
A Coalgebraic Decision Procedure for NetKAT

Nate Foster
Cornell University ∗

Dexter Kozen
Cornell University∗

Matthew Milano
Cornell University∗

Alexandra Silva
Radboud University Nijmegen †

Laure Thompson
Cornell University∗

Abstract
Program equivalence is a fundamental problem that has practical
applications across a variety of areas of computing including com-
pilation, optimization, software synthesis, formal verification, and
many others. Equivalence is undecidable in general, but in certain
settings it is possible to develop domain-specific languages that are
expressive enough to be practical and yet sufficiently restricted so
that equivalence remains decidable.

In previous work we introduced NetKAT, a domain-specific
language for specifying and verifying network packet-processing
functions. NetKAT provides familiar constructs such as tests, as-
signments, union, sequential composition, and iteration as well as
custom primitives for modifying packet headers and encoding net-
work topologies. Semantically, NetKAT is based on Kleene algebra
with tests (KAT) and comes equipped with a sound and complete
equational theory. Although NetKAT equivalence is decidable, the
best known algorithm is hardly practical—it uses Savitch’s theorem
to determinize a PSPACE algorithm and requires quadratic space.

This paper presents a new algorithm for deciding NetKAT
equivalence. This algorithm is based on finding bisimulations be-
tween finite automata constructed from NetKAT programs. We in-
vestigate the coalgebraic theory of NetKAT, generalize the notion
of Brzozowski derivatives to NetKAT, develop efficient representa-
tions of NetKAT automata in terms of spines and sparse matrices,
and discuss the highlights of our prototype implementation.

1. Introduction
Determining whether a given pair of programs is equivalent is a
fundamental question that arises in many areas of computing. For
instance, to verify that a complicated program satisfies a specifica-
tion one can often encode the specification as a simple program and
check that the implementation is equivalent to the encoded speci-
fication. To establish the correctness of a compiler, one can check
that the output produced by the compiler is semantically equiva-
lent to the program provided as input. Equivalence is undecidable
in general, but in certain settings it is possible to develop domain-
specific languages that are expressive enough to be practical and
yet sufficiently restricted so that equivalence remains decidable.

∗Department of Computer Science, Cornell University, Ithaca, NY, USA
† Institute for Computing and Information Sciences, Radboud Univer-
sity Nijmegen, 6525 AJ Nijmegen, The Netherlands. Also affiliated to
Centrum Wiskunde & Informatica (Amsterdam, The Netherlands) and
HASLab/INESC TEC, Universidade do Minho (Braga, Portugal). Work
performed at Cornell University.

Networks have received a lot of attention in recent years as a
potential target for domain-specific language design, due to the re-
cent emergence of software-defined networking (SDN) as an open
and flexible platform for network programming. SDN is now be-
ing deployed in production enterprise, data center, and wide-area
networks [15, 18, 19]. Meanwhile, researchers in the program-
ming languages community have developed a number of SDN lan-
guages including Frenetic, Pyretic, Nettle, Maple, PANE, and oth-
ers [11–13, 25, 26, 35, 36]. The details of these languages differ, but
each aims to provide high-level abstractions that simplify the task
of specifying packet-processing programs. To help test and debug
such programs, verification tools such as HSA, VeriFlow, FlowLog,
and VeriCon are also being actively developed [2, 16, 17, 27].
Given the significant interest in applications, languages, and ver-
ification tools for SDN, we believe that having mechanisms for de-
ciding when a given pair of programs are equivalent would provide
substantial value.

NetKAT Language. In previous work we introduced NetKAT,
a domain-specific language for specifying and verifying packet-
processing functions in a network [1]. NetKAT is based on Kleene
algebra with tests (KAT), a mathematical framework that com-
bines Kleene algebra (KA), the algebra of regular expressions, with
Boolean algebra. The language provides familiar constructs such
as tests, assignments, union, sequential composition, and iteration
as well as special-purpose primitives for modifying packet headers
and encoding network topologies.

The original NetKAT design defined a rigorous semantic and
axiomatic basis for network programming including: (i) a denota-
tional semantics consisting of a model based on packet-processing
functions as well as an equivalent language model; (ii) a sound and
complete quasi-equational axiomatization; and (iii) a proof that the
equational theory of NetKAT is PSPACE-complete. In addition,
we developed practical applications of the equational theory and
showed how it could be used to address issues such as reasoning
about reachability, acyclicity, isolation, and compiler correctness.

Unfortunately the algorithm for deciding equivalence proposed
in our initial work on NetKAT is hardly practical—it uses Savitch’s
theorem to convert a nondeterministic PSPACE algorithm to deter-
ministic PSPACE. Although it suffices to establish the complexity
bound, the algorithm is undesirable as a basis for implementation
because it is likely exponential time in both the best and worst
case, and it involves a quadratic blowup in space. However, re-
cent experiences implementing KA and KAT [4, 5, 28] suggest that
the worst-case complexity may not be an impediment in common
cases, and that the system may be amenable to automation provided
that the problem is approached correctly.

1 2014/3/26

Coalgebraic Techniques. This paper brings coalgebraic tech-
niques to bear on the problem of deciding NetKAT equivalence [4,
5, 28, 30, 32]. Coalgebra is a framework for modeling and reason-
ing about state-based systems that provides general techniques for
formalizing and reasoning about correctness. It allows a uniform
and systematic development of classical constructions which have
previously been derived in an ad hoc fashion. Working in terms of
coalgebra also facilitates exploiting dualities to obtain canonical
constructions of an appropriate logic or algebra from a combi-
natorial or coalgebraic state-based model (or vice versa). These
constructions are often accompanied by substantial simplifications
or generalizations compared to ad hoc techniques.

A key aspect of the coalgebraic approach is that the canonical
notion of equivalence is derived from the type of the system. Con-
sider deterministic finite automata (DFA), which consist of a set of
states S, together with a function o : S → 2 that determines final
states, and a state transition function t : S → SΣ. One can think
of a DFA as the pair (S, 〈o, t〉 : S → 2 × SΣ), which is a coal-
gebra for the functor F (S) = 2 × SΣ. Moreover, this type is rich
enough to derive canonical notions of behavior and equivalence.
In the case of the automaton type these are formal languages and
language equivalence respectively.

More generally, in coalgebraic models the canonical universe
of behaviors has a coalgebraic structure for the same type. For
example, on sets of strings this structure is given by the Brzozowski
derivative consisting of continuation and observation maps

D : 2Σ∗
→ (2Σ∗

)A E : 2Σ∗
→ 2

Da(A) = {x | a · x ∈ A} E(A) =

{
1, if ε ∈ A,
0, if ε 6∈ A,

where ε is the null string [7]. The Brzozowski derivative can also be
defined syntactically on regular expressions by structural induction.

Importantly, this structure has the property of being final for the
automaton type—that is, any other coalgebra of the same type has
a unique mapping into it. In the case of an automaton, this map
assigns each state to the language it accepts. The interpretation
of a regular expression as a regular set of strings is the unique
coalgebra morphism from the coalgebra of regular expressions to
the coalgebra of sets of strings. The image of an expression e and
its derivatives under this map is the minimal automaton for the set
represented by e. Deciding equivalence of regular expressions is
tantamount to deciding equivalence of the coalgebras of derivatives
of the two expressions. The situation for KAT is similar, except that
the strings over a finite set of characters Σ are replaced by guarded
strings over primitive actions Σ and tests T [22]. The coalgebraic
approach has been successfully used to decide equivalence for KA
and KAT in previous work by Pous and others [4, 5, 28].

The essential step in all of these results is to identify a suitable
language model that characterizes the equational theory of the
system at hand. A language model is a family of structures in
which expressions are interpreted as sets of elements of a particular
monoid, where the language models form the free models of the
system itself. An additional benefit of having a language model
is that it is typically a key component of the coalgebraic theory,
forming the final coalgebra for an appropriate signature defined by
a specialized version of the Brzozowski derivative.

In the cases of KA and KAT, the language models are the regular
sets of strings over Σ and the regular sets of guarded strings over Σ
and T , respectively. The situation is the same with NetKAT: in our
earlier work, we identified a language model that is isomorphic to
the standard semantics based on packet-processing functions [1].
However, as NetKAT incorporates a number of extra equational
premises as part of the theory, the appropriate language model is

correspondingly more involved, consisting of the regular sets of
strings of a certain reduced form.

Contributions. This paper presents a new technique for deciding
the equivalence of NetKAT programs, following the coalgebraic
approach just described. Its main contributions are as follows:

• We formalize the coalgebraic theory of NetKAT, including a
semantic version presented in terms of regular sets of a certain
restricted class of strings and a syntactic version in terms of
NetKAT expressions.

• We present a surprising characterization of Brzozowski deriva-
tives in terms of sparse matrices over spines calculated induc-
tively from NetKAT expressions.

