The following full text is a publisher's version.

For additional information about this publication click this link.
http://hdl.handle.net/2066/129072

Please be advised that this information was generated on 2018-11-27 and may be subject to change.
Every étendue comes from a local equivalence relation

Anders Kock
Mathematics Institute, Aarhus University, Ny Munkegade, DK-8000 Aarhus, Denmark

Ieke Moerdijk
Mathematics Institute, University of Utrecht, Budapestlaan 6, 3508 TA Utrecht, The Netherlands

Communicated by F.W. Lawvere
Received 6 December 1991

Abstract

We first prove that, under suitable connectedness assumptions, the equivariant sheaves for a local equivalence relation on a space (or a locale) form an étendue topos. Our main result is that conversely, every étendue can be obtained in this way.

Introduction

An étendue is a topos \(\mathcal{T} \) for which an object \(U \in \mathcal{T} \) exists such that \(U \to 1 \) is epi and the slice topos \(\mathcal{T}/U \) is localic, that is, \(\mathcal{T}/U \) is equivalent to the category of sheaves on a locale. These étendue topoi were introduced by Grothendieck and Verdier [1, p. 478 ff.] in the context of foliations and local equivalence relations. It was suggested that for a suitable local equivalence relation \(r \) on a topological space, the category of \(r \)-invariant sheaves form an étendue topos. In this paper, we will consider the notion of a local equivalence relation \(r \) on a locale \(M \). We will show that if \(r \) is locally simply connected (in an appropriate sense), then the category of \(r \)-invariant sheaves on \(M \) is a topos, and in fact an étendue. (We will also explain, in Example 2.3, how this result relates to a similar statement for local equivalence relations on topological spaces in [16].)

Our main result is that every étendue can be obtained this way. Indeed, in Theorem 7.1 we will show that for any étendue \(\mathcal{T} \), there exists a local equivalence relation...
relation r on some locale M for which there is an equivalence of topoi

\[\text{Sh}(M, r) = \text{Sh}. \]

Moreover, this local equivalence relation is locally simply connected in the sense referred to above. The construction of M and r is based on the observation that étendue topoi in some sense ‘classify’ local equivalence relations: every locally connected geometric morphism from a topos of sheaves on a locale M into an étendue \mathcal{T} gives rise to a canonical local equivalence relation on M. Furthermore, essential use is made of the construction from [6] of a localic cover with contractible fibres of any given topos.

For an étendue \mathcal{T} with enough points, there exists a topological space with a local equivalence relation r for which there is an equivalence of form (*), but this space has to be obtained by a completely different construction, cf. [10, 11]; here the reader will also find a discussion of the relation between étendues, foliations, holonomy and monodromy.

Our main result is a presentation theorem for étendues; we wish to point out that this result bears no relation to the type of presentation considered in [9].

1. Equivalence relations on locales

Let X be a locale. By an equivalence relation on X we shall always mean a sublocale $R \subseteq X \times X$ satisfying the usual conditions of reflectivity, symmetry, and transitivity, and in addition having the property that the two projection maps

\[d_0, d_1 : R \rightarrow X \]

are open maps. This implies that the coequalizer $\pi_R : X \rightarrow X/R$ of d_0 and d_1 is also an open map [14]. Note that, unlike the case of topological spaces, R need not coincide with the kernel pair of π_R, cf. [8]. Since R is reflexive and transitive, there is a (truncated) simplicial complex of locales

\[R \times_X R \cong R \Rightarrow X. \]

By applying the functor $\text{sh}(-)$, we obtain a similar diagram of topoi and geometric morphisms. We write $\text{sh}(X; R)$ for the associated descent topos. So the objects of $\text{sh}(X; R)$ are sheaves E on X equipped with ‘descent data’ $\theta_E : d_0^* E \rightarrow d_1^* E$ satisfying a unit and cocycle condition. (This construction will be discussed in greater generality in Section 3.) Equivalently, θ can be given in the form of an action by R on E, or of a transport on E along R, i.e. a map $R \times_X E \rightarrow E$ satisfying usual associativity and unit laws. The localic reflection of this topos $\text{sh}(X; R)$ is (the topos of sheaves on) the quotient locale X/R.

In the context of topological spaces, it is well known that $\text{sh}(X; R)$ coincides with $\text{sh}(X/R)$ in case the map $d_0 : R \rightarrow X$ has ‘enough local sections’ (cf. [1, p.
In fact, it is enough to require d_0 to be an open map; the argument also works for locales:

Proposition 1.1. For any equivalence relation R on a locale X (with d_0 and d_1 open), the map $\text{sh}(X; R) \to \text{sh}(X/R)$ is an equivalence of topoi.

Proof. It is enough to show that the topos $\text{sh}(X; R)$ is generated by subobjects of the terminal object 1. Such subobjects are R-saturated open sublocales of X, i.e. sublocales of the form $d_1d_0^{-1}(U) \subseteq X$, where $U \subseteq X$ is any open sublocale. Such R-saturated sublocales carry a unique action by R, hence are objects of $\text{sh}(X; R)$. Now consider an arbitrary object E of $\text{sh}(X; R)$, given as an étale map $p : E \to X$ with an action $\theta : R \times_X E \to E$. Let $s : W \to E$ be any section of $E \to X$ over an open $W \subseteq X$. We wish to show that W is covered by opens $W_i \subseteq W$ with the property that $s|_{W_i} : W_i \to E$ can be extended to an R-equivariant section

$$\tilde{s}_i : d_1d_0^{-1}(W_i) \to E.$$ (1.3)

Thus each such section \tilde{s}_i is a map in the topos $\text{sh}(X; R)$ from a subobject of 1 into E. All these sections \tilde{s}_i, for all possible sections $s : W \to E$, cover E since $p : E \to X$ is a local homeomorphism. So this indeed shows that $\text{sh}(X; R)$ is generated by subobjects of 1.

