA scaffolds.The authors claimed that the 

presence of Si ions is responsible for an increased collagen deposition, cells 

differentiation, bone ingrowth and repair.However, a recent critical review on Si-

substituted CaP coatingshas shown that there is no experimental evidence that Si ions are 

released (at sufficiently high concentrations) from the CaP lattice in vitro or in vivo

studies25. The heterogeneity of studies based on Si-substituted CaPremain inconclusive 

regarding the cause for the positive biological responses: topographical effects or the 

release of Ca ions insteadof the Si ions release. A mayor criticism is moved concerning 

the analysis of the effective principle through Si ions could enhance bone deposition or 

formation25.The incorporation of magnesium (Mg)ions into HA in an in vivostudy has 

shown that Mg-substituted HA enhances the osteoconductivity and resorption compared 

to commercial HA. Landi and Tampieri highlighted how Mg substituted hydroxylapatite 

(HA) has chemico-physical properties that increase solubility compared to synthetic HA 

that resemble more the characteristics of natural HA28. Experiments substituting calcium 

by strontium (Sr) ions have been performed in several calcium phosphate ceramics, such 

as HA29, 30, β-TCP31 and α-TCP32. Fielding et al. showed that the addition of silver (Ag) 

and Sr dopants to the HA coating enhanced cell proliferation and differentiation activity 

compared with pure HA coating.33Lithium (Li) incorporation into the CaP coating 

changes the coating morphology and interferes with the CaP crystallization. The presence 

of lithium has been demonstrated to enhance MG63 cell attachment and early 
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proliferation.34 Lastly, zinc (Zn) incorporation has also been widely studied. In vivo 

studies demonstrated more bone apposition when using low concentrations of zinc (~0.3

wt.%), whereas long-term implantation studies with low concentrations of zinc or high 

concentrations of zinc (~0.6 wt.%) led to an increased resorption of bone.35, 36

2.1.3. CaP-based ceramic coatings with entrapment of biomolecules

HA ceramics have been used as a delivery system for chemicals37, antibiotics38 and 

anticancer drugs.39A final approach toward inorganic surface modifications with 

enhanced biological performance involves the entrapment of biomolecules into a ceramic 

coating, enabling active release of drugs (e.g. anti-microbial coatings). By local delivery 

of antibiotic drugs from a coated implant, the occurrence of post-surgery infections can be 

reduced, enhancing the short and long term stability of a bone implant.12 The use of CaP 

coatings as delivery vehicles for antimicrobial agents such as chlorhexidine has already 

reported its efficacy in an in vitro study by Campbell et al. In this study the incorporation 

of chlorhexidine within the hydroxyapatite (HA) coatings showed an initial rapid release 

followed by a period of slower sustained release. The in vitro evaluation results showed 

that a large “inhibition zone” was formed around the HA/chlorhexidine coating compared 

to HA coating.10Moreover, for compromised situations such as osteoporosis, the 

incorporation of bisphosphonate drugs (e.g. alendronate) into the inner layers of CaP 

coatings has shown beneficial results on osteoblast cells differentiation.40CaP coatings 

used as local delivery of drugs or antimicrobial agents offers the possibility of improving 

efficacy (i.e. dosage near the affected site) and reduce the treatment duration.

A classification of the different instructive inorganic and organic coating materials and 

their interaction when implanted is shown in Figure 3.
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Figure 3. Classification and interaction of instructive coatings.
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3. Organic coatings

The bone tissue extracellular matrix (ECM) is composed of a hierarchical and complex 

structure of inorganic and organic phases. The inorganic or crystalline phase of bone 

represents 50% of the total volume and 70% of the weight, and mainly consists of a stiff, 

carbonated and nano-sized apatite. The organic phase of bone tissue constitutes the 

remaining volume, which comprises collagen (40% in volume of the organic phase) and 

other proteins, such as proteoglycans, glycoproteins (alkaline phosphatase, osteonectin), 

bone sialoproteins and growth factors.

In the last decades, organic biomolecules derived from the ECM have been increasingly 

considered a fundamental source in the development of organic bone implant coatings.41

Bone implants surfaces can be enriched42-44 using organic biomolecules to obtain 

instructive medical devices able induce a biological response at the tissue-implant 

interface. Organic-based coatings involve immobilization of structural proteins, Bone 

Morphogenetic Proteins (BMPs) and growth factors and peptides to stimulate cell 

adhesion onto implant surfaces45, 46 and an approach on the use of pharmacologically 

active biomolecules.

3.1. Surface modifications by ECM proteins

Collagen is the main component of the bone tissue organic phase and it has a fundamental 

structural and functional role. The minimum element is the collagen fibril that is 

composed of a structured repetition of tropocollagen molecules (300 nm size) that are 

interconnected in a right-helix structure.Between tropocollagen molecules, there is a gap 

zone, in which the nano-sized hydroxyapatite crystals can start nucleation and 

mineralization. Moreover, the structural presence of collagen in the ECM is fundamental 

to obtain the mechanical properties of bone tissue.
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Collagen has been used as a coating material to retain biomolecules at the implant surface 

and improve their activity. Collagen-based coatings are able to bind an important ECM 

protein called fibronectin, which plays a major role in the interaction between implant 

surfaces and the surrounding biological medium (e.g. cell adhesion, growth, migration 

and differentiation).47Different research groups have also tried to use collagen to increase 

proliferation or differentiation of osteoblasts and osteoprogenitor cells. Douglas et al.

showed the positive effect of a layer of collagen promoting osteoblasts focal adhesion. 

Rammelt et al. showed a comparison between collagen and other biomolecules in an in 

vivo experiment on a rat model. Their analysis is not focus on the biochemical mechanism 

of action of these biomolecules but it remarks the efficacy of the coated samples in new 

bone formation  48-50.

Osteoblasts (bone forming) and osteoclasts (bone resorbing) are the most important cell 

types in bone tissue. These cells maintain the balance between dissolved and deposited 

mineral phase. This balance between osteoclasts and osteoblasts is defined as bone turn 

over and it is controlled through several signaling pathways. The key element to regulate 

the bone turn over is to affect cell differentiation and proliferation. Lastly, in vivo 

experiments using collagen-coated bone implants have reported successful results, 

evidenced by an improved bone implant contact, bone density and bone formation.51-53

3.2. Surface modifications by growth factors and biomolecules

Osteotropic biomolecules (e.g. growth factors, GFs) have been used to improve tissue 

response and bone formation. GFs are widely used to obtain cell differentiation in in vitro

procedures. Several GFs, including bone morphogenetic protein (BMP), transforming 

growth factor-beta (TGF-β), fibroblast growth factor (FGF), platelet-derived growth 

factor (PDGF), and insulin-like growth factor (IGF), have shown an active role in bone 
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tissue formation also after their immobilization onto implants surface54-56. Stadlinger et

al.investigated GFs that belong to the TGF-β superfamily (e.g. BMP-2, BMP-4, BMP-7 

and TGF-β1) and showed successful results in terms of bone to implant contact, bone 

density and osteoinduction in a pre-clinical study.57

The synergistic effects of collagen and other biomolecules, such as GFs, bone 

sialoproteins or with hydroxyapatite, have shown potential as initiators of mineralization 

by deposition of calcium phosphate onto implant surfaces41, 58, 59.

3.3. Surface modifications by peptides

The use of complete proteins as a coating material can introduce biological effects that 

can become an obstacle to bone cells recruitment or to bone initial contact. The 

immobilization of these biomolecules is often associated with their tendency to lose their 

3D-conformation and hence impedes with their biological activity. As such, their

adsorption to an implant surface often decreases the efficacy of immobilized proteins.  

The use of short peptide sequences derived from entire proteins as coating material can 

offer a solution to this problem.60, 61 The Arg–Gly–Asp RGD peptide sequence62, 63 has 

been widely used and presents a predominant binding site for cells via integrin receptors. 

Various other peptide sequences have been used similarly onto implanted materials. Bone 

implants surfaces enriched with a layer of these peptides demonstrated improved 

biological effects in vitro in terms of cells proliferation, mineralization and adhesion.64-66

3.4. Use of pharmacologically active biomolecules

An alternative selection of molecules for bone implant coatings is offered by 

pharmaceutical research. Especially for compromised health conditions (e.g. patients with 

osteoporosis, osteopenia or diabetes) pharmaceutical drugs can be used for surface 
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modifications in order to provide a localized therapy. Molecules with specific active 

properties, defined as active principles, represent the fundamental material in drugs 

composition. The use of active principles in reduced amounts and in situ(i.e. local 

administration instead of systemic administration) is a challenge for several medical 

fields. Adsorption of locally deliverable drugs onto bone implants can be obtained 

through immersion of implants in a solution that contains active principles prior to

implantation. Anti-osteoporotic drugs, such as bisphosphonates67 or antibiotics like 

chlorhexidine68, are currently adopted to enhance the biological performance of implants 

used in compromised bone conditions69. Bone implants can be coated with active 

biomolecules to become able to face lower bone density in osteoporotic patients or reduce 

fibrotic tissue formation in diabetic conditions. Bisphosphonates can be added as a 

coating material to reduce the number or the activity of osteoclasts in order to modify the 

balance between bone forming and bone resorbing cells.

Immobilization of active biomolecules onto bone implants is the most recent development 

in surface engineering to obtain instructive coatings.70 A recent review on 

bisphosphonates (BPs) showed that BPs that have an affinity for CaP materials can be 

incorporated into CaP coatings by soaking the implants into BPs solution and achieve 

stronger primary fixation by the inhibition of osteoclast action.71
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4. Coating deposition techniques

The most commonly used coating techniques are physical coating deposition methods, 

although there is a trend toward the utilizationof wet-chemical deposition techniques (e.g.

biomimetic and sol-gel deposition techniques) for inorganic and organiccoatings(Table 

1).The deposition of uniform and adherent coatings of any organic biomolecule requires a

deposition technique that does not cause damaged to the biomolecule. The major 

drawbacks of biomolecules used for surface modification include the sensitivity of these 

biomolecules to physicochemical conditions and hence the requirement of controlled 

settings during deposition. In fact, high temperatures or exposure to ion beams or plasmas 

can alter the organic structure of the biomolecules reducing their activity. Several wet-

chemical deposition techniques that allow preservation of biomolecule activity have been 

explored in the past few decades.46

Table 1. Characteristics of deposition techniques.
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4.1. Wet-chemical deposition techniques

Biomimetic deposition mimics the natural deposition of biological apatite and opened up 

a new way to develop biomaterials. It was introduced by Kokubo et al. in 1990 and the 

system originally involved simple immersion of (pre-treated) titanium substrates into a 

so-called simulated body fluid (SBF) to obtain deposition onto the surface of the 

substrates of a biologically active bone-like CaP layer.72 The deposition is performed 

under physiological conditions (37°C, pH 7.4, p(CO2)=0.05 atmosphere and appropriate 

electrolyte concentrations)73 and biomolecules can be dissolved in the liquid and hence be 

incorporated in the growing coating. Several reports have shown the cell and tissue 

response (i.e. differentiation of stem cells into osteoblasts that deposit bone matrix on the 

ceramic surface) by the incorporation of biomolecules in combination to CaP coatings 

using the biomimetic deposition technique. 74-76One of the main advantages of biomimetic 

deposition, in fact, is the possibility of co-precipitatingceramic (nano)particles 

withbiomolecules (e.g. osteogenic agents).77Bone implants have been immersed in a 

suspension containing antibiotics78 or active principles like bisphosphonates79-81 to obtain 

adsorption of these bioactive biomolecules onto the implant surface. Each application 

showed different response according with the expected role of the active agent 

incorporated onto implants through biomimetic deposition.

The sol-gel coating technique involves the immersion of a substrate into a concentrated

solution with a gel-like texture82, 83.This technique provides a resourceful approach to 

synthesize inorganic polymer and organic–inorganic hybrid materials under mild 

conditions. Moreover, sol-gel technique includes inherent advantages such as single step 

manufacturing process, material homogeneity at the molecular level and chemical 

bonding between the substrate and the coating.84
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Figure 4. Schematic representation of electro spray deposition (ESD) apparatus

The electrospray deposition (ESD) technique is an electrochemical coating method with 

promising applicability for inorganic and organic coatings. ESD, schematically 

represented in Figure 4, shares the benefits of preserving biomolecules as the wet 

chemical deposition methods, such as biomimetic or sol-gel, and the deposition control of 

dry methods described for inorganic coating materials. ESD method is applicable to 

solutions or suspensions containing precursor materials that, under the influence of a high

electrical field, creates an aerosol of similarly charged micron-sized droplets are85, 86. 

ESD can be performed at ambient temperature and pressure but requires that precursors 

are particles or molecules that carry an electrical charge or that can be dispersed in 

electrolytic solutions. Also the targets, onto which the coating is applied, have to be 
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conductive. ESD allows for a strong control over physicochemical coating properties such 

as thickness or chemical composition.87

Although dip coating88, sol–gel and biomimetic coatings are suitable for coating a 

complex shape (e.g. porous, 3D, etc.), all these techniques suffer from weak adhesive 

strength. 

4.2. Physical deposition techniques

Other physical coating techniques such as plasma-spraying, pulsed laser deposition, ion 

beam deposition and sputter deposition offer advantages over wet-chemical depositions 

with respect to interfacial strength and crystallinity.

Plasma-spraying was the first coating technique for biomedical applications; this 

technique is also is also very successful for applying CaP coatings on implants due to its 

high deposition rate. Plasma spraying produces coatings with desired chemistry and 

crystallinity, despite poor control of the thickness and surface morphology.89Pulsed laser 

is a technique that allows deposition of thin, dense, well adhering coatings with control 

chemistry and crystallinity.90Ion beam deposition technique (Figure 5 A) is a vacuum 

techniqueused to deposit coatings from precursor materials vaporized. Inherent properties 

and chemical composition of the coating may differ from that of the bulk material due to 

the high energy involved.91Lastly, one of the most frequently applied techniques used to 

prepare CaP coatings by physicalvapor deposition process is radio-frequency (RF) 

magnetron sputtering (Figure 5 B). This techniquedeposits thin coatings chemically 

bonded with the substrate which improves adhesion between the coatings and the 

substrate.92
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Figure 5. Schematic representation of physical deposition technique. (A) Ion beam deposition scheme. (B) 

Radio frequency magnetron sputtering apparatus.
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5. Future perspectives

The science of surface modification has shown significant progress in clinical 

applications through the development of more active inorganic and organic coating 

materials on implant surfaces. However, many scientific and technological challenges 

remain in biomaterials research. Further research and full understanding of fundamental 

aspects of the field such asthe process of bone formation, attachment of proteins and 

specific cells, cell adhesion, bone stimulation or induction by inorganic and organic 

coatings are essential.

The use of CaP as a bone implant surface coating is well established in the field of 

biomaterials research, although the validity and efficacy of efforts focused on substitution 

within the crystal lattice have yet to be thoroughly explored. CaP-based coatings 

employed as a local delivery system of antimicrobials or pharmaceuticals offer great 

potential for medical applications, but still more precise control on local release kinetics 

is required.

Deposition of coating materials can strongly modify implant 

surfacecharacteristics.Different coatings are obtained by selecting precursor materials for 

deposition, but also the coating techniques have a strong role in the final surface 

modifications. A deposited layer of calcium phosphate can assume totally different nano-, 

micro- and macromorphology if biomimetic, electrospray or RF magnetron sputtering

deposition technique is used(Figure 6 A-C).

Incorporation of organic compounds into coatings, such as proteins derived from ECM, 

BMPs andother growth factors, peptides or pharmacologically active biomolecules have 

shown to play an effective role in stimulating cell adhesion to implant surfaces. 

Nevertheless, optimization of coating degradation, immobilization of biomolecules and 

effective concentrations are needed to improve functionality and biological efficacy.A 
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representation of surfaces treated with biomolecules with two different methods isgiven

in Figure 6 D and E.

Figure 6. Overview of scanning electron microscopy images of surfaces of coated titanium sample 
substrates. Different coating techniques are considered and different precursor materials. Inorganic 
coating: (A) Calcium phosphate biomimetic deposition. (B) Calcium phosphate electrospray deposition (C) 
Calcium phosphate RF magnetron sputtering deposition. Organic coating: (D) Wet chemical deposition of 
biomolecules (Alkaline Phosphatase) (E) Collagen deposited with electro spray deposition. Composite 
coating: (F) Calcium phosphate and collagen electrospray deposition.

The heterogeneity of available biomaterials and deposition methods is leading to a 

continuous evolution of surface modifications that combine different techniques and 

materials to obtain solutions for specific needs, such as improved retention of deposited 

materials or to create composite coating layers (Figure 6 F).

Finally, initial research steps have been taken regarding the optimization of surface 

properties for bone implants to be used in compromised situations (e.g. osteoporosis and 
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diabetes research). More reactive surfaces, with direct tissue interaction, have been 

engineered to improve bone quality. Future research strategies should consider validating 

therapeutic safety and effectiveness of therapeutic coatings.

6. Objectives of this study

The principal objective of this thesis was to use Electrostatic Spray Deposition to 

fabricate novel coatings for bone implants, able to improve surface bioactivity. The main 

approach was to investigate the state-of-the-art and determine the materials and the 

methods that could be adopted to rapidly improve titanium-based implant performance 

for orthopedic applications.

The complexity and the heterogeneity of bone tissue served as an inspiration to explore 

the role of different compounds for bone implant surface modifications. Inorganic 

constituents of bone (such as hydroxyapatite), organic and extra-cellular compounds (i.e. 

alkaline phosphatase and collagen) and molecules able to trigger specific behavior in 

bone cells (osteoclast and osteoblast) were the tools used to design new bioactive 

coatings. ESD was adopted as the preferred coating method to exploit its versatility in 

terms of compounds that can be deposited. Regarding inorganic coatings, the described 

research focused on i) the possibility to deposit nano-sized hydroxyapatite crystals that 

resemble the natural bone inorganic phase, ii) the possibility of enrich nano crystals with 

bioactive drugs or bioinorganic substitution and iii) the role of nano crystals coating 

toward biological responses. Organic coatings were obtained using collagen and alkaline 

phosphatase to mimic the natural acellular mechanism to induce (surface) mineralization 

on samples. Biological response to the investigated coating was obtained with in vitro and 

in vivo experiments. 
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More specifically the research described in this thesis aimed to:

1. Investigate the current state-of-the-art for coatings using inorganic and/or organic 

and the methods adopted to deposit such coatings on metallic materials (Chapter 

II);

2. Evaluate the role of deposition parameters of ESD to obtain coatings based on 

nano-sized hydroxyapatite crystals inspired by natural bone inorganic phase 

(Chapter III);

3. Deposit biomolecules preserving their activity and the role of configurations in 

coating performances (Chapter IV);

4. Obtain a bioactive compound, based on hydroxyapatite, able to trigger specific 

cellular (osteoclast) responses and deposit it onto titanium using ESD to obtain 

local therapeutic efficacy (Chapter V);

5. Verify the efficacy of bisphosphonate and nano-sized hydroxyapatite, as single 

compounds or combined, as coatings for bone implants to be used in 

compromised (osteoporosis) and healthy conditions (Chapter VI).

6. Test the efficacy of bioinorganic based coatings obtaining strontium doped 

hydroxyapatite and test its impact on osteoblast behavior (Chapter VII). 
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1. Introduction

The use of medical implants has expanded dramatically during the past decades owing 
to increased life-expectancy, changing lifestyles and improved implant technology. 
Problems related to orthopedic, oral and maxillofacial disorders annually affect millions
of patients that need a long-term solution to regain a high quality of life. Diseases and 
problems caused by damaged or diseased bone tissue represent an annual cost that now 
exceeds 40 billion Euro worldwide[1]. Nevertheless, the rapid increase in the number of 
elderly people and the corresponding growth of the world population 
require that tissues and organs endure longer and are also able to perform in compromised 
health conditions[2].

The musculoskeletal system has structural, protective and mechanical functions. 
Consequently, in order to develop functional replacements for diseased/malfunctioning 
joints or bone-anchored elements (like teeth), extensive and multidisciplinary knowledge 
on bone healing is required. The emergence of modern biology has provided novel 
insights into the biological mechanisms that are responsible for bone healing which 
currently facilitates the development of artificial implants that interact optimally with 
bone tissue[3].

The present review provides an overview of the requirements for bone implants and 
the approaches that are currently investigated to increase their performance by means of 
surface modifications. Both physical and chemical surface modifications are being 
discussed to transform passive inert implants into smart implant surface that actively 
instruct the physiological environment towards regeneration of bone tissue.

2. Bone Implants

2.1. Implants: Interface between Living Tissue and Dead Matter

Bone is a natural and highly hierarchical structured organic-inorganic composite 
material made of collagen fibrils hardened with interspersed hydroxyapatite (HA) 
nanocrystals. Bone is one of the very few human tissues that contains an inorganic phase 
for mechanical reinforcement.

The skeletal system is responsible for the support, movement, and protection of the 
internal organs. During activities such as walking and chewing, heavy loads are 
transferred towards bone tissue which means that artificial implants need to be load-
bearing. Cycles of chewing, for example, are estimated to be of the order of 1 × 105

cycles a year with an average force of 700 N[4,5]. The mechanical properties of bone 
tissue are maintained through a continuous remodeling process of bone formation and 
resorption (bone turnover) that is regulated by “Wolff’s Law”:

“Bone is deposited and reinforced at areas of greatest stress”[6].
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The cells which are responsible for tissue remodeling are osteoblasts (bone-forming) 
and osteoclasts (bone-resorbing)[3]. Once a material is introduced into bone tissue, a 
foreign body response is initiated in the surrounding tissue. In more detail, this response 
consists of the following phases: injury, blood-material interactions, blood clot formation, 
inflammatory responses, granulation tissue development, and tissue remodeling. Bone 
tissue can be formed directly at the implant surface of certain bone-bonding materials 
without the formation of surrounding fibrous tissue capsules, whereas synthetic materials 
are generally encapsulated upon implantation in soft tissue. During a foreign body 
response, the local biological environment is different from the healthy tissue since this 
foreign body response results into elevated concentrations of reactive oxygen species, 
proteolytic enzymes, fibrotic proteins, giant cells and reduced pH values near the implant 
surface. As a result, this altered environment has a strong effect on implanted materials, 
which means that this initial biological response should be the starting point for design of 
novel implant surfaces with improved functionality[7].

2.2. Material Requirements for Load-Bearing Bone Implants

Metals are applied as biomaterials for bone substituting applications due to their 
superior mechanical performances. The elastic modulus of cortical bone ranges from 10
to 20GPa[4,8,9], which is considerably lower compared to values of metallic biomaterials 
that are conventionally used for load-bearing applications such as titanium and stainless 
steel which exhibit elastic moduli of about 118 GPa[10] and 206 GPa[11], respectively. 
Besides elasticity, fatigue properties are also crucial for optimal performance of 
permanent bone implants. The strong resistance to fatigue is an additional factor which 
has prompted the use metals in load bearing applications.

The transmission of load between the artificial implant and host tissue is crucial to 
ensure anchoring of bone implants in bone tissue. Load distribution at the interface 
between a load-bearing bone implant and natural tissue is strongly affected by the 
differences in elastic modulus and mechanical strength. A mismatch in stiffness between 
implants and bone tissue, for example, can cause severe bone resorption due to the 
reduction of stress from bone tissue. This phenomenon, known as stress shielding[4], can 
have severe consequences that compromise the success of bone implants. A material that 
can achieve a strong fixation between bone tissue and the implant surface can transfer the 
load and the stress from the implant to the surrounding bone tissue, thereby ensuring 
sufficient bone density and strength[12].

In addition to its mechanical performance, synthetic materials that are implanted in 
bone tissue need to be non-toxic, non-immunogenic, non-thrombogenic, and non-
carcinogenic[13]. In that respect, titanium and its alloys have become preferred materials 
due to their high specific strength, low elastic modulus which matches with the elastic 
modulus of bone tissue, and most of all, their capacity to form a thin but very stable oxide 
layer (i.e., passivation) on the surface which is responsible for its inertness[14].
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Although bio-inertness can be considered as a beneficial property for load-bearing 
implant surfaces, the advent of regenerative medicine has resulted into a paradigm shift 
with respect to the concept of biocompatibility. As a result, the importance of surface 
modifications has increased considerably. In 1987, biocompatibility was defined as “the 
ability of a material to perform with an appropriate host response in a specific 
situation”[13]. During the following two decades, however, the concept of 
biocompatibility has shifted continuously resulting into changing design criteria for novel 
implant materials. As a consequence, surface properties of implants have gained 
importance since artificial implants are exposed to the surrounding tissue at the material 
surface.As a result, implants are currently designed from a bio-inspired rather than a 
technologically inspired perspective

2.3. From Passive to Active Bone Implant Surfaces

As described above, modifications of bone implant surfaces have received increasing 
research interest in order to orchestrate the physiological healing process and obtain 
biologically active materials that provide biological cues towards tissue regeneration. The 
ability to target and trigger specific responses and recruit the correct type of cells or 
stimulate them to perform optimally requires additional functionality of the bone implant 
surface. The deposition of coatings allows modifying the surface of a material to evoke 
preferred biological responses, including the reduction of non-specific protein adsorption 
and immobilization of compounds that encourage specific interactions with cells. Such 
coatings can be made of materials that degrade in a controllable manner over time without 
compromising the bulk properties of the device, thereby obtaining a modulated response 
that transforms a material from passive to active. Recently, Williams stressed the 
bioactive role of materials as described above by defining biocompatibility as[13,15] “the 
ability of a biomaterial to perform its desired function with respect to a medical therapy, 
without eliciting any undesirable local or systemic effects in the recipient or beneficiary 
of that therapy, but generating the most appropriate beneficial cellular or tissue response 
to that specific situation, and optimizing the clinically relevant performance of that 
therapy”.

In the current review, the term “passive” refers to implants that are not chemically or 
biologically reactive and present rather inert surfaces to the surrounding tissues, whereas 
the term “active” refers to implants that have been modified to deliberately interfere with 
the physiological environment by providing biological cues that trigger specific 
responses.

2.4. Surface Modifications for Bone Implants

Surfaces of bone implants represent the site of interaction with the surrounding living 
tissue and are therefore crucial to enhance the biological performance of implants[16,17]. 
Surface engineering aims to design implants of improved biological performance which 
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are able to modulate and control the response of living tissue. Generally, surface 
engineering includes modification of topographical (i.e., roughness) and chemical (i.e.,
coating) characteristics of a medical device. Topographical modifications of titanium and 
its alloys were aimed at increasing the roughness of implant surfaces, thus increasing the 
surface area of implants compared to larger smooth surfaces. The increased surface area 
increases cell attachment and augments the biomechanical interlocking between bone 
tissue and the implant. To this end, several techniques have been developed, including 
grit-blasting and acid etching. Grit-blasting is obtained by bombardment of implant 
surfaces by means of silica (also known as sand-blasting), hydroxyapatite, alumina or 
TiO2 particles. Acid-etching treatments are generally performed using hydrofluoric, nitric, 
or sulphuric acid. A detailed analysis of topographical modification of implants and its 
relevance for commercial applications has been performed by Dohan Ehrenfest etal.[18]. 
Recently, the emergence of nanotechnology has expanded the scope of topographical 
modifications from the micro- to nanoscale, thereby affecting cells, biomolecules and 
ions at the nanoscale. Nanotechnology is the field that focuses on synthesis, 
characterization and application of materials with at least one dimension sized between 1 
and 100 nm. Recently, this nanoscale dimension has received increasing interest in the 
field of surface engineering, e.g., by developing coatings of thickness below 100 nm or 
using nanoparticles or nanocrystals with dimensions smaller than 100 nm as components 
for nanostructured coatings[19].