• We use these insights to develop an efficient implementation
of our algorithm in OCaml that often avoids the worst case
PSPACE time and quadratic space of earlier algorithms.

Overall, these results provide a solid theoretical basis and initial
steps toward a practical implementation that will make it possible
to decide equivalence in a wide variety of applications.

Outline. The rest of this paper is organized as follows. §2 reviews
the definitions of KAT and NetKAT from [1] and gives an overview
of the main technical tools used in the rest of this paper, including
the Brzozowski derivative. §3 introduces NetKAT coalgebras and
automata and establishes a number of technical lemmas that are
needed for our main results. This section includes a definition of a
variant of the Brzozowski derivative for NetKAT with syntactic and
semantic versions, and also describes our matrix representation.
§4 proves our main theoretical result on which the correctness of
our algorithm is based: a version of Kleene’s theorem for NetKAT,
which states that NetKAT expressions and NetKAT automata are
equally expressive. §5 presents highlights of our implementation of
the decision algorithm and explains how the coalgebraic approach
gives improved performance over the naive algorithm of [1]. §6 dis-
cusses related work. Finally, §7 presents conclusions and directions
for future work.

2. Overview
This section briefly reviews the syntax and semantics of NetKAT [1],
as well as classic work on derivatives of regular expressions [7], to
set the stage for the results described in subsequent sections.

NetKAT Language. NetKAT is a framework for programming
and reasoning about networks [1]. When used for programming,
NetKAT can be understood in terms of a denotational semantics
that models the meaning of each program as a function from packet
histories to sets of packet histories (where a packet history is a non-
empty sequence of packets). When used for verification, NetKAT
can be understood in terms of a set of first-order axioms that cap-
ture equivalences between programs. The language provides con-
structs for encoding network topologies, primitives for filtering and
modifying packets, and a rich collection of composition operators
that combine programs using the union, sequential composition,
and iteration operators. The NetKAT compiler and run-time sys-
tem translates programs written in this language into low-level in-
structions that can be installed on switches that process packets ef-
ficiently in hardware.

More formally, we model a packet as a record with a fixed set of
fields f1, . . . , fk, each mapping to constants that represent various
types of packet data such as Ethernet addresses, VLAN tags, IP
addresses, protocol types, TCP ports, etc. To support reasoning
about NetKAT programs, we model a packet history as a non-empty
sequence of packets. Intuitively, a history captures the trajectory of
a single packet as it traverses the physical topology.

2 2014/3/26

M N1
2

3

1 2

1
2

3S1

S2

S3S1

S2

S3

Figure 1. Example topology.

Syntax
Fields f ::= f1 | · · · | fk

Packets pk ::= {f1 = v1, · · · , fk = vk}
Histories h ::= pk ::〈〉 | pk ::h

Predicates a, b ::= 1 Identity
| 0 Drop
| f = n Test
| a+ b Disjunction
| a · b Conjunction
| a Negation

Policies p, q ::= a Filter
| f ← n Modification
| p+ q Union
| p · q Sequential composition
| p∗ Kleene star
| dup Duplication

Semantics

JpK ∈ H→ 2H

J1K h , {h}
J0K h , ∅

Jf = nK (pk ::h) ,

{
{pk ::h} if pk .f = n
∅ otherwise

JaK h , {h} \ (JaK h)

Jf ← nK (pk ::h) , {pk [f := n]::h}
Jp+ qK h , JpK h ∪ JqK h

Jp · qK h , (JpK • JqK) h
Jp∗K h ,

⋃
i∈N F

i h

where F 0 h , {h} and F i+1 h , (JpK • F i) h
JdupK (pk ::h) , {pk ::(pk ::h)}

Figure 2. NetKAT: syntax and semantics.

At the level of syntax, NetKAT is divided into two categories:
predicates a, b, . . . and policies p, q, Predicates include the con-
stants true (1) and false (0) and tests (f = n), and Boolean nega-
tion (!), conjunction (·), and disjunction (+), while policies include
predicates, primitive assignments f ← n, and duplication dup, and
are closed under union (+), sequential composition (·), and itera-
tion (∗). Semantically, every NetKAT expression p denotes a func-
tion JpK : H → 2H that takes a packet history h and generates
a (possibly empty) set of histories {h1, . . . , hn}. Generating the
empty set corresponds to dropping the packet, a singleton corre-
sponds to modifying or forwarding it, and larger sets correspond to
duplicating the packet and broadcasting it to several locations. The
syntax and semantics of NetKAT is defined formally in Figure 2.

Example. As an example to illustrate the key features of NetKAT,
consider the topology shown in Figure 1. It consists of three
switches (S1, S2, and S3) arranged in a triangle that provide con-

nectivity between two other networks (M and N). The annotation
on the endpoint of each link indicates the physical port on the ad-
jacent switch it is connected to.

We can encode the topology as a simple NetKAT program:

t , (sw = S1 · pt = 2 · sw← S2 · pt← 1) +
(sw = S1 · pt = 3 · sw← S3 · pt← 1) +
(sw = S2 · pt = 1 · sw← S1 · pt← 2) +
(sw = S2 · pt = 2 · sw← S3 · pt← 2) +
(sw = S3 · pt = 1 · sw← S1 · pt← 3) +
(sw = S3 · pt = 2 · sw← S2 · pt← 2)

The top-level program is the union (+) of several smaller programs,
one for each link in the topology. The link programs are sequential
compositions (·) of filters and modifications where the filters dis-
card packets not located at the link ingress (as identified by a switch
and port), and the modifications relocate packets to link egress.

We can also describe the packet-processing behavior of the
switches themselves in NetKAT program. For example, the follow-
ing program forwards traffic from M to N:

p , (sw = S1 · pt = 1;
(typ = HTTP · pt← 2 + typ = HTTP · pt← 3) +

(sw = S2 · pt = 1 · pt← 2) +
(sw = S3 · (pt = 1 + pt = 2) · pt← 3)

It sends HTTP traffic on the two-hop path from S1 to S2 to S3, and
all other traffic on the direct path from S1 to S3.

To obtain a complete program, we can sequentially compose the
switch program p with the topology program t and iterate the result
to obtain a program (p · t)∗ that interleaves arbitrarily many steps
of processing on switches and using the topology.

Formal Reasoning. NetKAT can also be used as a formal reason-
ing system—for example, we can use it to establish that the pro-
gram above correctly forwards all traffic from M to N. To do this,
we can write the simplest program that meets this specification,

s , (sw = S1 · pt = 1 · sw← S3 · pt← 3)

and prove that it is equivalent to the actual implementation:

s ≡ (p · t)∗

To support formal reasoning about equivalences between programs,
NetKAT is carefully designed to be an instance of a Kleene algebra
with tests (KAT) [21]. A Kleene algebra (KA) is an algebraic
structure (K, +, ·, ∗, 0, 1) where (K,+, ·, 0, 1) is an idempotent
semiring and p∗q (respectively qp∗) is the least solution of the
affine linear inequality q + pr ≤ r (respectively q + rp ≤ r),
where p ≤ q is an abbreviation for p + q = q. A Kleene algebra
with tests (KAT) is a two-sorted algebraic structure,

(K,B, +, ·, ∗, 0, 1,),

where is a unary operator defined only on B, such that

• (K, +, ·, ∗, 0, 1) is a Kleene algebra,
• (B, +, ·, , 0, 1) is a Boolean algebra, and
• (B, +, ·, 0, 1) is a subalgebra of (K, +, ·, 0, 1).

In the literature on KAT, the elements ofB andK are usually called
tests and actions respectively. In the rest of this paper, we will use
the terms predicate/test and policy/action interchangeably, and will
often elide the · operator in examples. In addition to the standard
axioms, NetKAT satisfies some extra axioms governing the packet-
processing primitives that that are not valid for KATs in general.
The complete set of axioms for NetKAT is given in Figure 3.

Reduced NetKAT. The standard model of NetKAT just defined is
based on functions from packet histories to sets of packet histories.