To construct these local extensions \tilde{s}_i from the given section $s : W \to E$, consider first the pullback $d_1^*(E|_W) = E|_W \times_W R$ of $E|_W \to W$ along $d_1 : R|_W = R \cap (W \times W) \to W$, as in

$$
\begin{array}{ccc}
d_1^*(E|_W) & \longrightarrow & E|_W \\
p' \downarrow & & \downarrow p \\
R|_W = R \cap (W \times W) & \longrightarrow & W
\end{array}
$$ (1.4)

The map p' in this diagram has two sections induced by $s : W \to E$, namely

$$s_1 = \theta(\text{id}, sd_0) : R|_W \to R \times_W E \to E, \quad s_2 = sd_1.$$ (In point-set notion, $d_1^*(E|_W) = \{(x, y, e) \mid (x, y) \in R, e \in p^{-1}(y)\}$, and $s_1(x, y) = \theta((x, y), s(x)), s_2(x, y) = s(y)$.) These two sections agree on the diagonal $\Delta : W \to R|_W$. Since p' is étale, it follows that they must agree on a neighbourhood N of the diagonal. We may assume that this neighbourhood is of the form

$$N = \bigcup_i R|_{W_i} = \bigcup_i R \cap (W_i \times W_i),$$

for some open cover $W = \bigcup_i W_i$. By definition of s_1 and s_2, this means that each restriction $s|_{W_i} : W_i \to E$ is $(R|_{W_i})$-equivariant. It follows that $s|_{W_i}$ can be extended to the R-saturation $d_1d_0^{-1}(W_i)$ of W_i. Indeed, let P be the kernel pair of
\[d_1 : d_0^{-1}(W_i) \rightarrow d_1 d_0^{-1}(W_i), \] as in the diagram

\[
\begin{array}{c}
\pi_0 \quad d_0^{-1}(W_i) \\
\pi_1 \quad d_1 d_0^{-1}(W_i)
\end{array}
\]

\[(1.5) \]

Since \(d_1 : R \rightarrow X \) is an open surjection by assumption, this diagram is a coequalizer, cf. [7]; furthermore, since \(s|_{W_i} \) is \((R|_{W_i})\)-equivariant, the cocycle condition for the action \(\theta \) by \(R \) on \(E \) implies that the map \(s_i : d_0^{-1}(W_i) \rightarrow E \), given in point-set terms by \(s_i(x, y) = \theta((x, y), s(x)) \), satisfies the identity \(s_i \pi_1 = s_i \pi_2 \). Thus \(s_i \) factors through the coequalizer \((1.5)\), to give the desired section \(\tilde{s}_i : d_1 d_0^{-1}(W_i) \rightarrow E \). \(\square \)

An equivalence relation \(R \) on a locale \(X \), as above, is said to be connected (respectively locally connected) if \(d_0 \) and \(d_1 \) are connected (respectively locally connected) maps of locales, i.e. if the corresponding geometric morphisms \(d_0, d_1 : \text{sh}(R) \rightarrow \text{sh}(X) \) are connected, respectively locally connected.

Proposition 1.2. If \(d_0, d_1 \) are connected (respectively locally connected) maps, the quotient map \(X \rightarrow X/R \) is a connected (respectively locally connected) map.

Proof. For the locally connected case, if \(d_0, d_1 : R \Rightarrow X \) are locally connected, then by [15] so is the geometric morphism \(\text{sh}(X) \rightarrow \text{sh}(X; R) \), and hence by Proposition 1.1, \(X \rightarrow X/R \) is a locally connected map. For the connected case, assume that \(d_0, d_1 : R \Rightarrow X \) are connected. Again by Proposition 1.1, it suffices to see that \(\text{sh}(X) \rightarrow \text{sh}(X; R) \) is a connected geometric morphism. Consider two \(R \)-equivariant sheaves \((E, \theta)\) and \((F, \mu)\), and a map \(\phi : E \rightarrow F \) in \(\text{sh}(X) \). We must prove that \(\phi \) is \(R \)-equivariant, i.e. a map in \(\text{sh}(X; R) \). Consider the two maps \(\alpha, \beta : d_0^* E \rightarrow d_0^* F \) described, in point-set notation, for \((x, y) \in R \) and \(e \in E_x\), by

\[
\alpha((x, y), e) = ((x, y), \mu((y, x), \phi((x, y), e)))) ,
\]

\[
\beta((x, y), e) = ((x, y), \phi(e)) .
\]

Thus \(\beta = d_0^*(\phi) \), and since \(d_0^* \) is full and faithful, \(\alpha = d_0^*(\alpha') \) for a unique map \(\alpha' : E \rightarrow F \) in \(\text{sh}(X) \). By the unit-condition for the actions \(\theta \) and \(\mu \), we have \(\Delta^*(\alpha) = \Delta^*(\beta) \), where \(\Delta : X \rightarrow R \) is the diagonal. Hence \(\alpha' = \wedge^* d_0^* \alpha' = \Delta^* \alpha = \Delta^* \beta = \phi \), and thus, applying \(d_0^* \), \(\alpha = \beta \). This identity expresses that \(\phi \) is an \(R \)-equivariant map. This proves the proposition. \(\square \)

As a consequence, we obtain the following:

Proposition 1.3. Let \(R \) be a connected equivalence relation on a locale \(X \). Then for any sheaf \(E \) on \(X \), there is at most one action by \(R \) on \(E \).

(If there is such an action, we call \(E \) an \(R \)-invariant sheaf.)
Proof. Let θ and θ' be two R-actions on E. Since the forgetful functor $\text{sh}(X; R) \to \text{sh}(X)$ is full and faithful, the identity map on E in $\text{sh}(X)$ must also be an R-equivariant map $(E, \theta) \to (E, \theta')$, thus $\theta = \theta'$. □

2. Local equivalence relations and sheaves

For a locale M, consider for each open $U \subseteq M$ the set $E_M(U)$ of equivalence relations R on U, as defined in Section 1. For open sublocales $V \subseteq U \subseteq M$ there is an evident restriction map $E_M(U) \to E_M(V)$, making E_M into a presheaf on M. By definition [1, p. 485], a local equivalence relation on M is a global section of the associated sheaf \tilde{E}_M. An equivalence relation R on any locale U gives rise to a local equivalence relation $L(R)$ on U. Let r be a local equivalence relation on M. An equivalence relation R on an open $U \subseteq M$ will be called a chart for r if $L(R)$ agrees with the restriction of r to U; if $V \subseteq U$, then $(V, R|_V)$ is also a chart for r; we call it a subchart of (U, R). An atlas for r is a family $\{(U_i, R_i)\}$ of charts for r such that the U_i's cover M. A family $\{(U_i, R_i)\}$ will be an atlas for some local equivalence relation iff for any two indices i and j, $U_i \cap U_j$ is covered by open W such that $R_i|_W = R_j|_W$. An atlas is a refinement of another if each chart of the former is a subchart of some chart of the latter.