Surface modifications based on the deposition of coatings retain the mechanical 
properties of titanium while the functionality of the implant surface can be upgraded by 
application of (bio)chemical compounds that act as cues towards improved bone 
regeneration. Upon successful immobilization of these compounds onto implant surfaces, 
the substrate is responsible for the load-bearing function of the implant whereas the 
coating should facilitate optimal integration into the surrounding tissues.

3.Surface Engineering: Coating Deposition

3.1. Biological Activity of Bone Implant Coatings

The biological response to implanted bone implants is time-dependent and should 
ultimately result into complete integration of the artificial implant within the native bone 
tissue. The initial inflammatory response that follows implant installation determines 
subsequent remodeling phases in the process of bone healing that lead to transfer of 
mechanical forces and the high degree of organization of functional bone tissue[20]. 
Biocompatibility and osteoconductivity of the implant are generally recognized as main 
success factors for satisfactory long-term performance endosseous implants[21].

Every bone implant is recognized by human tissues as a foreign body[13,22,23]. For 
this reason the main aim of coating development until two decades ago was to avoid or 
limit this foreign body response since an excessive foreign body response creates an 
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intermediate layer of collagenous fibrous tissue in between the material surface and the 
hosting tissue[22,23]. This fibrous capsule will ultimately result into loss of implant 
function and ultimately implant loosening. Coatings can be applied onto bone implants to 
avoid soft tissue formation and create a strongly integrated and interlocked transition 
between tissue and the implant surface, a phenomenon that is called osteointegration. 
According to the European Society of Biomaterials, during the consensus conference of 
1987, a material can be defined bioactive if it is “one which has been designed to induce 
specific biological activity”. For materials implanted in bone tissue, bioactive materials 
correspond to implants that induce a direct bond between the implant surface and the 
surrounding bone tissue. 

Summarizing, the primary aim of engineering bone implant surfaces is to positively 
modulate the interfacial response between the implant and host tissue. For this purpose, 
numerous surface engineering methods have been introduced in the last four decades to 
change surface topography and chemistry of endosseous dental implant. Junker et al. has 
systematically reviewed the efficacy of a wide variety of surface modifications including 
roughening of dental implants as well as applications of inorganic (calcium phosphate) or 
organic (adhesion peptides, growth factors) coatings. An overview of the most 
extensively used topography modifications of commercially available dental implants is 
reported in Table 1. The following sections will discuss current trends in surface 
engineering based on inorganic, organic and composite coatings.

Table 1. Overview of commercially available surface modifications (topography) for 
dental implants.

Name Description
OsseoSpeed (Astra Tech AB, 
Mölndal, Sweden)

Titanium oxide blasting followed by chemical modification 
of the surface by hydrofluoric acid treatment

SLActive (ITI; Institute 
Straumann, Waldenburg, 
Switzerland)

Coarse grit-blasting with 0.25–0.5mm aluminum oxide grit 
at 5 bar followed by acid etching

TiUnite (Nobel Biocare 
Holding AG, Zürich, 
Switzerland)

Electrochemical anodization process

Nanotite (3i Implant 
Innovations, Palm Beach 
Gardens, FL, USA)

Sol-gel deposition

Friadent plus (Dentsply 
Friadent, Mannheim, Germany)

large grit blasting (354–500 μm) and acid etching in 
hydrochloric acid/sulfuric acid/hydrofluoric acid/oxalic acid

Ossean (intra-Lock, Boca-
Raton, FL, USA)

is a grit-blasted/acid-etched/calcium phosphate impregnated 
surface
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3.2. Trends in Material for Inorganic Coatings on Bone Implants

In bone tissue, the inorganic phase is mainly composed of carbonate-rich 
hydroxyapatite. Consequently, hydroxyapatite ceramics have always been an obvious 
candidate for deposition as coating onto bone implant surfaces. These hydroxyapatite 
coatings were shown to be bioactive and stimulate the formation of new bone tissue in 
numerous pre-clinical and clinical studies[24–28]. Chemical parameters such as the Ca/P 
ratio, phase composition and crystal structure have been evaluated and tested extensively 
to optimize the performance of CaP coatings. HA coatings showed a persistent significant 
improvement of the osteoconductivity of metallic implants[29–35]. 

During the past two decades, recent trends in research on calcium phosphate (CaP) 
coatings 
mainly focused on modification of its chemical structure and addition of ionic dopants. 
Currently, several types of CaP-based coatings have been explored such as pure HA[36–
44], Si-containing HA (Si-HA) [31,40,45–52], Sr-doped HA [53–56], Mg-substituted HA 
[47], bisphosphonate and HA [55,57], carbonated HA[32,47,58], fluorinated HA[44,59–
61] and antibacterial Ag-containing HA (Ag-HA)[62–67].

3.3. Trends in Material for Organic Coatings on Bone Implants

Over the past two decades, organic compounds derived from the extracellular matrix 
(ECM) of bone issue are increasingly considered as source of inspiration for bioinspired 
design of organic bone implant coatings[68].

Different approaches can be used to upgrade a bone implant from a passive medical 
device to an instructive implant that can solicit a desired tissue response[69–73] using 
organic biomolecules. Organic surface modifications that are currently investigated 
involve immobilization of among others structural proteins, signaling molecules, enzymes 
or peptides onto biomaterial surfaces to target cell response at the tissue-implant 
interface[74,75]. 

A widely investigated approach aims at improving the adhesion of cells onto bone 
implant 
surfaces. ECM biomolecules such as fibronectin, vitronectin, type I collagen, osteopontin, 
and bone sialoprotein[76] have been successfully immobilized onto bone implants. These 
proteins exerted biological effects upon immobilization onto surfaces, but the tendency of 
proteins to fold upon adsorption to an implant surface remains problematic and decreases 
the efficacy of immobilized proteins. However, short peptide sequences derived from 
entire proteins can overcome this problem[77]. Surface-immobilized peptide sequences 
can recruit or trigger specific cellular interactions[77,78]. The peptide sequence that has 
been investigated most extensively so far is the Arg-Gly-Asp (RGD) peptide sequence 
which is the predominant binding site for cells via integrin receptors RGD 
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sequence[79,80], but various other peptide sequences have been used similarly onto 
implanted materials[81–84].

Alternatively, osteotropic biomolecules such as growth factors (GFs) can be 
immobilized onto implant surfaces. Several GFs, including bone morphogenetic protein 
(BMP), transforming growth factor-beta (TGF-β), fibroblast growth factor (FGF), 
platelet-derived growth factor (PDGF), and insulin-like growth factor (IGF), have been 
shown to stimulate formation of bone tissue around implants upon immobilization onto 
their surface. Most emphasis, however, has been put on the immobilization of members of 
the TGF-β superfamily such as BMP-2, BMP-7 and TGF-β1, which have shown 
promising results in enhancing bone formation around bone implants[85–87].

Besides targeting cellular behavior directly, organic biomolecules such as collagen can 
also improve mechanical properties of surface coatings while biomolecules such as 
osteopontin, osteonectin, bone sialoprotein, osteocalcin, or alkaline phosphatase have been 
investigated as initiators of mineralization by deposition of calcium phosphate onto 
implant surfaces. For example, immobilized alkaline phosphatase was shown to induce 
deposition of apatitic mineralization layers in vitro and new bone formation in 
vivo[68,88].

3.4. Trends in Materials for Composite and Combined Coatings on Bone Implants

Since bone is a composite tissue, deposition of composite coatings consisting of 
inorganic and organic constituents is an obvious next step towards design of implant 
coatings with improved bioactivity and efficacy. 

For example, composite coatings composed of collagen and CaP minerals could 
combine the benefits of the mineral phase (in terms of osteoconduction) and the 
collagenous matrix (in terms of abundance of RGD-sequences) to affect cellular adhesion, 
subsequent proliferation, and differentiation phases[89,90]. In addition to the biological 
effects of collagen[91], CaP-collagen composite coatings showed an improved retention 
of CaP crystals onto implant surfaces[92,93].
Also growth factors have been co-deposited with calcium phosphate or collagen coatings 
onto implant surfaces[87,94–97]. In fact, GFs immobilized on titanium implants pre-
coated with collagen showed increased osteogenic properties compared to GFs bound to 
untreated titanium surfaces[98,99]. This may be due to a sustained delivery profile or a 
higher stability of the growth factor[94,100,101].
Infections during or after surgery still remain a big threat that can compromise the short-
and long-term stability of orthopedic implants[102,103]. Therefore, antibiotics have also 
been loaded into CaP coatings onto titanium implants[104]. The coated antibiotic-HA-
composite exhibited a reduced infection rate compared with CaP coatings in vivo[105]. In 
order to reduce the risk of antibiotic resistance also non-antibiotic organic compounds 
with antimicrobial activity like chlorhexidine, chloroxylenol, and 
poly(hexamethylenebiguanide)[106–112] have been investigated as potential alternatives. 
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These organic molecules are commonly used for their broad spectrum of antimicrobial 
action and lower risk of drug resistance.
Composite coatings can also be prepared by incorporating antimicrobial elements such as 
silver ions into organic or inorganic coatings since bacterial resistance against silver is 
minimal[113].
Finally, bone implants are often applied in patients of compromised health. Post-
menopausal osteoporosis, for example, reduces bone density resulting into higher 
prevalence of bone fractures. The use of a local active compound for the prevention or 
reduction of these osteoporotic fractures could improve the efficacy and fixation of bone 
implants into osteoporotic bone. Bisphosphonates (BPs) are a group of synthetic drugs 
with a structural backbone similar to inorganic pyrophosphate with a general structure of 
PO3-C-PO3. BPs have been used, for long times, for the treatment of skeletal metabolism 
disorders such as osteoporosis, Paget’s disease, tumor-associated osteolysis and 
hypercalcemia[114–116]. BPs act by reducing osteoclasts (bone resorbing cells) activity 
but systemic delivery of BPs by oral administration or intravenous injection is associated 
with serious side-effects[117,118]. The affinity of BPs for HA has been used to develop 
new CaP-BP composite coating systems for the controlled release of BP from bone 
implants[119–121]. The reduced activity of bone resorbing cells induced an improved 
mechanical interlocking of the implant with the hosting bone tissue and correspondingly a 
faster recovery from surgery[122]. 

4. Coating Techniques

In order to improve surfaces properties, innovative coating compounds only are not 
sufficient. Techniques and technology used to deposit these substrates onto implants 
surfaces have witnessed a constant evolution during the past decades. Calcium phosphate 
are the largest group of materials used for coating deposition, for which several types of 
deposition techniques have been investigated including dip and immersion coating, 
electrophoretic deposition, laser deposition, thermal spraying (including plasma spraying 
and high-velocity oxy-fuel combustion spraying), biomimetic deposition and sol-gel 
deposition[123]. Characteristics of several commonly used coating techniques including 
their advantages, limitations and precursors used are summarized in Table 2.

4.1. Dry Deposition Techniques

Among all the coating techniques that have been investigated for deposition of CaP 
coatings, physical coating techniques are the ones that most often reached the commercial 
market. These physical coating techniques, such as plasma-spraying, radio frequency 
magnetron sputtering, pulsed laser deposition (PLD) and ion beam assisted deposition 
(IBAD) have been used to deposit several types of CaPs. The most widespread method to 
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deposit CaP coatings onto implants is the plasma-spraying technique mainly due to its high 
deposition rate and the possibility to cover large areas.

Table 2. Overview of characteristics of coating techniques.

Technique
Coating 

thickness
Advantage Disadvantage Precursor materials

Plasma spraying
50–250 

μm
High deposition rates

Non-uniform coating 

crystalinity; line of sight 

technique

HA [36,124–128], Si-HA [40,49] 

and antibacterial Ag- HA composite 

coatings [66,67,129]

RF magnetron 

sputtering
0.5–5 μm

Uniform and dense 

coating; strong 

adhesion

Line of sight technique; 

time consuming; low 

deposition rates

HA [43], Si-HA [48,52], carbonated 

HA [32], and Zn, Mg, and Al-doped 

CaPs [130]

Plasma spraying
50–250 

μm
High deposition rates

Non-uniform coating 

crystalinity; line of sight 

technique

HA [36,124–128], Si-HA [40,49] 

and antibacterial 

Ag- HA composite coatings 

[66,67,129]

Pulsed laser 

deposition
0.05–5 μm

Control over coating 

chemistry and 

morphology

Line of sight technique

HA resistant to dissolution in SBF 

[29], Ag-HA [131,132], HA [133–

140] and fluorinated HA [60] 

alendronate-doped HA [57]

Ion beam dynamic 

mixing deposition
0.05–1 μm

High adhesive 

strength

Line of sight technique; 

requires high sintering 

temperatures

CaP coatings [141–147]

Ion beam assisted 

deposition

0.02–10 

μm

increased tensile bond 

strength
Line of sight technique; CaP [31,148–150]

Biomimetic 

deposition
<30 μm

Coating of complex 

geometries; 

co-deposition of 

biomolecules

Time consuming; requires 

controlled pH

osteocalcin [151], fibronectin [152] 

and poly(L-lysine) [153]. BMP-2 

incorporated into biomimetic CaP 

coatings [154,155].

Sol-gel deposition <1 μm

Coating of complex 

geometries; low 

processing 

temperature

Requires controlled 

atmosphere processing; 

expensive raw materials

aluminosilicate [156], fluoridated 

hydroxyapatite, [157] Si-substituted 

hydroxyapatite [158], and bioglass 

[159–161]

Electrophoretic 

deposition
0.1–2 mm

Uniform coating; 

coating of complex 

geometries; high 

deposition rates

Difficult to produce crack-

free coatings; low adhesive 

strength

CaP-chitosan composite coatings 

successfully combined with CaSiO3, 

heparin, and silica 

[162–164]

Electrospray 

deposition
0.1–5 μm

Co-deposition of 

biomolecules; control 

over coating 

composition and 

morphology

Low mechanical strength; 

Line of sight technique

HA [165,166],Nano HA [167], ALP 

[168], biomolecules-HA composite 

[88] collagen [169]
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The plasma-spraying (PS) technique involves the introduction of precursor materials 
(feedstock)into the hot plasma jet (Figure 1) generated by a plasma torch[31,170], at 
atmospheric pressure (Atmospheric Plasma Spraying, APS), under vacuum (Vacuum Plasma 
Spraying, VPS) or under reduced pressure (Low Pressure Plasma Spraying, LPS)[171–179]. 
As a consequence, upon impingement of feedstock powders particles onto the implant 
surface, an adherent coating is formed due to partial or complete melting of the powder 
particles.

Figure 1.Schematic representation of a Radio Frequency (RF) plasma torch.

Figure 2.Schematic representation of RF magnetron sputtering.
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Another physical technique that is often used to deposit strongly adherent HA onto implants is 
Radio Frequency (RF) magnetron sputtering (Figure 2)[180–184]. Sputtering is a process 
whereby atoms or molecules of some materials are ejected in a vacuum chamber, becoming 
precursors for coating, due to bombardment with high-energy ions[31,185].
Pulsed laser deposition (PLD) is a physical vapor deposition technique that was first described 
by Cotell[186] to deposit thin films of CaP[55,132,138,187–191]. The PLD system (Figure 3) 
is typically composed of a KrF laser source, an ultrahigh vacuum deposition chamber 
equipped with a rotating target and a fixed substrate holder plus pumping systems. The PLD 
process involves the irradiation of a solid target by a focused pulsed laser and this interaction 
creates compounds such as Ca4P2O9, Ca3(PO4)2, CaO, P2O5, and H2O[29]. This high energy 
plasma cloud is composed of electrons, atoms, ions, molecules, molecular clusters and, in 
some cases, droplets and target fragments. This plasma cloud expands, either in vacuum or in 
a gaseous environment, and deposits on a substrate, typically with a temperature in the range 
of 350–600 °C, producing a thin adherent film onto the target[192]. An alternative set-up 
called matrix assisted pulsed laser evaporation (MAPLE) was developed for delicate and 
accurate deposition of both organic and inorganic materials[133].

Figure 3. Schematic representation of the pulsed laser deposition (PLD) coating system.

Ion beam assisted deposition (IBAD) is a vacuum technique that has also been used to deposit 
very thin ceramic coating layers on metals, polymers or ceramics. A typical IBAD system 
consists of two main elements: electron or ion bombarded precursor materials that vaporize 
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forming an elemental cloud that covers the surface of a substrate[31,148–150] as well as an 
ion gun that irradiates the substrate with highly energetic gas ions that can be inert like Ar+ or 
reactive like O2+ to induce adhesion of the precursors from the above-mentioned elemental 
cloud[149]. 
All these physical deposition techniques, however, are highly energetic to achieve a strong 
fixation of the coating on the surface. This energy (plasma, laser or ions bombardment) 
involves high temperature that can reach, in some cases, up to 2000 °C[193,194]. Increased 
temperature during deposition facilitates a firm fixation of the coating onto the surface but it 
limits the selection for materials that can be coated. Organic materials and biomolecules 
cannot be deposited using these physical techniques and crystallinity of precursor phases are 
affected by the thermal process which impedes deposition of biologically relevant CaPs such 
as carbonate-substituted apatites.

4.2. Wet Deposition Techniques

Wet chemical deposition methods such as biomimetic and sol-gel are alternatives to physical 
deposition techniques which allow for preservation of biomolecules activity. These techniques 
have strong advantages related to their simple experimental setup, mild chemical preparation 
conditions and the possibility to coat implants with a complex three-dimensional geometry 
(such as porous implants). Such implants cannot be coated using physical coating techniques 
due to their line-of-sight characteristics. In a recent review by Nijhuis et al.[75], an overview 
is given of current trends in wet chemical deposition of biomedical coatings for bone 
substitution. 
The biomimetic deposition method was introduced for the first time by Kokubo et al. in 1990 
and is formed under physiological conditions (37 °C, pH 7.4, p(CO2)= 0.05 atmosphere and 
appropriate electrolyte concentrations)[195]. The system involves simple immersion of 
(pretreated) Ti substrates into a so-called simulated body fluid (SBF) to obtain deposition of a 
biologically active bone-like CaP layer formed onto the surface of the substrates.

The sol-gel technique is based on colloidal suspensions of solid particles (1–500 nm in 
size) in a liquid solution (a sol). The sol can be applied onto the substrate via different methods 
like spin-coating, spraying, or dip-coating. The coating, still in gel form, is put on the target 
surface and after drying only the precursor materials, through the sol-gel transition, are left as 
a thin layer[196,197]

4.3. Electrochemical Deposition Techniques

In order to combine the advantage of physical deposition (in terms of quantity control) and 
wet chemical deposition (non-aggressive setting) electrochemical deposition methods have 
been advocated. These types of coating depositions can be performed at ambient temperature 
and pressure provided that precursors are particles or molecules that carry an electrical charge or 
that can be dispersed in electrolytic solutions. The substrates, onto which the coating is 
applied, also need to be conductive.
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Electrophoretic deposition, for instance, is a technique based on migration of precursor 
particles suspended in liquid towards substrate surfaces under the influence of an externally 
applied electrical field. The medium used for electrophoretic deposition is made of organic 
solvents such as isopropanol or ethanol[198,199]. This technique is a submersion method and 
so it allows for coating of, e.g., porous implants.
Another promising electrochemical coating system is the electrospray deposition (ESD) 
technique. Using this technology solutions or suspensions containing precursor materials are 
sprayed onto substrates under the influence of a high electrical field that creates an aerosol of 
similarly charged micron-sized droplets[200,201]. ESD allows for a strong control over 
physicochemical coating properties such as thickness or chemical composition.

4.4. Clinical Performance

Over the past two decades, the application of treatments such as gritblasting and acid etching 
has become widely accepted as routine topographical treatment for oral implants, as 
evidenced by numerous commercial implant systems that are being marketed after, e.g., a 
combination of gritblasting and acid etching. An overview of surface modification of oral 
implants that are commercially available is shown in Table 1.
Regarding the application of additional coatings it should be stressed that despite extensive 
research efforts only a limited amount of techniques have made it to clinical trials and 
commercialization (mainly PS, RF magnetron sputtering and IBAD), whereas most of the other 
techniques (such as biomimetic deposition, electrospray deposition, etc.) are still in the pre-
clinical phase. In most cases, adhesion, cost-effectiveness and high costs related to industrial 
upscaling were the determining factors that limited widespread use and market penetration of 
various novel surface engineering techniques so far.

5. Summary and Future Perspectives

Since the application of plasma-sprayed hydroxyapatite coatings onto metallic bone implants 
in the 1980s, the concept of bone implant coatings has shifted from passive protecting thin 
films to active and instructive immobilized layers. Nowadays, a plethora of coating 
techniques is being investigated to actively orchestrate a desired biological response at the 
interface between artificial implants and the surrounding living tissue. In view of the aging 
population and changing lifestyle, surgeons will be confronted with an increasing number of 
patients of compromised health that need implants of higher efficacy than currently available. 
To this end, bone implant surfaces will be increasingly enriched with biomolecules to 
accelerate the bone healing process. For this purpose, a wide variety of biomolecules such as 
growth factors, bioactive proteins, enzymes, and non-viral genes (DNAs, RNAs) is currently 
being evaluated pre-clinically. 
For optimal therapeutic efficacy, the fate of these biomolecules needs to be
controlled,i.e.efficient immobilization strategies need to be developed for covalent or non-
covalent immobilization.
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1. Introduction

Titanium and its alloys are widely used to manufacture orthopaedic and dental implants due to 

their excellent mechanical properties and corrosion resistance. However, these materials are 

bioinert since they do not initiate a response or an interaction with the host biological tissue. 

For this reason, the research has been directed his effort to the surface modification of these 

materials to improve bone implant contact and their biological properties [1]. 

Among the different materials used for this aim, the best way could be the application of a 

coating that replace the extracellular matrix (ECM) of bone, basically constituted of calcium 

phosphates, namely apatite (HA) nanocrystals [2]. The biological efficacy of calcium 

phosphates coating has been confirmed in numerous works, but the materials used in the last 

decades were ceramic calcium phosphates with several problems related to poor adhesion and 

limited osteoconductivity [3]. 

The mineral phase of bone and tooth consists of non-stoichiometric carbonated HA crystals 

having blade shape of approximately 100 nm width, 2-5 nm thickness and about 60 nm length 

[4]. Despite the large number of synthetic strategies to synthesize nanoapatites, the 

preparation of HA with similar physico-chemical and morphological characteristics to those 

of the bone mineral phase, still remains a technological challenge [5]. In fact, the biological 

properties of HA, such as lack of toxicity, biodegradability, biocompatibility, osteoinduction 

and osteointegration can be significantly increased by increase their similarity with the 

biogenic ones. This aim could be achieved trough the preparation of HA with nanometric 

dimensions, specific chemical-physical properties such as plate-shaped morphology, low 

crystallinity degree, non-stoichiometric composition, surface crystalline disorder and presence 

of carbonate ions in the crystal lattice [6]. So far, biomimetic HA coated titanium implants 

could be the most successful approach to overcome the problems connected to the use of 

ceramic based materials and improve the biological properties of the implants [7].
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Among the different methods to deposit coatings, the electrostatic spray deposition (ESD) 

technique has receive special attention since it is a simple, economical and scale-up 

technology and it is particularly interesting regarding deposition of coatings with controlled 

surface morphology and the use of low temperatures [8]. This latter is probably the main 

benefit of ESD, in fact it allows the preparation of coating at physiological conditions and 

moreover allows the simultaneous deposition of organic and inorganic compounds [9]. 

Briefly, the basic principle of ESD is the generation of a spray of charged, micron-sized 

droplets. This is accomplished by means of electrostatic atomization of precursor solutions. 

These spray droplets are directed towards a grounded substrate as a result of the applied 

potential difference. After complete solvent evaporation, a thin layer is left onto the substrate 

surface [8a, 10]. 

The aim of this work is the synthesis of biomimetic nanocrystalline HA and the evaluation of 

applicability of the ESD to deposit a nanostructured coating made nanocrystalline HA on 

titanium substrate at room temperature.
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2. Experimental

2.1 Materials

Common high-purity chemical reagents were supplied from Sigma. Ultrapure water (0.22 mS, 

25 °C) was used in all experiments.

2.2 Synthesis of apatite nanocrystals

Nanocrystalline apatite (HA) has been synthesised by dropping a solution of H3PO4 (0.21 M) 

into a Ca(CH3COO)2 suspension (0.35 M), keeping the pH at a constant value of 10 by 

addition of (NH4)OH solution, to accomplish the following reaction: 

5Ca(CH3COO)2 + 3H3PO4 + H2O → Ca5(PO4)3OH + 10CH3COOH

The reaction mixture was kept under stirring at room temperature for 24 hours, then stirring 

was suspended and the mixture was left standing for 2 hours to allow deposition of the 

inorganic phase. This latter was repeatedly washed with water by centrifugation and freeze-

dried at -60 °C under vacuum (3 mbar) overnight for the further characterizations.

2.3 Characterization of apatite nanocrystals

Specific surface area was measured with an ASAP 2010 (Micromeritics Ins. Corp., USA)  by 

nitrogen adsorption at 77 K following the BET model (hereafter, SSABET). 

The Ca/P ratio was determined by inductively coupled plasma-optical emission spectrometry 

(ICP-OES, Liberty 200, Varian, Clayton South, Australia). Samples were dissolved in 1% wt 

ultrapure nitric acid. The following analytical wavelengths were chosen: Ca 422 nm, P 213 

nm. 

The carbonate content was evaluated on dried samples by thermogravimetric analysis (TGA) 

investigations using a Thermal Analysis SDT Q 600 (TA Instruments, New Castle, DE, 

USA). Heating was performed in a nitrogen flow (100 ml min-1) using an alumina sample 
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holder at a rate of 10 °C min-1up to 1200 °C. The weight of the samples was approximately 10 

mg. 

The infrared spectra were recorded in the wavelength range from 4000 cm-1 to 400 cm-1 with 

2 cm-1 resolution using a Thermo Nicolet 380 FT-IR spectrometer. A powdered sample 

(approximately 1 mg) was mixed with about 100 mg of anhydrous KBr. The mixture was 

pressed at 10 t pressure into 7 mm diameter discs. Pure KBr disk was used as blank. 

Decomposition of ν3CO3 and ν4PO4 was performed from FTIR spectra using GRAMS curve-

fitting software.

X-ray diffraction (XRD) pattern of the powders were recorded with a Panalytical X’Pert Pro 

equipped with an X’Celerator detector powder diffractometer using Cu Kα radiation 

generated at 40 kV and 40 mA. The instrument was configured with 1/2° divergence and 

receiving slits. A quartz sample holder was used. The 2θ range was from 5° to 60° with a step 

size (°2θ) of 0.05 and a counting time of 3 s. 

The degree of HA crystallinity was calculated according to the formula (1): 

)(
100[%]

CA
CityCrystallin


 (1)

where C was the area from the peaks in the diffraction pattern ("the crystalline area") and A 

was the area between the peaks and the background ("the amorphous area").

Crystal domain size along the HA axis directions were calculated applying Scherrer equation 

(2):
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where θ is the diffraction angle for plane (hkl), Δr and Δ0 the widths in radians of reflection 

(hkl) at half height for the synthesized and pure inorganic hydroxyapatite (standard reference 

material, calcium hydroxyapatite, National Institute of Standards & Technology), 

respectively, and λ=1.5405 Å. 
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Electrophoretic determinations were performed by a Coulter DELSA apparatus. A Coulter 

DELSA 440 instrument measured the electrophoretic velocities of suspended particles by 

measuring the Doppler shift of scattered laser light simultaneously at four different scattering 

angles: 7.5, 15.0, 22.5 and 30.0°. The suspensions was prepared as follows: 0.05 g L-1 of HA 

in 10-2 M KNO3 (constant ionic strength), at spontaneous constant pH. 

