A Case Study in Class Library Verification: Java’s Vector Class

MARIEKE HUISMAN, BART JACOBS, JOACHIM VAN DEN BERG

Computing Science Institute, University of Nijmegen
Toernooiveld 1, 6525 ED Nijmegen, The Netherlands
{marieke,bart,joachim}@cs.kun.nl

Abstract This paper presents a verification of an invariant property for the Vector class from JAVA’s standard library (API). The property says (essentially) that the actual size of a vector is less than or equal to its capacity. It is shown that this “safety” or “data integrity” property is maintained by all methods of the Vector class, and that it holds for all objects created by the constructors of the Vector class.

The verification of the Vector class invariant is done with the proof tool PVS. It is based on a semantics of JAVA in higher order logic. The latter is incorporated in a special purpose compiler, the LOOP tool, which translates JAVA classes into logical theories. It has been applied to the Vector class for this case study.

The actual verification takes into account the object-oriented character of JAVA: (non-final) methods may always be overridden, so that one cannot rely on a particular implementation. Instead, one has to reason from method specifications in such cases.

This project demonstrates the feasibility of tool-assisted verification of non-trivial properties for non-trivial JAVA classes.

Keywords: Java, invariant, program verification, specification.

Classification: 68P05, 68Q55, 68Q60, 68Q65 (MSC 2000);

1 Introduction

One of the reasons for the popularity of object-oriented programming is the possibility it offers for reuse of code. Usually, the distribution of an object-oriented programming language comes together with a collection of ready-to-use classes, in a class library or API (Application Program Interface). Typically, these classes contain general purpose code, which can be used as basis for many applications. Before using such classes, a programmer usually wants to know how they behave and when their methods terminate normally or throw exceptions.

One way to do this, is to study the actual code. This is time-consuming and requires understanding all particular ins and outs of the implementation—which may even be absent, for native methods. Hence this is often not the most efficient way. Another approach is to study the (informal) documentation provided. As long as this documentation is clear and concise, this works well, but otherwise a programmer is still is forced to look at the actual code.
One way to improve this situation is to formally specify suitable properties of standard classes, and add these specifications as annotations to the documentation. Examples of properties that can be specified are termination conditions (in which cases will a method terminate normally, in which cases will it throw an exception), pre-post-condition relations and class invariants. Once sufficiently many properties have been specified, one only has to understand these properties; and then there is no need anymore to study the actual code, in order to be able to use a class safely.

Programmers must of course be able to rely on such specifications. This introduces the obligation to actually verify that the specified properties hold for the implementation. Even stronger, specifications can exist independently of implementations, as so-called interface specifications. As such they may describe library classes in a component-oriented approach, based on interface specifications regulating the interaction between components. In such a "design by contract" scenario the provider of a class implementation has the obligation to show that the specification is met. And naturally, every next version of the implementation should still satisfy the specification, ensuring proper upgrading.

Thus, verification of class specifications is an important issue. This paper describes a case study verification of one particular library class, namely Vector, which is in the standard JAVA distribution [AG97,GJS96,CLK98]. The Vector class basically consists of an array of objects, which is internally replaced by an array of different size, according to needs\(^1\). The essence of the Vector invariant that is proven is that the size of a vector never exceeds the length of this internal array. Clearly, this is a crucial safety property.

The choice for the Vector class in this verification is in fact rather arbitrary: it serves our purposes well because it involves a non-trivial amount of code (including the code from its surrounding classes from the library), and gives rise to an interesting invariant. However, other classes than Vector could have been verified. And in fact, there are many classes in the JAVA API, like StringBuffer, using an array of characters with a count, for which a similar invariant can be formulated. Thus the property that we consider is fairly typical as a class invariant.

For the specification of the Vector invariant (and many pre- and post-conditions) we make use of the experimental behavioural interface specification language JML (short for Java Modeling Language) [LBR98], see [Vec]. Its syntax is much like JAVA's, and mostly self-explanatory. JML is also used for a follow-up specification and verification project focussing on the entire JAVA API [PBJ00] (which is much smaller than the standard JAVA API). In these projects, the JML specifications are added post hoc, after the JAVA code has already been written. It would have been much more efficient (for us, as verifiers) if the JML specifications would have been written together with (or even before) the JAVA implementation. One of the main points behind JML (and this paper) is that writing such specifications at an early stage really pays off. It makes many

\(^1\) Arrays in JAVA have a fixed size; vectors are thus useful if it is not known in advance how many storage positions are needed.
of the implicit assumptions underlying the implementation explicit (e.g. in the form of invariants), and thus facilitates the use of the code and increases the reliability of software that is based on it. Furthermore, the formal specifications are amenable to tool support, for verification purposes. It is our hope that certainly for crucial classes in standard libraries the use of specification in languages like JML (and subsequent verification) becomes standard. For such library classes, the additional effort is justifiable.

This verification project makes use of two tools: the PVS [ORR+96, ORSVH95] proof tool, and the LOOP [JBH+98, HHJT98, LOO] translation tool. The latter is a compiler which translates JAVA classes into logical theories in the higher order logic of PVS, in the following way.

The generated logical theories contain definitions, embodying the semantics of the classes, plus special lemmas that are used for automatic rewriting. These logical theories can be loaded into the proof tool, together with the so-called semantical prelude, which contains basic definitions, like in Section 3 below. Subsequently, the user can state desired properties about the original JAVA classes and prove these on basis of the semantical prelude and the generated theories. For example, a user may want to prove that a method terminates normally, returning a certain value.

The LOOP tool makes use of a semantics of JAVA in higher order logic. This paper includes a description of a relevant part of this semantics, see Section 3. More information can be obtained from [JBH+98, BHJP00, HJ00b, HJ00a, Hui00].

An important aspect of the verification of the Vector invariant is the extensive use we have made (in PVS) of a Hoare logic that can handle abrupt termination (caused e.g. by an exception or a return), see [HJ00b] and Section 4. This Hoare logic has various “correctness modes”, not only for normal termination as in standard Hoare logic, but also for abrupt termination caused by an exception, return, break or continue. These different modes are needed for reasoning about the frequently occurring abrupt terminations in JAVA programs. In its actual use, the extended Hoare logic is very similar to traditional Hoare logic, involving for example variants and invariants to handle while and for loops.

The LOOP tool is currently being extended to translate also JML specifications. They will give rise to specific proof obligations in Hoare logic. The

2 The LOOP tool can also produce output for the proof tool ISABELLE [Pan94], but that is not relevant for this verification because it is done with PVS.

3 Currently, the translation covers basically all of sequential JAVA (without threads).
JML specifications used in this paper have been translated by hand, and not automatically, into corresponding Hoare sentences (in PVS), which are used in verifications, see Section 5.

This paper presents state-of-the-art work in (object-oriented) program specification and verification, using modern tools both for compilation and for reasoning. The work is not about programs written in some clean, mathematically civilised, abstract programming language, but about actual JAVA programs with all their messy (semantic) details. We consider it a challenge to be able to handle such details. This is the largest case study done so far within the LOOP project. It demonstrates the feasibility of the formal approach to software development, as advocated in the LOOP project.

There are relatively few references on formal verification for object-oriented languages. Specific logics for reasoning about abstract object-oriented programs are proposed in [Boe99,AL97,Lei98]. When it comes to Java, one can distinguish between (1) reasoning about Java as a language, and (2) reasoning about programs written in Java. In the first category there is work on, for example, safety of the type system [ON99,Sym99], or bytecode verification [Pus99,Qia99,HBL99]. But the present paper falls in the second category. Related work in [PHM99] does not, in its current state of development, cover abrupt termination (caused, for instance by exceptions). Being able to reason about abrupt termination (see also [HJ00b]) is crucial for the verification in this paper.

The paper is organised as follows. It starts with a brief introduction to the (standard) type theoretic language that will be used (instead of the possibly less familiar language of PVS). Section 3 explains some basic aspects of the semantics of JAVA in this type theory. It forms the basis for our extended Hoare logic in Section 4. Section 5 gives a brief introduction to JML, explaining how specifications give rise to proof obligations in Hoare logic. Then, Section 6 starts the Vector class case study, by first introducing the Vector class in JAVA and its translation into PVS. Then it explains the invariant, and its verification by discussing several typical Vector methods with their JML specification in detail. Finally, Section 7 discusses conclusions and experiences.

2 Type theory

The semantics for JAVA on which the verification effort of this paper relies is sketched in Section 3. This semantics is described in a simple type theory with higher order logic. Using this general type theory and logic enables us to abstract away from the particulars of the language of PVS and make this work more accessible to readers unfamiliar with PVS.

Our type theory is a simple type theory with types built up from:

- type variables;
- type constants nat, bool, string (and some more);
- exponent types $\sigma \to \tau$;
- labeled product (or record) types $[\text{lab}_1 : \sigma_1, \ldots, \text{lab}_n : \sigma_n]$;
- labeled coproduct (or variant) types $\{ \text{lab}_1 : \sigma_1 | \ldots | \text{lab}_n : \sigma_n \}$;
for given types $\sigma, \tau, \sigma_1, \ldots, \sigma_n$, and with all labels lab_i within one (co)product type distinct.