By our conventions in Section 1, it follows that any local equivalence relation r has an atlas consisting of charts (U, R) for which $R = Z_U$ are open maps. Furthermore, r is said to be locally connected if any atlas for r can be refined by an atlas consisting of connected and locally connected charts, i.e. charts (U, R) for which $R = Z_U$ are connected and locally connected maps. Such an atlas will be called a connected atlas for r.

Following [1], we now define, for a local equivalence relation r on a locale M and a sheaf F on M, the notion of an r-transport on F. Consider for an open $U \subseteq M$ the set $T_F(U)$ of pairs (R, θ), where R is an equivalence relation on U and $\theta : R \times_U (F|_U) \to (F|_U)$ is an action by R on $F|_U$ (as in Section 1). With the obvious restrictions maps $T_F(U) \to T_F(V)$ for opens $V \subseteq U \subseteq M$, this gives a presheaf T_F on M, with a projection map $\pi : T_F \to E_M$. Passing to the associated sheaves, we obtain a map $\tilde{\pi} : \tilde{T}_F \to \tilde{E}_M$. An r-transport on the sheaf F is by definition a global section t of \tilde{T}_F such that $\tilde{\pi}(t) = r$. A sheaf equipped with an r-transport is called an r-invariant sheaf, or an r-sheaf. Such an r-transport is thus given by an open cover $\bigcup U_i = M$, equivalence relations R_i on U_i, and actions θ_i of R_i on $F|_{U_i}$ all locally compatible on intersections $U_i \cap U_j$. As before, we call $\mathcal{U} = \{(U_i, R_i, \theta_i)\}$ an atlas for t, and each of its members a chart for t.

Any atlas or chart for t has an evident underlying atlas or chart for r. We note that if \mathcal{U} is an atlas for r with underlying atlas \mathcal{U} for r, and \mathcal{V} is another atlas for r which refines \mathcal{U}, then \mathcal{V} can be refined by an atlas \mathcal{V}' for t which has the given \mathcal{V} as underlying atlas for r. It follows that for two sheaves with r-transport (F, t) and (F', t'), there exists atlases for t and t' with identical underlying atlas for r. It
also follows that if \(r \) is locally connected, any atlas for \(t \) can be refined by an atlas whose underlying atlas for \(r \) is connected.

In this paper, we shall only consider local equivalence relations \(r \) which are locally connected. For such an \(r \), it follows readily from Proposition 1.2 that for a given sheaf \(F \) on \(M \), there is at most one \(r \)-transport \(t \) on \(F \). Thus (the existence of) an \(r \)-transport on \(F \) is a property, rather than an additional structure. For a locally connected \(r \), we therefore define the category \(\text{sh}(M, r) \) to be the full subcategory of \(\text{sh}(M) \) consisting of sheaves on \(M \) which admit an \(r \)-transport (necessarily unique).

Remark 2.1. The property of being an \(r \)-sheaf on \(X \) is a local property. More explicitly, if \(q : Y \rightarrow X \) is an étale map (a local homeomorphism), then any local equivalence relation \(r \) on \(X \) induces, in an evident way, a local equivalence relation on \(Y \), which we denote \(q^* r \); if \(r \) is locally connected, then so is \(q^* r \); and conversely, provided \(q \) is surjective. In this case, it is clear that if \(E \in \text{sh}(X) \), then \(E \) is an \(r \)-sheaf iff \(q^* E \) is an \(q^* r \)-sheaf.

Remark 2.2. More generally, for an arbitrary local equivalence relation \(r \) on a locale \(M \) and two sheaves with \(r \)-transport \((F, t)\) and \((F', t')\), there is a straightforward definition of transport-preserving map \(F \rightarrow F' \), so that one obtains a category \(\text{sh}(M, r) \). Using the remarks in Section 1, one can easily show that in case \(r \) is locally connected, any sheaf map \(F \rightarrow F' \) is transport-preserving, so that for such \(r \), the fact that the forgetful functor \(\text{sh}(M, r) \rightarrow \text{sh}(M) \) is full and faithful is a result, rather than a definition.

Example 2.3. For any locale \(M \), there is a ‘maximal’ local equivalence relation \(r_{\text{max}} \) on \(M \), given by the single chart \((U, R)\), where \(U = M \) and \(R = M \times M \). If \(M \) is a locally connected locale, then \(r_{\text{max}} \) is also locally connected. The category \(\text{sh}(M, r_{\text{max}}) \) is exactly the category of locally constant sheaves on \(M \). This category is not in general a Grothendieck topos. For example [3, p. 314] when \(M \) is the Hawaiian earring, \(\text{sh}(M, r_{\text{max}}) \) is not closed under infinite sums; on the other hand, if \(\text{sh}(M, r_{\text{max}}) \) is a Grothendieck topos, it must have infinite sums, and these sums must be preserved by the forgetful functor, cf. loc. cit., Theorem 6; cf. also [10]. The fact that \(\text{sh}(M, r_{\text{max}}) \) is not a Grothendieck topos disproves Theorem 4.14 in [16].

Example 2.4. Let \(r \) be a (locally connected) local equivalence relation on a locale \(M \). For any locale \(T \), there is a sheaf \(T^{(r)} \) on \(M \) of germs of \(r \)-invariant maps \(M \rightarrow T \). A typical section of \(T^{(r)} \) over an open \(U \subseteq M \) is a map \(s : U \rightarrow T \) which has the property that \(U \) is covered by \(r \)-charts \((U_i, R_i)\) such that each restriction \(s|_{U_i} : U_i \rightarrow T \) factors through the quotient map \(U_i \rightarrow R_i/R_i \). This sheaf \(T^{(r)} \) has \(r \)-transport, hence is an object of \(\text{sh}(M, r) \). When \(T \) is the Sierpinski space, \(T^{(r)} \) is a subobject classifier for \(\text{sh}(M, r) \), and \(\text{sh}(M, r) \) is an elementary topos. This is discussed more fully in [10].
3. Simplicial topoi and descent

Recall that a simplicial topos is a simplicial object \(\mathcal{E} \) in the category of (Grothendieck) topoi, except that the simplicial identities are required to hold only up to coherent isomorphisms. Thus a simplicial topos consists of a sequence of topoi \(\mathcal{E}_n \) (\(n \geq 0 \)), and for each nondecreasing function \(\alpha : [n] \to [m] \) (where \([n] = \{0, 1, \ldots, n\} \)) a geometric morphism

\[
\mathcal{E}(\alpha) : \mathcal{E}_m \to \mathcal{E}_n ;
\]

furthermore, for each such \(\alpha : [n] \to [m] \) and \(\beta : [m] \to [k] \), there is given an isomorphism \(\theta_{\alpha, \beta} : \mathcal{E}(\alpha) \circ \mathcal{E}(\beta) \to \mathcal{E}(\beta \alpha) \), and these \(\theta \)'s are required to satisfy suitable coherence conditions. (Thus, a simplicial topos is a homomorphism of bicategories from the category \(\Delta^{op} \) into the bicategory of Grothendieck topoi.)