High resolution transmission electron microscopy (HR-TEM) images of the materials 

(powder grains dispersed on lacey carbon Cu grids) were performed with a JEOL 3010-UHR 

with acceleration potential of 300 kV. As apatite samples might evolve under the electron 

beam, potentially leading to further crystallisation and/or to a loss of bulk water observations 

were carried out under feeble illumination conditions to avoid any modifications of the 

materials during the analysis.

2.4 Electrostatic spray deposition (ESD) process

Electrostatic spray deposition (ESD) was carried out using an innovative ESD device (ES-

2000S, Fuence Co., Ltd., Japan). This apparatus allowed to use different set up and to have 

control among different parameters during deposition. A vertical ESD set-up was used in this 

work to deposit the inorganic coating. Machined, commercially pure (cp) Ti disks (Ø 5 mm, 

thickness 1.5) were used as substrates. The substrates were cleaned ultrasonically in acetone 

(15 minutes) and ethanol (15 minutes) prior to deposition. The distance between the nozzle 

(G21 (Ø 0,8 mm) stainless steel nozzle) and the substrate was varied at 20 mm and 40 mm 

and the temperature of samples fixed at 35 °C. A stable deposition was obtained by adjusting 

the potential between the nozzle and the target samples to values between 9.0 and 12.0 kV 

depending on the humidity selected. A laser beam was targeted to cross perpendicularly the 

edge of the nozzle to detect and confirm a stable cone-jet mode. The flow rate of the solution 

was 4 µl/min and deposition time was varied at 5, 15 and 30 minutes. Relative humidity in the 
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deposition chamber was varied, as well, at 20 % and 40 %. After deposition the samples were 

not heat-treated and air-dried.

2.5 Characterization of apatite suspension and coatings

Measurements of electrical conductivity was carried out using a portable conductivity meter 

(Cond 330i/SET, WTW, Germany).

Scanning Electron Microscopy (SEM) JEOL 6330 FESEM ( 3 kV, 12 mA) has been used to 

investigate the surface morphology of the coating.

X-ray diffraction (XRD) pattern of the coated samples were recorded with a Philips thin-film 

Panalytical X-Ray Diffractometer using Cu Kα-radiation (PW3710, 40 kV, 30 mA). The 

coatings were analyzed by fixing the coated substrates to a position of 2.5° and scanning the 

detector between 20° to 50° (°2θ), with a step-size of 0.002° (°2θ), a scanning speed of 0.01 

(°2θ/s) and a sample time of 2 s/step. 

The infrared spectra of the coating were recorded in the wavelength range from 4000 cm-1 to 

400 cm-1 with 4 cm-1 resolution using a Spectrum One, Perkin-Elmer.

The amount of deposited calcium on the substrates was measured using the ortho-

cresolphtalein (OCPC) method [11]. In brief, all substrates were incubated overnight in 1 ml 

of 0.5 N acetic acid on a shaker table. For analyses, 300 μl of work reagent was added to 10 μl 

aliquots of sample or standard in a 96-wells plate. The plate was incubated for 10 min at room 

temperature, after which the plate was read at 570 nm. Serial dilutions of CaCl2 (0–100 μg 

ml−1) were used for the standard curve. To evaluate the total amount of apatite deposited on 

samples, a standard curve have been established dissolving known amount of HA synthesized 

according to the method previously described. 
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3. Results and Discussion

3.1 Compositional and structural features of apatite nanocrystals

The code, composition, specific surface area (SSA) and ζ potential of the synthesized apatite (HA) are 

listed in Table 1. The bulk Ca/P ratio determinate by ICP was slightly lower than the stoichiometric 

one (1.67), and a limited amount of carbonate groups (about 1 wt%), derived from dissolved CO2 in 

the preparation media and from CO2 adsorbed onto the materials surface during the storage, was 

present. The CO2 amount was evaluated by thermogravimetric analysis (TGA), according to the 

weight loss occurred from 550°C to 950°C[12]. The presence of CO2 in the structure of HA was 

intentionally retained, in order to better mimick the biological ones [13]. HA exhibited a high SSA in 

the 150-170 m2 g-1 range, which is in agreement with the nanometric size observed by TEM analysis. 

Table 1. Code, Compositional Features (Bulk Ca/P, Carbonate Content), Specific Surface Area (SSABET), ζ 

Potential, Average Size of Crystal Domains (along the [0,0,2] and [3,1,0] Directions) and Degree of 

Crystallinity of the synthesised HA nanocrystals.

Bulk 

Ca/P[a]

(mol)

Carbonate 

species[b]

(wt%)

SSABET 

(m2g-1)

ζ Potential

(mv)

D002
[c] 

(nm)

D310
[c]

(nm)

Degree of 

crystallinity

HA 1.62 1.3 160  16 -10.1  0.8 23 ± 4 9 ± 3 61% ± 5

[a] Calculated by ICP-OES. [b] Calculated by TGA. [c] Calculated applying the Scherrer equation.

Powder X-ray diffraction pattern of HA (Figure 1) showed the characteristic diffraction maxima of 

hydroxyapatite single phase (JCPDS 9-432). The diffraction pattern of HA exhibited not well defined 

diffraction maxima indicating a relatively low degree of crystallinity and nano-dimensions. The degree 

of crystallinity of HA, quantified according to a previously reported method, was 61 % ± 5. The 

average crystal size was estimated using Scherrer’s formula. The nanocrystals appeared elongated 

along the c-axis of the hexagonal structure (23 ± 4 nm average length determined from the (002) peak 

at 2θ=26° ). The average width thickness was 9 ± 3 nm (from the (310) peak at 2θ = 39° 2θ). 
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Fig. 1. X-Ray diffraction pattern of the synthesized HA nanocrystals.

The values of the crystallite domain sizes are in good agreement with the dimensions calculated by 

TEM image (see next).High-resolution TEM observations (Figure 2) confirmed the nanocrystalline 

nature of the apatite. The image reveals that they appeared as irregularly shaped platelets often 

agglomerated with length dimensions ranging between 25 and 35 nm.

Fig. 2. High resolution transmission electron microscopy image of the synthesized HA nanocrystals.

The FT-IR spectra of HA (Figure 3A) confirmed the presence of the typical adsorption bands of 

apatite. The low crystalline degree of material in agreement with the diffraction data, is established by 

the weak resolution of all the adsorption bands. The study of the FT-IR bands characteristic of 

carbonate species ν2 (850-900 cm-1) and ν3 (1350-1600 cm-1) suggested type-B (carbonate substituted 
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for phosphate) carbonate incorporation in the apatite structure due to the presence of the bands at 

about 1460, 1422 and 873 cm-1, with a very few carbonate ions on “non-apatitic” sites at the crystal 

surface. In fact, the curve fitting of the bands characteristic of carbonate species ν3 CO3 showed the 

presence of the major component at 873 cm-1 (carbonate type B) and the band at around 864 cm-1

corresponds to a labile carbonate environment in both apatites (Figure 3C) [14]. The ratio “labile 

CO3/total CO3” reached the value of 0.3. The FT-IR spectra also revealed the presence of phosphate 

and hydrogenphosphate “non-apatitic” ions. In most nanocrystalline apatite samples and especially in 

biological apatites additional bands are observed which do not appear in well-crystallized apatites and 

which have been designated as “non-apatitic environments” of the mineral ions. The curve fitting of 

the bands characteristic of PO4 species indicated the presence of the apatitic PO4
3- at 600, 575 and 560 

cm-1 and of two “non apatitic” signals at 616 cm-1 due to PO4
3- and at 533 cm-1 due to HPO4

2- (Figure 

3B). Finally, the FT-IR results pointed out the presence of a very thin hydrated layer at the surface of 

the apatite crystals and the presence of “non-apatitic” ions [15]. 

The characterization findings indicate that the synthetic apatite of this work resemble in an excellent 

way the chemical and morphological features of nanocrystalline apatites of biological origin.
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Fig. 3. FT-IR spectra of HA. The inset shows the bands of carbonate ions in the region 1800-1300 cm-1 (A). 
Curve fitting of the ν4 PO4 bands (B) and of ν3 CO3 (C).

3.2 Morphological and structural features of apatite coatings

In order to obtain a good HA suspension suitable for the ESD process in terms of dispersion, 

aggregation and stability, after 24 hours from the end of neutralization reaction the apatite nanocrystals 

were washed twice with ultrapure water by centrifugation and the solid residue was suspended in 100 

ml of ethanol. Ethanol has been used because it is well known to give stable cone-jet mode 

electrohydrodynamic jetting and droplet generation [16] and its surface tension, electrical conduction 

and relative permittivity are key parameters in achieving this. After that, the suspension was sonicated 
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for 15 min, to break up the aggregate of HA nanoparticles using a probe sonicator, Ultrasonic 

Processor (UP50H, Hielscher, Germany), with a power and frequency of 10 W and 20 kHz, 

respectively, in the 0.5 cycling mode. In this way the suspension was stable without sedimentation up 

to 15 days. The HA nanocrystals make the ethanol more dielectric reducing the electrical conductivity 

from 3.4×10-4 to 0.7×10-4 S m-1. However this value is completely suitable for the ESD procedure. 

Finally the suspension was diluted to reach the value of 5mg/ml suspended in 50% EtOH.

Fig. 4. X-Ray diffraction pattern of apatite ESD coating. * indicates the substrate titanium reflexes.

X-ray diffraction pattern of the apatite ESD coating (Figure 4) allowed that the titanium disk was 

covered by a pure apatite since only HA peaks were obtained. The presence of Ti peaks was attributed 

to the substrate. Moreover, the latter diffraction pattern resembled the apatite powder XRD (the (002) 

reflection which appears at 26° as well as the broad band at around 31° due to the deconvoluted triple 

peak corresponding to (211), (112) and (300) crystallographic planes) and it exhibited not well defined 

diffraction maxima indicating relatively low degree of crystallinity and nano-dimensions. This finding 

is in agreement with the fact that the solvent and the ESD did not induce any modifications in the 
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crystal structure of HA. In the infrared spectrum (Figure 5) only the bands characteristic of carbonate-

apatite were observed, such as the broad and intense bands between 1300-1500 cm-1 and 900-1200 cm-

1 correspond to ν3 adsorptions of carbonate and phosphates, respectively. In particular, the bands at 

1460, 1422 and 873 cm-1 ascribed to type-B carbonate incorporation in the apatite structure, were 

clearly visible. This latter finding indicates that the chemical and the structural features of 

electrosprayed apatite on titanium are similar to the ones of apatite in the powder form. 

Fig. 5. FT-IR spectra of apatite ESD coating. 



Electosprayed coatings: from active surfaces for bone implants

80

Table 2. ESD parameters for deposition of HA coatings evaluated in this work.

Nozzle to substrate distance (mm) 20 40

Relative humidity in the deposition chamber 
(%)

20 40

Deposition time (min) 5 15 30

In order to investigate the influence of processing conditions on the morphology of the 

coatings, several processing parameters were varied (Table 2) such as nozzle to substrate 

distance, relative humidity in the deposition chamber and deposition time. Figures 6 and 7

reported the SEM micrographs of the apatite coatings obtained using different conditions. It’s 

clearly noticeable that with increasing deposition time large HA islands were formed that 

finally merged yielding a dense and homogeneous HA layer on the titanium substrates.

Fig. 6. SEM micrographs of 
apatite ESD coating 
morphologies. (A, B, C) 
Deposition parameters: nozzle 
to substrate distance 20 mm, 
relative humidity in the 
deposition chamber 20% and 
deposition time 5, 15 and 30 
minutes, respectively. (D, E, F) 
Deposition parameters: nozzle 
to substrate distance 20 mm, 
relative humidity in the 
deposition chamber 40% and 
deposition time 5, 15 and 30 
minutes, respectively.
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Fig. 7. SEM micrographs of apatite ESD coating morphologies. (A, B, C) Deposition parameters: nozzle to 
substrate distance 40 mm, relative humidity in the deposition chamber 20% and deposition time 5, 15 and 30 
minutes, respectively. (D, E, F) Deposition parameters: nozzle to substrate distance 40 mm, relative humidity in 
the deposition chamber 40% and deposition time 5, 15 and 30 minutes, respectively. 

This is confirmed by the results of the OCPC calcium assay, where a linear increase in the amount of 

deposited HA was measured with increasing spray times (Figure 8). Porous films made of 

agglomerates of plate-like apatite nanocrystals, measuring approximately 50 nm. The morphology and 

dimensions of these HA nanoparticles resemble that of the apatite powder and thus that of the natural 

bone apatite mineral.

SEM results showed that the coating morphology was different for short deposition time using 

different nozzle-to-substrate distances. A longer distance induced a longer flight time of the droplets 

that reached the surface in a dry condition. This leads to theformation of highly porous, fractal-like 



Electosprayed coatings: from active surfaces for bone implants

82

coating morphologies.This phenomenon explained the increased homogeneity in 5 minutes deposition 

at 20 mm of distance compared to 40 mm where it was possible to notice formation of crystals 

agglomeration. Evaporation of the solvent used to deliver nanoparticles on the surface can be retarded 

or promoted in this way to detect the ideal level to obtain an increased homogeneity of the coating. 

Prolonged time reduced this difference in coating quality as it was showed after 15 minutes of 

deposition. However formation of a dielectric ceramic layer during deposition has also an effect on the 

morphology of the coating. During long time deposition change of local conductivity and wettability, 

due to the presence of coating, reduce the role of solvent evaporation to achieve homogeneity. Relative 

humidity was set during deposition at 20% and 40% without showed a significative effect on 

morphology.

Fig. 8. Amount of deposited HA as a function of ESD time. (Linear fitting, dotted line)
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4.Conclusions

The aim of this study was to investigate the applicability of the electrostatic spray deposition (ESD) 

technique for the deposition of nanostructured uniform apatite coating onto commercially pure cp-Ti 

substrates at room temperature. Therefore poorly crystalline bone-like carbonate-apatite nanocrystals 

were synthesised and well characterized. The apatite suspension suitable for the ESD process in terms 

of dispersion, aggregation and stability has been set up and some processing parameters such as nozzle 

to substrate distance, relative humidity in the deposition chamber and deposition time were varied in 

order to asses the morphological possible modifications. 

Spectroscopic and diffractometric characterizations confirmed that the chemical and the structural

features of electrosprayed apatite on titanium are similar to the ones of apatite in the powder form. 

Porous films made of agglomerates of plate-like apatite nanocrystals, measuring approximately 50 nm

with morphology and dimensions resembling that of the natural bone apatite mineral have been 

formed. With increasing deposition time large apatite islands were formed that finally merged yielding 

a dense and homogeneous layer. The amount of deposited HA measured in function of the increasing 

spray times, confirmed a linear trend. Relative humidity did not show a significative effect on the 

morphology of coating, whereas the nozzle-to-substrate distances influenced the quality of the 

deposited layer in terms of crystals agglomerations. Shorter distance induced a shorter flight time of 

the droplets that reached the surface in a wet condition increasing the coating homogeneity and 

avoiding agglomerations.

The current study shows the feasibility of the ESD technique for the production of thin apatite coatings 

with a nanosized surface morphology onto commercially titanium substrates. The ability of these 

nanocrystals to bind a wide variety of molecules and most therapeutic agents for bone diseases [6] due 

to their very high specific surface area and the well known capability of ESD to produce coating at 

physiological conditions allowing the simultaneous deposition of organic and inorganic compounds, 

makes this work a first step for the set up of coating for bone implants based of surface activated 

apatite with improved functionality. The biologic efficacy of the ESD coatings made of pure apatite 

and functionalized apatite has to be proven in future in vitro and in vivo studies.
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1 Introduction

The primary scope of surface modifications for bone implants is to enhance bone integration 

to obtain early and strong fixation for functional application of the implant even under load 

bearing conditions. Bone is a connective tissue characterized by a multi-phase structure of 

collagen (organic) and hydroxyapatite crystals (inorganic). The inorganic phase is responsible 

for mechanical properties, such as hardness and compression resistance and the organic phase 

confers flexibility, resilience and fatigue resistance to the tissue[1, 2]. For decades, titanium 

has proved to be the most successful material for bone implants due to its suitable mechanical 

properties and biocompatibility. However, although the bulk properties of titanium are 

optimal for load bearing applications, the relative passive surface properties are a limitation 

for rapid integration into bone tissue[3].

Especially at the interface between implants and bone, a rapid and strong bonding that allows 

load and stress transfer to stimulate bone formation defined by the so called Wolff’s law is 

required[4]. In view of the fundamental role of the interface in integration, the deposition of a 

thin layer of calcium phosphate onto titanium implant surfaces has been used frequently in the 

last decades to improve biological responses[5]. Additionally, several bioinspired strategies 

and compounds have been tested to obtain implant surfaces with a chemical composition 

similar to the inorganic phase of bone tissue.Hydroxyapatite (HA) has been most intensively 

investigated for bone applications. In vitro experiments demonstrated that HA can

increasemesenchymal stem cell[6] and primary human osteoblast cell[7] proliferation and 

differentiation. Surface modifications based on HA-coatings have proven effects on the in 

vitro and in vivo performance compared to non-coated titanium controls[8]. A wide range of 

in vivo and clinical investigations have indicated an improved fixation of HA-coated implants 

compared to non-coated controls[9-15].

A relatively unexplored area for bioinspired surface engineering is the use of organic 

moieties. As the organic phase plays an important role during the biological mineralization 
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process[16], particularly collagen fibersand alkaline phosphatase (ALP) are appealing proteins 

for surface engineering approaches. In fact, the mineralization of bone tissue is a biphasic 

process in which the first phase is characterized by enzymatic interactions that increase Ca2+

and PO4
3− ions within so-called matrix vesicles toward the formation of calcium phosphate 

(CaP) crystals, and the second phase comprises the exposure of formed CaP crystals into the 

extracellular matrix (ECM) to trigger nucleation[16]. During the first phase, ALP catalyzes 

the hydrolysis of organic phosphate monoesters, such as β-glycerophosphate, increasing the 

local concentration of inorganic phosphate required for bone physiological mineralization. 

The second phase, described as mineral propagation, is based on the transition of the 

accumulated CaP crystals on collagen fibers that would begin to play a major role in 

nucleating and orienting the newly formed crystals[17].

In previous workby De Jonge et al.[18], ALP was used as a single component in a coating 

procedure to induce surface mineralization via local increase of phosphate anions by 

hydrolysis of organic phosphate-monoesters. With these ALP-based coatings, Schouten et al. 

showed their capacity to enhance osteogenic responses in a rat model[19]. Despite low ALP 

retention on their surface, the engineered surfaces in these studies showed intriguing results 

that led to the hypothesis that the performance of ALP-based coatings may be substantially 

improved if the ALP immobilization can be optimized. In order to augment ALP retention, 

collagen represents a bioinspired option that can be easily introduced into the coating 

procedure and could potentially perform a dual role: (i) improve the retention of ALP by 

protein-protein interactions, and (ii) improve surface mineralization by CaP-collagen 

interactions.

The aim of this study was to generate collagen-ALP coatings onto titanium disks, and to 

evaluate whether configurationally different compositions of collagen-ALP coating 

affectenzyme retention and in vitro biomineralization. For coating deposition, electrospray 

deposition (ESD) was used due to the possibility to deposit materials from aqueous solutions and 
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its advantages regarding low temperature conditions[20-22]. Collagen and ALP coatings were

deposited onto Ti disks as subsequent layers or in a mixed configuration; single compound 

coatings of collagen or ALP served as controls. These coatings were analysed via ALP-activity 

assays to determine ALP retention and in vitro mineralization assays to evaluate their surface 

mineralization capacity.

2 Materialsand Methods

2.1 Materials

Commercially pure Ti disks (ø 5 mm, thickness 1.5 mm) were used as substrates for coating 

deposition. Prior to coating deposition, disks were cleaned ultrasonically in acetone and 

ethanol (15 minutes each). ALP (P7640, 28 U/COL-ALP-M, Sigma Aldrich Ltd, Munich, 

Germany) was dissolved in an aqueous solution (1 mg/ml in 10:90 ethanol: mQ) and collagen 

(type I, rat tail; BD354236, Becton Dickinson Bioscience (BD) Breda, The Netherlands) was 

used to prepare a solution using 100% ethanol and 0.01 M acetic acid (in a ratio of 1:1) to a 

final collagen concentration of 0.5 mg/ml.

2.2 Coatingdeposition

All coatings were deposited using a commercially available vertical ESD device (ES 2000s, 

Fuence Ltd., Tokyo, Japan). Electrospraying was performed under controlled atmosphere 

conditions (relative humidity <15% and temperature 25ºC) to prevent protein denaturation. 

Depositions were performed at a fixed nozzle-substrate distance of 40 mm, a flow rate of 4 

µl/min and an applied voltage of 10-12 kV. Different experimental groups were designed to 

determine the role and effect of collagen combined with ALP:

1. Collagen mono layer (COL)

2. ALP mono layer (ALP)

3. Collagen-ALP layered configuration (COL-ALP-L)
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4. Collagen-ALP mixed configuration (COL-ALP-M)

COL was obtained using 0.5 mg/ml of collagen dissolved in 0.01 M acetic acid and 100% 

ethanol (ratio 1:1) sprayed for 30 minutes. ALP was made with deposition of 1 mg/ml of ALP 

dissolved in 10% ethanol for 30 minutes. COL-ALP-L was obtained with a dual step 

procedure as COL (1st step) and ALP (2nd step) as sequential depositions. COL-ALP-M was 

made of 0.5 mg/ml collagen + 1 mg/ml ALP dissolved in 0,01 M acetic acid and 100% 

ethanol (ratio 1:1) sprayed for 30 minutes. A schematic representation of coating groups is 

given in Figure 1A.All coated disks were lyophilized overnight and stored at -20 ºC until 

further use.

2.3 Coating Characterization

2.3.1 Alkaline phosphatase activity

Alkaline phosphatase (ALP) activity was measured as described previously[23]. In brief, a 

volume of 200 µl mQ, 50 µl of buffer solution (5 mM MgCl2, 0.5M 2-amino-2-methyl-1-

propanol) and 250 µl of substrate solution (5 mM para-nitro-phenyl-phosphate) was added to 

coated titanium disks in a 24-well plate and incubated for 1 hour at 37°C. Subsequently, the 

reaction was stopped by adding 100 µl stop solution (0,3N NaOH), after which 100 µl 

solution was transferred to a 96-wells plate and read in an ELISA reader at 405 nm. Results 

were calibrated using a standard curve made by serial dilutions of freshly dissolved ALP (0 –

250 ng/ml).

2.3.2 Enzyme retention test

In order to evaluate the role of collagen in ALP retention, the enzymatic activity of all coated 

samples was analyzed before and after immersion in mQ. To perform this retention test, 

coated disks (n=3) of all groups were immersed in mQ (37ºC) for 1 hour in static conditions. 

After this period, ALP activity of coated disks was evaluated using the aforementioned ALP 
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activity test and results obtained were compared with the enzymatic activity of coated disks 

before the soaking test and expressed as relative activity (%).

2.4 In vitrobiomineralization test

Surface mineralization capacity of coated disks was evaluated in vitro by immersion of disks 

in cell culture medium (CCM) in accordance to the method described by de Jonge et al.[24]. 

Briefly, CCM consisted of alpha minimal essential medium (α-MEM, Gibco, Invitrogen, life 

technology corporation, Carlsbad, US) with addition of 10% v/v fetal calf serum, 50 µg/ml 

ascorbic acid, 10-8 dexamethason, 50 µg/ml gentamicin and 10 mM sodium β-

glycerophosphate (Sigma). Coated disks were immersed in 1 ml of CCM in a 24 wells plate in 

static condition for 1, 2, 4, 10 and 14 days (n=3) at 37ºC and medium was refreshed every 2 

days. After each time point, disks were washed thoroughly with mQ water and kept at -20°C. 

Quantification of deposited calcium on titanium disks was performed with the o-cresol-

phthalein complexone (OCPC) method (Sigma Aldrich co. Ltd.,Munich, Germany) [25], for 

which samples were immersed overnight in 0.5 N acetic acid on a shaker table. For analyses, 

300 µL of work reagent was added to 10 µL aliquots of sample or standard in a 96-wells plate. 

The plate was incubated for 10 min at room temperature and then read at 570 nm. Serial 

dilutions of CaCl2 (0–100 µg / ml) were used for the standard curve.

2.5 Coating and biomineralization morphology

Field Emission Scanning Microscopy (JEOL FESEM 6330, Tokyo, Japan) was used to 

evaluate surface homogeneity of all experimental samples after coating deposition. SEM was 

also used to detect and characterize the biomineralizationon the surface after soaking in 

CCMfor different time points (1, 2, 4, 10 and 14 days).To evaluate surface composition after 

biomineralization experiments, Fourier transform infrared analysis (FTIR, Perkin-Elmer, 
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Spectrum One, Groningen, The Netherlands) was performed on samples at day 4 and 10 of 

the in vitro biomineralization test[26].

2.6 Statistical analysis

Statistical analyses on the data of the in vitro biomineralization experiments were performed

with GraphPad InStat software (GraphPad software Inc., La Jolla, USA) using a one-way 

ANOVA combined with post-hoc Tukey–Kramer Multiple Comparisons test. The 

significance level was set at p < 0.05.
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3 Results

3.1 Coating morphology

All experimental samples were analyzed for surface morphology with scanning electron 

microscopy after deposition. For all groups, an apparent homogenous and complete surface 

coverage was observed using a 30 minute deposition time. Figure 1 shows a schematic 

representation (A) of the experimental groups and the corresponding scanning electron 

microscopy images (B) of the coating surface morphology. A scratch was made on COL to 

detect the thin collagen layer as shown in Figure 1B.

Figure 1Groups overview: (A) Schematic representation of coating composition and conformation. (B) SEM 
images of titanium disks surfaces after ESD coating
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3.2 Enzyme retention

For all ALP-containing experimental samples, the retention of the enzyme ALP within the 

coatingdecreased significantly after overnight immersion in mQ compared to virgin samples 

(Figure 2). For ALP, COL-ALP-L, and COL-ALP-M, the relative retention of the enzymatic 

ALP-activity within the coating was 5%, 20%, and 50% of their virgin equivalents, 

respectively. Among the experimental groups, the relative retention of the enzymatic ALP-

activity within the coating of COL-ALP-L was significantly higher (p<0.01) compared to 

ALP, and that of COL-ALP-M was significantly higher (p<0.001) compared to both COL-

ALP-L and ALP. No enzymatic ALP-activity was observed for COL coatings, neither before 

nor after overnight immersion in mQ.