For exponent types the standard notations for lambda abstraction $\lambda x: \sigma. M$ and application $\text{app} \ N \ L$ are used. Given terms $\text{lab}_i: \sigma_i$, there exists a labeled tuple $(\text{lab}_1 = M_1, \ldots, \text{lab}_n = M_n)$ in the labeled product type $[\text{lab}_1: \sigma_1, \ldots, \text{lab}_n: \sigma_n]$. Given a term $N: [\text{lab}_1: \sigma_1, \ldots, \text{lab}_n: \sigma_n]$ in such a product, $N. \text{lab}_i$ denotes the selection term of type σ_i. Terms for labeled coproducts are formed as follows. Given a term $M: \sigma_i$ there exists a tagged term $\text{lab}_i M$, inhabiting the labeled coproduct type $\{\text{lab}_1: \sigma_1 | \ldots | \text{lab}_n: \sigma_n\}$. For $N: \{\text{lab}_1: \sigma_1 | \ldots | \text{lab}_n: \sigma_n\}$, and n terms $L_i(x_i): \tau$, where $x_i: \sigma_i$ is free in L_i, there is a case term

$$\text{CASE } N \text{ OF } \{ \text{lab}_1 \ x_1 \mapsto L_1(x_1) | \ldots | \text{lab}_n \ x_n \mapsto L_n(x_n) \}$$

of type τ, which binds the variables x_i. It reduces to $L_i[M/x_i]$ if N is of the form $\text{lab}_i M$. The introduction and elimination terms for exponents, labeled products and labeled coproducts satisfy standard (β-) and (η)-conversions.

New types can be introduced via definitions, as in:

$$\text{lift}[\alpha]: \text{TYPE} \overset{\text{def}}{=} \{ \text{bot}: \text{unit} \mid \text{up}: \alpha \}$$

where unit is the empty product type $[]$. This lift type constructor adds a bottom element to an arbitrary type, given as type variable α.

Formulas in higher order logic are terms of type bool. The connectives \land (conjunction), \lor (disjunction), \Rightarrow (implication), \neg (negation, used with rules of classical logic) and constants true and false are used, together with the (typed) quantifiers $\forall x: \alpha \ . \ \varphi$ and $\exists x: \alpha \ . \ \varphi$, for a formula φ. There is also a conditional term $\text{if } \varphi \ \text{THEN } M \ \text{ELSE } N$, for terms M, N of the same type.

3 Java semantics

This section presents the basic ingredients of the semantics for Java as used for the Vector invariant verification. It describes the semantics of statements and expressions, the underlying memory model and the formalisation of references (including arrays). Inheritance does not play an important role in the Vector class, so we will not discuss its type theoretic semantics here, and refer the interested reader to [HJ00a] instead.

3.1 Statements and expressions

In classical program semantics the assumption is that statements either terminate normally, resulting in a successor state, or do not terminate at all, see e.g. [Bak80, Chapter 3] or [Rey98, Section 2.2]. In the latter case one also says that the statement hangs, typically because of a non-terminating loop. Hence, statements may be understood as partial functions from states to states. Writing Self as a type variable for the state space, statements can be seen as "state transformer" functions of the form:

\[s \mapsto t(s) \]
This classical view of statements turns out to be inadequate for reasoning about Java programs. Java statements may hang, or terminate normally (like above), but they may additionally “terminate abruptly” (see e.g. [GJS96, AG97]). Abrupt termination may be caused by an exception (typically a division by 0), a return, a break or a continue (inside a loop). Abrupt (or abnormal) termination is fundamentally different from non-termination: abnormalities may be temporary because they may be caught at some later stage, whereas recovery from non-termination is impossible. Abnormalities can both be thrown and be caught, basically via re-arranging coproduct options. Abrupt termination affects the flow of control: once it arises, all subsequent statements are ignored, until the abnormality is caught, see the definition of composition “;” later in this section. From that moment on, the program executes normally again.

Abrupt termination requires a modification of the standard semantics of statements and expressions, resulting in a failure semantics, as for example in [Rey98, Section 5.1]. Therefore, in our approach, statements are modeled as more general state transformer functions

\[
\text{Self} \xrightarrow{\text{stat}} \text{StatResult[Self]} \overset{\text{def}}{=} \{ \text{hang} : \text{unit} \mid \text{norm} : \text{Self} \mid \text{abnorm} : \text{StatAbn[Self]} \}
\]

The first option hang captures the situation where a statement hangs. The second option norm occurs when it terminates normally, resulting in a successor state. The final option abnorm describes abrupt termination, yielding a value of the type StatAbn (for Statement Abnormal). It can be subdivided into four parts:

\[
\text{StatAbn[Self]} : \text{TYPE} \overset{\text{def}}{=} \\
\{ \text{excp} : [\text{es} : \text{Self,ex: RefType}] \mid \text{rtn} : \text{Self} \mid \text{break} : [\text{bs} : \text{Self,blab: lift[string]}] \mid \text{cont} : [\text{cs} : \text{Self,clab: lift[string]}] \}
\]

These four constituents of StatAbn typically consists of a state in Self together with some extra information. An exception abnormality consists of a state together with a reference to an exception object. The reference is represented as an element of the type RefType, which is described below (see Subsection 3.3).
A return abnormality only consists of a (tagged) state, and break and continue
abnormalities consist of a state, possibly with a label (given as string).

A similar reasoning applies to expressions. In classical semantics, expressions
are viewed as functions of the form:

\[\text{- TYPE THEORY} \]

\[\text{Self} \longrightarrow \text{Out} \]

The type Out is the type of the result. This view is not quite adequate for our
purposes, because it does not involve non-termination, abrupt termination or
side-effects. As statements, expressions in JAVA may hang, terminate normally or
terminate abruptly. If an expression terminates normally, it produces an output
result (of the type of the expression) together with a successor state (since it
may have a side-effect). If it terminates abruptly, this can only be because of an
exception (and not because of a break, continue or return, see [GJS96, §15.5]).
Hence an expression of type Out is (in our view) a function of the form:

\[\text{- TYPE THEORY} \]

\[\text{Self} \longrightarrow \text{ExprResult[Self, Out]} \]

\[\text{def} \begin{align*}
\text{norm} & : [\text{rs: Self, res: Out}] \\
\text{abnorm} & : \text{ExprAbn[Self]}
\end{align*} \]

\[\text{ExprAbn[Self]} : \text{TYPE} \]

\[\text{def} \begin{align*}
\text{es} : \text{Self, ex: RefType}
\end{align*} \]

Notice that the second option \text{norm} occurs when an expression terminates
normally, resulting in a successor state together with an output result. The third
option \text{abnorm} describes abrupt termination—because of an exception—for
expressions:

\[\text{- TYPE THEORY} \]

\[\text{ExprAbn[Self]} : \text{TYPE} \]

\[\text{def} \begin{align*}
\text{es} : \text{Self, ex: RefType}
\end{align*} \]

To summarise, in our formalisation statements are modeled as functions from
\text{Self} to \text{StatResult[Self]}, and expressions as functions from \text{Self} to \text{ExprResult[Self, Out]}, for the appropriate result type \text{Out}. This abstract representation of
statements and expressions as “one entry/multiexit” functions (terminology of[Chr84])
forms the basis for the work presented here. It is used to give a (compositional)
meaning to basic programming constructs like composition, if-then-else, and
while. For example, the statement composition operator “;” of JAVA is translated
into “;” in type theory. Thus, for JAVA statements \text{s, t},

\[[s; t] = [s] ; [t] \]

7
where the definition of \(; \) in type theory is as follows.

\[
\begin{align*}
s, t : \text{Self} & \rightarrow \text{StatResult}[\text{Self}] \vdash \\
s ; t : \text{Self} & \rightarrow \text{StatResult}[\text{Self}] \overset{\text{def}}{=} \\
& \lambda x : \text{Self}. \text{CASE } s x \text{ OF } \\
& \quad \{ \\
& \quad \quad \text{hang } \mapsto \text{hang} \\
& \quad \quad \text{norm } y \mapsto t y \\
& \quad \quad \text{abnorm } a \mapsto \text{abnorm } a \} \\
\end{align*}
\]

Thus if statement \(s \) terminates normally in state \(x \), resulting in a next state \(y \), then \((s ; t) x \) is \(t y \). And if \(s \) hangs or terminates abruptly in state \(x \), then \((s ; t) x \) is \(s x \) and \(t \) is not executed.

A typical example of an abruptly terminating statement in Java is the return statement. When a return statement is executed, the program immediately exits from the current method. A return statement may have an expression argument; if so, this expression is evaluated and returned as the result of the method. The translation of the Java return statement (without argument) is,

\[
[\text{return}] = \text{RETURN}
\]

where \text{RETURN} is defined as:

\[
\begin{align*}
\text{RETURN} : \text{Self} & \rightarrow \text{StatResult}[\text{Self}] \overset{\text{def}}{=} \lambda x : \text{Self}. \text{abnorm}(\text{rtm } x) \\
\end{align*}
\]

This statement produces an abnormal state, which will be caught at the end of a method body. The translation of a return statement with argument is similar, but more subtle. First the value of the expression is stored in a special local variable, and then the state becomes abnormal, via the above \text{RETURN}.

To recover from this return abnormality, functions \text{CATCH-STAT-RETURN} and \text{CATCH-EXPR-RETURN} are used. In our translation of Java programs, a function \text{CATCH-STAT-RETURN} is wrapped around every method body that returns void. First the method body is executed. This may result in an abnormal state, because of a return. In that case the function \text{CATCH-STAT-RETURN} turns the (abnormal) state back to normal again. Otherwise, it leaves the state unchanged.
\[a : \text{Self} \rightarrow \text{StatResult}[\text{Self}] \vdash \]
\[
\text{CATCH-STAT-RETURN}(a) : \text{Self} \rightarrow \text{StatResult}[\text{Self}] \overset{\text{def}}{=} \\
\lambda x : \text{Self}. \text{CASE } x \text{ OF } \\
| \hspace{1em} \text{hang } \mapsto \text{hang} \\
| \hspace{1em} \text{norm } y \mapsto \text{norm } y \\
| \hspace{1em} \text{abnorm } a \mapsto \text{CASE } a \text{ OF } \\
| \hspace{2em} \text{excp } e \mapsto \text{abnorm}(\text{excp } e) \\
| \hspace{2em} \text{rtn } z \mapsto \text{norm } z \\
| \hspace{2em} \text{break } b \mapsto \text{abnorm}(\text{break } b) \\
| \hspace{2em} \text{cont } e \mapsto \text{abnorm}(\text{cont } e) \} \}
\]

If a method returns a value, a function CATCH-EXPR-RETURN is used, instead of CATCH-STAT-RETURN. Recall that the result value of a method is stored in a special variable. This function CATCH-EXPR-RETURN turns the state back to normal and, in that case, returns the output that is held by this special variable.