We adopt the standard notation from simplicial sets; for example, we write \(d_j : \mathcal{E}_n \to \mathcal{E}_{n-1} \) for \(\mathcal{E}(\partial_j) \), where \(\partial_j : [n-1] \to [n] \) is the strictly increasing function which omits \(j \) (for \(0 \leq j \leq n \)).

For each simplicial topos \(\mathcal{E} \), one can construct a universal augmentation \(D(\mathcal{E}) \), as in

\[
\cdots \Rightarrow \mathcal{E}_2 \Rightarrow \mathcal{E}_1 \Rightarrow \mathcal{E}_0 \to D(\mathcal{E}) .
\] (3.1)

The category \(D(\mathcal{E}) \) can be explicitly described in various equivalent ways; e.g. as the category of descent objects: thus an object of \(D(\mathcal{E}) \) is a pair \((\mathcal{E}, \mu)\) where \(\mathcal{E} \) is an object of \(\mathcal{E}_0 \) and \(\mu : d^n_0 \mathcal{E} \to d^n_1 \mathcal{E} \) is an isomorphism satisfying the appropriate unit and cocycle conditions (cf. [15, section 3]); the arrows in \(D(\mathcal{E}) \) between two such objects \((\mathcal{E}, \mu)\) and \((\mathcal{E}', \mu')\) are arrows \(\mathcal{E} \to \mathcal{E}' \) in \(\mathcal{E}_0 \) which are compatible with the ‘descent data’ \(\mu \) and \(\mu' \). It follows from the general existence theorem for colimits of Grothendieck topoi ([15, Section 2] and [12]) that \(D(\mathcal{E}) \) is a Grothendieck topos, and is the colimit of the diagram \(\mathcal{E} \). The augmentation geometric morphism \(a : \mathcal{E}_0 \to D(\mathcal{E}) \) has as its inverse image the forgetful functor \(a^* : D(\mathcal{E}) \to \mathcal{E}_0 \), so that \(a^*(\mathcal{E}, \mu) = \mathcal{E} \).

The following is part of [15, Theorem 3.6]:

Lemma 3.1. For a simplicial topos \(\mathcal{E} \), if all the face maps \(d_j : \mathcal{E}_n \to \mathcal{E}_{n-1} \) are open (respectively locally connected, or atomic), then so is the augmentation \(a : \mathcal{E}_0 \to D(\mathcal{E}) \). \(\square \)

In particular, if \(X \) is a simplicial locale, we obtain a simplicial topos \(\text{sh}(X) \) by constructing the topos of sheaves \(\text{sh}(X_n) \) on each locale \(X_n \), and hence a descent topos \(D(\text{sh}(X)) \), and Lemma 3.1 gives the following:

Lemma 3.2. For a simplicial locale \(X \), in which all the face maps \(d_j : X_n \to X_{n-1} \)
are étale, the augmentation \(\text{sh}(X_i) \rightarrow \mathcal{D}(\text{sh}(X_i)) \) is an atomic geometric morphism, and \(\mathcal{D}(\text{sh}(X_i)) \) is an étendue.

Proof. Since the \(d_j \) are étale, the induced geometric morphisms \(d_j : \text{sh}(X_n) \rightarrow \text{sh}(X_{n-1}) \) are atomic. By Lemma 3.1, the augmentation \(\text{sh}(X_0) \rightarrow \mathcal{D}(\text{sh}(X_0)) \), which is evidently surjective, must also be atomic. Since this augmentation is also clearly a localic geometric morphism, it must be a slice, and thus \(\mathcal{D}(\text{sh}(X_0)) \) is an étendue. □

A map of simplicial topoi \(f : \mathcal{F} \rightarrow \mathcal{E} \) is given by geometric morphisms \(f_n : \mathcal{F}_n \rightarrow \mathcal{E}_n \) for each \(n \geq 0 \), together with, for each \(\alpha : [n] \rightarrow [m] \), an isomorphism

\[
f_\alpha : f_n \circ \mathcal{F}(\alpha) \rightarrow \mathcal{E}(\alpha) \circ f_m,
\]

and these isomorphisms are required to be compatible with the isomorphisms \(\theta_{\alpha, \beta} \) for \(\mathcal{E} \) and \(\mathcal{F} \). Such a map \(f : \mathcal{F} \rightarrow \mathcal{E} \) induces a geometric morphism \(\mathcal{D}(f) : \mathcal{D}(\mathcal{F}) \rightarrow \mathcal{D}(\mathcal{E}) \) between descent topoi, which is compatible with the augmentations in the sense that the square

\[
\begin{array}{c}
\mathcal{F}_0 \\
\downarrow a_f
\end{array}
\begin{array}{c}
\mathcal{E}_0 \\
\downarrow a_e
\end{array}
\begin{array}{c}
\mathcal{D}(\mathcal{F}) \\
\downarrow \mathcal{D}(f)
\end{array}
\begin{array}{c}
\mathcal{D}(\mathcal{E})
\end{array}
\]

(3.2)

commutes up to canonical isomorphism. Later we will use the following lemma concerning connected geometric morphisms (these are morphisms whose inverse image functor is full and faithful).

Lemma 3.3. Let \(f : \mathcal{F} \rightarrow \mathcal{E} \) be a map of simplicial topoi. If \(f_0 \) is connected and \(f_1 \) is surjective, then the induced geometric morphism \(\mathcal{D}(f) : \mathcal{D}(\mathcal{F}) \rightarrow \mathcal{D}(\mathcal{E}) \) is again connected.