Figure 2 ALP activity retained after soaking test. Values are normalized to the ALP activity of each coating 
group before soaking. The * indicates a significant difference compared to ALP. The # indicates a significant 
difference compared to COL-ALP-L (*, # p< 0,05).
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3.3 In vitrobiomineralization test

Mineralization was evaluated through quantification of calcium depositionupon immersion of 

the experimental samples in CCM. For all groups except COL,calcium deposition was 

observed from day 1 of immersion onward. COL-ALP-L showed thefastest mineralization 

with the highest calcium content at day 1 reaching 40 µg/cm2, while ALP and COL-ALP-M 

reached similar calcium contents of 18 µg/cm2 and 12 µg/cm2, respectively. At day 2 COL-

ALP-M reported the highest value of calcium content (77µg/cm2) higher than ALP and COL-

ALP-L (with value of 30 and 61 µg/cm2, respectively). Day 4 represents a particular time 

point in which all the ALP containing group reach a similar value of calcium content (ALP62 

µg/cm2, COL-ALP-L 66 µg/cm2and COL-ALP-M 76 µg/cm2). All the group increase their 

calcium content at day 10, COL-ALP-M reached a higher mineralization value compared to 

COL-ALP-L (COL-ALP-M `106 µg/cm2and COL-ALP-L 76 µg/cm2) and ALP increased the 

calcium content up to a value comparable to COL-ALP-M (95 µg/cm2). At the end of the 

biomineralization test, at day 14, the calcium content in ALP and COL-ALP-L was increased 

but comparable to their value at day 10 (respectively 106 and 93 µg/cm2). In contrast, COL-

ALP-M at say 14 markedly increased the calcium content with values (over 150 µg/cm2) 

significantly higher that the corresponding value of the other ALP containing coating at the 

last time point(p<0.05). Results of the quantified mineralization at all the time points are 

displayed in Figure 3.
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Figure 3 Quantification of deposited Ca (OCPC) after different days of immersion in CCM. The * indicates a 
significant difference compared to ALP. The # indicates a significant difference compared to COL-ALP-L (*, # 
p< 0,05). 

FTIR at day 4 and 10 indicated the presence of calcium phosphate on the surface (Figure 4). 

ForALP, COL-ALP-L and COL-ALP-M,characteristic phosphate bands were detectedat 550–

600 (v4 PO4 stretching), 960 (v1 PO4 stretching), 1020 (v3 PO4 stretching) cm−1,COL group, 

instead, showednone of this fingerprint bands as presented in Figure 4.
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Figure 4 Infrared analysis (FTIR) performed on coated disks surfaces after biomineralization test at day 4 
(dotted line) and 10 (continued line). The Y axis reports arbitrary units and the curves disposition is not 
quantitative.

3.4 Surface morphology after biomineralization

Scanning electron microscopy was used to observe the morphology of biomineralized 

surfaces (Figure 5) on all experimental samplesafter different immersion periods in CCM. 

Anoverview, per experimental sample, of the surface before mineralization (day 0) and after 

14 days is presented in Figure 5. After 14 days, all experimental groups containing the 

enzyme ALP within the coating showed mineralization on the surface. In contract, COL

showed no mineral phase on their surface. ALP and COL-ALP-Ldemonstrated a similar 

mineralization process and the structure of the mineralized layer was homogeneous and 

uniform. On the contrary, COL-ALP-Minduced the formation of spherical, agglomerated 

crystals with a size of 1-2 µm. These micro-scale agglomerations were interconnected with a 

matrix of nanoscale fibers. 
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Figure 5 SEM images to obtain surface evaluation at day 0 and day 14 of biomineralization test. On COL-ALP-
M surface micro-scale crystal agglomeration is indicated by a square and nano fibers are indicated by an 
arrow.

Figure 6 presents the evolution of the complex crystals agglomeration and interconnecting 

nano fiber formation during the 14 days of biomineralization. The SEM images revealed

initial formation of interconnected fibers at day 1 when the first agglomerations started to 

form on top of a mineralized layer. The mineralized networks increased during immersion and 

at day 14 the presence of micro-scale crystal agglomerations interconnected by collagen fibers 

network was observed for the entire surface(Figure 7).
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Figure 6 SEM images of mineralized surface on COL-ALP-M. The biomineralization process is documented 
among all the time points (1, 2, 4 ,10, 14 days) to offer an overview of the phenomenon. Surface micro-scale 
crystal agglomeration is indicated by a square and nano fibers are indicated by an arrow.
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Figure 7 SEM evaluation after scratch of a COL-ALP-M coated disk at day 14. This image offer a particular 
point of view of the biomineralization phenomenon offering the view of how both the side of the coating layer 
(the one facing the titanium and the external one) are characterized by crystals agglomerations and 
interconnecting fibers.

4 Discussion

The aim of this study was to generate collagen-ALP coatings onto titanium disks, and to 

evaluate whether configurationally different compositions of collagen-ALP coatings would 

affect enzyme retention andin vitro biomineralization.ALP and collagen coatings, deposited 

with ESD, were obtained in a layered and mixed configuration and compared with mono 

compound coating as controls. All the coatings were tested via a soaking test and an invitro 

biomineralization test to evaluate the effect of collagenon ALP coatings. The hypotheses were 

that collagen might act as a “glue” to increase the retention of ALP, therefore augmenting the 

enzymatic efficiency, and that collagen might synergistically increase the biomineralization

process by entrapping calcium phosphate crystals. Data presented in this study indicate that 

addition of collagen affected mineralization performances of ALP based coatings. More 

interestingly collagen and ALP coating configuration played a role in formation of 

mineralized layer onto coated samples. 
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Surface modifications based on addition of biomolecules on the surface are usually focused 

on the biological and cellular effect of such biomaterials [3, 27]. The approach used in this 

study is different and focus on obtaining a mineralization phenomenon without cells on 

titanium surface. The conducted investigation was aiming to obtain biomineralization, 

through the use of ALP and collagen, inspired by the natural mechanism as described by 

Anderson et al[16, 17]. An approach to obtain mineralization from ECM molecules, in 

combination with collagen, was performed by Zurick et al.[28] using osteopontin, bone 

sialoprotein and dentin phosphoprotein. In Zurick’s study the mineralization attempt is limited 

to few hours and not on titanium surface. An intriguing method to obtain mineralization on 

surface is offered by Nijhuis et al.[29] using the enzymatic properties of urease to control pH 

and obtain mineral deposition on titanium and polystyrene from SBF. In previous studies de 

Jonge[24] and Schouten[30] used ALP coated titanium to obtain mineralization on the surface 

using a cheaper and stable ECM molecule.ESD have demonstrated its applicability for thin 

coating made of organic materials and tailorable substrate composition [24, 31, 32]. Previous 

research showed the capability of ALP as organic and bioinspired material for orthopaedic 

applications, in particular to obtain mineralization and increased bone to implant contact [24, 

30, 31]. In this work ESD was successfully used to deposit COL, ALP, COL-ALP-M and 

COL-ALP-L onto titanium controlling the coatings configurations. 

In this study, ALP was exploited as an active enzymatic compound for surface immobilization 

to induce biomineralization. More specifically, its role was to increase the local concentration 

of phosphate groups and hence to mimic the natural biomineralization process. In fact, in the 

mineralization process proposed in this study, the main source for phosphate groups was the 

addition of β-glycerophosphate (10 mM) and the only available source for calcium was 

calcium chloride (CaCl2 200mg/L). ALP was responsible to create free PO4
3- ions from β-

glycerophosphate that interact with Ca2+ to form CaP crystals. This phenomenon was already 

described by de Jonge[18] and it represented the starting point for this study.



Chapter IV

103

The first hypothesis in this study was concerning the role of collagen in ALP retention. In the 

work of de Jonge[18]was suggested that ALP could act as a surface-active enzyme and 

therefore its activity could be limited to the coated surface area. For this reason ALP (mono 

compound) was used as reference and comparison to evaluate the effect of collagen in 

increasing ALP retained activity. ALP activity after deposition and soaking test showed 

different efficiency of coatings among all the different groups. Addition of collagen increased 

surface immobilization of the enzyme ALP as indicated by a significantly increased 

enzymatic ALP-activity,for groups with dual compounds,of 3 and 7 times higher for COL-

ALP-L and COL-ALP-M, respectively. ALP activity tested on COL was equal to zero, so it is 

possible to exclude any effect on the ALP assay induced by the presence of collagen. The 

increased retained activity of COL-ALP-L and COL-ALP-M could be related to a more 

favourable adhesion of ALP to collagen compared to ALP to titanium.The conformation with 

ALP “entrapped” in a collagen mix appears able to preserve a higher ALP activity compared 

to all the other conformation. In an ALP retention study performed by Douglas et al[33] using 

different hydrogels is offered a description of non crosslinked collagen in ALP retention. 

Douglas showed that collagen based hydrogel were able to entrap ALP, even if the test was 

performed only for few hours. Vittur et al.[34] offered an explanation of ALP and collagen 

binding. Vittur, in fact, showed that ALP is bound to collagen through ionic forces as 

demonstrated by ALP release was conditioned by addition of NaCl. Vittur’s theory is 

therefore confirmed in the results of this paper; in fact COL-ALP-M showed the highest 

retention level because ALP was embedded in the collagen structure. ALP requires free 

collagen binding sites to attach and the mixed configuration is obviously offering more 

binding sites than the layered configuration where only the binding sites at the surface were 

available. 

Further, the role of collagen in the biomineralization process was studiedafter it was 

demonstrated its effect in improving ALP retention. According to Dey et al. [35], collagen 
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plays a fundamental role in mineralization sub sequentially to the formation of “prenucleation 

clusters”. As was also reported by Nudelman et al. [36], collagen is essential to guide the 

mineral phase in bone mineralization in presence of CaP. In their study, in fact, the crystal 

phase was obtained on collagen using CaCl2 and K2HPO4(a highly soluble potassium salt) to 

obtain the ions and cations required to form CaP instead of the use of non collagenous 

proteins responsible of mineral formation (such as ALP). In the study here presented, the 

active role of ALP in recruiting PO4
3-was maintained and improved by the presence of 

collagen and it was the principal element of investigation. 

The effect of collagen in a biomineralization process, activated by ALP, was evaluated by the 

quantification and the morphology of the mineralization during time. Presence of collagen 

also increased the amount of mineral phase that was formed onto the disk proving that a 

synergistic effect with ALP was obtained. ALP is an enzyme and its ability to produce free 

phosphate ions is related to its availability and not to its quantity. As demonstrated in this 

study collagen is capable to increase ALP retention on the surface of the coated samples and 

therefore the presence of ALP should be able to increase the mineral formation. 

Biomineralization data indicated a substantial increase in mineral content (at day 14) if 

compared with the results obtained by de Jonge[18] (110 vs 20 µg/cm2 respectively). It has to 

be remarked that despite the similarity of the approach in this study and the one conducted by 

de Jonge, a fundamental difference can be found in the biomineralization test; in the study 

here presented medium was refreshed every 2 days offering a constant source of unprocessed 

β-glycerophosphate, on the contrary in de Jonge’s experiment there is no reference to medium 

refreshment.

Despite the increased amount of retained ALP the mineralization process is not proportionally 

augmented. COL-ALP-M showed a retained enzymatic activity 7 folds higher than ALP but 

on day 14 COL-ALP-M compared to ALP has only 1,6 folds increased mineral content. 

Retention test was performed in 1 hour and in mQ and therefore it can be related only to an 
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initial retention of ALP that cannot be compared with 14 days of mineralization test in CCM. 

Nevertheless biomineralization trend was monotonic and time dependent for ALP, COL-ALP-

L and COL-ALP-M coatings. COL showed no mineralization during the experiment 

clarifying any chance that the collagen itself could have induced some mineralization. The 

increase of mineral content is related to the amount of crystals that are present on the surface 

of coated samples. It was previously reported by Beertsen et al.[37] that collagen enriched 

with ALP mineralize more, even in vivo, due to the local effect of ALP that induce crystal 

formation in proximity of collagen and so with more chance to be entrapped by collagen. In 

the study here presented a similar effect can be deduced, in fact retained ALP could induce 

mineral formation onto titanium disk and not in the medium continuously refreshed. The 

structure of collagen and embedded ALP in COL-ALP-M is responsible of this improvement. 

Collagen is capable of attracting CaP crystals in its negative sites and the presence of ALP 

inside a collagenous structure is improving this effect. In fact embedded ALP is responsible of 

a crystals nucleation phenomenon that starts not only merely at surface but also inside the 

collagen matrix as suggested in other mineralization models[36].

Collagen and ALP coatings configuration can also affect the morphology of mineralization. 

As reported by Nudelman[36] and previously by Mann[38] biomineralization required 

strategies such as a) chemical control, b) spatial control and c) structural control. Nudelman 

remarked the role of a 3D structural composition of collagen and crystals-nucleating 

biomolecules (such as ALP) is essential to modulate the mineralization process. Collagen can 

play a role as a template or scaffold where the mineralization process can be initiated and 

maintained thanks to collagen binding sites. An example, in the study here presented, is given 

by COL-ALP-M samples that showed an altered and unique biomineralization pattern. COL-

ALP-M created a nano fibrous matrix, which closely resembles ECM, with agglomeration of 

nano sized crystals interconnected with collagen filaments. Analysis of COL-ALP-M

biomineralization process during the time point, using SEM images, show that micro-sized 
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agglomeration of crystals are formed since the early phase (day 4) and retained by the nano 

fibrils among all the mineralization process resulting in an increased amount of calcium 

phosphate onto the disk compared with the other groups.

A detail of the biomineralized layer obtained with COL-ALP-M after 14 days revealed that 

the crystals agglomeration and matrix structure is present in both the side of the coating. The 

COL-ALP-M mineralized coatingwas strongly cohesiveas indicated by peeling of the coating 

after a scratch for SEM evaluation; the crystals agglomerations and the matrix structure resist 

to the scratch maintaining their formation. The structure of this unique biomineralization 

pattern is able to explain the increased quantitative results obtained for calcium assay and 

ALP activity on COL-ALP-M. The collagen network entrapped the ALP and increased it total 

retention, the presence of more ALP induced an augmented mineralization process that was 

kept by the cohesive strength of collagen that preserved crystal agglomerations to be released 

from the titanium surface.

Collagen, undeniably, played a dual role improving the ALP based coatings in terms of 

enzymatic retained ability and mineralization capacity. COL-ALP-M was characterized by the 

highest retained ALP activity and the maximum mineral content and therefore COL-ALP-M 

is an improvement to the previous ALP coatings. ALP was already an intriguing coating 

material that obtained successful results in vitro [18]and in vivo[19]; the improvement added 

by the presence of collagen is certainly a promising innovation for organic coatings. COL-

ALP-M was also unique in the ECM-like biomineralized structure that was formed during the 

mineralization test. Such ECM-like structure can be a positive environment for osteoblast 

biological response, due to the similarity to the natural bone-like ambient. COL-ALP-M could 

therefore be used as a successful coating solution to mimic the biomineralization mechanism 

of bone tissue and could result in a bioactive surface modification able to trigger cellular 

response (in vitro) or a positive bone reaction (in vivo). 
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5 Conclusions

This study showed a marked role of collagen to increase retention of the ALP coating onto 

titanium disks as proved by residual enzymatic activity after rinses in mQ water. ESD resulted 

to be an optimal coating method that preserved functionality of bio molecules. ALP was also 

able to dissociate phosphate groups that attract Ca (dissolved in CCM) and let them react to 

obtain calcium phosphate crystals mimicking the process of crystals deposition in bone tissue 

(biomineralization). In every test performed the mixed conformation (COL-ALP-M) 

manifested superior results compared with the other samples in terms of ALP remaining 

activity after soaking (retention) and formation of mineral layer (activity). Also the unique 

pattern that mineralization assumed during time, with the formation of collagen nano fibers, is 

a result that induce us to plans further investigation.
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Chapter V

Nano-sized hydroxyapatite crystals functionalized with 

alendronate as bioactive components for bone implant coatings to 

decrease osteoclastic activity.

Ruggero Bosco, Michele Iafisco, Anna Tampieri, John A Jansen, Sander CG Leeuwenburgh, 

Jeroen JJP van den Beucken.
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1. Introduction

The success of bone implants for load-bearing applications is related to the quality of bone at 

the interface[1]. Titanium implants have strong mechanical characteristics but lack active 

properties fundamental to trigger biological responses. Coatings are deposited on titanium to 

improve the biological properties at the interface with bone tissue. Since the inorganic phase 

of bone tissue is composed of nano-sized platelet-shaped hydroxyapatite (HA) crystals, 

various surface modification strategies have been explored to deposit HA onto titanium 

implants [2]. HA coatings are widely used to improve the biological performance of bone 

implants in terms of bone contact and new bone formation[3].However, in view of an 

increased life-expectancy and hence increasing number of medically compromised patients 

(e.g. wound healing disorders and osteoporosis), the application of bone implants for such 

patients is a growing challenge for orthopaedic and dental surgeons [4].Consequently, surface 

modification approaches for bone implants are evolving from passive materials, that merely 

aim to mimic the composition of bone, to active compounds which trigger desired biological 

responsesand improve rapid and permanent implant fixation within native bone tissue [5].

Osteoporosis is a bone metabolic disease that causes an imbalance in the bone turnover in 

favor of bone resorption, leading to a decreasein bone mechanical strength [6]. Alterations of 

bone turnover correspond to a change in the balance between osteoblast and osteoclast 

activity [7]. Such an imbalance between formation and resorption has an immediate effect on 

bone quality with a consequential reduced performance of bone implants in terms of 

osteointegration, bone to implant contact and in general mechanical fixation [8-10].

Generally, patients diagnosed with osteoporosis are treated systemically via oral 

administration of bisphosphonates to reduce osteoclast number or activity and hence decrease 

bone resorption[11].Bisphosphonates are based on a common backbone of P-C-P (where C is 

a carbon and P a phosphonate moiety) and are widely used for medical treatment since 40 

years in view of their high affinity for bone apatite [12, 13]. Conventional, systemic delivery 
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of bisphosphonates is often associated with serious side-effects, which have raised a negative 

attitude by patients and the medical community toward their use. Particularly, controversies 

arise concerning oral administration that is often associated to osteonecrosis of the jaw 

(ONJ)[14] and gastric-digestive associated pathologies[15].To circumvent these 

disadvantages of conventional bisphosphonate-based treatment, a therapy based on local 

(rather than systemic) effects of bisphosphonates is particularly appealing. Additionally,local 

treatment is capable of reducing the amount of drug used, which has been demonstrated for 

bisphosphonates by showing reduced osteoclastic activity even at low dosesuponlocal 

delivery [16-18].

Boanini et al. demonstrated that nano-sized HA crystals synthesized in presence of 

bisphosphonates (alendronate or zoledronate) reduce osteoclast proliferation and induce 

osteoclast apoptosis [19].Poorly crystalline nano-sized HA crystals(nHA) are particularly 

useful material in view of their specific physicochemical properties (e.g. increased specific 

surface area, SSA) and improved biological affinity in terms of favorable cell proliferation

due to their similarity with biological ones[20]. As a strong correlation exists between nano-

scale dimension (< 100 nm) and cell responses[21], the concept of using nHA for biomedical 

applications to control cell fate in terms of proliferation and apoptosis control is 

straightforward [22]. Particularly, the functionalization of nHA with bisphosphonate and 

subsequent deposition of this material as a coating onto bone implants represents an approach 

with high potential for improving bone implant fixation and survival in patients suffering 

from osteoporosis.

The aim of this study was to (i) quantitatively evaluate the effect of bisphosphonate-

functionalized nHA (nHAALE) on osteoclast behavior, and (ii) determine the feasibility to use 

nHAALE to obtain a coating for bone implants. nHA was synthesizedaccording to a previously 

established method[23],hereafter theamino-bisphosphonate alendronate was attached to nHA

particles to obtain nHAALE. This nHAALE was characterized and its effect on osteoclast 
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behavior was evaluated in vitro. Further, nHAALE was deposited as a thin nanoscale coating 

on titanium using electrospray deposition (ESD), a coating method that offers control over the 

coating process and preserves the biological activity of biomolecules [24]

2.Material and methods

2.1 Synthesis and characterization of nHA

Nanosized hydroxyapatite (nHA) was synthesized and characterized according to a previously 

established method[23]. Briefly, nanocrystals were precipitated from a suspension of 

Ca(CH3COO)2 (0.35 M) by slow addition (1 drop s-1) of an aqueous solution of H3PO4 (0.21 

M), keeping the pH at a constant value of 10 by the addition of (NH4)OH solution. At 24 h 

after the end of this precipitation reaction, the solid residue was collected by centrifugation,

washed four times with ultrapure water, and suspended in 100 ml of ethanol (EtOH).

Inductively coupled plasma-optical emission spectrometry (ICP-OES, Liberty 200, Varian, 

Clayton South, Australia) was used to determine the Ca/P ratio of nHA. For ICP-OES, nHA 

samples were dissolved in 1 wt% ultrapure nitric acid and the analytical wavelengths were 

chosen accordingly: Ca 422 nm, P 213 nm.Further, nHA was analyzed usingi) transmission 

electron microscopy (TEM; Philips CM 100 instrument (80 kV). The powdered samples were 

dispersed in milliQ water and a few droplets of the slurry deposited on holey-carbon foils 

supported on conventional copper microgrids) to determine the dimensions, ii) x-ray 

diffraction (XRD; PANalytical X’Pert Pro powder diffractometer using Cu Kα radiation 

generated at 40 kV and 40 mA, the instrument was configured with ½° divergence and 

receiving slits. The 2θ range was from 5° to 60° with a step size (2θ) of 0.05° and a counting 

time of 3 s to determine crystallinity and crystallite size, and iii) quantification of nitrogen 

adsorption,at 77 K following the BET model, to determine the specific surface area 

(SSA).The carbonate content was evaluated on dried samples by thermogravimetric analysis 

(TGA; Thermal Analysis SDT Q 600, TA Instruments, New Castle, DE, USA), for which the 

heating procedure was performed in a nitrogen flow (100  mLmin−1) using an alumina sample 
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holder at a rate of 10 °C · min−1 up to 1200 °C. The degree of nHA crystallinity was calculated 

according to the formula (1):

�������������[%] = 100 × �
(���) (1)

where C is the area from the peaks in the XRD pattern (“the crystalline area”) and A is the 

area between the peaks and the background (“the amorphous area”).

2.2 Alendronate adsorption to nHA

Different amounts of alendronate sodium (A4978, Sigma Aldrich co. Ltd.) were dissolved in 

500 μl of milliQ water (0.5-2 mgml-1) and mixed with 500 μl of a suspension of nHA in EtOH 

for 24 h at 37°C to obtain complete adsorption of alendronate onto the nano crystals

(nHAALE). Alendronate adsorption was evaluated by measuring the alendronate concentration 

in the supernatant solution using UV-Vis spectroscopy based on the reaction of the primary 

amino group with ninhydrin in a methanol medium containing 0.05 M sodium bicarbonate. 

The colored reaction product was measured at 568 nm ε = 29 M-1cm-1[25]. Additionally, the 

amount of adsorbed alendronate was compared totheadsorption model described by a 

Langmuir type isotherm, in agreement with the data reported in previous studies[25], using 

the following equation:

Qe= Qm (KLCe)/1+(KLCe) (2)

where Ce and Qe are the drug concentration in solution and the amount of drug adsorbedto 

hydroxyapatite, respectively, Qm is the maximum saturation load, KL is the Langmuir affinity 

constant of the drug to the nanocrystal surface. Thermogravimetric analyses (TGA) were 

carried out on the nHAALE after extensive washings and freeze-drying to discriminate between

physically adsorbed (physisorbed) andstrongly linked alendronate. The relative amount of 

linked alendronate was calculated using the following equation:

Alendronate (wt %) = 100 – (Δw%Alendronate - Δw% nHAALE) × 100/ (Δw%Alendronate- Δw%nHA) (3)
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where Δw%Alendronate, Δw%HAand Δw%nHAALEare the relative weight loss in the range 120-

1200 °C of pure alendronate, nHA and nHAALE, respectively.

2.3 Invitro osteoclast apoptosis model

RAW 264.7 cells (ATCC, LGC Standards GmbH, Wesel, Germany) were cultured in 

proliferation medium consisting of αMEM (22571, Gibco, Invitrogen, life technology 

corporation, Carlsbad, US), 10% fetal bovine serum (FBS, Gibco), 1% gentamicin (15750, 

Gibco).

In order to evaluate osteoclast apoptosis, RAW 264.7 cells were seeded at 2000 cells/cm2 in 

8-well glass chamber slides (Thermo Scientific, 177402, Rochester, NY, USA)using 

proliferation medium enriched with 50 ng/ml RANKL (sRANKL, Peprotech, Rocky Hill, US)

to induce osteoclastogenesis (osteoclastogenesis medium). Medium was refreshed every 2 

days after the first day of seeding.

TRAP-staining (386A, Sigma Aldrich co. Ltd.) and DAPI staining (10236276, Roche,

Woerden, The Netherlands) were used to visualise osteoclastic differentiation after 4 days of 

culture. A single osteoclast-like cell was defined as a TRAP positive cell with at least 3 

nuclei, corresponding to earlier work [26]. After 4 days of culture in osteoclastogenic 

medium, 4 experimental groups wereadded (Table 2) thereafter the cell culture was extended 

for another 4 days:

 Control no added components

 nHA 32 µg/ml (final concentration)

 nHAALE 32 µg/ml (final concentration)

 Alendronate control 3.2 µg/ml (final concentration)

The ratio between attached alendronate and hydroxyapatite was fixed to 1:10 (wt:wt) for the 

in vitro experiment. This ratio was set to assure that 100% of dissolved alendronate would be 

adsorbed on the suspended nHA in 24 hrs according to previous test performed (data not 
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shown). Quantification of osteoclast-like cells was performed by counting the number of 

osteoclast-like cells per field of view usinga light microscope equipped with a digital camera 

(Axio Imager Microscope Z1, Carl Zeiss Micro imaging GmbH, Göttingen, Germany).

2.4 Coating deposition

Titanium substrates (commercially pure, 5 mm Ø, 2 mm thickness) and silicon wafer 

(Wafernet, Siltronic, Portland, USA) were coated using electrospray deposition (ESD) 

withcommercially available vertical ESD equipment (ES-2000s, Fuence Ltd., Japan). 

Suspensions of nHA and nHAALEwere prepared at a final concentration of 3 mg/ml in 

EtOH/H2O (50/50 vol%). During deposition, the following settings were applied: flow rate 4 

µl/min, nozzle to substrate distance 40 mm, humidity 40%, voltage 10-12 kV[27, 28]. The 

deposition time was 5, 15 or 30 minutes for titanium disks and 30 minutes for silicon wafers 

used to determine coating thickness.

2.5 Coating characterisation

The calcium amount within the deposited coatings was determined using the ortho-

cresolphtalein (OCPC) method (Sigma Aldrich co. Ltd.)[29] after immersing coated titanium 

substrates overnight in 0.5 N acetic acid on a shaker table. For analyses, 300 µL of work 

reagent was added to 10 µL aliquots of sample or standard in a 96-wells plate. The plate was 

incubated for 10 min at room temperature, and then the plate was read at 570 nm. Serial 

dilutions of CaCl2 (0–100 µg · mL−1) were used for the standard curve. To evaluate the total 

amount of hydroxyapatite deposited on samples, a standard curve was made by dissolving 

known amounts of nHA synthesized according to the method described above.

Morphological analysis of the coating after deposition was performed using scanning electron 

microscopy (SEM; FESEM, JEOL 6330, Tokyo Japan). Atomic force microscopy (AFM) was 

carried out directly on the titanium disks and on silicon wafers. AFM imaging was performed 
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using a Digital Instruments Nanoscope IIIa Multimode SPM (Digital Instruments, Santa 

Barbara, CA, USA). The samples were analysed in contact mode using a J scanner and silicon 

nitride tips (200 μm long with nominal spring constantof 0.06 N/m).Coating thickness and 

roughness (Ra) were determined using atomic force microscopy (AFM) on coated silicon 

wafers.

Chemical analysis of the coating was investigated using x-ray photoemission spectroscopy 

(XPS). Analyses were performed in an S-Probe (Surface Science Instruments, Mountain 

View, CA, USA) instrument equipped with a monochromatic Al Ka source (1486.6 eV) at a 

spot size of 200 × 750 μm and a pass energy of 25 eV, providing a resolution of 0.74 eV.