Below, a similar function CATCH-CONTINUE is used, which catches an abnormal state, because of a continue, and turns it back to normal. Since continue statements can only occur in loops, with the effect that control skips the rest of the loop’s body and starts re-evaluating (the update statement, in a for loop, and) the Boolean expression which controls the loop, this function is used in the semantics of loops.

Finally, there is one technicality that deserves some attention. Sometimes an expression has to be transformed into a statement, which is only a matter of forgetting the result of the expression. However, in our formalisation this transformation has to be done explicitly, using a function E2S.

\[e : \text{Self} \rightarrow \text{ExprResult}[\text{Self}, \text{Out}] \vdash \]
\[
\text{E2S}(e) : \text{Self} \rightarrow \text{StatResult}[\text{Self}] \overset{\text{def}}{=} \\
\lambda x : \text{Self}. \text{CASE } e \hspace{1em} x \hspace{1em} \text{OF } \\
| \hspace{2em} \text{hang } \mapsto \text{hang} \\
| \hspace{2em} \text{norm } y \mapsto \text{norm } (y, \text{ns}) \\
| \hspace{2em} \text{abnorm } a \mapsto \text{abnorm}(\text{excp(es = a.es, ex = a.ex)}) \} \}
\]

In the last line an expression abnormality (an exception) is transformed into a statement abnormality.

A more detailed elaboration of this semantics can be found in [HJ00b,Hui00].
3.2 Memory model

This section starts by defining memory cells for storing JAVA objects and arrays. They are used to build up the main memory for storing arbitrarily many such items. This object memory OM comes with various operations for reading and writing. More information on this memory model is given in [BHJP00].

Memory cells A single memory cell can store the contents of all the fields from a single object belonging to an arbitrary class. The (translated) types that the fields of objects can have are limited to byte, short, int, long, char, float, double, bool and RefType (which is defined below in Subsection 3.3). Therefore a cell has entries for all of these. The number of fields for a particular type is not bounded, so infinitely many are incorporated in a memory cell:

\[\text{ObjectCell} : \text{TYPE } \overset{\text{def}}{=} \left[\begin{array}{l}
\text{bytes: CellLoc } \rightarrow \text{byte}, \\
\text{shorts: CellLoc } \rightarrow \text{short}, \\
\text{ints: CellLoc } \rightarrow \text{int}, \\
\text{longs: CellLoc } \rightarrow \text{long}, \\
\text{chars: CellLoc } \rightarrow \text{char}, \\
\text{floats: CellLoc } \rightarrow \text{float}, \\
\text{doubles: CellLoc } \rightarrow \text{double}, \\
\text{booleans: CellLoc } \rightarrow \text{bool}, \\
\text{refs: CellLoc } \rightarrow \text{RefType}
\end{array} \right]\]

where CellLoc : Type \(\overset{\text{def}}{=} \text{nat}\). Our memory is organised in such a way that each memory location points to a memory cell, and each cell location to a position for a particular label inside the cell.

Storing an object belonging to a class with, for instance, two integer fields and one Boolean field in a memory cell is done by (only) using the first two values (at 0 and at 1) of the function \text{ints}: CellLoc \rightarrow \text{int} and (only) the first value (at 0) of the function \text{booleans}: CellLoc \rightarrow \text{bool}. Other values of these and other functions in the object cell are irrelevant, and are not used for objects belonging to this class. Enormous storage capacity is wasted in this manner, but that is unproblematic. The LOOP compiler attributes these cell positions to (static) fields of a class, local variables and parameters. These cell positions are hidden away from the user.

Object memory Object cells form the main ingredient of a new type OM representing the main memory. It has a heap, stack and static part, for storing the contents of respectively instance variables, local variables and parameters, and static (also called class) variables:
\text{OM : TYPE } \overset{\text{def}}{=} \[\text{heapmem : MemLoc } \to \text{ObjectCell,} \\
\text{heapTop : MemLoc,} \\
\text{stackmem : MemLoc } \to \text{ObjectCell,} \\
\text{stackTop : MemLoc,} \\
\text{staticmem : MemLoc } \to [\text{initialised : bool, staticcell : ObjectCell}]]\]

For reasons of abstraction we define MemLoc : Type \overset{\text{def}}{=} \text{nat}. The entry heapTop (resp. stackTop) indicates the next free (unused) memory location on the heap (resp. stack). These numbers change during program execution (in type theory). The LOOP compiler assigns locations (in the static memory) to classes with static fields. At such locations a Boolean initialised tells whether static initialisation has taken place for this class. One must keep track of this because static initialisation should be performed at most once.

\textbf{Reading and writing in the object memory} Accessing a specific value in an object memory $x : \text{OM}$, either for reading or for writing, involves the following three ingredients: (1) an indication of which memory (heap, stack, static), (2) a memory location (in MemLoc), and (3) a cell location (in CellLoc) giving the offset in the cell. These ingredients are combined in the following variant type for memory addressing.

\text{MemAdr : TYPE } \overset{\text{def}}{=} \{\text{heap : [ml : MemLoc, cl : CellLoc]} \\
\text{stack : [ml : MemLoc, cl : CellLoc]} \\
\text{static : [ml : MemLoc, cl : CellLoc]}\}

For each type typ from the collection of types byte, short, int, long, char, float, double, bool and RefType occurring in object cells (see the definition of ObjectCell), there are two operations:

\text{get_typ}(x, m) : typ for $x : \text{OM, m : MemAdr}$

\text{put_typ}(x, m, u) : OM for $x : \text{OM, m : MemAdr, u : typ}$

These functions are described in detail only for typ = byte; the other cases are similar. Reading from the memory is easy; for $x : \text{OM, m : MemAdr}$,
get_byte(x, m) \equiv \text{CASE } m \text{ OF } \\
| \text{heap } \ell \mapsto ((x.\text{heapmem}(\ell, m)).\text{bytes})(\ell, cl) \\
| \text{stack } \ell \mapsto ((x.\text{stackmem}(\ell, m)).\text{bytes})(\ell, cl) \\
| \text{static } \ell \mapsto ((x.\text{staticmem}(\ell, m)).\text{staticcell}.\text{bytes})(\ell, cl) \}

The corresponding write-operation uses updates of records and also updates of functions; both these use a ‘WITH’ notation, which is hopefully self-explanatory: for \(x : \text{OM}, m : \text{MemAdr} \) and \(u : \text{byte} \),

\[
\begin{align*}
\text{put_byte}(x, m, u) & \equiv \\
& \text{CASE } m \text{ OF } \\
& | \text{heap } \ell \mapsto x \text{ WITH } [((x.\text{heapmem}(\ell, m)).\text{bytes})(\ell, cl) = u] \\
& | \text{stack } \ell \mapsto x \text{ WITH } [((x.\text{stackmem}(\ell, m)).\text{bytes})(\ell, cl) = u] \\
& | \text{static } \ell \mapsto x \text{ WITH } [((x.\text{staticmem}(\ell, m)).\text{staticcell}.\text{bytes})(\ell, cl) = u] \\
\end{align*}
\]

The various get- and put-functions (18 in total) satisfy obvious commutation equations, like:

\[
\begin{align*}
\text{get_byte}(\text{put_byte}(x, m, u), n) &= \text{IF } m = n \text{ THEN } u \text{ ELSE } \text{get_byte}(x, n) \\
\text{get_byte}(\text{put_short}(x, m, v), n) &= \text{get_byte}(x, n).
\end{align*}
\]

Such equations (81 together) are used for auto-rewriting; whenever these equations can be applied, the back-end proof-tool simplifies goals automatically.

3.3 Formalising references to objects and arrays

Reference types are used in Java for objects and arrays. A reference may be \texttt{null}, indicating that it does not refer to anything. In our model, a non-null reference contains a pointer ‘\texttt{objpos}’ to a memory location (on the heap, see Section 3.2), together with a string ‘\texttt{cname}’ indicating the run-time type of the object, or the run-time elementtype of the array, at this location, and possibly two natural numbers describing the dimension and length of non-null array references. This leads to the following definition.

\[
\text{RefType} : \text{TYPE} \equiv \\
\{ \text{null: unit | ref: [\text{objpos: MemLoc,} \\
\text{cname: string,} \\
\text{dimlen: lift[[\text{dim: nat, len: nat}]] }] } \}
\]
Based on this type RefType, various operations on references can be formalised in type theory, e.g. comparing two references is translated as

$$[r_1 == r_2] \overset{\text{def}}{=} [r_1] == [r_2]$$

where $==$ is defined in type theory, following [GJS96, §§ 15.20.3], as follows.