Proof. Consider two objects \((E, \mu) \) and \((E', \mu') \) in \(\mathcal{D}(\mathcal{E}) \). We wish to show that arrows \((E, \mu) \rightarrow (E', \mu') \) in \(\mathcal{D}(\mathcal{E}) \) correspond bijectively to arrows \(\mathcal{D}(f)^*(E, \mu) \rightarrow \mathcal{D}(f)^*(E, \mu') \) in \(\mathcal{D}(\mathcal{F}) \). Since \(f_0^* \) is full and faithful by assumption, it evidently suffices to show that for an arrow \(\alpha : E \rightarrow E' \) in \(\mathcal{E}_0 \), \(\alpha \) is compatible with descent data \(\mu : d_0^* \rightarrow d_0^* \) and \(\mu' : d_0^* \rightarrow d_0^* \) (in \(\mathcal{E}_1 \)) iff \(f_0^*(\alpha) \) is compatible with the induced descent data (in \(\mathcal{F}_1 \))

\[
f_1^*(\mu) : d_0^* f_0^*(E) \cong f_1^* d_0^*(E) \rightarrow f_1^* d_0^*(E) \cong d_1^* f_0^*(E)
\]

on \(f_0^*(E) \) and (similarly) \(f_1^*(\mu') \) on \(f_0^*(E') \). But this readily follows by the assumption that \(f_1^* : \mathcal{E}_1 \rightarrow \mathcal{F}_1 \) is a faithful functor. □
Recall that by the existence theorem for colimits [12, 15], already used in the construction of descent topoi $\mathcal{D}(\mathcal{C})$, the pushout topos $\mathcal{B} \cup_{\mathcal{A}} \mathcal{C}$ of any two geometric morphisms $f: \mathcal{A} \to \mathcal{B}$ and $g: \mathcal{A} \to \mathcal{C}$ between Grothendieck topoi exists,

$$
\begin{array}{ccc}
\mathcal{A} & \xrightarrow{g} & \mathcal{C} \\
\downarrow{f} & & \downarrow{v} \\
\mathcal{B} & \xrightarrow{u} & \mathcal{B} \cup_{\mathcal{A}} \mathcal{C}
\end{array}
$$

and can be constructed simply as follows: the objects of $\mathcal{B} \cup_{\mathcal{A}} \mathcal{C}$ are triples (B, C, u), where B is an object of the topos \mathcal{B} and C one of \mathcal{C}, while $v: f^*(B) \to g^*(C)$ is an isomorphism in the topos \mathcal{A}. An arrow $(B, C, v) \to (B', C', v')$ in the pushout topos $\mathcal{B} \cup_{\mathcal{A}} \mathcal{C}$ is given by a pair of arrows $\beta: B \to B'$ in \mathcal{B} and $\gamma: C \to C'$ in \mathcal{C} such that $v' \circ f^*(\beta) = g^*(\gamma) \circ v$ in \mathcal{A}. In the square (3.3), the inverse images u^* and v^* of the indicated geometric morphisms are the evident forgetful functors.

One can easily verify that for a pushout square, u^* is full and faithful whenever g^* is; in other words, we have the following:

Lemma 3.4. The pushout of a connected geometric morphism along any other geometric morphism is again connected (‘connectedness is preserved under co-base-change’).

Slightly more involved is the following lemma:

Lemma 3.5. Let $f: \mathcal{F}_1 \to \mathcal{E}_1$ be a map of simplicial topoi, with induced geometric morphism $\mathcal{D}(f): \mathcal{D}(\mathcal{F}_1) \to \mathcal{D}(\mathcal{E}_1)$. If $f_1: \mathcal{F}_1 \to \mathcal{E}_1$ is connected and $f_2: \mathcal{F}_2 \to \mathcal{E}_2$ is surjective, then the square (3.2) is a pushout.

Proof. Let us write \mathcal{P} for the pushout topos. Then the objects of \mathcal{P} are of the form

$$(F, \mu, E, v),$$

where F is an object of \mathcal{F}_0 with descent data $\mu: d^*_0 F \to d^*_1 F$, while E is an object of \mathcal{E}_0 and $v: F \to f_0^* E$ is an isomorphism. This gives an arrow $f_1^* d^*_0 E \to f_1^* d^*_1 E$ in \mathcal{F}_1: the broken arrow in the following diagram

$$
\begin{array}{ccc}
f_1^* d^*_0 E & \cong & d^*_0 f_0^* E \\
\downarrow{\cong} & & \downarrow{\mu} \\
f_1^* d^*_1 E & \cong & d^*_1 f_0^* E
\end{array}
$$
Since \(f_*^* \) is full and faithful by assumption, this arrow comes from a unique arrow \(\sigma : d_0^* E \to d_T^* E \). This arrow \(\sigma \) satisfies the cocycle condition in \(\mathbb{E}_2 \) because in \(\mathbb{F}_2 \), the map \(\mu \), and hence also \(f_1^*(\sigma) \), does, while \(f_2^* : \mathbb{E}_2 \to \mathbb{F}_2 \) is faithful by assumption. The arrow \(\sigma \) also satisfies the unit condition in \(\mathbb{E}_0 \) for a similar reason, since \(f_0^* : \mathbb{E}_0 \to \mathbb{F}_0 \) is again faithful (in fact \(f_0^* : \mathbb{E}_0 \to \mathbb{F}_0 \) is a retract of \(f_i : \mathbb{E}_i \to \mathbb{F}_i \), so \(f_0 \) is connected since \(f_i \) is). This shows that from an object \((3.4)\) in the pushout \(\mathcal{P} \), one can construct an object in \(\mathcal{D}(\mathbb{E}_i) \).

Conversely, any object \((E, \sigma)\) in \(\mathcal{D}(\mathbb{E}_i) \) gives an object \((F, \mu, E, \nu)\) in the pushout, where \(F = f_0^* E \) and \(\mu \) is defined as

\[
\mu : d_0^* F = d_0^* f_0^* E \cong f_1^* d_0^* E \xrightarrow{f_1^* \mu} f_1^* d_T^* E \cong d_T^* f_0^* E \cong d_T^* F,
\]

and \(\nu : F \to f_0^* E \) is defined to be the identity.

These constructions establish a suitable equivalence of categories \(\mathcal{D}(\mathbb{E}_i) \cong \mathcal{P} \), proving the lemma. \(\square \)

4. The topos defined by an atlas

This section is of auxiliary character. It defines a topos \(\text{sh}(M, \mathcal{U}) \) out of an atlas \(\mathcal{U} \) for a local equivalence relation \(r \) on the locale \(M \), and \(\text{sh}(M, \mathcal{U}) \) in general will depend on the choice of \(\mathcal{U} \) (and even, in the most general case, on some further choice of a ‘hypercovering’).