2.6 Statistical analysis

Analysis of quantitative data was performed using a one-way ANOVA combined with a post-

hoc Tukey-Kramer multiple comparison test to detect significant differences at a significance 

(p-value) level of p < 0.05. Comparison between average of pair sets of data was performed 

using Student’s t-test. Results are reported as mean ± standard deviations.
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3. Results

3.1 Synthesis and characterization of nHA

nHA was obtained via precipitation from calcium acetate and phosphoric acid. TEM showed 

that nHAhad plate-like shape and nanometric dimensions (<50 nm, data not shown).ICP 

indicated a bulk Ca/P ratio of 1.62 and TGA revealed the presence of carbonate species at 1.3 

wt%. The specific surface area (SSA) was determined at 160 ± 16 m2g-1 and XRDanalysis 

(data not shown) revealed a semi-crystalline (61% crystallinity) structure and crystallite size

of 23 and 9 nm (determined along the (002) and (310) directions, respectively) [23]. An 

overview of the composition, SSA, crystallite size and crystallinityis presented in Table 1.

Table 1Compositional features (bulk Ca/P, carbonate content), specific surface area (SSA), average size of 
crystal domains (along the [0, 0, 2] and [3, 1, 0] directions), and degree of crystallinity of the synthesized HA 
nanocrystals.

Bulk Ca/P 
[mol]

Carbonate 
species
[wt%]

SSA
[m2g-1]

D002
[nm]

D310
[nm]

Degree of
Crystallinity

nHA 1.62 ± 0.02 1.3 ± 0.1 160 ± 16 23 ± 4 9 ± 3 61% ± 5
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3.2 nHAfunctionalized with alendronate

Quantification of the total adsorbed alendronate onto nHA (physisorbed and strongly 

attached) is presented as an isotherm in Figure 1A, where the alendronate amount (mg of 

alendronate on mg of nHA)is plotted as a function of the drug concentration remaining in 

solution after adsorption. The amount adsorbed (Qm) was 0.43 mg/mg and the affinity 

constant for alendronate (KL) was 10.9 ml/mg were calculated according to the Langmuir 

adsorption model. The obtained value of KL is similar to those already reported for 

alendronate adsorption[30]. The presence of the adsorption plateau at low equilibrium 

concentration is an indicator of high affinity of alendronate for the surface of nHA.The 

increase of alendronate concentration in contact with the nanocrystals increased the surface 

coverage, reaching a maximumamount of drug surface immobilization of 0.39 mg/mg

(calculated as plateau value of the isotherm curve).

Figure 4. (A) Adsorption isotherm of alendronate on nHA. Separate points are experimental data, dotted line is 
the curve fitting according to the Langmuir model. The adsorbed amount is determined as difference between the 
known quantity of added alendronate and the amount detected in the supernatant. CAlendronate represents the 
remaining concentration of alendronate in the solution after the adsorption. (B) Thermogravimetric analyses 
(TGA) curves of nHA, nHAALE and alendronate.

The TGA curves of nHA, alendronate and nHAALE (loaded with a maximum amount of drug) 

are presented in Figure 1B. The amount of alendronate attached to nHA calculated by TGA 

was 29.5 wt%, which corresponds to a maximum drug surface immobilization on nHA of 

about 0.42 mg/mg. This value is very close to the one calculated by isotherm indicating that 
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all the alendronate used for the functionalization is strongly attached to nHA and that the 

maximum drug surface immobilization on nHA was about 0.41 mg/mg.

The bound of alendronate to nHA was verified by FTIR analysis (Figure 2). The FTIR spectra 

of the nHAALE showed the typical molecular fingerprints of apatite (1045, 609 and 580 cm-

1)[31] and alendronate (1545, 1137, 1073 cm-1)[32]. The wavelengths of the bands recorded 

for the free alendronate attributed to the phosphonates groups (900-1200 cm-1) were slightly 

shifted in the spectra of nHAALEconfirming the formation of a chemical link on with the nHA 

surface.

For the in vitro tests as well as for the ESD deposition, nHAALEwas designed with 10 wt% of 

alendronate to reduce the amount of drug dissolved in solution.

Figure 2. FTIR spectra of alendronate and nHAALE. Representative peaks of the hydroxyapatite and of 
alendronate are also reported
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Figure 3Osteoclastogenesis. Effect on RAW 264,7 cells after 4 days of culture in medium enriched with RANKL 
[50ng/ml]. TRAP staining and presence of 3 or more nuclei were used as parameters to detect formation of 
osteclast-like cells.

3.3 In-vitro osteoclast apoptosis model

Therefore nHAALEwas designed with 10 wt% of adsorbed alendronate to obtain the total 

chemical adsorption onto nHA, reducing the amount of alendronate dissolved in 

solution.Osteoclastogenesis was confirmed by TRAP and DAPI stains performed at day 4on 

RAW 264.7 cells cultured with RANKL-enriched medium. The changes in cell morphology 

and appearance areindicatorsof the formation of osteoclast-like cells (TRAP positive 

membrane, 3 or more nuclei) as shown in Figure 3.

Figure 4A presentsrepresentativemicroscopic images for each experimental group at the end 

of the culture,showing the effect of the different compounds added to osteoclastogenesis 

medium on the cells.The number of osteoclast-like cells was reduced for ALE and nHAALE

compared to the control and nHA.Further, all experimental groupsshowmultipleviable 

undifferentiated cells.

Quantitative analysis of the number of osteoclast-like cells per field of view is presented in 

Figure 4B. The average number of osteoclast-like cells that were alive at day 8 was calculated 

and compared to the control group. The presence of nHAALE(4 ± 2 cells/field of view)and 

ALE (1 ± 1 cells/field of view) significantly (p < 0.01) reduced the number of osteoclast-like 
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cells compared to the control (20 ± 2 cells/field of view). The addition of nHA has no effect in 

the osteoclast-like cells number (16 ± 3 cells/field of view). 

Figure 4 Effect of alendronate-hydroxyapatite on osteoclasts.(A) Visualization at day 8 of apoptosis in control 
group, nHA, nHAALE and alendronate. TRAP and DAPI staining, 10x magnification, day 4, 2000 cells/cm2. (B) 
Quantification of osteoclasts per field of view.Osteoclasts have been counted only in presence of 3 or more 
nuclei and TRAP positive membrane. Variance analysis has been performed (ANOVA); * indicate a significant 
difference (p< 0,01) compared to control group.
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3.4 Deposition and coating characterization

The coatings prepared using nHA and nHAALE showed a complete coverage at 30 minutes

(Figure 5 A, B) based on SEM images and AFM analysis. Titanium disks coated with nHAALE

revealed a tendency of the nanocrystals to agglomerate into microstructures (0.5-1 µm) 

compared to nHA. AFM performed on silicon wafers revealed a thickness of 570 nm for nHA 

and 771 nm for nHAALE. Ra calculation showed a significantly (p = 0.034, n=5) increased 

roughness on nHAALE (290 nm) compared to nHA (235 nm) coated wafers as reported in 

Figure 5B.

The amount of nHA and nHAALE coated onto titanium disks showed alinear increase in 

coating thickness as a function of deposition time (Figure 5C). Titanium disks coated with 

nHAALE showed a higher amount of deposited material at all time points. After 30 minutes of 

deposition, the analyzed samples were coated with up to 9 µg/cm2 of nHAALEand 3µg/cm2 of 

nHA despite the identical starting concentration.

XPS spectroscopy of coated disks confirmed the presence of alendronate after deposition 

(Table 3), as shown bya nitrogen (N) signaland the increased relative amount of P with the 

resulting decrease of Ca/P ratio. The titanium (Ti) signal appeared only in the coating made of 

sprayed alendronate, indicating good coverage and homogeneity obtained for coatings 

consisting of nHA as well as nHAALE.
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Figure 5 (A) FESEM surface morphology evaluation of nHA and nHAALE coated Ti after ESD deposition. (B) 
AFM analysis: images of coated titanium and thickness characterization performed on silicon wafers. (C) 
Quantification of deposited hydroxyapatite performed with modified OCPC. Disks were freeze dried before 
analysis
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4. Discussion

The aims of this study were to evaluate i) the efficacy of functionalized alendronate-

hydroxyapatite nanocrystals (nHAALE) to reduce osteoclast number, and ii) the feasibility to 

use this material for the preparation of bone implant coatings with a specific therapeutic 

effect. For this purpose, nHA was synthesized to obtain crystals within the nanoscale range 

(<100 nm) and with a highSSA (160 m2/g). Alendronate, a well-established anti-osteoporotic 

drug, was adsorbed to nHA to obtain nHAALE. The hypotheses were that a potent osteoclast 

inhibitor drug could be adsorbed to nanocrystals and preserve its ability to induce osteoclast 

apoptosis. The therapeutic capacity of nHAALEwas tested as well as the feasibility of 

generating bone implant coatings with nHAALE.Using an in vitro osteoclast apoptosis model,it 

was shown that nHAALE significantly reduced the number of osteoclast-like cells. Further, the 

preparation of nHAALE coatings using ESD was shown to be feasibleresulting in 

homogeneous, alendronate-containing nanoscale coatings with a slightly increased roughness 

compared to alendronate-free nHA coatings.

The method to synthesize nHA was selected to obtain nanocrystals with a high SSA able to 

bind a high percentage (in weight) of bisphosphonate (BP) that has been estimated to reach up 

to 30 wt%. The presence of alendronate on the crystals after interaction was proven by FTIR 

and TGA analysis. The adsorption isotherm fitted well with a Langmuir type isotherm in 

agreement with the data reported in previous studies[30], suggesting that BPs are strongly 

attached to nHA by interactions at the calcium site where the bidentate and tridentate 

coordination of the P-C-P and -OH domains of the BPs are known to act. The obtained values 

are in good agreement with the maximum alendronate uptake calculated by UV-Vis (0.39 

mg/mg), by TGA (0.42 mg/mg) and with the theoretical maximum amount calculated 

according to the Langmuir model (0.43 mg/mg), indicating that all alendronate adsorbed on 

nHA was chemically linked and that the amounts of physisorbed drug were negligible. These 

findings confirm the strong interaction of alendronate to the nHA, most likely by the chemical 
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link of phosphonate groups of alendronate with the calcium ions of nHA and through the 

formation of hydrogen bonds of the alendronate amino group with the nHA surface[33]. 

Moreover, the presence of amine moieties in alendronate allows additional interactions due to 

the formation of N-H-O hydrogen bonds on the nHA surface[33].

A modified in vitro test[34] was designed to evaluate the biological activity of nHAALE. RAW 

264.7 cells were selected to obtain osteoclast-like cellsvia an osteoclastogenesis procedure. 

The in vitro set-up was designed with dispersed ceramic nanoparticles (i.e. nHA or nHAALE) 

or dissolved alendronate in the medium to test the biological efficacy of nHAALE without any

potential effects of coating topography. Osteoclast-like cells cultured for 4 days in medium 

containing alendronate or nHAALEshowed a tendency of precocious apoptosis when compared 

to the control group or nHA-enriched medium.These results indicatedan active role for

nHAALE in decreasing the number of viable osteoclasts. Potential cytotoxic effects of the 

nanocrystal materials can be excluded, as the presence of several viable undifferentiated 

RAW 264.7 cells were observed in all culture wells, even after treatment with alendronate or 

nHAALE.The effect of nHAALEwas comparable to the effect of the same amount of pure 

alendronate; osteoclast-like cells number was reduced about five folds compared to the 

control group.

Bioinorganic coatings with anti-osteoporotic properties could be a promising solution for 

numerous compromised implant applications since the presence of a drug regulating bone

turnover such as alendronate, released only in situ and in close presence of osteoclasts, is 

interesting to obtain biomaterials which are able to locally improve the bone/implants 

interaction in osteoporotic conditions.Electrospray deposition (ESD) has been used to achieve 

deposition without compromising the biological activity of adsorbed alendronate.Deposition 

was performed at room temperature and with aqueous solutions to preserve the chemical 

structure of the bisphosphonate; nHAALE was deposited with a thickness of 700 nm and a 

roughness (Ra) of 290 nm.Elemental analysis (performed using XPS) confirmed the presence 
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of nitrogen and an increased amount of phosphorous on the surface of nHAALE coated disks. 

These traces were considered proof for the nHA-mediated immobilization of amino-

bisphosphonate alendronateonto coated disks. The comparison of nHA and nHAALEcoatings 

showed a threefold difference in the quantity of deposited material in favor of nHAALE. 

Analyses performed with SEM induced to consider the increased roughness and the presence 

of micro a reason for this discrepancy. 

Despite other methods to incorporate alendronate or other bisphosphonates onto bone 

implants, in this study alendronate was directly linked to nHA. Previous approaches used dual 

step procedureswhere implants pre-coated with calcium phosphate were immersed in a 

medium containing dissolved bisphosphonate. Such procedures lack control over drug 

quantity and the amounts of loaded bisphosphonate (viaadsorption to the outer layer of the 

coating) are limited[18]. The advantage that was obtained with nHAALEin combination with

ESD is the strong control over the quantity of bisphosphonate loading. The strong linearity 

between time and amount of deposited material allows regulating and controlling the final 

amount of deposited drug. Other methods to incorporate bisphosphonate as a co-precipitation 

compound during the synthesis of calcium phosphate crystals could reduce the therapeutic 

effect of the bisphosphonate loaded onto bigger hydroxyapatite crystals obtained due to high 

temperature of synthesis (90 º C). Co-precipitation can also suffer from a lack of efficiency 

requiring to dissolve more bisphosphonate to obtain loaded value comparable to the one that 

was described in this study[19, 35].
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5.Conclusions

Since the unbalance between osteoclasts and osteoblasts in patients with bone metabolic 

disease can be an obstacle to bone implant success, coatings that actively aim at correcting 

this unbalance are required to recover bone turnover and improve osteointegration of bone 

implants. In the presented study, it was described a method to adsorbe anti-osteoporotic drug 

onto nano-sized hydroxyapatite crystals and a solution to deposit such materials onto titanium 

implants. Nano hydroxyapatite crystals mimicking natural bone size and shape, but enriched 

with bisphosphonate, could represent a potent material able to target specifically osteoclast 

cells and capable of reducing the amount of administered drug. Osteoporotic patients can 

benefit from such coated implants to regain load-bearing functions (i.e. mastication or gait 

cycle) owing to a locally improved bone quality.
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1. Introduction

The use of bone implants in dental or orthopedic rehabilitation is generally successful as 

reflected by 10-year survival rates of 95% in healthy patients.[1] In the clinic, however, the 

aging patient population challenges the use of implants due to general as well as oral health 

issues in modern societies. For instance, osteoporosis, a common systemic bone disease, 

develops with age and is more prevalent in women and men aged above 50 years.[2] The 

prevalence of osteoporosis has been reported to increase up to 70% in patients at 80 years old. 

Worldwide, osteoporosis affects approximately 200 million people and the national 

osteoporosis foundation (NOF) estimates that over 40 million people in the USA already have 

osteoporosis or are at high risk in 2020.[3,4] Osteoporosis is characterized by a severe decrease 

in bone mass and alteration of trabecular bone microstructure due to an imbalance between 

bone resorption (by osteoclasts) and bone formation (by osteoblasts).[5] Further, it has been 

shown that bone healing in osteoporosis is impaired and the biological activity of bone cells is 

negatively influenced.[6]For bone implant treatment in osteoporotic patients, the osteoporotic 

condition impedes primary stability, biological fixation and final osseointegration.[7] As such, 

the application of bone implants in osteoporotic patients remains a clinical challenge in dental 

and orthopedic surgery.

For successful implant osseointegration, the bone-implant interface has to interact optimally 

with the bone tissue in the implant vicinity. For medically healthy patients, new bone (i.e. 

woven bone) is formed directly in contact with the implant surface by osteoblastic cells, 

where after it transforms into mature bone.[8] This interaction can be improved by implant-

related factors, such as implant design, surgical technique, and osteophilicity of the implant 

surface.[9] Because the implant surface directly interacts with bone tissue, a variety of surface 

modifications have been explored.[10] The currently available surface modifications aim to 

combine advantages of physical properties (e.g. roughness) with bioactive cues (i.e. bone-

bonding) to improve implant integration.[11] Over the past two decades, calcium phosphate 
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(CaP) coatings have demonstrated to favor the healing response to the implant surface and 

hence to enhance peri-implant bone formation.[12,13] The presence of a CaP coating at the 

implant surface is anticipated to facilitate colonization by mesenchymal precursor cells and 

upregulate specific gene expression in the vicinity of the implant.[14] Recently, it was shown 

that electrostatic spray deposition (ESD) enables the functionalization of implant surfaces 

with CaP nanoparticles (nCaP) that mimic the mineral component of natural bone.[15] An 

additional advantage of ESD is that it enables the deposition of nCaP in combination with 

organic biomolecules such as collagen proteins, growth factors, peptides, or other therapeutic 

agents.[16] As a consequence, a novel generation of therapeutic implant coatings can be 

synthesized that instruct bone cells by releasing drug molecules locally around the implant 

surface, especially for compromised conditions such as osteoporosis.[17,18] In clinical practice, 

the deposition of nCaP in combination with therapeutic implant coatings might have a dual 

effect during bone-implant integration, and their concomitant use may offer a simultaneous 

targeting of peri-implant bone anabolic/catabolic processes. Particularly bisphosphonates 

(BPs) are appealing for such purpose, as their therapeutic function to inhibit osteoclast 

proliferation and activity can be exploited for local effects in the vicinity of an implant surface 

toward improved implant fixation[19]. In view of this, the idea for therapeutic nCaP/BP 

coatings for bone implants represents an appealing approach to improve bone responses and 

implant integration in osteoporotic conditions.

The present study aimed to evaluate the efficacy of an ESD-derived nCaP/BP coating on peri-

implant bone response in osteoporotic as well as healthy conditions using an established rat 

femoral condyle implantation model.[20] At 4 weeks post-implantation, histological, 

histomorphometrical, and microcomputed tomography (µCT) were performed. In addition to 

conventional histological analysis, we also performed real-time polymerase chain reaction 

(RT-PCR) after 4 weeks of healing to evaluate osteogenic gene expression in the peri-implant 

bone in osteoporotic and healthy conditions.



Electosprayed coatings: from active surfaces for bone implants

136

2. Results

2.1. Rat osteoporotic model

To establish an osteoporotic condition, 60 skeletally-mature male Wistar rats were subjected 

to gonadal tissue removal and sham operations.[20,21]In vivo, 6-weeks monitoring of trabecular 

bone in femoral condyles (i.e. implantation site) via small-animal micro-computed 

tomography (in-vivo µCT) imaging showed rapid bone morphological changes for hypo-

gonadism rats. The measurements revealed significantly lower trabecular bone volume 

(%BV), trabecular thickness (Tb.Th mm), trabecular number (Tb.N mm-1), and significantly 

higher trabecular spacing (Tb.Sp mm) for hypo-gonadism compared to healthy rats (Table 1). 

After confirmation of the osteoporotic condition in hypo-gonadism rats, implants coated with 

nCaP, bisphosphonate, or bisphosphonate-loaded nCaP were installed bilaterally in the 

femoral condyles of hypo-gonadism (osteoporotic) and sham-operated (healthy) rats. Non-

coated implants served as control. Post-operatively, rats were allowed to move freely without 

any restrictions. The animals returned to normal activity within 12 hours following 

implantations. Daily monitoring did not show significant changes in animal activity and 

feeding behavior. No wound complications or implant failures were observed within the 4-

week implantation period.

Table 1: Quantifying trabecular bone morphology post-hypogonadism using in-vivo µCT. The measurements 
(mean±SD) represent trabecular bone volume (%BV), thickness (Tb.Th mm), number (Tb.N mm-1), and spacing 
(Tb.Sp mm).

%BV Tb.Th  mm Tb.N mm-1 Tb.Sp  mm

Osteoporotic condition 14.69 ±2.90 0.06 ±0.01 2.64 ±0.23 0.33 ±0.04

Healthy condition 33.05 ±4.81* 0.07 ±0.01* 4.58 ±0.18* 0.15 ±0.02*

* indicates significant difference between rows (P<0.05)
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2.2. Bone-implant interfacial histology after 4 weeks

The morphology of the bone tissue in the peri-implant area was investigated histologically

(methylene blue and basic fuchsin stain). Figure 1.a,b shows overview images of the peri-

implant area for all experimental implants and magnifications of the implant-bone interface. 

High amounts of remote bone tissue were observed around nCaP/BP- and BP-coated implants 

for both osteoporotic and healthy conditions. Lower amounts of bone, occasionally with 

layers of fibrous tissue at the bone-implant interface, were observed for non-coated and BP-

coated implants. Trabecular bone was observed in direct contact with the surfaces of nCaP-

and nCaP/BP-coated implants for both osteoporotic and healthy conditions. Further, newly 

formed bone could be clearly discriminated from old bone in the bone/implant interfacial area 

of nCaP/BP-coated implants (Figure 1.c).

Figure 1.Histology sections of implants with 
various coating demonstrating the morphology of 
the bone tissue in the peri-implant interfaces at 4-
weeks. (A and B) Images for all experimental 
implants and magnifications (x400) of yellow boxes 
show high amount of bone tissue around the 
nCaP/BP- and BP-coated implants in osteoporotic 
and healthy conditions compared to non-coated 
implants. Trabecular bone shows in direct contact 
with the surfaces of nCaP- and nCaP/BP-coated 
implants in both osteoporotic and healthy 
conditions. (C) Newly formed bone (NB) could be 
clearly discriminated from old bone (OB) in the 
bone/implant interfacial area of nCaP/BP-coated 
implants.



Electosprayed coatings: from active surfaces for bone implants

138

Table 2. Quantifying peri-implant bone formation and integration by ex-vivo µCT and histomorphometrical 
analyses after 4-weeks. Data represents mean±SD for experimental groups in osteoporotic and healthy 
conditions.

Ex-vivo µCT examination Histomorphometrical analysis

n Bone volume [%BV] n Bone area [%BA] Bone-implant contact 

[%BIC]

Osteoporotic 

condition

non-coated 4 25.62 ±8.97 7 33.02 ±10.02 9.5 ±10.53

nCaP 4 31.52 ±5.66 7 29.28 ±11.30 49.13 ±32.02a

nCaP/BP 4 47.04 ±11.64a 7 39.66 ±11.57 50.50 ±42.94a

BP 4 44.69 ±1.94a 7 49.47 ±7.39a 9.51 ±8.66

Healthy 

condition

non-coated 4 32.96 ±11.45 6* 35.69 ±10.50 19.16 ±8.23

nCaP 4 34.77 ±9.09 7 36.84 ±15.37 64.06 ±30.40b

nCaP/BP 4 36.64 ±20.46 7 58.79 ±10.73b 70.02 ±31.84b

BP 4 61.85 ±6.17b 6* 50.61 ±19.57 24.73 ±16.60

*One sham-operated rat died.

a indicates significant difference compared to non-coated implants in osteoporotic conditions (P<0.05).

b indicates significant difference compared to non-coated implants in healthy conditions (P<0.05).

2.3. Quantifying peri-implant bone formation at 4 weeks

Micro-computed tomography was performed to quantify the peri-implant bone volume (BV) 

fraction. In corresponding two-dimensional (2D) µCT slices (Figure 2.a,b), we observed more 

bone formation toward nCaP/BP- and BP-coated implants in both osteoporotic and healthy 

conditions. The peri-implant trabecular bone volume (%BV) after 4 weeks of implantation 

was calculated in a standard volume-of-interest (VOI) 500 µm surrounding implants (Figure 

2.c, Table 2). In osteoporotic conditions, nCaP/BP- and BP-coated implants significantly 

increased %BV (i.e. 1.8-fold and 1.7-fold, respectively) compared to non-coated implants 

(P<0.05). In healthy conditions, %BV increased considerably (i.e. 1.9-fold) around BP-coated 

implants compared to non-coated implants (P<0.05). The nCaP- and nCaP/BP-coated

implants showed a similar %BV in osteoporotic bone compared to healthy conditions 

(P>0.05).
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Histomorphometrical analysis was performed to quantify and compare peri-implant bone 

formation (bone area; %BA) in a standard region-of-interest (ROI) of 500 µm surrounding 

implants (Figure 2.d and Table 2). In osteoporotic conditions, BP-coated implants showed 

significantly (P<0.05) increased %BA compared to non-coated implants (i.e. 1.5-fold), 

whereas nCaP and nCaP/BP-coated implants showed comparable %BA to controls (P>0.05). 

In healthy conditions, the %BA values were significantly increased around nCaP/BP implants 

(i.e. 1.6-fold) compared to non-coated implants (P<0.05), whereas nCaP- and BP-coated 

implants showed a comparable %BA to non-coated implants (P>0.05).

Figure 2. Visualizing and quantifying peri-implant bone formation after 4-weeks. (A and B) Representative ex-
vivo µCT 2-diamentional imaging of non-coated and coated implants in osteoporotic and healthy conditions. (C) 
%BVs were calculated by µCT (n = 4). (D) Histomorphometrical %BAs were also measured for all experimental 
implant groups (n = 6 to 7). * P<0.05, one-way ANOVA with Dunnett’s post-hoc test.
2.4. Histomorphometrical analysis of the bone-implant interface after 4 weeks
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nCaP/BP-coated implants were anticipated to lead to an osseointegrative tissue response, in 

which bone would grow intimately along the implant surface and form a mechanically strong 

bone-implant interface.[8,22] As an advantage of retaining the implant for histological 

sectioning, we were able to quantify the direct bone-to-implant contact at high magnification.

Figure 3 and Table 2 show the quantitative results of bone-to-implant contact (%BIC). At 4 

weeks, implants with nCaP and nCaP/BP coatings demonstrated significantly higher %BIC 

compared to non-coated implants for both osteoporotic and healthy conditions (P<0.05). 

Quantitative measurements for BP-coated implants showed a comparable %BIC to non-

coated implants for both osteoporotic and healthy conditions (P>0.05).

Figure 3. Representative histomorphometrical analysis showing bone-to-implant contact (%BIC). The statistical 
results depict implants with nCaP and nCaP/BP coatings had higher mean %BIC compared to control implants 
in both osteoporotic and healthy conditions. * P<0.05, one-way ANOVA with Dunnett’s post-hoc test.

2.5. Relative gene expression in peri-implant tissue after 4 weeks

Identification of osteogenic genes that are upregulated during implant-bone interfaces for 

osteoporotic and healthy conditions is pertinent to successfully address clinical needs. In the 
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present study, peri-implant tissues were carefully retrieved at 4-weeks post-implantation and 

analyzed via real-time PCR using the relative comparative (Ct) method [23] while non-coated 

implants in healthy conditions served as a reference. The results of real-time PCR are shown 

in Figure 4.a-g. The relative gene expression (fold changes) showed similar osteogenic gene 

expression for all experimental groups.

Figure 4. Results of 
the relative 
quantification of 
gene expression 
(fold changes) at 4-
weeks. (A to F) Data 
(mean±SD) present 
peri-implant 
osteoblastic-specific 
genes for all 
experimental 
groups. (G) The 
osteoclastic TRAP 
markers also 
compared between 
coated and control 
implants in both 
osteoporotic and 
healthy conditions. * 
P<0.05, one-way 
ANOVA with 
Dunnett’s post-hoc
test.
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3. Discussion

Osteoporosis is expected to affect a large proportion of the aged population in the near future. 