3 2014/3/26

Kleene Algebra Axioms
p+ (q + r)≡(p+ q) + r KA-PLUS-ASSOC

p+ q≡q + p KA-PLUS-COMM

p+ 0≡p KA-PLUS-ZERO

p+ p≡p KA-PLUS-IDEM

p · (q · r)≡(p · q) · r KA-SEQ-ASSOC

1 · p≡p KA-ONE-SEQ

p · 1≡p KA-SEQ-ONE

p · (q + r)≡p · q + p · r KA-SEQ-DIST-L
(p+ q) · r≡p · r + q · r KA-SEQ-DIST-R

0 · p≡0 KA-ZERO-SEQ

p · 0≡0 KA-SEQ-ZERO

1 + p · p∗≡p∗ KA-UNROLL-L
q + p · r ≤ r⇒p∗ · q ≤ r KA-LFP-L

1 + p∗ · p≡p∗ KA-UNROLL-R
p+ q · r ≤ q⇒p · r∗ ≤ q KA-LFP-R

Additional Boolean Algebra Axioms
a+ (b · c)≡(a+ b) · (a+ c) BA-PLUS-DIST

a+ 1≡1 BA-PLUS-ONE

a+ ¬a≡1 BA-EXCL-MID

a · b≡b · a BA-SEQ-COMM

a · ¬a≡0 BA-CONTRA

a · a≡a BA-SEQ-IDEM

Packet Algebra Axioms
f ← n · f ′ ← n′≡ f ′ ← n′ · f ← n, if f 6= f ′ PA-MOD-MOD-COMM

f ← n · f ′ = n′≡ f ′ = n′ · f ← n, if f 6= f ′ PA-MOD-FILTER-COMM

dup ·f = n≡ f = n· dup PA-DUP-FILTER-COMM

f ← n · f = n≡ f ← n PA-MOD-FILTER

f = n · f ← n≡ f = n PA-FILTER-MOD

f ← n · f ← n′≡ f ← n′ PA-MOD-MOD

f = n · f = n′≡0, if n 6= n′ PA-CONTRA∑
i

f = i≡1 PA-MATCH-ALL

Figure 3. NetKAT: equational axioms.

This is a convenient for programming and manual proofs, but it
is less amenable to automation. As an intermediate step toward
an efficient procedure for deciding NetKAT equivalence, we next
define a simpler variant of NetKAT called reduced NetKAT in
which tests and assignments specify the value of every packet field.
Let f1, . . . , fk be a list of all fields of a packet in some fixed order.
For each tuple n = n1, . . . , nk of values, let f = n and f ← n
denote the expressions

f1 = n1; · · · ; fk = nk f1 ← n1; · · · ; fk ← nk,

called complete tests and complete assignments respectively. Com-
plete tests are also called atoms because they are the atomic (min-
imal nonzero) elements of the Boolean algebra generated by B.
Complete tests and assignments are in one-to-one correspondence
according to the values n. The complete assignment corresponding
to the atom α is denoted pα, and the atom corresponding to com-
plete assignment p is denoted αp. The sets of atoms and complete
assignments are denoted by At and P , respectively.

The NetKAT axioms entail the following properties of atoms
and complete assignments:

p = pαp α dup = dupα
∑
α

α = 1

α = αpα pp′ = p′ αβ = 0, α 6= β.

Every policy is provably equivalent to a policy in which all prim-
itive assignments f ← n appear in the context of a complete as-
signment, and every test is equivalent to a sum of atoms. For this
reason, we can view any NetKAT policy as a KAT expression over
the alphabet P ∪ At ∪ {dup}.

Language Model. As shown in [1], NetKAT has a natural lan-
guage model that plays the same role as that played by ordinary
strings in KA and guarded strings in KAT. These language mod-
els are important because they are free algebras for their respective
algebraic systems. That is, they capture the equational theory of
an entire class of algebras in a single concrete interpretation. As
with KA and KAT, the language model for NetKAT is defined as
the family of regular sets over a typed monoid. A typed monoid
is simply a small category where the types are the objects and the
elements of the monoid are the morphisms. The types are used to
exclude certain products: the product xy exists if and only if the
codomain of x matches the domain of y. Instead of a single iden-
tity element, a typed monoid has a component 1α for every object
α. The regular sets over a typed monoid M are the smallest fam-
ily of subsets of M containing the singletons and closed under the
KAT operations +, ·, ∗, , 1, and 0, where

A+B = A ∪B AB = {xy | x ∈ A, y ∈ B, xy exists}
A∗ =

⋃
nA

n, where A0 = 1 and An+1 = A ·An

A = 1−A, A ⊆ 1 1 = {1α | α is an object} 0 = ∅.

It is straightforward to show that the regular sets over M form a
KAT.

The language model for KA is the family of regular sets over the
free monoid Σ∗, where Σ is a finite alphabet. The category has only
one object, and all products xy exist. The element 1 is the singleton
{ε}, where ε is the null string. This is a KAT, although the Boolean
component is the trivial two-element Boolean algebra. There is a
standard interpretation R from regular expressions to regular sets
defined as the unique homomorphism such that R(a) = {a} for
a ∈ Σ, R(1) = {ε}, and R(a) = 1, and R(e1) = R(e2) iff e1

and e2 represent the same element in all Kleene algebras [20].
The language model for KAT is the family of regular sets of

guarded strings over a set of primitive testsB and a set of primitive
actions Σ. A guarded string is a sequence

α0p1α1p2α2 · · · pn−1αn−1pnαn, n ≥ 0,

where the αi are atoms of the free Boolean algebra on generators
B and the pi are elements of Σ. The objects of the category are
the atoms α, and the guarded string αxβ is a morphism of type
α → β. The components of the identity are guarded strings of
length 0, which are just the atoms α. Multiplication on guarded
strings is the fusion product:

xα · βy =

{
xαy if α = β,
undefined otherwise.

As above, there is a standard interpretation G that maps KAT
expressions to regular sets of guarded strings defined as the unique
homomorphism such that G(p) = {αpβ | α, β ∈ At} for p ∈ Σ
and G(b) = {α | α ≤ b} for b ∈ B. Again, e1 and e2 agree under
G iff they agree under all interpretations [23].

For NetKAT, we have a similar language model formed from a
typed monoid. The monoid consists of strings in the set

U = At · (P · dup)∗ · P,

where P and At range over complete tests and assignments respec-
tively; that is, strings of the form

αp0 dup p1 dup · · · dup pn, n ≥ 0,

4 2014/3/26

where pi ∈ P and α ∈ At. The types are the atoms At, and the
string αxp is of type α→ αp. Multiplication is thus

xp · αy =

{
xy if α = αp,
undefined otherwise.

The components of the identity are the strings αpα.
As above, the regular sets over this typed monoid form a KAT,

and there is an interpretation G from KAT expressions over primi-
tive tests B and primitive actions P ∪ {dup} to this KAT, namely
the unique homomorphism such that

G(p) = {αp | α ∈ At}
G(b) = {αpα | α ≤ b}

G(dup) = {αpα dup pα | α ∈ At}.
As shown in [1], G(e1) = G(e2) iff Je1K = Je2K, where JeK
is the standard interpretation of NetKAT expressions as packet-
forwarding programs in a network, and the axioms of NetKAT are
complete for the equational theory of these interpretations.

3. NetKAT Coalgebra and Automata
There is a coalgebraic theory of NetKAT that provides a combina-
torial view of reduced NetKAT in much the same way that classical
automata theory does for KA and automata on guarded strings do
for KAT.

3.1 Definitions
A NetKAT coalgebra consists of a set of states S along with con-
tinuation and observation maps

δαβ : S → S εαβ : S → 2

for α, β ∈ At. The continuation and observation maps play the
role of transitions and final states in ordinary automata theory. A
deterministic NetKAT automaton is simply a finite-state NetKAT
coalgebra with a distinguished start state s ∈ S. There is also a
notion of nondeterministic automaton and a determinization proce-
dure, but we will not need this for our development.

Inputs are strings in U = At · P · (dup ·P)∗, that is, strings of
the form

αp0 dup p1 dup · · · dup pn
for some n ≥ 0. Intuitively, δαβ attempts to consume αpβ dup
from the front of the input string and move to a new state with a
residual input string. This will succeed iff the string is of the form
αpβ dup x for some x ∈ (P · dup)∗, in which case the automaton
moves to a new state as determined by δαβ with residual input
string βx. The observation map εαβ determines whether the string
is αpβ should be accepted in the current state.

Formally, acceptance is determined by a coinductively defined
predicate Accept : S × U → 2:

Accept(t, αpβ dup x) = Accept(δαβ(t), βx)

Accept(t, αpβ) = εαβ(t).

A string x ∈ U is accepted by the automaton if Accept(s, x),
where s is the start state.

Thus a NetKAT coalgebra is a coalgebra for the set endofunctor

FX = XAt×At × 2At×At (3.1)

The continuation and observation maps comprise the structure map
of the coalgebra:

(δ, ε) : X → FX.

One can see immediately from (3.1) that XAt×At and 2At×At are
isomorphic to the families of square matrices overX and 2, respec-
tively, with rows and columns indexed by At. Indeed, we exploited

the one-to-one correspondence between P and At to write δ and ε
in this form. This simple observation will turn out to play a key role
in our subsequent development.

3.2 The Brzozowski Derivative
In this section we describe a variant of the Brzozowski derivative
for NetKAT. The derivative comes in two versions: semantic and
syntactic. The semantic version is defined on subsets of U and
gives rise to a NetKAT coalgebra (2U , δ, ε), which is final for the
NetKAT signature. The syntactic version is defined on NetKAT
expressions and alse gives rise to a coalgebra (Exp, D,E). The
standard interpretation G : Exp → 2U is the unique coalgebra
morphism to the final coalgebra.