For any atlas \(\mathcal{U} = \{(U_i, R_i)\}_{i \in I} \) for a local equivalence relation, we construct a simplicial locale \(U \). (a hypercovering of \(M \), in fact): the locale \(U_0 \) of vertices is the disjoint sum

\[
U_0 = \coprod_{j \in I} U_j ,
\]

while the space \(U_1 \) of 1-simplices is defined as

\[
U_1 = \coprod_{i,j \in I} \coprod_{k \in K_{i,j}} U_{ijk} ,
\]

where \(K_{i,j} \) is an index set for some open covering \(U_{ijk} \) of \(U_i \cap U_j \) by sublocales on which \(R_i \) and \(R_j \) agree. The simplicial operators

\[
U_1 \Rightarrow U_0
\]

are defined in the obvious way (if we assume, as we may, that \(K_{i,i} = \{\ast\} \), a one-point set, and that \(U_{j,j,\ast} = U_j \)). We now define \(U \) as the coskeleton of the truncated simplicial locale (4.3).

\[
U_\ast = \text{Csk}(U_1 \Rightarrow U_0) .
\]
Thus, \(U_2 \) is a coproduct with an index set whose typical element is given by data \(((i_0, i_1, i_2), (k_0, k_1, k_2))\) with the \(i \)'s in \(I \), and \(k_2 \in K_{i_0 i_1} \), etc., and the summand corresponding to this index is

\[
U_{i_0 i_1 i_2} \cap U_{i_1 i_2 i_0} \cap U_{i_2 i_0 i_1}.
\]

The simplicial locale \(U_\ast \) has an evident augmentation \(a \) to \(M \) given by the inclusions \(U_i \rightarrow M \) \((i \in I)\). All maps in the diagram

\[
\cdots U_3 \rightarrow U_2 \rightarrow U_1 \rightarrow U_0 \rightarrow M
\]

are étale, so \(U_\ast \) is a simplicial sheaf on \(M \).

Lemma 4.1. The descent topos \(\mathcal{D}(\text{sh}(U_\ast)) \) is equivalent to the topos \(\text{sh}(M) \) of sheaves on \(M \), by an equivalence compatible with the augmentations (3.1) and (4.5).

Proof. We view \(U_\ast \) as a simplicial sheaf on \(M \). Since \(U_1 \rightarrow U_0 \times U_0 \) is surjective and \(U_\ast \) is defined as a coskeleton, \(U_\ast \) is clearly a hypercover of \(M \) (i.e. an internal contractible simplicial set inside \(\text{sh}(M) \)). By standard theory of simplicial covering spaces [5, Appendix] applied in \(\text{sh}(M) \), an object of \(\mathcal{D}(\text{sh}(U_\ast)) \) can be identified with a covering projection into \(U_\ast \). But by contractibility of \(U_\ast \), each such is a trivial covering projection, i.e. it corresponds to a sheaf of \(M \). This proves the lemma. \(\square \)

The sum of the equivalence relations \(R_i \) defines an equivalence relation \(R_0 \) on the sum \(U_0 \) (cf. (4.1)); similarly, the sum of the equivalence relations \(R_{i_1} \) on the sum \(U_1 \) (cf. (4.2)), and on \(U_2 \), etc. By the evident compatibilities, we get a morphism of simplicial locales

\[
q_n : U_n \rightarrow U_n/R_n \quad (n = 0, 1, 2, \ldots)
\]

and hence a morphism of their respective descent topos; we denote the descent topos for the simplicial topos \(\left(\text{sh}(U_n/R_n)\right)_n \) by \(\text{sh}(M, U_\ast) \). All this is depicted in the following diagram (utilizing Lemma 4.1 for the descent of the left-hand column):

\[
\begin{array}{cccc}
\text{sh}(U_\ast) & \rightarrow & \text{sh}(U_\ast/R_\ast) & \\
\downarrow & & \downarrow & \\
\text{sh}(U_0) & \rightarrow & \text{sh}(U_0/R_0) & \\
\downarrow & & \downarrow & \\
\text{sh}(M) & \rightarrow & \text{sh}(M, U_\ast) & \\
\end{array}
\]

(4.6)
Lemma 4.2. For any open atlas \mathcal{U} and choice of hypercovering U, the topos $\text{sh}(M, U)$ is an étendue.

Proof. If (W, R) is an open chart, and $V \subseteq W$ is an open sublocale, then one obtains an inclusion of an open sublocale $V/(R|_V) \to W/R$. In the right-hand column of (4.6) each map $U_n/R_n \to U_{n-1}/R_{n-1}$ is a sum of such inclusions, hence is étale. By Lemma 3.2, the descent topos $\text{sh}(M, U)$ is an étendue. □

The situation simplifies considerably for the case where r is an (open and) locally connected local equivalence relation. If \mathcal{U} is a connected atlas for r, we may choose the $U_{ij,k}$ so small that the charts $(U_{ij,k}, R_{ij,k})$ are all connected (and open, locally connected, of course). If this is the case, we say that the hypercovering U is connected; then the geometric morphisms

$$\text{sh}(U_n) \to \text{sh}(U_n/R_n) \quad (n = 0, 1)$$

are connected geometric morphisms. Consequently, we have by Lemmas 3.5 and 3.4, the following lemma:

Lemma 4.3. For a connected atlas \mathcal{U} and any connected hypercovering U, associated to it,

$$\text{sh}(U_n) \to \text{sh}(U_n/R_n) \quad (4.7)$$

is a push-out, and the geometric morphism $\pi : \text{sh}(M) \to \text{sh}(M, U)$ is again connected. □

(The geometric morphism π is also locally connected.)

Thus, $\text{sh}(M, U)$ may be identified, via π^*, with a full subcategory of $\text{sh}(M)$, and since the remaining parts of the diagram (4.7) do not depend on the choice of U, it follows that $\text{sh}(M, U)$ only depends on the atlas \mathcal{U} itself, not on the choice of hypercovering U, as long as U is taken to be connected. Therefore, we may write $\text{sh}(M, \mathcal{U})$ for $\text{sh}(M, U)$. It is an étendue, by Lemma 4.2. The objects of $\text{sh}(M, \mathcal{U})$ we call \mathcal{U}-sheaves.