In the clinic, however, an osteoporotic condition challenges the use of bone implant-based 

rehabilitation due to the impaired osseointegration and high risk of implant loosening.[1, 2] In

the present study, we used a combination of calcium phosphate nanoparticles (nCaP) and 

bisphosphonate (alendronate) to generate coatings onto titanium implants in an approach to 

enhance bone-implant integration for osteoporotic and healthy patients. Interestingly, by 

detailed histomorphometrical analysis, we observed a significant increase in bone-to-implant 

contact (%BIC) associated with the deposition of nCaP and nCaP/bisphosphonate onto 

implant surfaces at 4-weeks post-implantation compared to non-coated implants in both 

osteoporotic and healthy conditions. Clinically, bone implant osseointegration is achieved by 

direct bone formation and bonding at the implant surface, which is clinically relevant for high 

success rates of bone implants.[8] This preferred biological response requires early 

recruitment, attachment, and proliferation of bone cells to the implant surface, which can be 

improved by surface modifications, most often by depositing synthetic CaPs that resemble the 

mineral component of bone.[24] The beneficial effect of the ESD nCaP-coating has already 

been explored in vitro,[25] showing an increased adhesion of osteoblast-like cells to nCaP-

coated substrates. This is also in accordance with the observations in a recent rat study using 

ESD nCaP-coated implants.[26]

Evidently, we noticed that the presence of a nCaP-coating generates a beneficial effect at the 

osteoporotic bone-implant interface, but not on the bone tissue at more remote distances away 

from the implant surface. Consequently, new surface coating strategies with therapeutic 

capacity including bisphosphonates are currently introduced to target osteoporotic bone also 

at more remote distances from the implant surface.[27,28] In this study, we proved that the 

synergistic action of bisphosphonates and nCaP on successfully increased the quantity of bone 

formation at the implant interface and within a peri-implant area of 500 μm compared to non-
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coated implants for both osteoporotic and healthy conditions. In contrast, the single deposition 

of bisphosphonate only onto the implant surface effectively increased peri-implant bone 

volume/area in osteoporotic conditions, but not the bone-to-implant contact, which 

corroborates with the study of Wermelin et al.[29]. These findings also endorse previous in 

vivo observations that the combination of bisphosphonate and CaP coating significantly 

improves both bone-implant contact and the amount of bone surrounding implants.[19,30,31,32]

The implications of these observations are still unknown, but we assume that bisphosphonates 

are less firmly bound to the titanium surface compared to nCaP in view of the high calcium-

binding affinity of BPs. As a consequence, release of bisphosphonates from CaP-free 

bisphosphonate coatings will affect bone formation at distance larger than 500 µm from 

implant surface, whereas the more localized site of action of nCaP-bound bisphosphonates is 

the direct implant/tissue interface. Our data further confirmed that deposited nCaP coatings 

can also serve as a local drug-delivery vehicle to favor the bone healing process at the implant 

interface in a dual manner.[29,30,33]

The effect of nCaP on the bone-implant interface can be due to different mechanisms of 

action. For instance, the dissolution of Ca2+ and PO4
3- ions from a CaP-coating has been 

suggested to stimulate cellular and intracellular signaling and to favor osteoblastic cell 

activity in the process of bone formation.[24,34] Further, Ca2+ ions might increase osteogenic 

cell chemotaxis and migration toward the coated surface via the activation of calcium 

signaling.[35] Ca2+ and PO4
3- ions also play an essential role in bone mineralization, and can 

facilitate the precipitation of bone-like apatite on the implant surface.[36] On the other hand, 

bisphosphonates have been demonstrated to inhibit osteoclast-mediated resorption of newly 

formed bone, leading to an increased peri-implant bone amount.[17] Pharmaceutically, the 

potency of bisphosphonates is determined by the presence of specific lateral chains (R1 and 

R2 groups), which bind to bone (CaP) minerals and then target different cellular and 

molecular processes in osteoclasts.[33] Bisphosphonates, specifically alendronate, possess the 
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ability to inhibit the enzyme farnesyl pyrophosphate (FPP) synthase, thereby disrupting the 

mevalonate pathway, which reduces osteoclastic function and activity.[33, 37] Beside effects on 

osteoclastic activity, an in vitro study showed that bisphosphonates increase osteoblast 

anabolic activity via binding and opening of cell-membrane hemichannels, which ultimately 

activate osteoblastic-cell surviving processes.[38]

Apart from the molecular mechanisms involved in the effect of nCaP and bisphosphonate 

coatings on peri-implant bone healing, real-time PCR analysis at 4-weeks revealed similar 

effects of the experimental coatings on gene expression levels involved in peri-implant 

osteogenesis. This corroborates earlier findings,[39] which also showed similar levels of bone-

specific gene expression at the interface of nCaP-incorporated implants compared to non-

coated implants after 4-weeks of healing. Despite these similar gene expression levels after 4 

weeks of bone healing, the amounts of new bone formation and remodeling around the coated 

implants were increased after 4 weeks,[40] suggesting that the influence of implant surface 

coatings on the process of osteoconduction might be more effective during the early stages of 

osseointegration. Further, the histologically observed peri-implant bone healing differences at 

4-weeks post-implantation are likely to be preceded by distinct gene expression in the peri-

implant region of the different experimental groups, for which gene expression confirmation 

of histological observations are difficult to obtain via an experimental set-up with one single 

time point for sampling. We also expected to observe a significantly decreased osteoclastic 

cell activity (i.e. levels of TRAP gene expression) in the presence of bisphosphonate-

containing coatings compared to non-coated implants, especially in osteoporotic conditions. 

The absence of this observation might suggest that in osteoporotic conditions, bisphosphonate 

at the amount electrosprayed onto titanium implants in the present study does not effectively 

inhibit osteoclastic cell activity. As such, this warrants further investigation of the 

pharmaceutical dose-efficacy of drug-loaded implants before translating towards clinical 

translation.
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Because of the limited opportunity to undertake human studies, we have used animal models 

to investigate a drug-loaded method to improve peri-implant interface processes in 

osteoporotic conditions. Although the rat is one of the most commonly used species in 

medical research, further investigations in large animals are needed for simulating implant 

integration under a complex clinical condition (i.e. loading).

4. Conclusion

The results of this study demonstrate that the combined use of nCaP and bisphosphonate 

increases bone formation at the implant interface compared to non-coated implants. It is 

suggested that simultaneous targeting of bone formation (by nCaP) and bone resorption (by 

BP) using nCaP/BP surface coatings represents an effective strategy for improving bone-

implant integration, especially in osteoporotic conditions. On the molecular level, real-time 

PCR analysis at 4-weeks revealed similar effects of the experimental coatings on gene 

expression levels involved in peri-implant osteogenesis.
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5. Experimental Section

Preparation of implants:Pin-shaped implants (Figure S1) were made of commercially-pure 

titanium with main diameter of 3.1 mm and length of 7.0 mm. The implant model was 

featured by a pin part (diameter: 1.5 mm and length: 4 mm) to facilitate a standard method of 

harvesting bone-implant tissues for histological and genetic analyses. All implants were grit-

blasted (roughness, Ra= 0.5 µm) and cleaned ultrasonically in nitric acid 10% (15 min), 

acetone (15 min), and ethanol (15 min) and thereafter air-dried.

Figure S1. Schematic illustration of pin-shaped implants used in the present study. Implant was designed with a 
pin part to facilitate a standard method of harvesting bone-implant tissues.

Electrostatic spray deposition (ESD) of coatings: ESD coatings were deposited as previously 

described[26] using a commercially available electrostatic spray deposition (ESD) device (ES-

2000S, Fuence Co., Ltd., Japan). The following standardized conditions were applied: 20% 

relative humidity; 30oC substrate holder temperature; 40 mm nozzle-to-substrate distance; 4 

µl/min liquid flow rate; and 10-12 kV applied voltage. For deposition of nCaP coatings, nano-

sized apatite crystals were synthesized according to a previously described method.[41] Briefly, 

nCaP crystals were obtained from a suspension of Ca(CH3COO)2 (0.35 M) by the slow 

addition (1 drop/second) of an aqueous solution of H3PO4 (0.21 M). The pH was kept constant 

(pH= 10) by the addition of a (NH4)OH solution. After 24 h, the solid residue was collected 
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by centrifugation, washed four times with ultrapure water and then suspended in 100 ml of 

ethanol. For nCaP/BP coatings, alendronate sodium trihydrate ≥ 97% powder (A4978; Sigma-

Aldrich, Munich, Germany) was added to a suspension containing nCaP crystals at a 

concentration of 3 mg/ml and weight ratio of 1:10 for 24 h. The attached percentage of 

alendronate onto nCaP crystals was determined by measuring the drug concentration in the 

supernatant solution using ultraviolet-visible spectroscopy based on the detection of the 

primary amino group with ninhydrin as previously described.[41,42] For BP coatings, a solution 

of alendronate sodium powder was dissolved in milli-Q and adjusted with ethanol to a final 

concentration of 0.3 mg/ml. The medium used for deposition of all the coating groups 

consisted in a solution of 50% ethanol. Thereafter, ESD coating was performed in three 

separate runs (with in between implant turning of 1200) of 30 min each to obtain complete 

coating coverage. The amount of nCaP coating was measured using the ortho-cresolphtalein 

(OCPC) method (Sigma-Aldrich, Munich, Germany) as previously described.[41,43] In brief, 

300 µL of work reagent was added to 10 µL aliquots of sample or standard in a 96-wells plate. 

The plate was incubated for 10 min at room temperature, and then the plate was read at 

570 nm. Serial dilutions of CaCl2 (0-100 µg · mL−1) were used for the standard curve. To 

evaluate the total amount of nCaP/BP coating, a standard curve was made by dissolving 

known amounts of nCaP/BP synthesized according to the method described above. Based on 

OCPC method, the amount of nCaP/BP coating was measured 8±0.9 µg/cm2 and weight ratio 

of 1:10. For BP coating, the quantity of the drug was estimated 0.8 µg/cm2. Finally, implants 

were provided with 3 types of coating or left non-coated:

A: non-coated implants

B: nCaP

C: nCaP/BP

D: BP
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Implants were sterilized using ethylene oxide (EO; Synergy Health plc, Venlo, The 

Netherlands).

Animal model and surgical procedures: The study was approved by the Animal Ethical 

Committee of the Radboud University Nijmegen Medical Centre (DEC-2011-258). All in vivo

experiments obeyed the guidelines (national and international) for animal care and the Dutch 

law concerning animal welfare and conformed to the ARRIVE guidelines. For animal 

experiments, male Wistar rats (12-weeks old, weight ~350 g) underwent orchidectomy (ORX) 

surgery to induce osteoporosis through a loss of gonadal function (hypo-gonadism). 

Osteoporotic conditions were allowed to establish for 6 weeks before implants were installed 

bilaterally in the femoral condyles. At the intercondylar notch, a cylindrical hole (diameter: 

1.5 mm and depth: 7 mm) was initially prepared parallel to the long axis of the femur. Then, 

implants were placed (press-fit) into the predrilled pin-shaped hole. Details are in the 

Supporting Information.

A power-analysis was performed to calculate the study sample number using the following 

formula: n = 1 + 2C(s/d)2. We assumed a standard deviation (s) of 12.5 and an effect size (d) 

of 15. C-value was fixed at 7.85 (resulting from 1-β = 0.8 and α = 0.05). There were a total of 

four experimental (coated and non-coated implants) groups with at least 30 test animals per 

condition (osteoporotic and healthy). Each animal has one implant in each leg (considered 

independent). A 4-weeks endpoint was predetermined to evaluate the temporal effect of 

coatings of peri-implant bone formation and implant-bone integration in osteoporotic and 

healthy conditions. Within each experimental group, (i) specimens (n = 6 to 7 per implant 

group) were subjected to histomorphometrical evaluations after (undecalcified) embedding in 

poly(methylmethacrylate) (pMMA), (ii) specimens (n = 4 per implant group ) were selected 
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for ex-vivo micro-CT examination, and (iii) specimens (n = 4 per implant group) were used 

for molecular (real-time PCR) analysis. All experiments were randomized and blinded.

Ex-vivo µCT examination: At 4-weeks of implantation, rats were euthanized by CO2-

suffocation. Femoral condyles were dissected from adhering tissues. After fixation in 10% 

formalin solution, specimens were scanned with a desktop X-ray micro-tomography system 

scanner (Skyscan® 1072, Kontich, Belgium). Before scanning, each specimen was wrapped in 

Parafilm® (SERVA Electrophoresis GmbH, Heidelberg, Germany) to prevent drying during 

scanning, and placed vertically onto the sample holder. Subsequently, a scan resolution of 11 

µm was set for all the samples. Scans were recorded at 100 kV and 98 µA, with the use of a 1 

mm thick aluminum filter to optimize the contrast, a 180o rotation, 5-frames averaging, a 

rotation step of 0.90o (206 images per scan), and exposure time of 3.8 sec. After 3D 

reconstruction using NRecon v.1.4.4 (Skyscan®, Kontich, Belgium), a constant volume of 

interest (VOI) was chosen to include bone tissue surrounding the implant bed by using CT 

analyzer software (CTAn v.1.8, Skyscan®, Kontich, Belgium). Thereafter, per sample, a fixed 

threshold was manually selected to segment peri-implant bone tissue and preserves its 

morphology. Finally, trabecular bone volume fraction was visualized and measured in a 

defined ROI using a ring with a radius of 500 µm from the implant surface.

Histological evaluation of bone-implant interface: After euthanasia and fixation in 10% 

formalin solution, specimens with implant in situ were dehydrated in ascending grades of 

alcohol from 70 to 100% and subsequently embedded into pMMAresin. After polymerization, 

serial cross-sections (perpendicular to the long axis of the implant) were cut at a thickness of 

~10 μm, using a modified sawing microtome technique, and were stained with methylene blue 

and basic fuchsin. Blinded histological and histomorphometrical evaluations were carried out 

using a light microscope (Axio Imager Microscope Z1, Carl Zeiss Micro imaging GmbH, 
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Göttingen, Germany). Histomorphometrical bone area (%BA) was calculatedin a circular

peri-implant ROI, i.e. 0-500 µm from the implant surface. Additionally, bone-to-implant 

contact (%BIC) was measured.

RNA isolation, complementary DNA (cDNA) synthesis, and quantitative real-time PCR: After 

euthanasia, an aseptic procedure was employed to harvest implants for the molecular (genetic) 

analysis. In brief, the skin above the implant was shaved, disinfected with 10% povidone 

iodine, and then incised to expose completely the top part of implant. A trephine guide (3.1 x 

3.0 mm) was connected to the implant. Then, the implant was trephined using ACE 

easyretrieve trephine system (ACE Surgical Supply Company, Inc., Brockton, MA, USA) 

with inner diameter of 3.2 mm (Figure S2). The retrieved implant along with the surrounding 

bone en bloc was placed in a Cryo.sTM 2 ml sterilized tube (Greiner Bio-One GmbH, 

Frickenhausen, Germany) and frozen at -80°C until analysis.

Figure S2. Method of harvesting implants for the molecular (real-time PCR) analysis. First, a trephine guide (A) 
was connected to the implant. Then, (B) ACE easyretrieve trephine system was used to trephine the implant.
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For molecular analysis, bone tissue attached to the implant was pulverized to a fine powder 

using the Mikro-Dismembrator (B. Braun Biotech International GmbH, Melsungen, 

Germany). Then, total cellular RNA was isolated using Trizol® reagent (Invitrogen Life 

Technologies, Carlsbad, CA, USA). Total RNA concentration was quantified using a 

NanoDrop™ 2000 spectrophotometer (NanoDrop products, Wilmington, DE, USA). The 

extracted RNA was reverse transcribed following a conventional protocol to synthesize 

complementary DNA (cDNA). cDNA synthesis was performed using 1 µg RNA dissolved in 

10 µl nuclease-free water containing 2 µl 5x iScript reaction mix and 0.5 µl iScript reverse 

transcriptase (iScriptTM cDNA synthesis kit, Bio-Rad Laboratories B.V., Veenendaal, The 

Netherlands) according to the manufacturer’s protocol. The cDNA was used as a template in 

real-time PCR. Quantitative real-time PCR was performed in a total volume of 23 µl buffer 

solution containing 1 µl of template cDNA, 12.5 µl SYBR Green MasterMix (Eurogentec 

S.A., Seraing, Belgium), 8.5 µl nuclease-free water, and 1 µl of each primer. PCR reactions 

were performed using rat-specific primers designed by Primerdesign® (PrimerDesign Ltd, 

Southampton, UK) according to manufacturer’s instructions (Table S1). Osteoblastic cell 

differentiation was monitored by the expression of runt-related transcription factor-2 (Runx-

2), bone morphogenetic protein-2 (BMP-2), collagen type I (Col I), integrin α1, alkaline 

phosphatase (ALP), and osteocalcin (OC). The expression of the osteoclast-specific gene 

tartrate-acid resistant phosphatase (TRAP) was also monitored. Glyceraldehyde-3-phosphate 

dehydrogenase (GAPDH) was used as house-keeping gene control. Real-time PCR was 

performed using the SYBR Green PCR kit (Eurogentec, Liege, Belgium) and controlled in 

C1000™ Thermal Cycler PCR system (Bio-Rad, Veenendaal, The Netherlands). The 

quantification of a target gene expression in comparison to a reference gene (GAPDH) was 

mathematically determined. After the real-time PCR run, the cycle threshold (Ct) value of 

target gene was calculated relative to GAPDH as an internal control (ΔCt = Ct target – Ct 

GAPDH). Then, fold-differences in gene expression were calculated by the comparative (ΔΔCt = 
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ΔCt target – ΔCt control) and 2-ΔΔCt value method as previously described.[23] Non-coated 

implants in healthy conditions were set as control; 1.0-fold expression level.

Table S1: Bone-specific rat primers for real-time PCR designed by Primerdesign® (PrimerDesign Ltd, 
Southampton, UK).

Gene Suppler Accession No. Amplicon length (bp)

Runx-2 XM_346016 120
PMB-2 NM_017178 139
Collagen I XM_213440 100
Osteocalcin NM_013414 103
ALP NM_013059 105
Integrin α1 NM_030994 125
TRAP NM_019144 92

Statistics: Data were analyzed by SPSS version 16.0 (SPSS Inc., Chicago, IL, USA) and are 

presented as mean±SD. Independent t-tests were used for two group comparisons to confirm 

changes in bone morphological parameters in osteoporotic conditions compared to healthy 

conditions.For histomorphometrical data, BIC values were assumed to display unequal 

variances (P<0.05). Consequently, parameters of BIC were categorized (dichotomized) into 

two groups according to bone-implant contact level, either equal or above the zero value, 

using crosstab and chi-square calculations method. Then, the association between BIC values 

(above the zero) and types of surface coatings were assessed. One-way ANOVA with 

Dunnett’s post-hoc test was performed to compare variables of coated implants to non-coated 

implants in osteoporotic and healthy conditions, separately. The level of significance was set 

at P<0.05.

Supporting Information
Supporting Information is available online from the Wiley Online Library or from the author.
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Supporting Information

Experimental details

Surgical procedure for orchidectomy (hypo-gonadism):To establish an osteoporotic condition, 

skeletally-mature male Wistar rats (Charles River Laboratories International, MA, USA) were 

subjected to gonadal tissue removal and sham operations. Prior to surgery, pain control 

medication, Carprofen (Rimadyl®, 5.0 mg/kg) and Buprenorphine (Temgesic®, 0.02 mg/kg), 

were injected subcutaneously 15 min pre-operation and every 8h for 2 days after the surgery. 

After inhalational anesthesia was induced and maintained by 2% Isoflurane® by volume 

(Rhodia Organique Fine Ltd, Avonmouth, Bristol, UK), the abdominal region was completely 

shaved and cleaned with 10% povidone iodine. Animal was placed in supine position on an 

electric heating blanket. A 1 cm midline skin incision was made in order to enter the 

abdominopelvic cavity. Then, the gonadal tissues were gently pulled through and a single 

ligature (Vicryl® 3.0, Ethicon Products, Amersfoort, The Netherlands) was placed around the 

blood vessels, after which both testes were removed. After confirming that no massive 

bleeding was occurring, the abdominal muscle layers was closed with absorbable sutures 

(Vicryl® 3.0) and the skin was stapled by metal wound clips (Agraven®, InstruVet Bv, Cuijk, 

The Netherlands). The sham operations were also performed following the same surgical 

procedure except for the removal of testes. The animals were monitored for signs of pain, 

infection and proper activity. After ORX intervention, rats had free access to water and a low-

calcium pellet (0.01% Ca and 0.77% P) and followed an osteoporotic diet (ssniff 

Spezialdiäten GmbH, Soest, Germany).The sham-operated rats had unrestricted access to the 

normal pellet food containing 1.17% calcium (Ca) and 0.91% phosphorus (P).

Assessment of osteoporosis condition:After 6 weeks, ORX rats as well as the sham-operated 

rats (n = 3 of each animals group) were scanned by small-animal in-vivo µCT imaging system 
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(Inveon; Siemens Medical Solutions, Knoxville, TN). Before scanning, small animal 

anesthetic machine (Rhodia Organique Fine Ltd, Avonmouth, Bristol, UK) was added to the 

scanner cabinet. Then, animal was placed supine on the scan stage and was sedated under 

inhalational anesthesia (2% Isoflurane® by volume) using a mask held over the rat’s snout and 

then secured with a strap. The two hind-limbs were bended and held in place with a strap. The 

distal femoral regions were manually located via the scout viewer (Inveon Acquisition 

Workplace software, Siemens Medical Solutions, Knoxville, TN) as the region of interest for 

optimal focused scanning resolution. Then, CT images were acquired with the manufacturer 

recommended parameters: voltage 80 kVp, anode current 500 μA, angular sampling 1° per 

projection for a full 360° scan, effective pixel size 30 μm, and exposure time of 1 sec. The X-

ray source-to-detector distance was 357.8 mm and source-to-object distance was 160.7 mm. 

Total acquisition time was 30 min. Thereafter, all projection data were reconstructed using 

cone beam algorithm according to the manufacturer’s default values. The scanned micro-CT 

data for right and left femoral condyles were imported into Inveon Research Workplace 3.0 

program (Siemens Medical Solutions USA Inc, Knoxville, USA). Trabecular bone was 

selected by drawing volume of interest (VOI) in metaphyseal region. To generate a standard 

VOI selection, a region-of-interest with a length of 2.1 mm (= 70 slices) was chosen manually 

(excluding the cortical bone) and distanced from the growth plate area. Thereafter, the gray-

value images were adjusted to remove noise and a fixed threshold was manually determined 

to extract trabecular bone phase and bone marrow phase separately. Using the Inveon 

Research Workplace 3.0 software, the following trabecular bone morphological parameters 

were automatically computed: (1) bone volume fraction (%BV), (2) trabecular thickness 

(Tb.Th mm), (3) trabecular number (Tb.N mm-1), and (4) trabecular separation (Tb.Sp mm).

Surgical procedure for installation of implants:After confirmation of the osteoporotic 

conditions, the pin-shaped implants were installed in the femoral condyles under inhalation 
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anesthesia (2% Isoflurane® by volume). The rat was immobilized supine with the knee joint in 

a maximally flexed position and the hind limbs were shaved, washed and disinfected with 

10% povidone iodine. The knee joint capsule was incised longitudinally, and by lifting the 

patellar ligament gently and moving it laterally, the knee joint became fully exposed. This 

maneuver was facilitated by a slight extension of the knee. At the intercondylar notch, a 

cylindrical hole (diameter: 1.5 mm and depth: 7 mm) was initially prepared parallel to the 

long axis of the femur, using dental burs and surgical motor (Elcomed 100, W&H Dentalwerk 

Burmoos, Austria) with low rotational drill speed (800 rpm) and continuous external cooling 

with saline. Then, only the top part of the prepared hole (3 mm in depth) was increased in 

diameter to 3.2 mm. thereafter, implants were placed (press-fit) bilaterally into the predrilled 

holes, resulting in two implants per rat randomly.  After insertion of the implants, the soft 

tissue layers and skin were closed with resorbable sutures (Vicryl® 4.0, Ethicon Products, 

Amersfoort, The Netherlands). To reduce post-operative pain, Rimadyl® (5.0 mg/kg) and 

Temgesic® (0.02 mg/kg) were used three times a day for 2 days. Animals were monitored on 

a daily basis. After implantation procedures, all rats had free access to normal pellet food 

(1.17% Ca and 0.91% P) and water.
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Chapter VII

Electrospray deposition of strontium-substituted nano-

hydroxyapatite to stimulate the response of osteoblastic cells to 

titanium implants.

R Bosco,M Bianchi, M Iafisco, SCG Leeuwenburgh,JA Jansen, JJJP van den Beucken
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1 Introduction

The preservation of biomechanical functions of bone tissue is fundamental to maintain a 

sufficient healthy quality of life. Movement, support, posture and mastication are achieved 

thanks to the mechanical properties of bone tissue. When joints are damaged or bone-

anchored elements are lost, metallic implants are commonly used in orthopedics and dentistry 

to replace load-bearing and structural function[1]. Aside from their excellent mechanical 

properties and biocompatibility, metallic implants are inert materials that are limited in their 

capacity to form mechanically stable bonds with bone tissue.

To overcome interface limitationsfor implants while maintaining bulk material properties, 

research efforts have focused on the deposition of coatings made of different constituents. 

Hydroxyapatite (Ca10(PO4)6(OH)2; HA)has long been investigated as an implant coating 

material, due to the similarity with bone mineral and anticipated improvement of 

osteoconductivity and fixation within the native bone[2]. HA has been successfully applied as 

a coating using several different methods, including plasma-spraying, magnetron sputtering, 

ion-beam coating, electrophoretic deposition, anode oxidation, anodic spark deposition, 

pulsed-laser deposition, electrospray deposition and biomimetic deposition from 

supersaturated solutions[3-6].

Recently, research interests for modified hydroxyapatite-like crystal structures have increased, 

since HA can be doped with ions such as K+, Mg2+, Na+, CO3
2−, F−and Sr2+ that substitute for 

Ca2+ cations in the crystal lattice. From a bio-inorganic[7] point of view, these ions can play 

relevant roles in the overall solubility and bioactivity of the mineral phase[8]. In particular, 

strontium (Sr2+) is chemically and physically similar to calcium and presentin bone tissue, 

especially at regions of high metabolic turnover[9]. Further, in vitro and in vivo studies have 

shown that Sr2+stimulates bone formation by increasing osteoblast activity and reducing bone 

resorption by decreasing osteoclast activity[10, 11].
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Interestingly, Sr2+ can be added to calcium phosphate crystals during their formation as a 

substituting cation for calcium in the crystal lattice for thewhole range of CaP compositions, 

due to the chemical similarity between the two ions[12]. Sr2+-substituted-HA (SrHA) coatings

can be obtained either by adding strontium ions during the HA synthesis reaction and using 

this material for deposition techniques (e.g. plasma spraying, magnetron sputtering or pulsed 

laser deposition)[13, 14] or by wet apatite nucleation from simulated body fluid (SBF) 

enriched with strontium ions[15].

Among the currently available coating deposition techniques for CaP deposition, benefits and 

limitations apply for each of these, e.g. physical deposition methods provide controlled

coatings at higher deposition rates, but require high temperaturesthat can compromise or 

modify coating properties[16]. In contrast, wet chemical deposition techniques can generate

coatings more similar to the bone mineral phase, but long deposition times are required andthe 

adhesive properties are poor[17]. Electrospray deposition (ESD) is a wet-chemical deposition 

technique that can fabricate coatings on top of implant materials even at low temperatures (25 

°C)[18]. . Briefly, the basic principle of ESD is the generation of a spray of charged, micron-

sized droplets. This is accomplished by means of electrostatic atomization of precursor 

solutions. These spray droplets are directed toward a grounded substrate using a potential 

difference[19]. After complete solvent evaporation, a coating layer is left on the substrate 

surface. ESD has been successfully applied for experimental bone implant applications, 

preparing thin coatings based on ceramics (e.g. CaP and nano-HA)[20, 21], proteins (e.g. 

alkaline phosphatase and collagen)[22, 23], and combinations[24, 25].