Brzozowski Derivatives. As review, Brozozowski derivatives are
a simple technique for constructing a deterministic finite automa-
ton from a regular expression. We briefly review the definition of
the Brzozowski derivative to set the stage for the generalized ver-
sions presented in following sections. Generally speaking, given an
alphabet Σ and a regular language L, the (left-) derivative of a lan-
guage L ⊆ Σ∗ with respect to a symbol a in Σ is the set of strings
x such that the string ax is in L.

The derivative can also be defined inductively on the structure
of regular expressions. It uses an auxiliary function ε(e), which
produces 1 if the empty string is an element of the language denoted
by e and 0 otherwise.

δa(e1 + e2) = δa(e1) + δa(e2) δa(e∗) = δa(e) · e∗

δa(e1e2) = δa(e1) · e2 + ε(e1) · δa(e2)

δa(b) = [a = b] δa(0) = 0 δa(1) = 0

where for a predicate ϕ,

[ϕ] =

{
1, if ϕ is true,
0, if ϕ is false.

Likewise, the ε function has a simple inductive definition:

ε(e1 + e2) = ε(e1) + ε(e2) ε(e1e2) = ε(e1) · ε(e2)

ε(e∗) = 1 ε(a) = 0 ε(0) = 0 ε(1) = 1

To construct an automaton from an expression e, we take the set
of states to be the set of regular expressions obtained by taking re-
peated derivatives from e modulo associativity and commutativity
of ·, associativity, commutativity, and idempotence of +. We let
e be the initial state, and we mark a state as final if ε produces 1
when applied to that state. Finally, we include transition from ei to
ej on a if δa(ei) = ej . Given the automaton representation of an
expression, many algorithms become easy to implement, including
testing for equivalence. One of the main contributions of this paper
will be to develop analogous constructions for NetKAT.

Final Coalgebra. The classical set-theoretic Brzozowski deriva-
tive for KA consisting of continuation and observation maps

δa : 2Σ∗
→ 2Σ∗

ε : 2Σ∗
→ 2

δa(A) = {x ∈ Σ∗ | ax ∈ A} ε(A) = [ε ∈ A]

constitute the final coalgebra for the functor FX = XΣ × 2
relevant to the study of KA and classical automata theory [30, 32].
There is also a version for KAT and automata on guarded strings:

δαp : 2GS → 2GS εα : 2GS → 2

δαp(A) = {x ∈ GS | αpx ∈ A} εα(A) = [α ∈ A],

where GS is the set of guarded strings [22].

5 2014/3/26

For NetKAT, we have a similar construction:

δαβ : 2U → 2U εαβ : 2U → 2

δαβ(A) = {βx | αpβ dup x ∈ A} εαβ(A) = [αpβ ∈ A].

One can show that this is the final coalgebra for the NetKAT
signature by showing that bisimilarity implies equality, but we will
not need this fact for our development.

Syntactic Coalgebra. In addition to the set-theoretic Brzozowski
derivative for KA, there is a syntactic version consisting of contin-
uation and observation maps

Da : Exp→ Exp E : Exp→ 2

where Exp is the set of regular expressions over a finite alphabet
Σ. The syntactic Brzozowski derivative operates on regular expres-
sions and can be defined by induction on the structure of the expres-
sion. The set of all derivatives of e is finite modulo ACI (associativ-
ity, commutativity, and idempotence of +) and gives a deterministic
finite automaton accepting the set of strings in Σ∗ represented by e
under the canonical interpretation R : Exp→ 2Σ∗

.
Similarly, for KAT, there is a syntactic derivative

Dαp : Exp→ Exp Eα : Exp→ 2

where now Exp is the set of KAT expressions over a set of primitive
actions Σ and tests B. Again, these can be defined by induction on
the structure of the expression.

For NetKAT, a similar syntactic coalgebra exists, which we now
define. It is of type

Dαβ : Exp→ Exp Eαβ : Exp→ 2,

where Exp is the set of reduced NetKAT expressions. It is defined
inductively as follows:

Dαβ(p) = 0 Dαβ(b) = 0 Dαβ(dup) = α · [α = β]

Dαβ(e1 + e2) = Dαβ(e1) +Dαβ(e2)

Dαβ(e1e2) = Dαβ(e1) · e2 +
∑
γ

Eαγ(e1) ·Dγβ(e2)

Dαβ(e∗) = Dαβ(e) · e∗ +
∑
γ

Eαγ(e) ·Dγβ(e∗)

Eαβ(p) = [p = pβ] Eαβ(b) = [α = β ≤ b]

Eαβ(dup) = 0 Eαβ(e1 + e2) = Eαβ(e1) + Eαβ(e2)

Eαβ(e1e2) =
∑
γ

Eαγ(e1) · Eγβ(e2)

Eαβ(e∗) = [α = β] +
∑
γ

Eαγ(e) · Eγβ(e∗).

The definitions for ∗ are circular, but we take the least fixpoint of
the system of equations.

Matrix Representation. At this point, the reader will probably
have noticed that many of the operations in the definitions of Dαβ
and Eαβ resemble matrix operations. Indeed, regarding the types
of the coalgebra operations as

δ : X → XAt×At ε : X → 2At×At,

we can view δ(t) as an At×At matrix overX and ε(t) as an At×At
matrix over 2. IfX happens to be a KAT, then the family of At×At
matrices over X again forms a KAT, denoted Mat(At, X), under
the standard matrix operations [10]. Thus we have

δ : X → Mat(At, X) ε : X → Mat(At, 2).

In this view, the syntactic coalgebra defined in §3.2 takes the fol-
lowing succinct form:

D(p) = 0 D(b) = 0 D(dup) = J

D(e1 + e2) = D(e1) +D(e2)

D(e1e2) = D(e1) · I(e2) + E(e1) ·D(e2)

D(e∗) = E(e∗) ·D(e) · I(e∗),

where I(e) is the diagonal matrix with e on the main diagonal and
J is the diagonal matrix with α on the main diagonal in position
αα; and

E(p) = Cαp E(b) = J · I(b)

E(dup) = 0 E(e1 + e2) = E(e1) + E(e2)

E(e1e2) = E(e1) · E(e2)

E(e∗) = E(e)∗,

where Cα is the matrix with 1’s in column α and 0’s elsewhere.
Thus E becomes a KAT homomorphism E : Exp→ Mat(At, 2).

Siumilarly, we can regard the set-theoretic coalgebra of §3.2 as
having type

δ : 2U → Mat(At, 2U) ε : 2U → Mat(At, 2).

In this form, ε becomes a KAT homomorphism:

Lemma 1.

(i) ε(1) = I
(ii) ε(A ∪B) = ε(A) + ε(B)

(iii) ε(A ·B) = ε(A) · ε(B)
(iv) ε(A∗) = ε(A)∗

Proof. These properties follow straightforwardly from the defini-
tions in §3.2. For example, for (iii) and (iv), we have

ε(AB)αβ = [αpβ ∈ AB]

= [∃γ αpγ ∈ A ∧ γpβ ∈ B]

=
∑
γ

[αpγ ∈ A] · [γpβ ∈ B]

=
∑
γ

ε(A)αγ · ε(B)γβ

= (ε(A) · ε(B))αβ

ε(A∗) = ε(
⋃
nA

n) =
∑
n ε(A)n = ε(A)∗.

Lemma 2.

(i) δ(
⋃
nAn) =

∑
n δ(An)

(ii) δ(AB) = δ(A) · I(B) + ε(A) · δ(B)
(iii) δ(A∗) = ε(A∗) · δ(A) · I(A∗)

where I(A) is the diagonal matrix with the setA on the main diag-
onal and ∅ elsewhere, and the matrix sum in (i) is componentwise
union.

Proof. We argue (ii) and (iii) explicitly; (i) is straightforward from
linearity.

For (ii), by definition we have

δαβ(AB) = {βx | αpβ dup x ∈ AB}.

In order that αpβ dup x ∈ AB, the string must the product of two
reduced strings, one from A and one from B. Depending on which
of these contains the first occurrence of dup, one of the following
must occur:

6 2014/3/26

• there exists γ such that αpβ dup x = αpγ · γpβ dup x with
αpγ ∈ A and γpβ dup x ∈ B; or

• there exist γ, y, and z such that αpβ dup x = αpβ dup ypγ ·γz
with αpβ dup ypγ ∈ A, γz ∈ B, and x = ypγγz.