We already observed that for r locally connected, $\text{sh}(M, r)$ is a full subcategory of $\text{sh}(M)$, so we may compare it with the $\text{sh}(M, \mathcal{U})$'s. It is clear from Proposition 1.1 that if the structure of r-sheaf on a sheaf E is given by an atlas \mathcal{U}, then $E \in \text{sh}(M, \mathcal{U})$; and conversely, every \mathcal{U}-sheaf is an r-sheaf, so that $\text{sh}(M, r)$ is the union of all the subcategories $\text{sh}(M, \mathcal{U})$ as \mathcal{U} ranges over the connected atlases for r. This union is actually a filtered one; for, any two connected atlases for r
have a common refinement, and it is easy to see that if \(\mathcal{U}' \) refines \(\mathcal{U} \), then \(\text{sh}(M, \mathcal{U}) \subseteq \text{sh}(M, \mathcal{U}') \).

5. Simply connected maps and étendues

Let \(f : Y \rightarrow X \) be a map of locales. We shall call \(f \) simply connected if

(i) \(f \) is connected (i.e. \(f^* : \text{sh}(X) \rightarrow \text{sh}(Y) \) is full and faithful),

(ii) for every sheaf \(E \) on \(Y \), if there exists an open cover \(\bigcup U_i = Y \) of \(Y \) and sheaves \(D_i \) on \(X \) such that \(E|_{U_i} \cong f^*(D_i)|_{U_i} \), then there exists a sheaf \(D \) on \(X \) such that \(E \cong f^*(D) \).

Condition (ii) expresses that if a sheaf \(E \) on \(Y \) is locally in the image of \(f^* \), then it is in the image of \(f^* \) (up to isomorphism). (The conditions together express the intuitive idea that \(f \) is a map with simply connected fibers, in a very weak way, but sufficient for our purposes in this paper. Surely for a general theory of simply connected maps, one should use a stronger notion, which is stable under pullback.)

Examples. (a) The unique map \(Y \rightarrow 1 \) is simply connected if every locally constant sheaf on the locale \(Y \) is constant. In particular, if a path-connected topological space \(T \) is simply connected in the usual sense (defined in terms of paths), then the unique map \(T \rightarrow 1 \) is simply connected.

(b) If \(T \rightarrow B \) is a locally connected map of topological spaces with connected and simply connected fibers (in the usual topological sense), then as a map of locales, \(f \) is simply connected in the sense just defined. (This is not trivial; a detailed proof is given in [lo, Lemma 3.21 and [ll].)

(c) The standard argument that a locally constant sheaf on the (localic) unit interval \(I \) is constant will (when applied internally in \(\text{sh}(X) \)) show that the projection \(X \times I \rightarrow X \) is simply connected, for every locale \(X \).

(d) Let \(Y \) be a connected and locally connected locale, and suppose that the restriction map \(Y^\triangle \rightarrow Y^{a\triangle} \) is a stable surjection (here \(\triangle \) is the standard 2-simplex, and \(a\triangle \) is its boundary). Then example (c) and [6, Lemma 3.41] show that the map \(Y \rightarrow 1 \) is simply connected.

(e) The previous example can be relativized: A connected and locally connected map of locales \(f : Y \rightarrow X \) is simply connected, in the sense defined above, whenever \((Y^\triangle)_X \rightarrow (Y^{a\triangle})_X \) is a stable surjection. (Here, for any locale \(A \), \((Y^A)_X \) denotes the relative exponential 'of maps \(A \rightarrow Y \) which become constant when composed with \(f : Y \rightarrow X^* \), i.e. the locale defined by the pull-back diagram

\[
\begin{array}{ccc}
(Y^A)_X & \longrightarrow & Y^A \\
\downarrow & & \downarrow f^A \\
X & \longrightarrow & X^A
\end{array}
\]
where the map $X \to X^d$ is the exponential adjoint of the projection map $X \times A \to A$.

The notion of simply connected map given here is related to local equivalence relations in the following way. For any open map $f : Y \to X$, its kernel pair $Ker(f) = Y \times_X Y$ defines an equivalence relation on Y. The induced local equivalence relation on Y, given by the atlas consisting of the single chart $(Y, Ker(f))$, is called the local kernel pair of f, and denoted $Lker(f)$. If the map f is locally connected, then so is this local equivalence relation on Y, and we have a category $sh(Y; Lker(f))$, together with an evident factorization of $f^* : sh(X) \to sh(Y)$ through the forgetful functor $sh(Y; Lker(f)) \to sh(Y)$.

The following is now obvious from the definition, and from Proposition 1.1.

Lemma 5.1. A locally connected map $f : Y \to X$ is simply connected iff f^* induces an equivalence of categories $sh(X) \cong sh(Y; Lker(f))$. □

An equivalence relation R on a locale X is said to be simply connected if the quotient map $X \to X/R$ is a simply connected map. (If $d_0, d_1 : R \to X$ are locally connected, it can be shown that $X \to X/R$ is simply connected whenever d_0, d_1 are; but we will neither use nor prove this here.) Moreover, an atlas for a local equivalence relation is called simply connected if all its charts are; and a local equivalence relation r is called locally simply connected if every atlas for r can be refined by a simply connected atlas (this implies that r is locally connected).

Lemma 5.2. Let r be a locally connected local equivalence relation on the locale M, and let \mathcal{U} be a simply connected atlas for r. Then the inclusion functor $sh(M, \mathcal{U}) \to sh(M, r)$ is an equivalence of categories.

Proof. The inclusion functor is a functor between full subcategories of $sh(M)$, hence is full and faithful. To see that it is essentially surjective, consider a sheaf E on M with r-transport. We have to show that there exists an atlas for this r-transport with underlying r-atlas the given atlas \mathcal{U}. By the uniqueness of transport, this means that we have to show that for any chart (U, R) of \mathcal{U}, the restricted sheaf $E|_U$ is isomorphic to $\pi^*(D)$ for some sheaf D on U/R (where π is the quotient map $U \to U/R$). Since E has r-transport, there exists an atlas V for r, whose charts (V_i, K_i) act on $E|_{V_i}$, so for the given U, there exists a covering $\bigcup V_i$ of U such that for each index i there exist a sheaf D_i on V_i/R_i with $E|_{V_i} \cong \pi_i^*(D_i)$, where $\pi_i : V_i \to V_i/R_i$ is the quotient map. Let $\mu_i : V_i \to U$ and $\nu_i : V_i/R_i \to U/R$ be the inclusions, so that $\nu_i \pi_i = \pi \mu_i$. Then $D_i \cong \nu_i^* \nu_i^*(D_i)$, so $E|_{V_i} \cong \pi_i^* \nu_i^*(\nu_i^*(D_i)) \cong \mu_i^* \pi^*(\nu_i^*D_i) \equiv \pi^*(\nu_i^*D_i)|_{V_i}$. Thus $E|_U$ is in the image of π^*, up to isomorphism. Since by assumption the quotient map $\pi : U \to U/R$ is simply connected, it follows that $E|_U$ is isomorphic to $\pi^*(D)$ for some sheaf D on U/R, as required. □