Type Theory

$r_1, r_2 : \text{OM} \rightarrow \text{ExprResult[OM, RefType]} \\ r_1 == r_2 : \text{OM} \rightarrow \text{ExprResult[OM, bool]} \overset{\text{def}}{=} \\
\lambda x : \text{OM}.
\text{CASE } r_1 x \text{ OF } \\
\text{| hang } \mapsto \text{hang} \\
\text{| norm } y \mapsto \\
\text{CASE } r_2 (y, ns) \text{ OF } \\
\text{| hang } \mapsto \text{hang} \\
\text{| norm } z \mapsto \\
\text{norm } (ns = z, ns, \\
\text{res } = \text{CASE } y, \text{res } \text{ OF } \\
\text{| null } \mapsto \\
\text{CASE } z, \text{res } \text{ OF } \\
\text{| null } \mapsto \text{true} \\
\text{| ref } s \mapsto \text{false } \\
\text{| ref } r \mapsto \\
\text{CASE } z, \text{res } \text{ OF } \\
\text{| null } \mapsto \text{false} \\
\text{| ref } s \mapsto r.\text{objpos } = s.\text{objpos } } \\
\text{res } = \text{CASE } y, \text{res } \text{ OF } \\
\text{| null } \mapsto \\
\text{CASE } z, \text{res } \text{ OF } \\
\text{| null } \mapsto \text{false} \\
\text{| ref } s \mapsto r.\text{objpos } = s.\text{objpos } } \\
\text{| abnorm } b \mapsto \text{abnorm } b \\
\text{| abnorm } a \mapsto \text{abnorm } a$

For arrays in particular, appropriate operations, such as accessing and storing elements in an array are formalised. For example, the arrayAccess function, defined below, is used for the translation of indexing an array, in the following way:

$$[a[i]] \overset{\text{def}}{=} \text{arrayAccess(get_typ, [a], [i])}$$

assuming that $a[i]$ is not the left hand side of an assignment. The function getTyp is determined by the component type of a, for example: if a is an integer array of type $\text{int}[]$, then $\text{getTyp} = \text{get_int}$. And if a is a 2-dimensional array of, say Booleans, then $\text{getTyp} = \text{get_ref}$.

13
The Java evaluation strategy prescribes that first the array expression, and then the index expression must be evaluated. Subsequently it must be checked first if the array reference is non-null, and then if the (evaluated) index is non-negative and below the length of the array. Only then the memory can be accessed. See [GJS96, §§ 15.12.1 and §§ 15.12.2]. This is described in our setting as follows (omitting the details of how exceptions are thrown).

\[\text{\textit{TYPE THEORY}}\]

\[
a : \text{OM} \rightarrow \text{ExprResult[OM, RefType]}, i : \text{OM} \rightarrow \text{ExprResult[OM, int]} \vdash
\]

\[
\text{array_access(get_typ, a, i)} : \text{OM} \rightarrow \text{ExprResult[OM, typ]} \defeq
\]

\[
\lambda x : \text{OM}.
\]

\[
\text{CASE a x OF} \{ \\
\qquad \text{hang} \mapsto \text{hang} \\
\qquad \text{norm y} \mapsto \\
\qquad \text{CASE i (y, ns)} \mapsto \{ \\
\qquad \quad \text{hang} \mapsto \text{hang} \\
\qquad \quad \text{norm z} \mapsto \\
\qquad \text{CASE y_res OF} \{ \\
\qquad \text{null} \mapsto [\text{new NullPointerException()}] \\
\qquad \text{refr} \mapsto \\
\qquad \text{CASE r_dimlen OF} \{ \\
\qquad \quad \text{bot} \mapsto \text{hang} \quad \text{// should not happen} \\
\qquad \quad \text{up p} \mapsto \\
\qquad \quad \text{IF z_res < 0 \lor z_res \geq p_len} \\
\qquad \quad \text{THEN } [\text{new IllegalArgumentException()}] \\
\qquad \quad \text{ELSE norm}(ns = z_ns, res = \\
\qquad \quad \text{get_typ}(z_ns, \text{heap}(ml = r_objpos, \\
\qquad \quad \text{cl = z_res)))) \}\} \\
\quad \text{abnorm}\ c \mapsto \text{abnorm}\ c \}
\]

\[
\text{abnorm}\ b \mapsto \text{abnorm}\ b
\]

Notice that arrays, like objects, are stored on the heap. All translated non-null array references have a non-bottom dimlen field by construction, so in the case indicated as “should not happen” we choose to use hang as output. We also could have thrown some non-standard exception. There is a similar function \text{array_assign} which is used for assigning a value at a particular index in an array. Further, there are also functions for array creation and returning the array length. The function for array creation sets up an appropriately linked number of (empty) memory cells, depending on the dimension and lengths of the array that is being created.
4 A Hoare logic for Java

Many verifications of JAVA programs can be done immediately in terms of the semantics as described in Section 3. But "[...] reasoning about correctness formulas in terms of semantics is not very convenient. A much more promising approach is to reason directly on the level of correctness formulas." (quote from [AO97, p. 57]). Hoare logic is a formalism for doing precisely this. This section describes an extension of Hoare logic which is especially tailored to JAVA. The proof rules that are discussed here are heavily used in the Vector case study described below.

Our Hoare logic extension is a concrete and detailed elaboration and adaptation of existing approaches to programming logics with exceptions, notably from [Chr84,LvdS94,Lei95] (which are mostly in weakest precondition form). Although the basic ideas used here are the same as in [Chr84,LvdS94,Lei95], the elaboration is different. For example, in this elaboration many forms of abrupt termination are considered, and not just one sole exception. Also, a semantics of statements and expressions as particular functions is used (as described in Section 3), and not a semantics of traces.

Hoare logic for a particular programming language consists of a series of deduction rules for special sentences, involving constructs from the programming language, like assignment, if-then-else and composition. In particular, (while) loops have received much attention in Hoare logic, because they involve a judicious and often non-trivial choice of a loop invariant. For more information, see e.g. [Bak80,Grö81,Apt81,Gor88,AO97]. There is a so-called "classical" body of Hoare logic, which applies to standard constructs from an idealised imperative programming language. This forms a well-developed part of the theory of Hoare logic. It is based on sentences of the form \(\{ P \} S \{ Q \} \), for partial correctness, or \([P] S [Q] \), for total correctness. They involve assertions \(P \) and \(Q \) in some logic (usually predicate logic), and statements \(S \) from the programming language that one wishes to reason about. The partial correctness sentence \(\{ P \} S \{ Q \} \) expresses that if the assertion \(P \) holds in some state \(x \) and if the statement \(S \), when evaluated in state \(x \), terminates normally, resulting in a state \(x' \), then the assertion \(Q \) holds in \(x' \). Total correctness \([P] S [Q] \) expresses something stronger, namely: if \(P \) holds in \(x \), then \(S \) in \(x \) terminates normally, resulting in a state \(x' \) where \(Q \) holds. These partial and total correctness sentences can be translated easily into our type theory.
\[
\text{pre, post: } \text{Self} \rightarrow \text{bool}, \text{stat: } \text{Self} \rightarrow \text{StatResult}[\text{Self}] \vdash \\
\text{PartialNormal?(pre, stat, post) : bool } \overset{\text{def}}{=} \\
\forall x: \text{Self}. \text{pre } x \supset \text{CASE stat } x \text{ OF } \\
\begin{align*}
| \text{hang } & \mapsto \text{true} \\
| \text{norm } y & \mapsto \text{post } y \\
| \text{abnormal } a & \mapsto \text{true}
\end{align*}
\]

\[
\text{pre, post: } \text{Self} \rightarrow \text{bool}, \text{stat: } \text{Self} \rightarrow \text{StatResult}[\text{Self}] \vdash \\
\text{TotalNormal?(pre, stat, post) : bool } \overset{\text{def}}{=} \\
\forall x: \text{Self}. \text{pre } x \supset \text{CASE stat } x \text{ OF } \\
\begin{align*}
| \text{hang } & \mapsto \text{false} \\
| \text{norm } y & \mapsto \text{post } y \\
| \text{abnormal } a & \mapsto \text{false}
\end{align*}
\]

To adapt this classical body to Java proof rules are described for normally terminating statements. Following Gordon [Gor89], these proof rules are shown to be sound with respect to the semantics. In our case, the soundness of all the rules has been proven in PVS. This enables both semantic and axiomatic reasoning about Java programs. These (standard) proof rules are described in more detail in [HJ00b, Hui00].

4.1 A Hoare logic with abrupt termination

Unfortunately, the proof rules for normal termination do not give enough power to reason about arbitrary Java programs. Therefore it is necessary to have a "correctness notion" for being in an abnormal state, e.g. if execution of \(S \) starts in a state satisfying \(P \), then execution of \(S \) terminates abruptly, because of a \texttt{return}, in a state satisfying \(Q \). To this end, the notions of abnormal correctness are introduced. They appear in four forms, corresponding to the four possible kinds of abnormalities. Rules are formulated to derive the (abnormal) correctness of a program compositionally. These rules allow the user to move back and forth between the various correctness notions.

The first notion that is introduced is partial break correctness (with notation: \(\{P\} S \{\texttt{break}(Q, l)\} \)), meaning that if execution of \(S \) starts in some state satisfying \(P \), and execution of \(S \) terminates in an abnormal state, because of a \texttt{break}, then the resulting abnormal state satisfies \(Q \). If the \texttt{break} is labeled with \texttt{lab}, then \(l = \text{up("lab")}, \) otherwise \(l = \text{bot} \).

Naturally, there exists also total break correctness \(([P] S \{\texttt{break}(Q, l)\}) \)), meaning that if execution of \(S \) starts in some state satisfying \(P \), then execution of \(S \) terminates in an abnormal state, satisfying \(Q \), because of a \texttt{break}. If this \texttt{break} is labeled with \texttt{lab}, then \(l = \text{up("lab")}, \) otherwise \(l = \text{bot} \). Continuing in this
manner leads to the following eight notions of abnormal correctness.