In the first case, we have εαγ(A) = 1 and βx ∈ δγβ(B), hence
βx ∈ εαγ(A) · δγβ(B). In the second case, we have βypγ ∈
δαβ(A) and γz ∈ B, hence βx = βyγγz ∈ δαβ(A) ·B. Thus

δαβ(AB) = δαβ(A) ·B ∪
⋃
γ εαγ(A) · δγβ(B).

Abstracting over indices, we obtain the matrix equation (ii).
For (iii), we have from (i) and (ii) that

δ(A∗) = δ(1 +AA∗) = 0 + δ(AA∗)

= δ(A) · I(A∗) + ε(A) · δ(A∗).
The derivative is the least fixpoint of this equation, which by an
axiom of KAT is the right-hand side of (iii).

The following lemma says thatG is a coalgebra morphism from
the syntactic coalgebra (Exp, D,E) to (2U , δ, ε) (G is the unique
homomorphism into the final coalgebra).

Lemma 3.

(i) G(D(e)) = δ(G(e))
(ii) E(e) = ε(G(e))

where G is extended componentwise to matrices.

Proof. By induction on e.
(i) For primitive p, b and dup,

G(Dαβ(p)) = G(0) = ∅
= {βx | αpβ dup x ∈ {γp | γ ∈ At}}
= δαβ({γp | γ ∈ At}) = δαβ(G(p))

G(Dαβ(b)) = G(0) = ∅
= {βx | αpβ dup x ∈ {βpβ | β ≤ b}}
= δαβ({βpβ | β ≤ b}) = δαβ(G(b)).

G(Dαβ(dup)) = G(α · [α = β])

= {βpβ | α = β}
= {βx | αpβ dup x ∈ {γpγ dup pγ | γ ∈ At}}
= δαβ({γpγ dup pγ | γ ∈ At})
= δαβ(G(dup))

The case e1 + e2 is straightforward, since G, δ, and D are linear.
For products, using Lemma 2(ii),

G(D(e1e2)) = G(D(e1) · I(e2)) +G(E(e1) ·D(e2))

= G(D(e1)) ·G(I(e2)) +G(E(e1)) ·G(D(e2))

= δ(G(e1)) · I(G(e2)) + ε(G(e1)) · δ(G(e2))

= δ(G(e1) ·G(e2))

= δ(G(e1e2))

For star, the system defining D(e∗) is

D(e∗) = D(e) · I(e∗) + E(e) ·D(e∗)

whose least solution is

D(e∗) = E(e∗) ·D(e) · I(e∗).

Using Lemma 2(iii),

G(D(e∗)) = G(E(e∗) ·D(e) · I(e∗))

= G(E(e∗)) ·G(D(e)) ·G(I(e∗))

= ε(G(e)∗) · δ(G(e)) · I(G(e)∗)

= δ(G(e∗)).

(ii) For p, b and dup,

Eαβ(p) = [p = pβ]

= εαβ({γp | γ ∈ At}) = ε(G(p)).

Eαβ(b) = J · I(b)

= [α = β ≤ b]
= εαβ({αpα | α ≤ b})
= εαβ(G(b)).

Eαβ(dup) = 0

= εαβ({γpγ dup pγ | γ ∈ At})
= Eαβ(G(dup))

The case e1 + e2 is straightforward, since G, ε, and E are linear.
For products, using Lemma 1(iii),

Eαβ(e1e2) =
∑
γ

Eαγ(e1) · Eγβ(e2)

= (E(e1) · E(e2))αβ

= (ε(G(e1)) · ε(G(e2)))αβ

= (ε(G(e1) ·G(e2)))αβ

= εαβ(G(e1e2))

For star, using Lemma 1(iv),

E(e∗) = E(e)∗ = ε(G(e))∗ = ε(G(e∗)).

4. Kleene’s Theorem for NetKAT
In this section we show that a subset ofU isG(e) for some NetKAT
expression e iff it is the set of strings accepted by some finite
NetKAT automaton. This is the analog of Kleene’s theorem for
NetKAT.

4.1 From Automata to Expressions
Let M = (S, δ, ε, s) be a finite NetKAT automaton. Consider a
graph H with nodes (S × At) ∪ {halt} and labeled edges

(u, α)
pβdup−→ (v, β), if δαβ(u) = v

(u, α)
pβ−→ halt, if εαβ(u) = 1.

We claim that for x ∈ (P · dup)∗ · P ,

(t, α)
x−→ halt ⇔ Accept(t, αx). (4.1)

This can be proved by induction on the length of x. For the basis,

(t, α)
pβ−→ halt ⇔ εαβ(t) = 1 ⇔ Accept(t, αpβ).

For the induction step,

(t, α)
pβdupx−→ halt ⇔ ∃u (t, α)

pβdup−→ (u, β)
x−→ halt

⇔ ∃u δαβ(t) = u ∧ Accept(u, βx)

⇔ Accept(δαβ(t), βx)

⇔ Accept(t, αpβ dup x).

The set of labels of paths in H from (t, α) to halt is a regular
subset of (P · dup)∗ · P and is described by a regular expression
e(t, α). These expressions can be computed by taking the star ofH
considered as a square matrix. By (4.1), the set of strings accepted
by M is the regular subset of U described by e =

∑
α α · e(s, α).

7 2014/3/26

As shown in [1], if R(e) ⊆ U , where R is the canonical
interpretation of regular expressions as regular sets of strings, then
R(e) = G(e). We have shown

Theorem 1. Let M be a finite NetKAT automaton. The set of
strings in U accepted by M is G(e) for some NetKAT expression
e.

4.2 From Expressions to Automata
To go in the other direction, we construct a finite NetKAT automa-
ton Me from an expression e. The states are NetKAT expressions
modulo associativity, commutativity, and idempotence (ACI). The
continuation and observation maps are the syntactic derivative in-
troduced in §3.2. The start state is e.

Lemma 4. The set accepted by Me is G(e).

Proof. By Lemma 3, G is a coalgebra homomorphism from the
syntactic coalagebra (Exp, D,E) to the set-theoretic coalgebra
(2U , δ, ε). Proceeding by induction on the length of the string,

Accept(e, αpβ)⇔ Eαβ(e) = 1

⇔ G(Eαβ(e)) = 1

⇔ εαβ(G(e)) = 1

⇔ αpβ ∈ G(e),

Accept(e, αpβ dup x)⇔ Accept(Dαβ(e), βx)

⇔ βx ∈ G(Dαβ(e))

⇔ βx ∈ δαβ(G(e))

⇔ αpβ dup x ∈ G(e).

It remains to show that Me is finite. We do this by showing that
e has only finitely many derivatives up to ACI.

4.2.1 Spines
For A ⊆ Exp and e ∈ Exp, write A · e for {de | d ∈ A} and write
e ·A for {ed | d ∈ A}.

A spine of e is an expression in Exp constructed from e as
defined below. As we will show, the derivatives of e can be con-
structed from spines of e. There is one spine of e for each occur-
rence of dup in e. The set of spines of e is denoted Sp(e) and is
defined inductively:

Sp(e1 + e2) = Sp(e1) ∪ Sp(e2)

Sp(e1e2) = Sp(e1) · e2 ∪ Sp(e2)

Sp(e∗) = Sp(e) · e∗

Sp(dup) = {1}
Sp(b) = Sp(p) = ∅.

It is easily shown that every element of Sp(e) is of the form
1e1e2 · · · en, where the ei are subterms of e, and that there is one
spine of e for every occurrence of dup in e.

The following result says that derivatives of e are sums of spines
of e.

Lemma 5. For any α, β, the derivative Dαβ(e) is a sum of terms
of the form βd, where d ∈ Sp(e).

Proof. This can be proved by induction on the structure of e.
Abusing notation slightly by representing sums as sets of terms,1

we argue the case of products and star explicitly.

1 This is a convenient abuse which we can take with impunity since we are
working modulo ACI. The representation of the Brzozowski derivative in
this form is often called the Antimirov derivative.

For products, we have

Dαβ(e1e2) = Dαβ(e1) · e2 ∪
⋃
γ Eαγ(e1) ·Dγβ(e2)

⊆ β · Sp(e1) · e2 ∪ β · Sp(e2)

= β · (Sp(e1) · e2 ∪ Sp(e2))

= β · Sp(e1e2).

The induction hypothesis was used in the second step.
For star, we have

Dαβ(e∗) =
⋃
γ Eαγ(e∗) ·Dγβ(e) · e∗

⊆ β · Sp(e) · e∗

= β · Sp(e∗).

The next lemma shows that spines of spines of e are spines of
e. Thus repeated derivatives do not introduce any new terms.

Lemma 6. If d ∈ Sp(e), then Sp(βd) ⊆ Sp(e).

Proof. For sums,

d ∈ Sp(e1 + e2) = Sp(e1) ∪ Sp(e2)

⇒ d ∈ Sp(e1) or d ∈ Sp(e2)

⇒ Sp(βd) ⊆ Sp(e1) or Sp(βd) ⊆ Sp(e2)

⇒ Sp(βd) ⊆ Sp(e1) ∪ Sp(e2) = Sp(e1 + e2).