The aim of this study was to deposit nano-sized SrHA, with different levels of substitution, on 

titanium by ESD and to evaluate the effect of different amounts of Sr2+-substitution in the 

coatings on the proliferation and differentiation of osteoblastic cells.We hypothesized that (i) 
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ESD is a feasible method to deposit SrHA on titanium, and that (ii) the level of Sr2+-

substitution can modulate osteoblastic cell response in a level-dependent manner.

2 Materials and methods

2.1Synthesis of HA nanocrystals 

Nanosized hydroxyapatite (HA) was synthesized and characterized according to a previously established 

method[21]. Briefly, nanocrystals were precipitated from a basic suspension of Ca(CH3COO)2 (0.035 M) by 

slow addition (1 drop s-1) of an acid solution of H3PO4 (0.021 M), keeping the pH constant (pH=10) by the 

addition of (NH4)OH solution. Sr2+-doped HA was obtained by adding Sr(NO3)2 in the basic suspension at 1 and 

10% Ca moles. In more detail, 1% Sr-doped hydroxyapatite (SrHA1) was obtained from a basic solution made of 

Ca(CH3COO)2 (0.03465 M) and Sr(NO3)2 (0.00035 M); 10% Sr-doped hydroxyapatite (SrHA10) basic solution 

was made of Ca(CH3COO)2 (0.0315 M) and Sr(NO3)2 (0.0035 M). Quantities and formulas are reported in 

Table1.At 24 h after the end of this precipitation reaction, the solid residue was collected by centrifugation, 

washed four times with ultrapure water, and suspended in 100 ml of ethanol (EtOH).Inductively coupled plasma-

optical emission spectrometry (ICP-OES, Liberty 200, Varian, Clayton South, Australia) was used to determine 

the Ca/P ratio of HA. For ICP-OES, HA samples were dissolved in 1 wt% ultrapure nitric acid and the analytical 

wavelengths were chosen accordingly: Ca 422 nm, P 213 nm.

Table 1. Precurors material and composition used for crystals precipitation. The acid solution is constant for all 
the precipitations. Basic suspension was adapted to incorporate Sr as Ca substitute.

Precipitated powder Basic suspension Acid Solution
Nano hydroxyapatite 
(HA)

Ca(CH3COO)2 (0.035 M)

H3PO4 (0.1 M)1% Sr-doped hydroxyapatite 
(SrHA1)

Ca(CH3COO)2 (0.0346 M) +
Sr(NO3)2 (0.00035 M)

10% Sr-doped hydroxyapatite 
(SrHA10)

Ca(CH3COO)2 (0.0315 M) + 
Sr(NO3) 2 (0.0035 M)
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2.2 Coating deposition

All coatings were deposited using a commercially available vertical ESD device (ES 2000s, 

Fuence Ltd., Tokyo, Japan). Titanium disks were used as a target for deposition (machined 

surface, 5 mm Ø, and 2 mm thickness). Electrospraying was performed under controlled 

atmosphere conditions (relative humidity <20% and temperature 25ºC). Depositions were 

performed at a fixed nozzle-substrate distance of 40 mm, a flow rate of 4 µl/min and an 

applied voltage of 10-14 kV. Four different experimental groups were designed to determine 

the effect of HA and SrHA on coating properties:

1. Uncoated (Ti)

2. HA coated (HA)

3. 1% Sr-substituted HA (SrHA1)

4. 10% Sr-substituted HA (SrHA10)

HA, SrHA1, and SrHA10 were obtained from a 0.3 mg/ml suspension of crystals in 50% 

ethanol and sprayed for 30 minutes. Sterilization of all the coated samples was obtained 

through UV irradiation (254 nm) for 1 hour. All coated disks were lyophilized overnight and 

stored at -20 ºC until further use.

HA, SrHA1 and SrHA10 were analyzed using x-ray diffraction (XRD; PANalytical X’Pert 

Pro powder diffractometer, Almelo, The Netherlands) using Cu Kα radiation generated at 40 

kV and 30 mA. The instrument was configured with ½° divergence and receiving slits. The 2θ

range was from 5° to 60° with a step size (2θ) of 0.05° and a counting time of 3 s to determine 

crystallite size, based on the 002 reflection, according to Formula 1:

� = ��
����� (1)
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where D is the mean size of the ordered (crystalline) domains, which may be smaller or equal 

to the grain size; K is a dimensionless shape factor, with a value close to unity that was set at

0.9,λ is the X-ray wavelength,β is the line broadening at half the maximum intensity andθ is 

the Bragg angle.

The infrared spectra (FTIR) of the coatings were recorded in the wavelength range from 4000 

to 400 cm-1 with 4 cm-1 resolution using a Spectrum One (Perkin-Elmer, Waltham, MA, 

USA).

2.3 In vitro experiment

Preosteoblastic, mouse-derived cells (MC3T3-E1, ATCC-CRL-2593; ATCC, Wesel, 

Germany) were pre-cultured and expanded in proliferation medium consisting of αMEM 

(10490, Gibco, Invitrogen, life technology corporation, Carlsbad, US), 10% fetal bovine 

serum (FBS, Gibco),10-8 M dexamethasone (Sigma-Aldricht, St. Louis, USA), 10mM β-

glycerophosphate (Sigma-Aldricht) and 1% gentamicin (15750, Gibco). In order to obtain

osteoblast-like cells, ascorbic acid (50mg/L) was added in the proliferation medium to form 

osteogenic medium. Osteoblast-like cells were seeded in 48-wells plates onto coated disks at 

2 x 104 cells/cm2 and on tissue culture plastic (TCP) for up to 4 weeks in osteogenic medium 

with medium refreshments two times per week. After 1 day of culture, disks were transferred 

to fresh wells to exclude the effect of cells not seeded on the disks but on the tissue culture 

plastic.

DNA content and alkaline phosphatase (ALP) activity was evaluated at day 7, 21 and 28 to 

determine cell proliferation and differentiation. All the samples were washed in PBS for 30 

minutes at 37 °C and then frozen in mQ at -20 °C. At the time of analyses, all the samples 

were subjected to three freeze-thaw cycle at -80 °C. A total of n = 4 replicates per time point 

for each experimental condition were used. Proliferation was determined with thefluorometric 

QuantiFluor dsDNA System (Promega, Leiden, The Netherlands) following the protocol of
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the manufacturer and the fluorescence measurement at 530 nm was performed using a 

FLx800 fluorescence microplate reader (Bio-Tek Instruments, Winooski, VT, USA). 

Differentiation was deduced from ALP activity and it was measured using a diagnostic kit

(Sigma).Briefly, the absorbance of each well was read at 405 nm using a PowerWave X340 

microplate spectrophotometer (Bio-Tek Instruments, Winooski, VT, USA). Absorbance 

values of the samples were normalized to the amount of DNA.

At days 7 and 28, to assess cellular morphology samples were washed with 1x PBS, fixed for 

5 minutes in 2% gluteraldehyde, rinsed for 5 minutes with 0.1M sodium-cacodylate buffer 

(pH7.4; Acros Organics, Geel, Belgium), dehydrated in a graded series of ethanol and air 

dried in tetramethylsilane (Acros Organics).

2.4 Statistical analyses

Statistical analyses on the data of the in vitro experiments were performed with GraphPad 

InStat software (GraphPad software Inc., La Jolla, USA) using a one-way ANOVA combined 

with post-hoc Tukey–Kramer Multiple Comparisons test. The significance level was set at 

p < 0.05.
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3 Results 

3.1 Synthesis of HA nanocrystals

Synthesized powders were analyzed with ICP to detect the percentage of effective cationic 

substitution (Table 2). The results indicated that Sr2+ incorporation increases with increasing 

the Sr2+ ion concentration in the basic suspension used for the precipitation reaction. Data 

showed that the Sr/Ca ratio was 0.61 and 7.49 respectively for SrHA1 and SrHA10. The total 

Sr wt% incorporated in HA was proportional to the Sr wt% used during precipitation; 

SrHA10 contained 10-fold more Sr than SrHA1 (4.98 and 0.47 wt%, respectively). 

Stoichiometrically, the obtained ceramic powders showed large similarity between SrHA1 

and HA (Ca/P ratio 1.71 and 1.73, respectively; (Sr+Ca)/P ratio 1.72 and 1.73, respectively) 

while SrHA10 showed a substantially changed molar composition (Ca/P ratio 1.46; (Sr+Ca)/P 

ratio 1.57).

Table 2ICP analysis of synthesized powder. The amount of Ca, P and Sr is expressed as wt%. Stoichiometric 
values of Ca/P and (Sr+Ca)/P (Molar). Ratio between Sr/Ca and Sr/(Ca+Sr) in moles %

HA SrHA1 SrHA10
Ca wt.% 35.97 35.23 30.43
P wt.% 16.09 15.94 16.11
Sr wt.% 0.00 0.47 4.98

Ca/P Molar 1.73 1.71 1.46
(Sr+Ca)/P Molar 1.73 1.72 1.57

Sr/Ca moles % 0.00 0.61 7.49
Sr/(Ca+Sr) moles % 0.00 0.01 0.07
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Figure 1 SEM pictures of Ti, HA, SrHA1 and SrHA10 at 1000 and 5000 magnification after deposition and 
lyophilization. Examples of crystal agglomerations on SrHA1 and SrHA10 are indicated by black arrows.

3.2 Coating characterization

ESD allowed deposition of all synthesized nano-sized CaP powders and SEM evaluation 

showed the presence of coating on the titanium substrates as indicated in Figure 1. All the 

analyzed disks revealed a homogeneous coating layer. The surface of coated disks showed the 

presence of a coating made of single nano-sized crystals covering the entire surface. Both 

types of Sr2+-doped coatings showed the presence of agglomerations on the coated surface, 

which increased in number density with increasing Sr % substitution.
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Figure 2 shows the crystalline structure of the deposited coatings (HA, SrHA1 and SrHA10) 

as analyzed with XRD. The characteristic apatitic peaks (associated to 002 and 211,112 

crystal reflections, respectively) were observed for all three experimental coatings. XRD 

illustrated the shift at both peaks and related to the percentage of Sr substitution. The full 

width at half maximum (FWHM), measured for the (002) crystal reflection, was increased for 

Sr-doped HA accordingly to the increased ionic substitution. Data, reported in Table 3, 

indicated a progressive increase from 0.40° to 0.47° and to 0.50° for HA, SrHA1 and 

SrHA10, respectively. Therfore the mean crystallite size decreased progressively with 

addition of Sr2+ in the lattice from 27.2 nm (HA) to 21.4 (SrHA1) nm and 20.4 nm (SrHA10).

FTIR analysis performed on surfaces coated with HA, SrHA1 and SrHA10 showed similar 

spectra as reported in Figure 3. The results indicated the spectra of the typical molecular 

fingerprints of asymmetric phosphate stretching at 1020 (v3) and 960 (v1) cm-1[26].

Table 3 Peak position, Full Width at Half Maximum an mean crystallite size calculated from XRD of all the 
powder and based on peak at 25.80 °

peak position (°) FWHM (°) mean crystallite size (nm)

HA 25.80 0.40 27.2

SrHA1 25.74 0.47 21.4

SrHA10 25.67 0.50 20.4
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Figure 2 X-Ray Diffraction (XRD) patterns of the synthesized powders. Representative peaks (002 and 112,211) 
were selected for HA, SrHA1 and SrHA10. Shift of the peak at 25.80° and 31.95° are indicated on the XRD 
patterns.

Figure 3 FTIR spectra of coated samples. Disks coated with HA, SrHA1 and SrHA10 were compared with 
uncoated titanium disk to verify the deposition on the disks. Phosphate stretching bands at 1020 (v3) and 960 
(v1) cm-1 are reported and used as indicator
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3.3 In vitro experiment

Cell proliferation, as assessed using DNA-content measurements at different time points 

during 28 days of cell culture, was observed for all experimental groups (Figure 4). In more 

detail, DNA-content increased especially for SrHA10 and SrHA1 with the highest values on 

day 21. For SrHA10, a significantly higher DNA-content (p<0.05) compared to both HA and 

TCP was observed on day 21.

Figure 5 presents the results for the ALP activity, which are normalized to the DNA content. 

For all experimental groups, a continuous increase in ALP-activity was observed without 

significant differences between the experimental groups at individual time points.

Figure 4 DNA expression of MC3T3 at day 7, 21 and 28. The amount of detected DNA is normalized per surface 
area. Effect of disks coated with HA, SrHA1 and SrHA10 is compared with cells seeded on tissue culture plastic 
(TCP). * indicated p value <0.05 

Figure 5. ALP activity quantified at day 7, 14 and 21. Results are normalized to the DNA content to be related to 
the cell quantity.



Chapter VII

171

SEM images of coated disks at day 7 and 28 after cell seeding are represented in Figure 6. At 

day 7, the presence of cells attached onto the coated surface was observed. In particular 

SrHA1 and SrHA10 were completely covered by cells, while cellular coverage for HA was 

partial, showing areas covered by cells and some uncovered areas, in which the coating was 

visible. At day 28, all the experimental samples were covered by a cellular layer and it was 

not possible to observe areas exposing the initial crystalline coating.

Figure 6 SEM pictures of HA, SrHA1 and SrHA10 at 1000 and 5000 magnification after 7(A) and 28 (B) days of 
cell culture. In figure A presence of crystalline coating is marked by * and cells are pointed by black arrows.
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4Discussion

The aim of this study was to deposit nano-sized SrHA, with different levels of substitution, on 

titanium by means of ESD and to evaluate the effect of different amounts of Sr2+-substitution

in the coatings on the proliferation and differentiation of osteoblastic cells.We hypothesized 

that (i) ESD is a feasible method to deposit SrHA on titanium, and that (ii) the level of Sr2+-

substitution can modulate osteoblastic cell response in a level-dependent manner. The novelty 

introduced in this study is the possibility of depositing unaltered single Sr-doped crystals that 

can maintain all the bioactive properties. The main findings were that ESD can be used to 

obtain homogenous coatings for SrHA and that Sr2+-substitution can increase the proliferation 

of osteoblastic cells.

Synthesized powders were analyzed with ICP to reveal the successful incorporation of 

strontium in the crystalline lattice. ICP offered a chemical analysis of the composition of the 

obtained powder with results corroborating earlier work[27]. The level of substitution was 

comparable to the w/w ratio of strontium added during precipitation, confirming the 

suitability of the method used to synthesize the powders.The unit cell of stoichiometric 

crystalline hydroxyapatite hosts 10 cations arranged in two non-equivalent positions: four at

the M(1) site aligned in the column, each surrounded by nine oxygen atoms, and six at the 

M(2) site arranged at the apices of distributed equilateral triangles, each surrounded by seven 

oxygen atoms[28, 29]. For low levels of Sr substitution, due to the change in the crystal 

lattice, Sr2+ tends to replace Ca2+ at the M(I) sites.This preferred substitution sites reduce the 

efficacy of substitution to 50% due to the deformed crystal lattice that also favors PO4- and 

induce a change in the stoichiometric value [30].

The parameters set for deposition were obtained from previous performed studies using nano-

sized HA[21, 23]. It was noticed during the coating procedure that SrHA10 deposition 

required a higher voltage (14kV) to obtain a stable jet-cone. The reason for an increased 
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voltage could be related to the dispersion of the nano crystals in the precursor suspension. The 

quality of coating is related to the formation of a dripping effect[31]. The dripping effect can 

be limited or stopped by increasing the voltage[32] and therefore a reduced conductivity 

caused by crystals agglomeration could explain the required increased voltage for the 

deposition of SrHA.

The morphological characterization of the coatings demonstrated complete and homogeneous 

coverage for all experimental coatings. SEM investigation confirmed the reduced stability of 

the cone jet during deposition of SrHA. In fact, the presence of micro agglomerations was 

observed with increasing levels of Sr substitution. A similar effect, concerning formation of 

agglomeration on the surface during ESD, was previously reported[21] and related to the 

effect of nozzle-to-substrate distance. As distance is affecting the flying time and increases 

the evaporation of the medium during the deposition process, a reduced dispersion of nano 

particles can result in agglomeration in the precursor suspension and effect the coating as 

observed in this study. The agglomeration effect, therefore, can be due to the ratio of SrHA 

particles and droplet size. The FTIR spectrum of the surface and particularly the typical shape 

of the wavelength at 1020 cm-1 were used as fingerprints of calcium phosphate. HA, SrHA1 

and SrHA10 showed a common pattern that was compared to non-coated disks to assure the 

presence of coatings prior to the in vitro experiment. Analysis of the coated surfaces, 

performed by XRD, confirmed the change in the mean crystallite size due to the presence of 

strontium as doping element[33] after deposition. According to the literature[30], the 

reduction of the crystallite size is related to the percentage of substitution. Therefore, ESD is 

not affecting the strontium content as indicated by the analysis performed with XRD of the 

peak at 25.80° crystallite sizes were measured.

DNA content, related to the number of cells present on the experimental disks, was increased 

for cells seeded on Sr2+-doped hydroxyapatite already at day 7. A significant increase in cell 
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proliferation, compared to TCP and HA, was observed for SrHA10 at day 21. The amount of 

DNA detected on TCP decreased during the evaluated time points, reaching its minimum at 

day 28. The tendency of the control group is important to attribute variation in DNA content 

to the coatings. The amount of DNA, normalized per cm2, indicates that Sr2+substitution is 

relevant to cause an increase in cell proliferation. The data collected are in accordance with 

results reported earlier[27] on the effect of Sr2+-doped coatings on osteoblast cells. Sr2+-doped 

coatings, deposited with ESD, are effective in controlling the osteoblast proliferation 

response; in accordance to the relative Sr2+substitution percentage, SrHA1 induced a tendency 

to increase cell proliferation and SrHA10 significantly increased cell proliferation.

ALP activity was used as an early indicator of osteogenic differentiation[7]. In this 

experiment, differentiation was not significantly modified by the presence of strontium at any 

of the time points. The increased ALP expression at the late stage, in all the groups, is related 

to the transition from proliferation to differentiation. In fact, MC3T3 cells after the 

proliferation period (16-18 days) seemed to enter their differentiation phase as reported in the 

literature[34, 35]. Sr2+-doped coatings impacted osteoblast behavior increasing the 

proliferation rate in case of SrHA10, but leaving the differentiation phase unaltered at a later 

stage.

The observation of coated disks during the in vitro test showed the presence of a cellular layer 

onto the coated surfaces. At an early time point (day 7), HA was partially covered by cells and 

the possibility to detect the coating layer, in areas without cells, indicated that HA coating is 

relatively stable. It is relevant to mention that SrHA1 and SrHA10, showed a total coverage at 

day 7. 

A SR-doped HA-based coating associated with adsorption of therapeutic drugs can be the 

starting point for development of coatings able to target different aspects in patients affected 

by different pathological requirements. For instance, an important class of anti-osteoporotic 
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drugs, i.e. bisphosphonates, are known for their effect on osteoclastic cells and the affinity for 

CaP [36]. A Sr2+-doped coating with adsorbed bisphosphonate could be an instructive 

approach able to control enhance osteoblast activity and suppress osteoclast activity to favor 

bone formation. A bioinorganic based material enriched with bioactive biomolecules is an 

appealing material to exploit the full potential of ESD to obtain therapeutic coatings.

5 Conclusions

This study demonstrated that ESDis an effective method to deposit nano-sized SrHA without 

altering the structure of synthesized materials after deposition. Strontium was confirmed to be 

a powerful bioinorganic tool to control osteoblast fate. The percentage of substitution played a 

role in increasing cell proliferation. ESD proved to be a possible deposition method that 

conserves the integrity of the nano crystals and the characteristics of Sr-doped hydroxyapatite.
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Chapter VIII

Summary and address to the aims
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Chapter I

Synthetic inorganic and organic materials have been extensively investigated in the field of 

bone regeneration in an attempt to mimic the composition and structure of the extracellular 

matrix (ECM) of bone tissue with the ultimate aim of generating suitable synthetic bone 

substitute materials and modifying the surface of bone implants. For load-bearing 

applications, bone implants are generally made of a bioinert metal with appropriate 

mechanical properties and a modified surface (i.e. roughened, coated or a combination 

thereof), to enhance the surface biocompatibility and osteoconductivity. Currently, 

biomaterials research is evolving from the use of bioinert and biologically passive implants 

toward interactive implants that stimulate tissue regeneration. Therefore, surface physico-

chemical properties of bone implants need to be optimal and capable to biologically instruct 

and stimulate the regeneration of bone tissue.

In view of the aforementioned statements, the general aim of the research described in this 

thesis was to investigate the potential of coating modifications for bone implant surfaces. 

Various surface modification approaches, in the field of load-bearing bone implants, were 

explored with emphasis on the use of inorganic and organic coating compounds. Bioinspired 

approaches were primarily investigated and coatings that actively participate in the biological 

processes that occur upon implantation. In order to obtain a deeper comprehension and 

conceptualization of the state-of-the-art, the first chapter of this thesis describes surface 

modifications that can be helpful to achieve desired tissue responses in healthy as well as 

compromised conditions.

Chapter II

Chapter II provides an analysis of recent trends and strategies in surface engineering that are 

currently investigated to improve the biological performance of bone implants in terms of 
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functionality and biological efficacy.Bone is a connective tissue composed of an organic 

collagenous matrix, a fine dispersion of reinforcing inorganic (calcium phosphate) 

nanocrystals, and bone-forming and -degrading cells. These different components have a 

synergistic and hierarchical structure that renders bone tissue properties unique in terms of 

hardness, flexibility and regenerative capacity. Metallic and polymeric materials offer 

mechanical strength and/or resilience, which are required to simulate bone tissue in load-

bearing applications in terms of maximum load, bending and fatigue strength. Nevertheless, 

the interaction between devices and the surrounding tissue at the implant interface is essential 

for success or failure of implants. In that respect, coatings can be applied to facilitate the 

process of bone healing and obtain a continuous transition from living tissue to the synthetic 

implant. Compounds that are inspired by inorganic (e.g. hydroxyapatite crystals) or organic 

(e.g. collagen, extracellular matrix components, enzymes) components of bone tissue, are the 

most obvious candidates for application as implant coating to improve the performance of 

bone implants. Electrospray deposition (ESD) has emerged as a coating method able to be 

applied for a wide range of materials, preserving the control offered by physical deposition 

methods and the capacity of preserving the integrity of the material used.

Chapter III

Titanium and its alloys are widely used to manufacture orthopaedic and dental implants due to 

their excellent mechanical properties and corrosion resistance. However, these materials are 

bioinert and the best way to improve bone implant contact and their biological properties 

could be the application of a coating made of nanostructured apatite. In chapter III, the 

applicability of ESD technique for the deposition of nanostructured uniform apatite coating 

onto commercially pure cp-Ti substrates at room temperature was evaluated. Hence, poorly 

crystalline bone-like carbonate-apatite nanocrystals were synthesized and characterized. The 

apatite suspension suitable for the ESD process in terms of dispersion, aggregation and 
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stability was set up and several ESD processing parameters such as nozzle to substrate 

distance, relative humidity in the deposition chamber and deposition time were varied in order 

to assess the morphological effects. Porous films made of agglomerates of plate-like apatite 

nanocrystals, measuring approximately 50 nm with morphology and dimensions resembling 

natural bone apatite mineral were formed. The results showed the feasibility of the ESD 

technique for the generation of thin apatite coatings with a nanosized surface morphology 

onto titanium substrates. The ability of these nanocrystals to bind therapeutic agents for bone 

diseases and the capability of ESD to produce coating at physiological conditions makes this 

work a first step for the set up of coatings for bone implants based on surface-activated apatite 

with improved functionality.

Chapter IV

The ultimate goal for surface modifications in bone implants is to achieve biologically active 

surfaces able to control and trigger specific tissue response, as described earlier in Chapter II. 

After the application of inorganic nano-sized hydroxyapatite (Chapter III), Chapter 

IVevaluated the effects of organic compounds, derived from extracellular matrix, involved in 

tissue mineralization. Alkaline phosphatase (ALP) plays a fundamental role in bone 

mineralization concurrently with collagen, the main organic components of bones. 

Electrospray deposition (ESD) was used to coat titanium disks with ALP and collagen at 

room temperature. To verify potential synergistic effects of ALP and collagen, different 

conformations of coatings (mixed and layered) were obtained and their mineralization 

capacity was tested in vitro. The mineralization tests indicated the fundamental role of 

collagen to increase ALP retention. Analyses indicated that the coating conformation has a 

role: mixed collagen/ALP coatings showed improved ALP retention, enzymatic activity and 

unique mineralized surface morphology. ESD demonstrated to be a successful method to 
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deposit organic molecules preserving their properties as indicated by the in vitro results. 

These findings proved the synergistic effect of ALP and collagen in inducing mineralization,

offering an intriguing coating constituent for medical devices that aims to trigger surface 

mineralization.

Chapter V

The integration of bone implants within native bone tissue depends on periprosthetic bone 

quality, which is severely decreased in osteoporotic patients. In Chapter V, the synthesized 

and characterized bioinspired hydroxyapatite nanocrystals (nHA), previously investigated in 

Chapter III, were enriched with alendronate (nHAALE), a well-known bisphosphonate drug 

used for anti-osteoporotic treatment. In vitro tests were used to evaluate the effects of nHAALE

on osteoclast-like cells and showed that nHAALE significantly promoted apoptosis of 

osteoclast-like cells. Additionally, nHA and nHAALE were successfully deposited on titanium 

disks via electrospray deposition (ESD) while characterization of the deposited coatings 

confirmed the presence of alendronate in nHAALE coatings with a nanoscale thickness of 700 

nm. These results indicated that alendronate adsorbed to nano-sized hydroxyapatite crystals 

has therapeutic potential and can be considered as a coating constituent for orthopaedic and 

oral implants for osteoporotic patients.

Chapter VI

The prevalence of osteoporosis will further increase within the next decades due to the aging 

world population, which can affect the bone healing response to dental and orthopaedic 

implants. Consequently, local drug targeting of peri-implant bone has been proposed as a 

strategy for the enhancement of bone-implant integration in osteoporotic conditions. In 

Chapter VI, an established in vivo femoral condyle implantation model in osteoporotic and 
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healthy bone is used to analyze the osteogenic capacity of titanium implants coated with 

bisphosphonate (BP)-loaded calcium phosphate nanoparticles (nCaP),previously described in 

Chapter V, under compromised medical conditions in the femoral condyle of rats. After 4 

weeks of implantation, peri-implant bone volume (%BV; by micro-CT) and bone area (%BA; 

by histomorphometry) were significantly increased within a peri-implant region of 500 μm 

adjacent to surfaces functionalized with BP compared to control implants in osteoporotic and 

healthy conditions. Furthermore, the deposition of nCaP/BP coatings onto implant surfaces 

increased bone-to-implant contact (%BIC) compared to non-coated implants in osteoporotic 

and healthy conditions. The results of real-time PCR revealed similar osteogenic gene 

expression levels to all implant surfaces at 4-weeks post-implantation. In conclusion, 

simultaneous targeting of bone formation (by nCaP) and bone resorption (by BP) using 

nCaP/BP surface coatings represents an effective strategy for improving bone-implant 

integration, especially in osteoporotic conditions.