<table>
<thead>
<tr>
<th>Correctness Type</th>
<th>Notation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Partial break correctness</td>
<td>({ P } S { \text{break}(Q, I) })</td>
</tr>
<tr>
<td>Partial continue correctness</td>
<td>({ P } S { \text{continue}(Q, I) })</td>
</tr>
<tr>
<td>Partial return correctness</td>
<td>({ P } S { \text{return}(Q) })</td>
</tr>
<tr>
<td>Partial exception correctness</td>
<td>({ P } S { \text{exception}(Q, E) })</td>
</tr>
<tr>
<td>Total break correctness</td>
<td>([P] { \text{break}(Q) })</td>
</tr>
<tr>
<td>Total continue correctness</td>
<td>([P] { \text{continue}(Q) })</td>
</tr>
<tr>
<td>Total return correctness</td>
<td>([P] { \text{return}(Q) })</td>
</tr>
<tr>
<td>Total exception correctness</td>
<td>([P] { \text{exception}(Q, E) })</td>
</tr>
</tbody>
</table>

The formalisation of these correctness notions in type theory is straightforward. As an example, consider the predicate \(\text{PartialReturn?} \) for partial return correctness. This is used to give meaning to the notation \(\{ P \}[S] \{ \text{return}(Q) \} = \text{PartialReturn?}(P, [S], Q) \). This predicate is defined as follows.

- TYPE THEORY -

\[
\text{PartialReturn?}(\text{pre}, \text{stat}, \text{post}) : \text{bool} \overset{\text{def}}{=} \\
\forall x : \text{Self}, \text{pre} \xrightarrow{x} \text{CASE} \text{stat} \xrightarrow{x} \text{OF} \{ \\
\mid \text{hang} \xrightarrow{i} \text{true} \\
\mid \text{norm} \xrightarrow{y} \text{true} \\
\mid \text{abnorm} \xrightarrow{a} \text{CASE} a \xrightarrow{OF} \{ \\
\mid \text{exp} \xrightarrow{e} \text{true} \\
\mid \text{rtn} \xrightarrow{z} \text{post} \xrightarrow{z} \\
\mid \text{break} \xrightarrow{b} \text{true} \\
\mid \text{cont} \xrightarrow{c} \text{true} \} \\
\}
\]

Many straightforward proof rules can be formulated and proven, for these correctness notions. First of all, there are the analogues of the skip axiom, e.g.

- TYPE THEORY -

\(\{ P \} \text{RETURN} \{ \text{return}(P) \} \)

Then there are rules, expressing how these (partial and total) correctness notions behave with “traditional” program constructs e.g. with statement composition. Notice that these rules are always about one correctness notion.
There are rules to move between two correctness notions, from normal to abnormal and vice versa. Here are some examples for the return statement again.

Most of these proof rules are easy and straightforward to formulate, and they provide a good framework to reason about programs in Java. However, proof rules for while loops with abrupt termination are more difficult to formulate.

4.2 Hoare logic of while loops with abrupt termination

Recall that in classical Hoare logic, reasoning about while loops involves the following ingredients: (1) an invariant, i.e. a predicate over the state space which is true initially and after each iteration of the while loop; (2) a condition, which is false after normal termination of the while loop; (3) a body, which is iterated a number of times; (4) (when dealing with total correctness) a variant, i.e. a mapping from the state space to some well-founded set, which strictly decreases every time the body is executed. To see what is needed to extend this to abnormal correctness, first a silly example of an abruptly terminating while loop is discussed.

```java
while (true) { if (i < 10) { i++; } else { break; }}
```

This loop always terminates, and a variant can be constructed to show this, but after termination it cannot be concluded using only traditional Hoare logic rules
that the condition has become false. Thus proof rules have to be formulated in such a way that, in this case, it can be concluded that after termination of the while loop \(i < 10 \) does not hold (anymore). This desire leads to the development of special rules for partial and total abnormal correctness of while loops. Below, the partial and total break correctness rules are described in full detail, the rules for the other abnormalities are basically the same. The Java while statement is formalised in type theory by a function \(\text{WHILE}(l)(C)(S) \), where \(l \) is a formalisation of the possible label of the while statement, \(C \) is a formalisation of the condition and \(S \) of the body. This definition boils down to iterating the so-called iteration body

\[
E2S(C) ; \text{CATCH-CONTINUE}(l)(S)
\]

an appropriate number of times. More information on the definition of \(\text{WHILE} \)
can be found in [HJ00b, Hui00].

Partial break while rule Assume a while loop \(\text{WHILE}(l_1)(C)(S) \), which will be executed in a state satisfying \(P \). The aim is to prove that if the while loop terminates abruptly, because of a break, then the result state satisfies \(Q \)—where \(P \) is the loop invariant and \(Q \) is the condition which holds upon abrupt termination (in the example above: \(i \geq 10 \)). A natural condition for the proof rule is thus that if the body terminates abruptly, because of a break, then \(Q \) should hold. Furthermore, it should be shown that \(P \) is an invariant if the body terminates normally. This leads to the following proof rule.

\[
\begin{align*}
\{ P \} & \ E2S(C) ; \text{CATCH-CONTINUE}(l_1)(S) \{ P \} \\
\{ P \} & \ E2S(C) ; \text{CATCH-CONTINUE}(l_1)(S) \{ \text{break}(Q, l_2) \} \\
\{ P \} & \ \text{WHILE}(l_1)(C)(S) \{ \text{break}(Q, l_2) \} [\text{partial-break}]
\end{align*}
\]

In ordinary language this rule states the following. Suppose: (1) if the iteration body \(E2S(C) ; \text{CATCH-CONTINUE}(l_1)(S) \) is executed in a state satisfying \(P \) and terminates normally, then \(P \) still holds, and (2) if the iteration body is executed in a state satisfying \(P \) and ends in an abnormal state, because of a break, then this state satisfies some property \(Q \). Then, if the while statement is executed in a state satisfying \(P \) and it terminates abruptly, because of a break, then its final state satisfies \(Q \).

Soundness of this rule is easy to see (and to prove): suppose there exists a state satisfying \(P \), in which \(\text{WHILE}(l_1)(C)(S) \) terminates abruptly, because of a break. This means that the iteration body \(E2S(C) ; \text{CATCH-CONTINUE}(l_1)(S) \) terminates normally a number of times. All these times, \(P \) remains true. However, at some stage the iterated statement must terminate abruptly, because of a break, labeled \(l_2 \), and then the resulting state satisfies \(Q \). As this is also the final state of the whole loop, \(\{ P \} \ \text{WHILE}(l_1)(C)(S) \{ \text{break}(Q, l_2) \} \) can be concluded.
Total break while rule Next a proof rule for the total break correctness of the while statement is presented. Suppose there exists a state satisfying $P \land C^4$. Notice that if C would not hold in the initial state, the loop would never terminate abruptly. The aim is to prove that execution of \texttt{WHILE}(l_1)(C)(S) in this state terminates abruptly, because of a break, resulting in a state satisfying Q. Therefore it has to be shown that (1) the iteration body terminates normally only a finite number of times (using a variant), and (2) if the iteration body does not terminate normally, it must be because of a break, resulting in an abnormal state, satisfying Q. This gives:

\begin{align*}
[P \land C] & \text{CATCH-BREAK}(l_2)(E25(C); \text{CATCH-CONTINUE}(l_1)(S)) \quad [\text{true}] \\
\{P \land C \land \text{variant} = n\} & \quad E25(C); \text{CATCH-CONTINUE}(l_1)(S) \{P \land C \land \text{variant} < n\} \\
\{P \land C\} & \quad E25(C); \text{CATCH-CONTINUE}(l_1)(S) \{\text{break}(Q, l_2)\} \\
\hline
[P \land C] & \quad \text{WHILE}(l_1)(C)(S)[\text{break}(Q, l_2)] \quad [\text{total-break}]
\end{align*}

The first condition states that execution of the iteration body followed by a \texttt{CATCH-BREAK}, in a state satisfying $P \land C$, always terminates normally, thus the iteration body itself must terminate either normally, or abruptly because of a break. The second condition expresses that if the iteration body terminates normally, the invariant and condition remain true and some variant decreases. Thus, the iteration body can only terminate normally a finite number of times. Finally, the last condition of this rule requires that when the iteration body terminates abruptly (because of a break), the resulting state satisfies Q. Soundness of this rule is easy to prove.

5 Class Annotations

A behavioural interface specification language for \texttt{JAVA} is proposed in [LBR98], following the tradition of Eiffel and the well-established design by contract approach [Mey97]. This language is called \texttt{JML}, short for \texttt{JAVA} Modeling Language. A programmer can annotate \texttt{JAVA} code with specifications in \texttt{JML}, using the annotation markers \texttt{//@} and \texttt{/*@} ... @/*. For a \texttt{JAVA} compiler these annotations are ordinary comments, so the annotated \texttt{JAVA} code still remains valid. In this paper we shall use \texttt{JML} specifications to express the properties—including the invariant—that we wish to prove about \texttt{JAVA}’s \texttt{Vector} class.

A behavioural interface specification consists of various specification declarations. Here we will only mention invariants, and pre- and post-conditions for methods and constructors. For more information, see [LBR98]. From a client’s...
5.1 Predicates in JML

The predicates used in JML are built from JAVA expressions extended with logical operators, such as equivalence, \leftrightarrow, and implication, \Rightarrow, and with the existential and universal quantifiers, \exists and \forall, respectively. Also some new expression syntax is added: $\mathit{old}(E)$ is used for evaluation of expression E in the “pre-state” of a method (i.e. in the state before method execution is started), result denotes the result of a non-void method. These are only used in post-conditions.

Predicates in JML are required to be side-effect free, and therefore they are not allowed to contain assignments, including the increment and decrement operators, $++$ and $--$. Methods may be invoked in predicates only if they are pure, i.e. terminate normally, and do not modify any field.