For products,

d ∈ Sp(e1e2) = Sp(e1) · e2 ∪ Sp(e2)

⇒ d ∈ Sp(e1) · e2 or d ∈ Sp(e2)

⇒ (d = ce2 and c ∈ Sp(e1)) or d ∈ Sp(e2)

⇒ (d = ce2 and Sp(βc) ⊆ Sp(e1))

or Sp(βd) ⊆ Sp(e2)

⇒ Sp(βd) = Sp(βce2) = Sp(βc) · e2 ∪ Sp(e2)

⊆ Sp(e1) · e2 ∪ Sp(e2) = Sp(e1e2)

or Sp(βd) ⊆ Sp(e2) ⊆ Sp(e1e2)

⇒ Sp(βd) ⊆ Sp(e1e2).

For star,

d ∈ Sp(e∗) = Sp(e) · e∗

⇒ d = ce∗ and c ∈ Sp(e)

⇒ Sp(βd) = Sp(βce∗) = Sp(βc)e∗ ∪ Sp(e∗)

⊆ Sp(e) · e∗ ∪ Sp(e∗) = Sp(e∗).

For dup,

d ∈ Sp(dup) = {1}
⇒ d = 1

⇒ Sp(βd) = Sp(β) = ∅ ⊆ Sp(dup).

We cannot have d ∈ Sp(b) or d ∈ Sp(p), since these sets are
empty.

Using these two lemmas, we can show that repeated derivatives
of e can all be represented as sums of terms of the form βd, where
d ∈ Sp(e). Thus the number of derivatives of e is at most |At| · 2`,
where ` is the number of occurrences of dup in e. These can all be
represented efficiently as an atom and a subset of Sp(e). We have
shown

Theorem 2. For every NetKAT expression e, there is a determin-
istic NetKAT automaton Me with at most |At| · 2` states accepting
the set G(e).

8 2014/3/26

5. Implementation
We have built a prototype implementation of our algorithm for
deciding NetKAT equivalence in OCaml. Given a pair of NetKAT
terms, it first uses Brzozowski derivatives to construct a pair of
automata, and then checks whether the automata are bisimilar using
a standard coinductive algorithm. Our implementation consists of
2095 lines of OCaml code and includes a parser, pretty printer,
automata representation, and a simple interactive top-level loop. It
also incorporates important enhancements and optimizations that
avoid several potential sources of combinatorial blowup.

Challenges. The algorithms described in preceding sections are
all formulated in terms of elements of the NetKAT language model,
which contains complete tests and assignments. As such it would
not be practical to implement these algorithms literally, since real-
world NetKAT programs have on the order of 2250 distinct com-
plete tests and assignments—one for each possible packet header
value. Clearly constructing and iterating through such a large col-
lection of values would be completely impractical. Instead, our im-
plementation is based on clever representations of terms and ma-
trices that exploit symmetry and sparseness, and only represents
values that are relevant to the final outcome. Thus, unlike the al-
gorithm presented in the original paper on NetKAT [1], our imple-
mentation avoids having to ever iterate through the entire universe
in the common case. Of course, the fundamental decision problem
is still PSPACE-complete, so the worst case computational com-
plexity is unavoidable. However, in many cases of practical inter-
est, the inputs are simple enough that our prototype quickly returns
an answer.

NetKAT Representation. The first optimization used in our im-
plementation is to represent the abstract syntax trees for NetKAT
sums using sets. Derivatives built using such a representation are
often called Antimirov derivatives. One advantage of this represen-
tation is that it gives addition modulo ACI essentially for free since
we can use smart constructors to ensure that equivalent terms are
represented using identical sets in OCaml. In addition, the elements
of the sets are all spines (see §4.2.1), so the number of possible sub-
sets is bounded by 2k, where k is the number of occurrences of dup
in the original term.

To build this set representation in OCaml, we define a pair of
mutually recursive modules for terms and sets of terms:

module rec Term : sig
type term =
| Test of field * value
| Assg of field * value
| Dup
| Plus of TermSet.t
| Times of term list
| ...

end = Term
and TermSet : sig

include Set.S
(* extra functions *)
val bind : t -> (elt -> t) -> t
val return : elt -> t
...

end with type elt = Term.term = struct
include Set.Make (struct

type t = Term.term
let compare = Pervasives.compare

end)
(* extra functions *)
let bind ts f = ...
let return x = ...
...

end

Note that we also represent products as lists, which gives multi-
plication modulo associativity for free.

Right and Left Spines. Our implementation relies heavily on the
notion of spines from §4.2.1. Recall that there is one spine for every
occurrence of dup in e. We call these right spines because they
consist of terms that occur to the right of the occurrence of dup.

let spines (e : term) : TermSet.t =
let rec sp (e : term) : TermSet.t =

match e with
| Dup -> TermSet.return One
| Plus ts -> TermSet.bind ts sp
| ... in

TermSet.map Ast.simplify (sp e)

There is a symmetric notion of a left spine, which also plays an
important role in our implementation:

Sp(e1 + e2) = Sp(e1) ∪ Sp(e2)

Sp(e1e2) = e1 · Sp(e2) ∪ Sp(e1)

Sp(e∗) = e∗ · Sp(e)

Sp(dup) = {1}
Sp(b) = Sp(p) = ∅.

If σ denotes an occurrence of dup in a term e, let `σ and rσ denote
the left spine and right spine of that occurrence respectively. It is
easy to show that the derivatives of e can be defined in terms of left
and right spines as follows,

Dαβ(e) =
⋃
{βrσ | σ an occurrence of dup, Eαβ(`σ) = 1}

or even more succinctly:

D(e) =
∑
σ

E(`σ) · J · I(rσ), (5.1)

where J is the diagonal matrix with α on the main diagonal in
postion αα.

Moreover, since all of the spines of spines of e are spines of e,
we need only find the left spines of all right spines once and for all.
Hence, after calculating one derivative, the subsequent derivative
will also be of the form (5.1). This means that we can compute
the spines and 0-1 matrices E(`σ) in advance, and the matrices
can be computed inductively using a sparse matrix representation
described next.

Sparse Matrix Representation. We describe now how to calcu-
late the 0-1 matrix E(e) efficiently using a compact representa-
tion as sets of indices. Recall that the columns of a matrix are in-
dexed by complete assignments and the rows by complete tests.
Let x1, . . . , xn be the list of all field names appearing in the pro-
gram. Let Ui be the universe of all values v associated with xi in
the program, either by a test xi = v or xi 6= v or by an assign-
ment xi ← v. Augment each universe Ui with a special value ?
that denotes an unknown value. The set of all possible indices is
U1 × · · · × Un for both rows and columns.

We representat 0-1 matrices using sets of pairs of sequences

A1, . . . , An; k1, . . . , kn (5.2)

where Ai ⊆ Ui and ki ∈ Ui. The sequence (5.2) represents
the set of complete tests A1 × · · · × An, each followed by a
complete assignment. The complete assignment corresponding to
the complete testm1, . . . ,mn ∈ A1×· · ·×An contains xi ← ki if
ki 6= ? and xi ← mi if ki = ?. This representation admits efficient
matrix addition and multiplication without having to enumerate
over the domain of all possible indices. Moreover, the primitive
matrices are all straightforward to construct: the test xi = mi is
represented by

U1, . . . , Ui−1, {mi}, Ui+1, . . . , Un; ?, . . . , ?,

9 2014/3/26

the test xi 6= mi is represented by

U1, . . . , Ui−1, Ui − {mi}, Ui+1, . . . , Un; ?, . . . , ?,

and the assignment xi ← mi is represented by

U1, . . . , Un; ?, . . . , ?,mi, ?, . . . , ?.

Derivative. After calculating the spines and E(e) matrices, the
matrix D(e) representing the Brzozowski derivative can be com-
puted as follows: the E(e) matrices are represented sparsely using
sets of indices αβ for which the corresponding matrix entry is 1.
For each spine pair `σ, rσ and nonzero element αβ of E(e), we
add βrσ to Dαβ(e), as specified by 5.1. This approach exploits the
sparseness of E so that we only need to consider those indices αβ
that might contribute a non-zero element to D(e).

To further increase the compactness of D(e), the complete
assignment βrσ is added toDαβ(e) only when βrσ is nonzero. Let
αβ be the complete test corresponding to β such that βαβ = β.
Let αrσ be a complete test such that αrσrσ = rσ . For βrσ
to be nonzero, αβ must be equal to some αrσ . The set of all
αrσ can easily be extracted from E(rσ), it is the m1, . . . ,mn ∈
A1 × · · · × An of the corresponding 0-1 matrix of E(rσ). Hence,
taking advantage of our 0-1 matrix representation, the derivative
can be more compactly described as:

D(e) =
∑
σ

E(lσ) · E(rσ)′ · J · I(rσ),

where

E(rσ) = A1, · · · , An; k1, · · · , kn
E(rσ)′ = A1, · · · , An; ?, · · · , ?.