Chapter VII

Titanium implants are widely used as implants in orthopaedics and dentistry for load bearing 

applications. Regardless of their success, there is still great interest in improving these 

implants in terms of faster bone healing, or applicability in compromised conditions, as 

previously reported in Chapter VI. An established strategy, indicated in Chapter II, is coating 

titanium implants with materials that resemble the composition of bone, such as 

hydroxyapatite (HA). Recently, there has been increasing awareness of the biological role of 

strontium, indicating that it could lead to a more bioactive implant surface. Strontium is easily 

introduced as a natural substitute for calcium in HA crystals. Strontium-substituted HA 

(SrHA) crystals have shown the capacity to enhance the proliferation and differentiation of 

osteoblastic cells in vitro. Among the various coating deposition methods, electrospray 
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deposition (ESD) is a technique that allows deposition at low temperatures preserving the 

crystal structure of nanosized SrHA, as reported in Chapter V and VI. The aim of Chapter VII

was to deposit SrHA nanocrystals with different percentages of Sr-substitution (1 and 10%, 

SrHA1 and SrHA10) using ESD and evaluate their effect on osteoblast proliferation and 

differentiation in vitro.ESD demonstrated to be an effective method to deposit SrHA without 

altering the structure of synthesized materials after deposition. The effect of SrHA on cell 

behaviorwas dependent on its substation degree as shown by the fact that SrHA10 coated 

disks increased osteoblastic cell proliferation, whereas SrHA1 coated disks did not. Chapter 

VII showed the possibility to use ESD for the deposition of bioinorganic compounds such as 

SrHA and the importance of preserving itsbioactive properties.
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Closing remarks and future perspectives

In this thesis, research efforts focused on the use of different coatings based on organic, 

inorganic and composite materials in order to create bioactive surface modifications for bone 

implantology applications. Different materials and deposition methods have been used in the 

past decades to overcome the limitation imposed by a foreign body implant. Bone implants 

evolved from biocompatible to instructive, or bioactive, trying to face different approaches (as 

illustrated in Chapter II) and targeting different issues that affect implant immobilization. 

Among all the described and available techniques, electrospray deposition (ESD) was selected 

to standardize the researches done in this thesis and to maintain the same method for all the 

material deposited. ESD was selected for its versatility regarding the possibility to deposit 

different compounds, from inorganic to organic, preserving their structure and integrity.

Calcium phosphate (CaP) coatings remain the most successful approach for inorganic surface 

modifications for application in bone tissue. Inspired by the composition of bone, 

hydroxyapatite (HA), a specific stoichiometric and configurational form of CaP, was used in 

nano-sized crystal form (Chapter III, Chapter V, Chapter VI and Chapter VII) to mimic the 

bone inorganic structure preserving the nano-sized plate shaped. ESD permitted to enrich 

nHA adding extra bioactive properties as the possibility to adsorb anti-osteoporotic drugs on 

the crystal surface (Chapter V and Chapter VI). The role of ESD was instrumental to preserve 

the effect of nHA that was deposited as a homogenous layer of single nano-sized crystals. The 

nano-scale dimension of the crystals was a core element to mimic natural bone and to 

maintain a high crystal surface area onto which alendronate was adsorbed, a potent 

bisphosphonate used for systemic treatment of osteoporosis, and to obtain a coating able to 

therapeutically treat the local peri-implant area by impacting the osteoclast behaviour. The 

potential and applicability of these specific and innovative approaches were investigated first 

in vitro, evaluating the capacity to induce apoptosis of osteoclasts (Chapter V) and thereafter 
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verified in vivo using a rat-osteoporotic model with implantation of coated implants in the 

femoral condyle (Chapter VI). The results showed the potential in terms of osteoclast 

reduction, bone to implant contact and bone volume augmentation induced by implants coated 

with instructive nHA combined with therapeutic alendronate.

A promising approach for inorganic-based coating is the use of ionic substitution to add 

bioinorganic properties to the established applications of CaP (Chapter VII). The results 

showed the possibility to incorporate strontium as a calcium substitute to obtain Sr-doped 

crystals with new characteristics. In fact, where nHA resembles natural bone inorganic phase, 

the bioinorganic strontium apatite (SrHA) aimed to introduce an active control over cell 

behaviour. SrHA was tested as a deposited coating using ESD and with an in vitro model 

using osteoblast cells. The potential of bioinorganic coatings to modulate cellular behaviour 

was demonstrated, opening a new route for inorganic coatings with multiple specific 

properties depending on ionic substitution and the physiological efficacy thereof.

Beside inorganic coatings, other approaches were investigated using organic materials 

inspired by the bone extracellular composition. In particular, the combined effect of collagen 

and alkaline phosphatase (ALP), in different configurations, was investigated to mimic the 

acellular mineralization process (Chapter IV). Collagen improved ALP retention as well as 

the already known mineralization ability of ALP. Further, the configuration of ALP combined 

with collagen was able to increase the ALP enzyme amount retained on the surface, the 

quantity of surface mineralization, and affect the morphology of the mineralization. The 

knowledge acquired performing such experiments was essential to obtain insight into the 

potential of ESD to deposit organic coating at low temperature as well as the effect of coating 

configurations to affect its physiological properties. The unique properties of the obtained 

coatings have great potential for regenerative medicine applications as well as for bone 

implants coatings.
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Although the ESD technique was shown to be a powerful method to deposit coatings to 

metallic implants, several drawbacks need be be solved prior to clinical translation. For 

coating generation, it is fundamental to use a coating method that is not operator-dependent as 

ESD. The stability of the deposition requires constant monitoring and it represents a strong 

limitation to upscale the production. Further research efforts should be invested in 

methodologies to control the deposition stability, for example using a video acquiring system 

able to monitor the light scattering of a laser beam passing through the sprayed cone. A 

software algorithm could modify the voltage applied and maintain the stability of the 

deposition.

Retention of the coating to the substrate is also a weak point of wet-chemical deposition 

methods such as ESD, that reduces the applicability of the coating in clinical situations. In 

view of these limitations, more emphasis should be placed on strategies to obtain a double 

coating process. Starting from CaP coated implants using physical deposition methods (i.e. 

RF sputtering or plasma-spray deposition), it would be possible to guarantee a strong 

adhesion between CaP and the titanium surface. To compensate the lack of bioactive 

properties of these deposition methods (due to the relatively high temperatures during 

deposition), ESD can be used to deposit instructive materials. The possibility to deposit a 

bioactive coating on a CaP-coated surface could overcome the retention limit and start a 

completely new era for ESD. Lastly, the progress in biomedical research for bone applications 

will be, in the near future, oriented in obtaining more specific or even patient-related solutions 

(i.e. personalized health care) that will be based on the presence of organic coatings and 

resorbable bulk materials. In view of this, coatings will play an increasingly important role 

and it will change the scope of modifying biomedical implant surfaces: previously it was from 

biocompatible to bioactive and in future it will be from instructive to therapeutic.
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Samenvatting, afsluitende opmerkingen en toekomstperspectief
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Hoofdstuk I 

Synthetische anorganische en organische materialen zijn uitgebreid onderzocht op het gebied 

van botregeneratie in een poging om de samenstelling en structuur van de extracellulaire 

matrix (ECM) van botweefsel na te bootsen met als uiteindelijk doel het vervaardigen van 

geschikte synthetische botvervangende materialen en modificeren van het oppervlak van 

botimplantaten. Voor lastdragende toepassingen worden botimplantaten gewoonlijk gemaakt 

van een bioinert metaal met geschikte mechanische eigenschappen en geoptimaliseerd via een 

gemodificeerd oppervlak (bijvoorbeeld ruw, gecoat of een combinatie daarvan) dat de 

biocompatibiliteit en osteoconductiviteit verbetert. Momenteel evolueert biomaterialen 

onderzoek van het gebruik van bioinerte en biologisch passieve implantaten richting 

interactieve implantaten die weefselregeneratie te stimuleren. Derhalve moeten de fysisch-

chemische eigenschappen van bot implantaten optimaal zijn om biologische instructies te 

geven en regeneratie van botweefsel te stimuleren.

Ten aanzien van de hiervoor genoemde verklaringen was het algemene doel van het in dit 

proefschrift beschreven onderzoek om het potentieel van verschillende coating-

gebaseerdemodificaties voor bot implantaatoppervlakken te onderzoeken. Verschillende 

oppervlakte modificatie benaderingen op het gebied van lastdragende botimplantaten werden 

onderzocht met de nadruk op het gebruik van anorganische en organische bestanddelen. 

Biologisch geïnspireerde benaderingen werden voornamelijk onderzocht evenals coatings die 

actief deelnemen aan de biologische processen die optreden bij implantatie. Om een beter 

begrip en beeldvorming van de stand van de techniek te verkrijgen, beschrijft het eerste 

hoofdstuk van dit proefschrift oppervlakmodificaties die nuttige en gewenste weefselreacties 

in gezonde en gecompromitteerde omstandigheden kunnen realiseren.
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Hoofdstuk II

Hoofdstuk II geeft een analyse van recente trends en strategieën in oppervlakte-engineering 

die momenteel worden onderzocht om de biologische prestatie van bot implantaten ten 

aanzien van functionaliteit en biologische effectiviteit te verbeteren. Bot is bindweefsel 

samengesteld uit een organische collagene matrix, een fijne dispersie van anorganische 

versterkende (calciumfosfaat) nanokristallen en botvormende en –afbrekende cellen. Deze 

verschillende componenten hebben een synergetische en hiërarchische structuur die 

botweefsel eigenschappen uniek maken voor wat betreft hardheid, flexibiliteit en 

regeneratievermogen. Metalen en polymere materialen bieden mechanische sterkte en/of 

veerkracht, die botweefsel moeten simuleren tijdens lastdragend gebruik ten aanzien van

maximale belasting, buiging en vermoeiingssterkte. Toch is de interactie tussen implantaten

en het omringende weefsel aan het implantaat oppervlak essentieel voor het succes of falen 

van implantaten. In dit verband kunnen coatings worden toegepast om het proces van 

botgenezing te vergemakkelijken en een continue overgang te verkrijgen van levend weefsel 

naar het synthetisch implantaat. Bestanddelen die zijn geïnspireerd door anorganische 

(bijvoorbeeld hydroxyapatiet kristallen) of organische (bijvoorbeeld collageen, extracellulaire 

matrix componenten, enzymen) componenten van het botweefsel, zijn de meest voor de hand 

liggende kandidaten voor toepassing als implantaat coating om de prestaties van bot-

implantaten te verbeteren. Elektrospray depositie (ESD) heeft zich ontpopt als een coating 

methode die kan worden toegepast voor een breed scala aan materialen, met behoud van 

controlevia fysieke depositiemethodiek en de integriteit van het gebruikte (coating) materiaal.

Hoofdstuk III

Titaan en titaanlegeringen worden veel gebruikt om orthopedische en tandheelkundige 

implantaten te vervaardigen vanwege hun uitstekende mechanische eigenschappen en 
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corrosiebestendigheid. Echter, deze materialen zijn bioinert en de beste manier om 

bot/implantaat contact en de biologische eigenschappen te verbeteren zou de toepassing van 

een coating op basis van nanogestructureerde apatiet kunnen zijn. In hoofdstuk III werd 

daarom de toepasbaarheid van de ESD-techniek voor de depositie van nanogestructureerde, 

uniforme apatietcoatings op commercieel zuiver cp-Ti substraten bij kamertemperatuur 

geëvalueerd. Daartoe zijn zwak kristallijne, botachtige carbonaat-apatiet nanokristallen 

gesynthetiseerd en gekarakteriseerd. De apatiet suspensie geschikt voor ESD ten aanzien van

dispersie, aggregatie en stabiliteit werd onderzocht en verschillende ESD procesparameters 

zoals afstand nozzle/substraat, relatieve vochtigheid in de depositiekamer en depositie tijd 

werden gevarieerd om de morfologische effecten te bepalen. Poreuze films van agglomeraten 

van plaatvormige apatiet nanokristallen, met een grootte van ongeveer 50 nm en een 

morfologie en dimensiesgelijkendop natuurlijk bot mineraal apatiet werden gevormd. De 

resultaten toonden de haalbaarheid van de ESD techniek voor het genereren van dunne apatiet

coatings met een nano-sized oppervlaktemorfologie op titanium substraten. Het vermogen van 

deze nanokristallen om therapeutische middelen te binden ter behandeling van botziekten en 

de mogelijkheid om met ESD coatings te deponerenonder fysiologische omstandigheden 

maakt van dit onderzoek een eerste stap in de richting van coatings voor botimplantaten

gebaseerd op oppervlakte geactiveerd apatiet met verbeterde functionaliteit.

Hoofdstuk IV

Het uiteindelijke doel voor oppervlaktemodificatiesvan bot implantaten is om biologisch 

actieve oppervlakken te verkrijgen die een specifieke weefselrespons kunnen realiseren, zoals 

eerder beschreven in hoofdstuk II. Na het aanbrengen van anorganisch, nano-sized 

hydroxyapatiet (hoofdstuk III), werden in hoofdstuk IV de effecten van organische 

bestanddelen afkomstig van de extracellulaire matrixen betrokken bij 
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weefselmineralisatieonderzocht. Alkalische fosfatase (ALP) speelt een fundamentele rol in de 

botmineralisatie gelijktijdig met collageen, de belangrijkste organische componenten van 

botweefsel. Electrospray deposition (ESD) werd gebruikt voor het coaten van titanium disks 

met ALP en collageen bij kamertemperatuur. Om potentiële synergetische effecten van ALP 

en collageen te verifiëren, werden verschillende conformaties van coatings (gemengde en 

gelaagde) vervaardigd en de mineralisatiecapaciteit werd in vitro getest. De mineralisatie 

testen toonden een fundamentele rol voor collageen om retentie van ALP te verhogen. Uit 

analyses bleek dat de coating conformatie tevens een rol heeft: gemengde collageen/ALP 

coatings hadden een betere ALP-retentie, enzymatische activiteit en een unieke,

gemineraliseerde oppervlaktemorfologie. ESD heeft hiermee aangetoond een succesvolle 

methode te zijn om organische moleculen te deponeren met behoud van hun eigenschappen 

zoals bewezen door de in vitro resultaten. Deze bevindingen bewezen het synergetische effect 

van ALP en collageen met betrekking tot het induceren van (oppervlakte)mineralisatie, op 

basis van een intrigerend coatingbestanddeel voor medische hulpmiddelen die beogen

oppervlaktemineralisatie te activeren.

Hoofdstuk V

De integratie van botimplantaten in bestaand botweefsel hangt af van de peri-prothetische 

botkwaliteit, welke sterk is afgenomen bij osteoporose patiënten. In hoofdstuk V, werden

biologisch geïnspireerde hydroxyapatiet nanokristallen (nHA) gesynthetiseerd en 

gekarakteriseerd,welke eerder werden onderzocht in hoofdstuk III, maar nu ook verrijkt met 

alendronaat (nHAALE), een bekende bisfosfonaat medicijn dat gebruikt wordt voor anti-

osteoporose behandeling. In vitro testen werden gebruikt om de effecten van nHAALE op

osteoclast-achtige cellen te evalueren en toonden dat nHAALE apoptose van osteoclast-

achtige cellenaanzienlijk bevorderd. Bovendien werden nHA en nHAALE succesvol afgezet 
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op titanium disks via electrospray depositie (ESD) en karakterisatie van de afgezette coatings

bevestigde de aanwezigheid van alendronaat in nHAALE coatings met een nano-size dikte 

van 700 nm. Deze resultaten gaven aan dat alendronaat geadsorbeerd op nano-sized 

hydroxyapatietkristallen therapeutische potentieel heeft en kan worden beschouwd als een 

coatingbestanddeel voor orthopedische implantaten in osteoporotische patiënten.

Hoofdstuk VI

De prevalentie van osteoporose zal verder stijgen in de komende decennia door de 

vergrijzende wereldbevolking, waardoor de botgenezingsreactie rondom tandheelkundige en 

orthopedische implantaten negatief wordt beïnvloed. Bijgevolg is lokale drug targeting van 

peri-implantaat bot voorgesteld als een strategie voor de verhoging van bot-implantaat 

integratie in osteoporotische omstandigheden. In hoofdstuk VI, werd een gevestigd in vivo 

femorale condyle implantatie model gebruikt in osteoporotisch en gezond bot om het

osteogene vermogen van titanium implantaten gecoat met bisfosfonaat (BP) geladen 

calciumfosfaat nanodeeltjes (nCaP; eerder beschreven in hoofdstuk V)te analyseren onder 

medisch-gecompromitteerdecondities in ratten. Na 4 weken implantatie, werd een aanzienlijk

verhoogd peri-implantaat botvolume (% BV, door micro-CT) en botoppervlak (% BA; door 

histomorfometrie) waargenomen binnen een peri-implantaat gebied van 500 umvoor

oppervlakken gefunctionaliseerd met BP vergeleken met controle implantaten in 

osteoporotische en gezonde condities. Bovendien verhoogde de depositie van nCaP/BP 

coatings op implantaat oppervlakken het bot/implantaatcontact (BIC%) vergeleken met niet-

gecoate implantaten onder osteoporose en gezonde omstandigheden. De resultaten van de 

real-time PCR toonden gelijke osteogene genexpressieniveaus van weefsel rond alle 

implantaatoppervlakken op 4 weken na implantatie. Geconcludeerd werd dat gelijktijdige 

targeting van botvorming (door nCaP) en botresorptie (door BP) via een nCaP/BP coating een 
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effectieve strategie vertegenwoordigt voor het verbeteren van bot-implantaat integratie, vooral 

in osteoporotische omstandigheden.

Hoofdstuk VII

Titanium implantaten worden op grote schaal gebruikt in de orthopedie en tandheelkunde 

voor lastdragende toepassingen. Ongeacht hun succes is er nog steeds grote interesse voor de 

verbetering deze implantaten ten aanzien van snellere botgenezing of toepasbaarheid in 

gecompromitteerde condities, zoals eerder beschreven in Hoofdstuk VI. Een gevestigde 

strategie, vermeld in hoofdstuk II, is het coaten van titanium implantaten met materialen die 

de samenstelling van het bot nabootsen, zoals hydroxyapatiet (HA). Recentelijk is er sprake 

van een toenemende bewustwording van de biologische rol van strontium, waarvoor data 

aangeven dat het zou kunnen bijdragen aan een meer bioactief implantaatoppervlak. 

Strontium wordt gemakkelijk geïntroduceerd als een substituut voor natuurlijke calcium in 

HA kristallen. Strontium-gesubstitueerde HA (SrHA) kristallen toonden het vermogen om de 

proliferatie en differentiatie van osteoblasten in vitro te versterken. Onder de verschillende 

coating depositiemethoden, is electrospray depositie (ESD) een techniek die toelaat depositie 

bij lage temperatuur uit te voeren en de kristalstructuur van nanogrootte SrHAte bewaren, 

zoals beschreven in hoofdstuk V en VI. Het doel van hoofdstuk VII was om SrHA 

nanokristallen met verschillende percentages van Sr-substitutie (1 en 10%, SrHA1 en 

SrHA10) via gebruik van een ESD te vervaardigen en hun effect op de osteoblasten 

proliferatie en differentiatie in vitro te evalueren. ESD heeft aangetoond een effectieve 

methode te zijn om SrHA te deponeren zonder de structuur van gesynthetiseerde materialen 

aan te tasten. Het effect van SrHA op celgedrag bleek afhankelijk van de mate van substitutie, 

hetgeen duidelijk werd uit het feit dat SrHA10 gecoate schijven de osteoblasten proliferatie

verhoogden, terwijl SrHA1 gecoate disks dat niet deden. Hoofdstuk VII toonde de 
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mogelijkheid om ESD te gebruiken voor de depositievan bio-anorganischebestanddelen zoals 

SrHA en het belang van het behoud van de bioactieve eigenschappen ervan.

Slotwoord en toekomstperspectieven 

In dit proefschrift waren de onderzoeksinspanningen gericht op het gebruik van verschillende 

coatings op basis van organische, anorganische en composiet materialen om bioactieve 

oppervlakmodificaties voor bot implantologische toepassingen te creëren. Verschillende 

materialen en depositie-methoden zijn gebruikt in de afgelopen decennia om de nadelen van 

de implantatie van een vreemd lichaam implantaat te omzeilen. Botimplantaten zijn daarmee 

geëvolueerd van biocompatibel tot instructief, of bioactieve, daarmee proberend verschillende 

benaderingen het hoofd te bieden (zoals geïllustreerd in hoofdstuk II) en gericht op 

verschillende problemen die implantaat immobilisatie beïnvloeden. Van alle beschreven en 

beschikbare technieken werd electrospray depositie (ESD) gekozen om de onderzoeken 

gedaan in dit proefschrift te standaardiseren en dezelfde werkwijze te handhaven voor al het 

gecoate materiaal. ESD werd geselecteerd vanwegede veelzijdigheid met betrekking tot de 

mogelijkheid om verschillende bestanddelen, van anorganische tot organische, met behoud 

van hun structuur en integriteit te deponeren.

Calciumfosfaat (CaP) coatings blijven de meest succesvolle aanpak voor anorganische 

oppervlakmodificaties voor toepassingen van implantaten in botweefsel. Geïnspireerd door de 

samenstelling van botweefsel, werd hydroxyapatiet (HA), een specifieke stoichiometrische en 

configuratie-vorm van CaP, gebruikt in nano-sized kristalvorm (hoofdstuk III, hoofdstuk V, 

hoofdstuk VI en hoofdstuk VII) om de anorganische structuur van het bot na te bootsen met 

behoud van de nano-sized plaatvormige vorm. ESD liet toe om nHA te verrijken waardoor

extra bioactieve eigenschappen konden worden toegevoegd, zoals de mogelijkheid om anti-

osteoporotische drugs op het kristal oppervlak te adsorberen (hoofdstuk V en hoofdstuk VI). 
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De rol van ESD was instrumenteel om het effect van nHA dat werd afgezet als een homogene 

laag van enkele nano-kristallen te behouden. De nanoschaal dimensie van de kristallen was 

een kernelement om natuurlijk bot na te bootsen en een oppervlak te houden waarop 

alendronaat kon worden geadsorbeerd, een krachtig bisfosfonaat gebruikt voor systemische 

behandeling van osteoporose, en een coating voor therapeutische behandelingen te kunnen 

verkrijgen met invloed op osteoclasten gedrag in het lokale peri-implant gebied. Het 

potentieel en de toepasbaarheid van deze specifieke en innovatieve benaderingen werden voor 

het eerst onderzocht in vitro door het evalueren van het vermogen om apoptose van 

osteoclasten (hoofdstuk V) te induceren en daarna gecontroleerd in vivo met behulp van een 

rat-osteoporotische model met implantatie van gecoate implantaten in de femorale condyle

(hoofdstuk VI). De resultaten toonden het potentieel ten aanzien van vermindering van 

osteoclasten, bot/implantaat contact en botvolume vergroting veroorzaakt door implantaten 

gecoat met instructievenHA gecombineerd met therapeutisch alendronaat.

Een veelbelovende aanpak voor anorganische coatings is het gebruik van ion-substitutie om 

bio-anorganische eigenschappen toe te voegen aan de bestaande toepassingen van CaP

(hoofdstuk VII). De resultaten toonden de mogelijkheid om strontium op te nemen als 

substituut voor calcium en Sr-gedoteerde kristallen met nieuwe eigenschappen te verkrijgen. 

In feite, waar nHA lijkt op de anorganische fase van natuurlijk bot, was het bio-anorganische

strontium apatiet (SrHA) gericht op een actieve controle over het gedrag van cellen te 

introduceren. SrHA werd getest als een afgezette laag via ESD en middels een in vitro model 

met osteoblast cellen. Het potentieel van bio-anorganische coatings om celgedrag te 

moduleren werd aangetoond en opent een nieuwe route voor anorganische coatings met 

meerdere specifieke eigenschappen afhankelijk van de ion-substitutie en de fysiologische 

werkzaamheid daarvan.
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Naast anorganische coatings werden andere benaderingen onderzocht met behulp van 

organische materialen geïnspireerd op de samenstelling van de extracellulaire matrix van 

botweefsel. Met name de combinatie van collageen en alkalische fosfatase (ALP), in 

verschillende configuraties, werd onderzocht in een a-cellulair mineralisatieproces (hoofdstuk 

IV). Collageen verbeterde de ALP retentie en het reeds bekende mineralisatie-vermogen van 

ALP. Verder was de configuratie van ALP gecombineerd met collageen een manier om de 

ALP enzymhoeveelheid op het oppervlak behouden, de hoeveelheid oppervlakte mineralisatie

te verhogen en de morfologie van de mineralisatie te beïnvloeden. De kennis verworven via 

het uitvoeren van dergelijke experimenten was essentieel om inzicht te krijgen in de 

mogelijkheden van ESD om organische coatings op lage temperatuur te deponeren, evenals 

het effect van coating configuraties om invloed op de fysiologische eigenschappen te 

verkijgen. De unieke eigenschappen van de verkregen coatings hebben een groot potentieel 

voor toepassingen binnen de regeneratieve geneeskunde en voor botimplantaat coatings.

Hoewel de ESD techniek een krachtige methode bleek om coatings op metallische 

implantaten te deponeren, dienen verscheidene nadelen te worden opgelost vooraleer

klinische toepassing een feit zal zijn. Voor coating vervaardiging is het van fundamenteel 

belang voor een coating methode dat deze niet afhankelijk is van de operator. De stabiliteit 

van de depositie vereist constante monitoring en het vertegenwoordigt een sterke beperking 

voor het opschalen van de productie. Verdere onderzoeksinspanningen moeten worden 

gewijdaan methodieken om de afzettingsstabiliteit te controleren, bijvoorbeeld met behulp 

van een video systeem dat in staat is om de lichtverstrooiing van een laserstraal te bewaken. 

Een software-algoritme kan de spanning wijzigen en de stabiliteit van de afzetting handhaven.

Retentie van de coating aan het substraat is een zwak punt van nat-chemische depositie 

methoden zoals ESD, dat de toepasbaarheid van de coatings in klinische situaties vermindert. 
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Gezien deze beperkingen moet meer nadruk komen op strategieën voor dubbele coatings te 

verwezenlijken. Vanaf CaP gecoate implantaten verkregen middels fysische depositie 

(bijvoorbeeld RF sputteren of plasma-depositie nevel), zou het mogelijk moeten zijn om een 

sterke hechting tussen CaP en het titanium oppervlak te garanderen. Om het gebrek aan 

bioactieve eigenschappen van deze depositiemethoden (vanwege de relatief hoge 

temperaturen tijdens de depositie) te compenseren, kan ESD worden gebruikt om instructieve 

materialen te deponeren. De mogelijkheid om een bioactieve coating af te zetten op een CaP-

gecoat oppervlak kan het retentie-probleem aanpakken en een compleet nieuw tijdperk starten 

voor ESD. Ten slotte zal de vooruitgang in het biomedisch onderzoek voor bot-toepassingen 

in de nabije toekomst gericht zijn op het verkrijgen van meer specifieke of zelfs patiënt-

gerelateerde oplossingen (d.w.z. gepersonaliseerde gezondheidszorg), hetgeen zal worden 

gebaseerd op de aanwezigheid van organische coatings en resorbeerbare bulk materialen. Met 

het oog hierop zullen coatings een steeds belangrijkere rol spelen en zal het modificeren van

biomedische implantaatoppervlakken veranderen: vroeger was dat van biocompatibel naar

bioactief, waar het in de toekomst zal zijn.
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