Requiring that predicates are side-effect free does not imply that predicates always terminate normally. Consider the predicate $a.length \geq 0$, for a an array. If this predicate is evaluated in a state where a is a null reference, it will terminate abruptly with a NullPointerException. To prevent this kind of abrupt termination, an extra conjunct has to be added to the predicate: $a \neq \text{null} \&\& a.length \geq 0$.

5.2 Behaviour specifications

In JML, behaviour specifications can be written for methods and constructors. Below we concentrate on methods. JML supports three kinds of behaviour specifications, namely normal_behavior, exceptional_behavior and behavior specifications. If a method has a normal_behavior specification, then it should terminate normally, assuming the pre-condition holds. Similarly, an exceptional_behavior prescribes that a method can only terminate abnormally, and a behavior specification that the method can terminate sometimes normally and sometimes abnormally.

Let’s consider a normal_behavior specification for a method m.

```java
- JML

   void m();
   /** normal\_behavior
        @ requires: P;   // P is a predicate
        @ ensures: Q;    // Q is a relation, relating
        @       // the method’s pre-state and post-state.
    **/
```
The basic ingredients of normal behavior are its pre-condition, in JML called the requires clause, and its post-condition, the ensures clause. This normal behavior specification is a total correctness assertion: it says that if P holds in a state x, then method m executed in state x will terminate normally, resulting in state y with Q holding of (x,y). The pre-state x is needed in the post-condition because Q may involve an \(\text{old}(\cdot) \) expression for evaluation in the pre-state.

A behavior specification can consist of the two abovementioned clauses, extended with a signals clause:

```jml
void m();
/**@ behavior
 @ requires: P;
 @ ensures : Q;
 @ signals : (E) R;
 /**
```

The signals clause is the post-condition, in case of abrupt termination of method m. This example specification is a conjunction of two partial correctness Hoare sentences. The first one says that if P holds in a state x and method m executed in state x terminates normally resulting in a state y, then Q should hold of (x,y). The second one says that if P holds in a state x and method m executed in state x terminates abruptly with an exception of type E' in a state y, then R should hold of (x,y), and E' should be a subclass of E.

5.3 Invariants

An invariant is a predicate on states which always holds, as far as an outsider can see: an invariant holds immediately after an object is created and before and after a method is executed, but during a method's execution it need not hold.

To prove that a certain predicate is an invariant, one therefore proves that it holds (1) after object creation, and (2) after (normal or abnormal) termination of a method, assuming that it holds when the method’s execution starts. Note that even when a method terminates abruptly, an invariant should hold. This means that if something goes wrong, a method must throw an exception before any crucial data is corrupted. A consequence is that if the exception is caught at some later stage, the invariant still holds.

An example of a (trivial) JML invariant is:

```jml
class A {
    /**@ invariant: true;
    ...
}
```

JML offers the possibility to write multiple invariants within one class. They can be transformed into a single invariant via conjunctions.
5.4 Proof obligations

As already mentioned, invariants and behaviour specifications give rise to proof obligations. They can be expressed in our extended Hoare logic. This requires the use of so-called logical variables (like z below) in order to allow post-conditions to be relations. For example, the normal behaviour specification for m above, together with an invariant I, yields the following proof obligation for total correctness.

\[
\forall z : \text{OM}. \{ \lambda x : \text{OM}. I(x) \land P(x) \land z = x \} \, m \, \{ \lambda y : \text{OM}. I(y) \land Q(z, y) \}.
\]

Similarly, the behaviour specification yields a conjunction of two partial Hoare sentences:

\[
\begin{align*}
\forall z : \text{OM}. \quad & \{ \lambda x : \text{OM}. I(x) \land P(x) \land z = x \} \, m \, \{ \lambda y : \text{OM}. I(y) \land Q(z, y) \} \\
& \wedge \quad \{ \lambda x : \text{OM}. I(x) \land P(x) \land z = x \} \, m \, \{ \text{exception} \lambda y : \text{OM}. I(y) \land R(z, y), E \}
\end{align*}
\]

In this way the proof rules for the extended Hoare logic can be used to prove JML obligations in PVS.

6 The case study: Java’s Vector class

6.1 Vector in Java

JAVA’s Vector class\(^5\) is part of the java.util package. It can be found in the sources of the JDK distribution. The class as a whole is too big to describe here in detail. It contains three fields, three constructors, and twenty-five methods. Most of the method bodies consist of between five and ten lines of code. The interface of the Vector class, and also its “surrounding” classes in the JAVA library are described. The latter are classes that are used in the Vector class.

Interface of the Vector class The Vector class has three fields, namely an array elementData of type Object in which the elements of the vector are stored, an integer elementCount which holds the number of elements stored in the vector, and an integer capacityIncrement which indicates the amount by which the vector is incremented when its size (elementCount) becomes greater than its capacity (length of elementData). If capacityIncrement is greater than zero,

\(^5\) We use version number 1.38, written by Lee Boynton and Jonathan Payne, under Sun Microsystems copyright.
every time the vector needs to grow the capacity of the vector is incremented by
this amount, otherwise the capacity is doubled. These fields are all protected, so
that they can only be accessed in (a subclass of) Vector.

The Vector class has three constructors, which all are public and thus can
be accessed in any class. The constructor Vector() creates an instance of the
Vector class by allocating the array elementData with an initial capacity of ten
elements, and a capacity increment of zero. The second constructor Vector(int
initialCapacity) takes an integer argument, which is the initial capacity,
and sets the capacity increment to zero. The third constructor Vector(int
initialCapacity, int capacityIncrement) takes two integer arguments, one
for the initial capacity and the other for the capacity increment. After creating
an instance of the Vector class the field elementCount is implicitly set to zero.

Space restrictions prevent us from describing all methods of the Vector
class in detail. Therefore, the reader is referred to the standard documenta-
tion [CLK98] for more information, and only the interface of the Vector class
is listed here, see Figure 1. The names and types give some idea of what these
methods are supposed to do.

Surrounding classes The Vector class implicitly extends the Object class. All
fields and methods declared in the Object class are thus inherited. Of particular
importance in the Vector class are the methods equals, clone, and toString
from Object. These may be overridden in particular instantiations of the data
in a vector (and the new versions are then selected via the “dynamic method
look-up” or “late binding” mechanism). The Vector class also implements two
(empty) JAVA interfaces, namely Cloneable and Serializable.

The following JAVA classes are used in the Vector class, in one way or an-
other: CloneNotSupportedException, InternalError, Object, StringBuffer,
StringBuilder, System, ArrayIndexOutOfBoundsException (all from the java.lang
package), Enumeration, NoSuchElementException (both from the java.util
package), and Serializable (from the java.io package). These additional
classes are relevant for the verification, since they also have to be translated
into PVS. They are intertwined via mutual recursion.

6.2 Translation of Vector into PVS

The LOOP tool translates JAVA classes into logical theories for PVS, following the
semantics as described before. In this section some aspects of the actual trans-
lation of the Vector class are briefly discussed. For this project, it is not needed
to translate the whole JAVA library. Only those classes that are actually used
in the Vector class—called the “surrounding” classes—have to be translated. A
further reduction has been applied: from these surrounding classes, only those
methods that are actually needed have been translated. Thus, 10K of JAVA code
```java
public class Vector implements Cloneable, java.io.Serializable {
    // fields
    protected Object elementData[];
    protected int elementCount;
    protected int capacityIncrement;

    // constructors
    public Vector(int initialCapacity, int capacityIncrement);
    public Vector(int initialCapacity);
    public Vector();

    // methods
    public final synchronized void copyInto(Object[] anArray);
    public final synchronized void trimToSize();
    public final synchronized void ensureCapacity(int minCapacity);
    private void ensureCapacityHelper(int minCapacity);
    public final synchronized void setSize(int newSize);
    public final int capacity();
    public final int size();
    public final boolean isEmpty();
    public final synchronized Enumeration elements();
    public final boolean contains(Object elem);
    public final int index0f(Object elem);
    public final synchronized int index0f(Object elem, int index);
    public final int lastIndexOf(Object elem);
    public final synchronized Object elementAt(int index);
    public final synchronized Object firstElement();
    public final synchronized Object lastElement();
    public final synchronized void setElementAt(Object obj, int index);
    public final synchronized void removeElementAt(int index);
    public final synchronized void insertElementAt(Object obj, int index);
    public final synchronized void addElement(Object obj);
    public final synchronized boolean removeElement(Object obj);
    public final synchronized void removeAllElements();
    public synchronized Object clone();
    public final synchronized String toString();
}
```

Figure1. The interface of Java's Vector class
remains, excluding documentation. The LOOP tool turns it into about 500K of PVS code.

JAVA's Object and System classes have several native methods. A native method lets a programmer use some already existing (non-JAVA) code, by invoking it from within JAVA. In the Vector class two native methods are used, namely clone from Object, and arraycopy from System. Our own PVS code has been inserted as translation of the method bodies of these native methods. An alternative approach would be to use requirements for these methods, like for toString and equals, see the next section.

The current version of our LOOP tool handles practically all of "sequential" JAVA, i.e. of JAVA without threads. The possible use of vectors in a concurrent scenario is not relevant for this invariant verification. The synchronized keyword in the method declarations is therefore simply ignored.

There is one point where we have cheated a bit in the Vector translation. Often in the Vector class an exception is thrown with a message, like in the following code fragment.

```java
public final synchronized Object elementAt(int index) {
    if (index >= elementCount) {
        throw new ArrayIndexOutOfBoundsException
            (index + " >= " + elementCount);
    }
    ...
}
```

Implicitly in JAVA, the integers index and elementCount are converted to strings in the exception message. Such conversion is not available in PVS. Of course it can be defined, but that is cumbersome and totally irrelevant for the invariant. Therefore, we have eliminated such exception messages in throw clauses, thereby avoiding the conversion issue altogether. This affects the output, but not the invariant.