Bisimulation. The final step in the decision procedure uses a
standard algorithm to test the bisimilarity of the automata con-
structed lazily using derivatives. Given two NetKAT terms e1 and
e2, we first compare the matricesE(e1) andE(e2) and return false
if they are not identical. Otherwise, we calculate the derivatives of
e1 and e2 usingD, and recursively check each of the resulting pairs.
The algorithm halts when we have tested every possible derivative
reachable transitively from the initial terms. Checking derivatives
modulo ACI guarantees that the algorithm terminates. This coin-
ductive algorithm can be implemented in almost linear time in the
combined size of the automata using the union-find data structure
[14]. Although our current prototype does not implement the up-to
techniques used by Bonchi and Pous [4], we hope to incorporate
these enhancements in the near future and expect they will yield
further performance improvements.

Examples. We now present a series of small examples that illus-
trate the key algorithms and data structures used in our prototype
implementation. As a first example, consider the following pair of
NetKAT terms:

x = 3 ; y = 2 ; x := 7 + x = 4 ; y = 2 ; x := 7

and

(x = 3 + x = 4) ; y = 2 ; x := 7

These terms are clearly equivalent, as can be shown using the
NetKAT axiom KA-SEQ-DIST-L, which distributes the test over the
sum. To verify this fact using our bisimulation-based algorithm, we
would first calculate the 0-1 matrices for the left spine, obtaining:

0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

and

0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

Note that these matrices are identical and that our implementation
automatically shrinks the universe into a small set, only represent-
ing the constants that actually appear in the program. In fact, our
implementation would not even represent this matrix (unless asked
to print it)—the sparse representation maintains just enough infor-
mation to keep track of the non-zero entries. Next, the algorithm
would systematically take all derivatives of each term. In this case,
because neither term contains a dup, there are no non-zero deriva-
tives and the algorithm halts immediately, and returns true.

For another example, consider

x = 1 ; x := 2 + x = 2 ; x := 3

and

x = 3 ; x := 2 + x = 2 ; x := 3

These terms are clearly not equivalent since the first matches pack-
ets whose x field is either 1 or 2, while the second matches packets
whose x field is 2 or 3. In this case, the 0-1 matrices for the left
spine are as follows:

0 1 0 0
0 0 1 0
0 0 0 0
0 0 0 0

and
0 0 0 0
0 0 1 0
0 1 0 0
0 0 0 0

As these matrices are not identical, there exists a packet that distin-
guishes them so the algorithm immediately returns false.

As a final example, we illustrate the construction of a simple
automaton on the following program,

x := 2 ; dup; x := 3; dup x:=4; dup ; x:= 5; dup

The NetKAT program consists of a sequence of assignments and
dups. Accordingly, the automaton is a chain of states:

q4 q5q3q2q1

Note that there are transitions corresponding to each constant used
in the program, and that only the final state is accepting.

Although these are not large examples, and we have not yet eval-
uated our prototype experimentally, based on our understanding of
the algorithms and representations and our initial experiences using
it on small examples we are optimistic that it will perform well.

6. Related Work
NetKAT [1] is the latest in a series of domain-specific languages for
SDN programming developed as a part of the Frenetic project [12,
13, 25, 26]. NetKAT largely inherits its syntax, semantics, and ap-
plication methodology from these earlier efforts but adds a com-
plete deductive system and PSPACE decision procedure [1]. These
new results in NetKAT build on the strong connection to earlier
algebraic work in KA and KAT [20, 21, 23]. The present paper ex-
tends work on NetKAT further, developing the coalgebraic theory
of the language and engineering an implementation of these ideas
in an OCaml prototype. The overall result is the first practical im-
plementation for deciding NetKAT equivalence.

The coalgebraic theories of KA and KAT and related systems
have been studied extensively in recent years [9, 22, 30, 32], un-
covering strong relationships between the algebraic/logical view of
systems and the combinatorial/automata-theoretic view. We have
exploited these ideas heavily in the development of NetKAT coal-
gebra and NetKAT automata. Finally, in our implementation, we

10 2014/3/26

have borrowed many ideas and optimizations from the coalge-
braic implementations of KA and KAT and other related systems
[4, 5, 28] to provide enhanced performance, making automated de-
cision feasible even in the face of PSPACE completeness.

A large number of languages for SDN programming have been
proposed in recent years. Nettle [35] applies ideas from functional
reactive programming to SDN programming, and focuses on mak-
ing it easy to express dynamic programs using time-varying sig-
nals rather than event loops and callbacks as in most other systems.
PANE [11] exposes an interface that allows individual hosts in a
network to request explicit functionality such as increased band-
width for a large bulk transfer or bounded latency for a phone call.
Internally PANE uses hierarchical tables to represent and man-
age the set of requests and a compiler inspired by NetCore [25].
Maple [36] provides a high-level programming interface that en-
ables programmers to express network programs directly in Java,
using a special library to match and modify packet headers. Un-
der the hood, the Maple compiler builds up representations of net-
work traffic flows using a tree structure and then compiles these
to hardware-level forwarding rules. Several different network pro-
gramming languages based on logic programming have been pro-
posed including NDLog [24] and FlowLog [27]. The key difference
between all of these languages and the system presented in this pa-
per is that NetKAT has a sound and complete deductive theory and
supports automated reasoning about program equivalence.

Lastly, there is a growing body of work focused on applications
of formal methods ranging from lightweight testing to full-blown
verification to SDN. The NICE [8] tool uses a model checker and
symbolic execution to find bugs in network programs written in
Python. Automatic Test Packet Generation [38] constructs a set of
packets that provide coverage for a given network-wide configura-
tion. Retrospective Causal Inference [31] uses techniques based on
delta debugging to reduce bugs to minimal input sequences. The
VeriCon [2] system uses first-order logic and a notion of admissi-
ble topologies to automatically check network-wide properties. It
uses the Z3 SMT solver as a back-end decision procedure. Sev-
eral different systems have proposed techniques for checking net-
work reachability properties including Xie et al. [37], Header Space
Analysis [16], and VeriFlow[17]. These tools either translate reach-
ability problems into problem instances for other tools, or they use
custom decision procedures that extend basic satisfiability check-
ing or ternary simulation with domain-specific optimizations to ob-
tain improved performance. Compared to these tools, NetKAT is
unique in its focus on algebraic and coalgebraic structure of net-
work programs. Moreover, as shown in the original NetKAT paper,
many properties of interest including reachability can be reduced
to equivalence.

7. Conclusion
This paper develops the coalgebraic theory of NetKAT and lever-
ages this theory to design a new decision procedure based on check-
ing bisimulation between finite automata. The coalgebraic theory
includes a definition of NetKAT automata, a variant of the Brzo-
zowski derivative for NetKAT, and a version of Kleene’s theorem
relating NetKAT expressions and NetKAT automata. A novel as-
pect of the theory is the concise representation of the Brzozowski
derivative in terms of matrices, which appears to be new and partic-
ular to NetKAT. We have given a new algorithm for deciding equiv-
alence of NetKAT expressions and a full implementation which
improves on the naive algorithm of [1]. The new algorithm holds
much promise for feasibility based on reported experience with re-
lated systems [4, 5, 28].

Initial experiments with our implementation are very promis-
ing, however the experimental evaluation is still in the preliminary
stages. For the future, we intend to continue to make further en-

hancements and perform extensive testing on practical examples
from [1]. A straightforward extension is to incorporate in our al-
gorithm well-studied enhancements to the bisimulation construc-
tion [4, 29] which will play a key role in the scalability of the
equivalence checker. We also plan to explore extending alternative
algorithms for deciding equivalence of KAT expressions [6, 33].
Another possible research direction is to study nondeterministic
NetKAT automata, which will provide more compact representa-
tions of behaviors, and algorithms to decide language equivalence
such as Brzozowski’s algorithm [3] or extensions of Hopcroft and
Karp’s algorithm [4]. A long-term goal is to eventually deploy our
algorithm in an SDN network management tool such as Merlin
[34].

Acknowledgments. The authors wish to thank Arjun Guha, An-
drew Myers, Mark Reitblatt, Ross Tate, Konstantinos Mamouras,
and the rest of the Cornell PLDG for many insightful discussions
and helpful comments.

References
[1] Carolyn Jane Anderson, Nate Foster, Arjun Guha, Jean-Baptiste Jean-

nin, Dexter Kozen, Cole Schlesinger, and David Walker. NetKAT:
Semantic foundations for networks. In Proc. 41st ACM SIGPLAN-
SIGACT Symp. Principles of Programming Languages (POPL’14),
pages 113–126, San Diego, California, USA, January 2014. ACM.

[2] Thomas Ball, Nikolaj Bjorner, Aaron Gember, Shachar Itzhaky, Alek-
sandr Karbyshev, , Mooly Sagiv, Michael Schapira, and Asaf Val-
adarsky. Vericon: Towards verifying controller programs in software-
defined networks. In PLDI, 2014. To appear.

[3] Filippo Bonchi, Marcello M. Bonsangue, Jan J. M. M. Rutten, and
Alexandra Silva. Brzozowski’s algorithm (co)algebraically. In
Robert L. Constable and Alexandra Silva, editors, Logic and Program
Semantics, volume 7230 of Lecture Notes in Computer Science, pages
12–23. Springer, 2012.

[4] Filippo Bonchi and Damien Pous. Checking NFA equivalence with
bisimulations up to congruence. In Proc. 40th ACM SIGPLAN-
SIGACT Symp. Principles of Programming Languages, POPL ’13,
pages 457–468. ACM, 2013.

[5] Thomas Braibant and Damien Pous. Deciding Kleene algebras in Coq.
Logical Methods in Computer Science, 8(1:16):1–42, 2012.

[6] Sabine Broda, António Machiavelo, Nelma Moreira, and Rogério
Reis. On the average size of glushkov and equation automata for kat
expressions. In Leszek Gasieniec and Frank Wolter, editors, FCT,
volume 8070 of Lecture Notes in Computer Science, pages 72–83.
Springer, 2013.

[7] Janusz A. Brzozowski. Derivatives of regular expressions. J. Assoc.
Comput. Mach., 11:481–494, 1964.

[8] Marco Canini, Daniele Venzano, Peter Perešı́ni, Dejan Kostić, and
Jennifer Rexford. A NICE way to test OpenFlow applications. In
NSDI, 2012.

[9] Hubie Chen and Riccardo Pucella. A coalgebraic approach to Kleene
algebra with tests. Electronic Notes in Theoretical Computer Science,
82(1), 2003.

[10] Ernie Cohen, Dexter Kozen, and Frederick Smith. The complexity of
Kleene algebra with tests. Technical Report TR96-1598, Computer
Science Department, Cornell University, July 1996.

[11] Andrew D. Ferguson, Arjun Guha, Chen Liang, Rodrigo Fonseca,
and Shriram Krishnamurthi. Participatory networking: An API for
application control of SDNs. In SIGCOMM, 2013.

[12] Nate Foster, Rob Harrison, Michael J. Freedman, Christopher Mon-
santo, Jennifer Rexford, Alec Story, and David Walker. Frenetic: A
network programming language. In ICFP, September 2011.

[13] Arjun Guha, Mark Reitblatt, and Nate Foster. Machine-verified net-
work controllers. In PLDI, June 2013.

11 2014/3/26

[14] John E. Hopcroft and Richard M. Karp. A linear algorithm for testing
equivalence of finite automata. Technical Report 71-114, University
of California, 1971.

[15] Sushant Jain, Alok Kumar, Subhasree Mandal, Joon Ong, Leon
Poutievski, Arjun Singh, Subbaiah Venkata, Jim Wanderer, Junlan
Zhou, Min Zhu, Jon Zolla, Urs Hölzle, Stephen Stuart, and Amin Vah-
dat. B4: Experience with a globally-deployed software defined WAN.
In SIGCOMM, 2013.

[16] Peyman Kazemian, George Varghese, and Nick McKeown. Header
space analysis: Static checking for networks. In NSDI, 2012.

[17] Ahmed Khurshid, Xuan Zou, Wenxuan Zhou, Matthew Caesar, and
P. Brighten Godfrey. VeriFlow: Verifying network-wide invariants in
real time. In NSDI, 2013.

[18] Teemu Koponen, Keith Amidon, Peter Balland, Martn Casado, Anu-
pam Chanda, Bryan Fulton, Igor Ganichev, Jesse Gross, Natasha
Gude, Paul Ingram, Ethan Jackson, Andrew Lambeth, Romain
Lenglet, Shih-Hao Li, Amar Padmanabhan, Justin Pettit, Ben Pfaff,
Rajiv Ramanathan, Scott Shenker, Alan Shieh, Jeremy Stribling,
Pankaj Thakkar, Dan Wendlandt, Alexander Yip, and Ronghua Zhang.
Network virtualization in multi-tenant datacenters. In NSDI, 2014.

[19] Teemu Koponen, Martin Casado, Natasha Gude, Jeremy Stribling,
Leon Poutievski, Min Zhu, Rajiv Ramanathan, Yuichiro Iwata, Hi-
roaki Inoue, Takayuki Hama, and Scott Shenker. Onix: A distributed
control platform for large-scale production networks. In OSDI, 2010.

[20] Dexter Kozen. A completeness theorem for Kleene algebras and the
algebra of regular events. Infor. and Comput., 110(2):366–390, May
1994.

[21] Dexter Kozen. Kleene algebra with tests. Transactions on Program-
ming Languages and Systems, 19(3):427–443, May 1997.

[22] Dexter Kozen. On the coalgebraic theory of Kleene algebra with
tests. Technical Report http://hdl.handle.net/1813/10173,
Computing and Information Science, Cornell University, March 2008.

[23] Dexter Kozen and Frederick Smith. Kleene algebra with tests: Com-
pleteness and decidability. In D. van Dalen and M. Bezem, editors,
Proc. 10th Int. Workshop Computer Science Logic (CSL’96), volume
1258 of Lecture Notes in Computer Science, pages 244–259, Utrecht,
The Netherlands, September 1996. Springer-Verlag.

[24] Boon Thau Loo, Joseph M. Hellerstein, Ion Stoica, and Raghu Ra-
makrishnan. Declarative routing: Extensible routing with declarative
queries. In SIGCOMM, 2005.

[25] Christopher Monsanto, Nate Foster, Rob Harrison, and David Walker.
A compiler and run-time system for network programming languages.
In POPL, January 2012.

[26] Christopher Monsanto, Joshua Reich, Nate Foster, Jennifer Rexford,
and David Walker. Composing software-defined networks. In NSDI,
April 2013.

[27] Tim Nelson, Arjun Guha, Daniel J. Dougherty, Kathi Fisler, and Shri-
ram Krishnamurthi. A balance of power: Expressive, analyzable con-
troller programming. In HotSDN, 2013.

[28] Damien Pous. Relational algebra and kat in coq, February 2013.
Available at http://perso.ens-lyon.fr/damien.pous/ra.

[29] Jurriaan Rot, Marcello M. Bonsangue, and Jan J. M. M. Rutten. Coal-
gebraic bisimulation-up-to. In Peter van Emde Boas, Frans C. A.
Groen, Giuseppe F. Italiano, Jerzy R. Nawrocki, and Harald Sack, ed-
itors, SOFSEM, volume 7741 of Lecture Notes in Computer Science,
pages 369–381. Springer, 2013.

[30] Jan J. M. M. Rutten. Automata and coinduction (an exercise in
coalgebra). In Davide Sangiorgi and Robert de Simone, editors,
CONCUR, volume 1466 of Lecture Notes in Computer Science, pages
194–218. Springer, 1998.

[31] Robert Colin Scott, Andreas Wundsam, Kyriakos Zarifis, and Scott
Shenker. What, Where, and When: Software Fault Localization for
SDN. Technical Report UCB/EECS-2012-178, EECS Department,
University of California, Berkeley, 2012.

[32] Alexandra Silva. Kleene Coalgebra. PhD thesis, University of Ni-
jmegen, 2010.

[33] Alexandra Silva. Position automata for kleene algebra with tests. Sci.
Ann. Comp. Sci., 22(2):367–394, 2012.

[34] Robert Soulé, Shrutarshi Basu, Robert Kleinberg, Emin Gün Sirer,
and Nate Foster. Managing the Network with Merlin. In HotNets,
November 2013. To appear.

[35] Andreas Voellmy and Paul Hudak. Nettle: Functional reactive pro-
gramming of OpenFlow networks. In PADL, 2011.

[36] Andreas Voellmy, Junchang Wang, Y. Richard Yang, Bryan Ford, and
Paul Hudak. Maple: Simplifying SDN programming using algorithmic
policies. In SIGCOMM, 2013.

[37] Geoffrey G. Xie, Jibin Zhan, David A. Maltz, Hui Zhang, Albert G.
Greenberg, Gı́sli Hjálmtýsson, and Jennifer Rexford. On static reach-
ability analysis of IP networks. In INFOCOM, 2005.

[38] Hongyi Zeng, Peyman Kazemian, George Varghese, and Nick McKe-
own. Automatic test packet generation. In CoNEXT, 2012.

12 2014/3/26