6.3 The class invariant

The first step is to formulate the desired class invariant property. Finding an appropriate, provable, invariant is in general a non-trivial exercise. Usually one starts with some desired property, but to be able to prove that this is an invariant, it has to be strengthened in an appropriate manner. As suggested by the informal documentation in the Vector class, a class invariant should be:

This may seem a formidable size multiplication, but it does not present problems in verification. Reductions in size may still be possible by making more efficient use of parametrisation in PVS code generation.

This is in analogy with "induction loading", where a statement that one wishes to prove by induction must be strengthened in order to get the induction going.
the number of elements in the array of a vector object never exceeds its capacity.

This property alone is not a class invariant. Strengthening is necessary to obtain an actual invariant. This invariant has been obtained “by hand”, and not via some form of automatic invariant generation. Precisely annotating all the methods in Vector with JML specifications helps in finding the appropriate strengthening, because it brings forward the pre-conditions for normal and abrupt terminations. The strengthened version of the above property can be extracted from these pre-conditions for normal termination. During verification it turned out that the resulting property had to be strengthened only once more (in a very subtle manner). In JML, the main ingredients of the invariant are:

- JML

```java
/*@ public invariant:
    0  elementData != null  &&
    0  elementCount <= elementData.length  &&  // main point
    0  elementCount >= 0  &&
    0  elementData != this  &&
    0  elementData instanceof Object[]  &&
    0  (forall (int i) 0 <= i && i < elementData.length
    0  ==> (elementData[i] == null ||
    0  elementData[i] instanceof Object));
*/
```

One more requirement is needed that is directly related to the particular memory model that we use (see Subsection 3.2), and is not expressible in JML. It says that `elementData` refers to an “allocated” cell in the heap memory, whose position is below the heap top.

The resulting combined property on OM will be called VectorIntegrity? . Notice that it says nothing about the value of the `capacityIncrement` field. One would expect it to be positive, but this is not needed, since the only time `capacityIncrement` is actually used (in the body of the method `ensureCapacityHelper`), it is first tested whether its value is greater than zero. The informal documentation for this field states that “if the capacity increment is 0, the capacity of the vector is doubled each time it needs to grow”, but a more precise statement would be “if the capacity increment is 0 or less, ...”.

6.4 Verification of the class invariant of Vector

After translation of the `Vector` class (and all surrounding classes), the generated theories are loaded into PVS and the verification effort starts. This means that we have to show that the predicate `VectorIntegrity?` is indeed an invariant. To this end, it has to be shown that (1) `VectorIntegrity?` is established by the constructors and (2) that `VectorIntegrity?` is preserved by all public methods of class `Vector`, see Subsection 5.3. Notice that it is essential that the fields of the `Vector` class

27
are protected, so that they cannot be accessed directly from the outside, and the VectorIntegrity? predicate cannot be corrupted in this manner.

Point (1) is relatively easy. Point (2) is handled by assuming an arbitrary state \(x \), satisfying VectorIntegrity?: for each method \(m \), say with arguments \(\tilde{a} \), the cases where \(m(\tilde{a})(x) \) terminates normally, and where it throws an exception are distinguished. This is done via JML behaviour specifications. In all the cases, it has to be shown that the predicate VectorIntegrity? still holds in the resulting state, see Subsection 5.4.

Before going into some proof details, we illustrate that detecting all possible exceptions is a non-trivial, but useful exercise. Therefore we consider the following fragment from the Vector class, which describes the method copyInto together with its informal documentation.

```
- JAVA

/**
 * Copies the components of this vector into the specified
 * array. The array must be big enough to hold all the
 * objects in this vector.
 * @param anArray the array into which the components
 * get copied.
 * @since JDK1.0
 */
public final synchronized void copyInto(Object anArray[]) {
    int i = elementCount;
    while (i-- > 0) {
        anArray[i] = elementData[i];
    }
}
```

This method throws an exception in each of the following cases.

- The field elementCount is greater than zero, and the argument array anArray is a null reference;
- elementCount is greater than zero, anArray is a non-null reference, and its length is less than elementCount;
- elementCount is greater than zero, anArray is a non-null reference, its length is at least elementCount, and there is an index \(i \) below elementCount such that the (run-time) class of elementData[i] is not assignment compatible with the (run-time) class of anArray.

The first of these three cases produces a NullPointerException, the second one an ArrayIndexOutOfBoundsException, the third one an ArrayStoreException\(^*\). This last case is subtle, and not documented at all; it can easily be overlooked.

\(^*\) See the explanation in [GJS96], Subsection 15.25.1, second paragraph on page 371. This exception occurs for example during execution of the following (compilable, but
But in all three cases, no data in Vector is corrupted, and the predicate Vector-integrity? still holds in the resulting (abnormal) state.

Below the verification in PVs of several methods is discussed in some detail, namely of setElementAt, toString and index0f. These methods are exemplaric: the method setElementAt is a typical example of a method for which the invariant is verified automatically. The verification of toString shows how we deal with late binding and index0f demonstrates the use of the extended Hoare logic for JAVA. The verifications make extensive use of automatic rewriting to increase the level of automation. For instance, the low-level memory manipulations (involving the get- and put-operations from Subsection 3.2) require no user interaction at all. Automatic rewriting is also very useful in verifications using Hoare logic, because it simplifies the application of the rules.

Verification of setElementAt

The first method that is discussed in more detail is setElementAt. This method takes a parameter obj belonging to class Object and an integer index, and replaces the element at position index in the vector with obj. A possible JML specification for this method looks as follows.

```java
/*
   0 normal_behavior
   0 requires: index >= 0 && index < elementCount;
   0 ensures:
   0     (forall (int i) 0 <= i && i < elementCount ==> 0
   0       (i == index && elementData[i] == obj) ||
   0       (i != index && elementData[i] ==
   0           old(elementData[i]))));
   0 also
   0 exceptional_behavior
   0 requires: index < 0 || index >= elementCount;
   0 signals: (ArrayIndexOutOfBoundsException)
   0     (forall (int i) 0 <= i && i < elementCount ==> 0
   0       elementData[i] == old(elementData[i]));
   */
public final synchronized void setElementAt(Object obj, int index) {
    if (index >= elementCount) {
        throw new ArrayIndexOutOfBoundsException(index + " >= " + elementCount);
    }
```

(silly) code fragment.
```
Vector v = new Vector();
v.addElement(new Object());
v.copyInto(new Integer[i]);
```
elementData[index] = obj;
}

Notice that we have given a “functional” specification by describing post-conditions for this method. These post-conditions can be strengthened further, e.g. by including that the fields elementCount and capacityIncrement are not changed. But for our invariant verification, these post-conditions are usually not relevant, and so we shall simply write true in the ensures clause, giving so-called lightweight specifications (like in [PBJ00]). In contrast, the pre-conditions are highly relevant.

Ignoring the post-conditions, the proof obligations (as Hoare sentences, see Subsection 5.4) for this method are:

- **TYPE THEORY**

\[\forall \text{obj} : \text{RefType}. \forall \text{index} : \text{int}.\]
\[\quad [\lambda x : \text{OM}. \text{VectorIntegrity?}(x) \land \text{index} \geq 0 \land \text{index} < \text{elementCount}(x)]\]
\[\quad \text{setElementAt}(\text{obj}, \text{index})\]
\[\quad \text{VectorIntegrity?}\]

\[\forall \text{obj} : \text{RefType}. \forall \text{index} : \text{int}.\]
\[\quad [\lambda x : \text{OM}. \text{VectorIntegrity?}(x) \land \text{index} < 0 \lor \text{index} \geq \text{elementCount}(x)]\]
\[\quad \text{setElementAt}(\text{obj}, \text{index})\]
\[\quad \text{exception}(ext{VectorIntegrity?}, “\text{ArrayIndexOutOfBoundsException”})]\n
The proofs of these properties proceed mainly by automatic rewriting in PVS. For the first proof obligation, regarding normal termination, we do explicitly have to make the case distinction whether the argument obj is a reference not.

Verification of toString

Unfortunately, the correctness of the methods in Vector is not always as easy to prove as for the above example setElementAt. Several methods in the Vector class invoke other methods, or contain while or for loops. Above, we already have seen copyInto as an example of such a method. We now concentrate on the method invocations in Vector’s toString method.

Recall that each class in Java inherits the toString method from the root class Object. In a specific class this method is usually overridden to give a suitable string representation for objects of that class. For a vector object the toString method in the Vector class yields a string representation of the form \[s_0, \ldots, s_{n-1}\], where \(n\) is the vector’s size elementCount, and \(s_i\) is the string obtained by applying the toString method to the \(i\)th element in the vector’s array.

The particular implementations that get executed as a result of these toString invocations are determined by the actual (run-time) types of the elements in
the array (via the late binding mechanism). Thus they cannot be determined statically. This is a key issue in object-oriented verification.

The annotated JAVA code of **toString** in Vector looks as follows:

```java
/*@  
  @normal_behavior
  @requires: (\forall i \in [0, elementCount - 1) \rightarrow \text{elementData}[i] \neq \text{null});
  @ensures: true;
  @also
  @exceptional_behavior
  @requires: elementCount > 0 \&\&
  @ensures: (\forall i \in [0, elementCount - 1) \rightarrow \text{elementData}[i] \neq \text{null});
  @signals: (\text{NullPointerException}) true;
*/
public final synchronized String toString() {
    int max = size() - 1;
    StringBuffer buf = new StringBuffer();
    Enumeration e = elements();
    buf.append("[");
    for (int i = 0; i < max; i++) {
        String s = e.nextElement().toString();
        buf.append(s);
        if (i < max) {
            buf.append(",");
        }
    }
    buf.append("]");
    return buf.toString();
}
```

It reveals an undocumented possible source of abrupt termination: when one of the elements of a vector’s array is a null reference, invoking **toString** on it yields a **NullPointerException**.

The “behavioural subtyping” approach to late binding that we take here, following [LW94], involves writing down requirements on the method **toString** in **Object** and using these requirements in reasoning. In our verification, we thus assume that the definition of **toString** that is actually used at run-time satisfies these requirements, i.e. that it is a behavioural subtype of **toString** in **Object**. Thus, we prove that **toString** in **Vector** works correctly, assuming that we have a reasonable implementation of **toString**, without unexpected behaviour.

In ordinary language, the requirements on **toString** say that

- it terminates normally, and has no side-effects;
it returns a non-null reference giving a cell position above the heap top in
the pre-state, and below the heap top in the post-state (after execution of
toString);

this reference has run-time type String, and points to a memory cell with
integer fields offset and count (from class String), which are non-negative,
and an array field value (also from String), which

• is a non-null reference with a cell position which is above the heap top
 in the pre-state, below the heap top in the post-state, and different from
 the previously mentioned String reference;

• has run-time elementtype char and a length exceeding the sum of offset
 and count.

The verification of the toString method from Vector is then not difficult, but
very laborious. This is because it uses (indirectly via append from StringBuffer)
several different methods from other classes, like extendCapacity from String-
Buffer, and getChars, valueOf from String. For all these methods appro-
priate “modifies” results—describing which cells and positions therein can be
modified—are needed to prove that the methods do not affect the VectorIn-
tegrity? predicate.

Verification of index0f

Next we consider the verification of a for loop, namely in the method index0f.
It makes extensive use of the Hoare logic rules as described in Section 4.

First consider the specification and implementation of index0f.

```java
/**
  @normal_behavior
  @ requires: index >= elementCount ||
  @ (elem != null && index >= 0);
  @ ensures: true;
  @ also
  @ exceptional_behavior
  @ requires: elem == null && index < elementCount;
  @ signals: (NullPointerException) true;
  @ also
  @ exceptional_behavior
  @ requires: elem != null && index < 0;
  @ signals: (ArrayIndexOutOfBoundsException) true;
  @*/
public final synchronized int index0f(Object elem, int index) {
    for (int i = index ; i < elementCount ; i++) {
        if (elem.equals(elementData[i])) {
            return i;
        }
    }
}```
return -1;
}

The method `indexOf` takes a parameter `elem` belonging to class `Object` and an integer parameter `index`, and checks whether `elem` occurs in the segment of the vector between `index` and `elementCount`. If so, the position at which it occurs is returned, otherwise -1 is returned.

Notice that the `equals` method in the condition of the `if` statement is invoked on the parameter `elem`. Since we cannot know `elem`'s run-time type, we also have to use the behavioural subtype approach here, and assume that certain requirements hold for `equals`, like for `toString` in the previous example. We shall not elaborate on this point, but concentrate on the `for` loop.

To show that `indexOf` maintains `VectorIntegrity?`, several cases are distinguished. If the parameter `elem` is non-null and `index` is non-negative, the Hoare logic rules for abruptly terminating loops, as described in Section 4, are needed for the verification. A distinction is made between the case that `elem` is found, and that it is not found (because in the first case the `for` loop terminates abruptly, because of a return, and in the second case it terminates normally, thus different rules have to be used). In both cases it is shown that the method preserves `VectorIntegrity?`. To this end, the following rule for total return correctness of a `for` loop, is used.

--- TYPE THEORY ---

\[
\begin{align*}
[P \land C] & \quad \text{CATCH-STAT-RETURN}(E2S(C) ; \text{CATCH-CONTINUE}(l)(S) ; U) \ [\text{true}] \\
{P \land C \land \text{variant} = n} & \quad E2S(C) ; \text{CATCH-CONTINUE}(l)(S) ; U \ \{P \land C \land \text{variant} < n\} \\
{P \land C} & \quad E2S(C) ; \text{CATCH-CONTINUE}(l)(S) ; U \ \{\text{return}(Q)\} \\
\end{align*}
\]

\[
[P \land C] \quad \text{FOR}(l)(C)(U)(S) \ [\text{return}(Q)] \quad \text{[total-return]}
\]

Notice the similarity with the rule for total break correctness of the `while` statement, as described in Subsection 4.2. The main difference is that the `for` loop has a different iteration body, namely `E2S(C) ; \text{CATCH-CONTINUE}(l)(S) ; U`, where `U` is the formalisation of the update statement of the `for` loop. Recall that for `while` loops the iteration body is `E2S(C) ; \text{CATCH-CONTINUE}(l)(S)`. 

33
This rule is instantiated as follows.

\[
\begin{align*}
I & \quad \text{bot} \\
C & \quad [i < \text{elementCount}] \\
U & \quad [i++] \\
S & \quad [\text{if (elem.equals(elementData[i])) \{return i;\}}] \\
\text{variant} & \quad [\text{elementCount - i}] \\
P & \quad \lambda x: \text{OM. VectorIterator?}(x) \land \\
& \quad i \geq \text{index} \land \\
& \quad i \leq \text{elementCount} \land \\
& \quad (\exists j. \text{index} \leq j < \text{elementCount} \land j \geq i \land \\
& \quad \text{elem.equals(elementData[j])}) \land \\
& \quad (\forall k. \text{index} \leq k < i \implies \\
& \quad \neg\text{elem.equals(elementData[k])}) \\
Q & \quad \text{VectorIterator?}
\end{align*}
\]

Notice that the loop invariant \((P)\) implies that the condition \(i < \text{elementCount}\) remains true, because if \(i\) would be equal to \(\text{elementCount}\), the last two clauses of the invariant would be contradicting.

In the case that \(\text{elem}\) is not found in the vector, the rule for total (normal) correctness of the \texttt{for} loop is used, with a similar instantiation, to show that in that case the loop always terminates normally (returning -1).

In the case that \(\text{index} \geq \text{elementCount}\), or in the case of abrupt termination (i.e. \(\text{index} < 0\) or \(\text{elem}\) is a null pointer), it can be shown that the condition of the \texttt{for}-loop immediately evaluates to false or throws an exception, respectively. Since no changes are made to the fields of \texttt{Vector}, the property \texttt{VectorIterator?} is preserved.

Actually we have proved a bit more about the \texttt{indexOf} method than stated here. More is needed because the method is used in another \texttt{Vector} method, namely in \texttt{contains}. With these stronger results, the \texttt{contains} method can be verified by automatic rewriting in \texttt{PVS}. In this case late binding cannot occur because the \texttt{indexOf} method is declared as \texttt{final}, so that it cannot be overridden.

7 Conclusions and experiences

We have formally proved with \texttt{PVS} a non-trivial safety property for the \texttt{Vector} class from \texttt{JAVA’s} standard library. The verification is based on careful (light-weight) specifications of all \texttt{Vector} methods, using the experimental behavioural interface specification language \texttt{JML}. It makes many non-trivial and poorly documented (normal and abnormal) termination conditions explicit, see also [Vec].

The whole invariant verification presented here was a lot of work. In total, it involved 13,193 proof commands (atomic interactions) in \texttt{PVS}. Some methods
required only a few proof commands—and could be verified entirely by automatic rewriting—but others required more interaction. The toString method was most labour intensive, requiring 4,922 proof commands, about one third of the total number. Quantifying the time it took is more difficult, because much of the work was done for the first time in such a large project, and could be done faster given more experience. But 3–4 months full-time work (for a single, experienced person) seems a reasonable estimate.

Recall from Subsection 3.1 that our semantics has many output options for statements and expressions. All these possibilities have to be considered in each method invocation. A proof tool is thus indispensable, because it relentlessly keeps track of all options: it happened several times that half-way a proof in PVS a subtle omission in a pre-condition became apparent. Of course, using a proof tool also gives considerable overhead, especially in cases which are obvious to humans. But still, in our experience, it is rewarding to use a proof tool also in such cases, because it is so easy to overlook a detail and make a small mistake. It is in general important to achieve a high level of automation via appropriate rewrite lemmas (as in our semantics) and powerful decision procedures (as incorporated in PVS). Still, substantial performance improvements of proof tools (and the underlying hardware) are highly desirable.

In the end one should ask: is it worthwhile to do these kind of formal specifi-
cations and verifications, and do they scale up? We think that writing (lightweight) specifications (even without formal verifications) is certainly worthwhile, because it can make many implicit assumptions explicit, at relatively little cost. Such specifications facilitate the use of the code and increase the reliability. Extended static checking of such specifications is becoming possible [ESC]. Actual verifi-
cation of the specifications is far more labour intensive. It may be worthwhile to do this for library classes (like Vector) which are intensively used, but not for classes which are specific for a particular application. However, the entire JAVA class library has become so large that it would be an unrealistically large investment to fully verify it in the way that we have done for one single class. But it may still be worthwhile to do this for certain central and crucial parts of the library.

On the basis of the experiences in this project we have chosen to con-
centrate next on the JAVA CARD [Jav99] class library [PBJ00]. It is much smaller (about 45 classes), and is used in smaller applications (namely JAVA CARD applets, which are small programs for smart cards with modest resources). There, both specification and verification are more easily justified, not only because of the smaller investment due to smaller size, but also because there is a great need for reliability in this area, since smart cards are being used in large numbers in

often security sensitive environments.

References


35