This lemma, together with Lemma 4.2, yields the following theorem:
Theorem 5.3. Let \(r \) be a local equivalence relation on a locale \(M \). If \(r \) is locally simply connected, then \(\text{sh}(M, r) \) is an étendue topos. \(\square \)

6. Maps from locales into étendues

Let \(\mathcal{T} \) be a fixed étendue topos. In this section, we will show how for any locale \(M \), a locally connected geometric morphism \(a : \text{sh}(M) \to \mathcal{T} \) gives rise to a local equivalence relation on \(M \). Recall that for locally connected \(a \), the inverse image functor \(a^* \) has a left adjoint \(a_! : \text{sh}(M) \to \mathcal{T} \).

Lemma 6.1. The locale \(M \) has a basis of open sublocales \(U \subseteq M \) with the property that \(\mathcal{T}/a_*U \) is a localic topos.

Proof. Let \(G \) be an object of \(\mathcal{T} \) for which \(\mathcal{T}/G \) is a localic topos, and construct the locale \(B \) by the pull-back

\[
\begin{array}{ccc}
\text{sh}(B) & \longrightarrow & \mathcal{T}/G \\
q \downarrow & & \downarrow p \\
\text{sh}(M) & \longrightarrow & \mathcal{T}
\end{array}
\]

Then, by construction of \(B \), the topos \(\text{sh}(B) \) is equivalent over \(\text{sh}(M) \) to \(\text{sh}(M)/a^*(G) \). And \(q \) is induced by an étale map (a local homeomorphism) of locales, also denoted \(q : B \to M \). The required basis for \(M \) consists of those open \(U \subseteq M \) over which \(q \) has a section. Indeed, let \(s : U \to B \) be a section of \(q \). This section can be viewed as a map \(s : U \to a^*(G) \) in \(\text{sh}(M) \), and hence corresponds by adjunction to a map \(\hat{s} : a_!(U) \to G \) in \(\mathcal{T} \). But then the topos \(\mathcal{T}/a_!(U) = (\mathcal{T}/G)/\hat{s} \) is localic since \(\mathcal{T}/G \) is. \(\square \)

By the lemma, any open \(U \subseteq M \) in this basis for \(M \) gives rise to a locale \(a_!(U) \) and a map \(\varepsilon_U : U \to a_!(U) \), for which there is an equivalence of topoi under \(\text{sh}(U) \), as in

\[
\begin{array}{ccc}
\text{sh}(U) & \xrightarrow{\varepsilon_U} & \text{sh}(a_!(U)) \\
\downarrow & & \downarrow \\
\text{sh}(M) & \longrightarrow & \mathcal{T}
\end{array}
\]

Notice that by construction, \(\varepsilon_U \) is a connected and locally connected map of locales. Thus, since connected locally connected maps are stable under pullback,

\[
R_U := \text{Ker}(\varepsilon_U) \subseteq U \times U
\]
is a connected and locally connected equivalence relation on U. We shall prove the following:

Lemma 6.2. The charts (U, R_U), for all open $U \subseteq M$ for which $\mathcal{T}/a, (U)$ is localic, form an atlas for a local equivalence relation on M.

We will call this local equivalence relation the *local kernel of a*, and denote it by $\text{Lker}(a)$. (This is compatible with the similar notation used in Section 5.) Clearly $\text{Lker}(a)$ is locally connected.

Proof. For two such open $V \subseteq U \subseteq M$, it is enough to show that $\text{Lker}(e_U)V = \text{Lker}(e_V)$. Consider the diagram

$$
\begin{array}{ccc}
V & \xymatrix{ & U \ar[dl]_{e_V} \ar[dr]^{e_U} } \\
\end{array}
\xymatrix{ a_*V & a_*U \ar[l]_{a_*(i)} }
$$

obtained from the inclusion $i : V \subseteq U$. Since $\mathcal{T}/a,V \to \mathcal{T}/a,U$ is a map of slice topoi over \mathcal{T}, the corresponding map of locales $a_*V \to a_*U$ is étale. Thus

$$
\text{Lker}(e_V)V = \text{Lker}(e_U)i \\
= \text{Lker}(a_*(i)e_V) \\
= \text{Lker}(e_V),
$$

where the latter equality holds by the following lemma.

Lemma 6.3. Let $f : Y \to X$ and $e : X \to B$ be maps of locales, where e is étale. Then $\text{Lker}(f) = \text{Lker}(ef)$.

Proof. Consider an open $U \subseteq X$ such that $e|_U$ is a homeomorphism $U \cong e(U)$. Then

$$
\text{Ker}(f)|_{f^{-1}U} = \text{Ker}(f|_{f^{-1}U}) \\
= \text{Ker}(ef|_{f^{-1}U}) \\
= \text{Ker}(ef)|_{f^{-1}U}.
$$

Since this holds for all such U, $\text{Ker}(f)$ and $\text{Ker}(ef)$ agree on an open cover of Y. Hence $\text{Lker}(f) = \text{Lker}(ef)$. □

This construction of the local equivalence relation $\text{Lker}(a)$ on M from the
locally connected geometric morphism $a : \text{sh}(M) \to \mathcal{T}$ enjoys various naturality properties. We single out the following. Recall the #-construction of Section 2 for lifting a local equivalence back along an étale map. Then the following holds:

Lemma 6.4. For a pull-back square

\[
\begin{array}{ccc}
\text{sh}(N) & \xrightarrow{b} & \mathcal{R} \\
\downarrow{q} & & \downarrow{p} \\
\text{sh}(M) & \xrightarrow{a} & \mathcal{T}
\end{array}
\]

where a (and hence b) are locally connected geometric morphisms and p is an étale map between étendues, we have $q^* (\text{Lker}(a)) = \text{Lker}(b)$.

Proof. Let $V \subseteq N$ be an open sublocale of N, so small that $q|_V$ is a homeomorphism $V \cong q(V)$, and moreover so small that both $\mathcal{R}/b|_V$ and $\mathcal{T}/a|_V (q(V))$ are localic topoi. (Note that this property is inherited by smaller open sublocales.) Then there is an induced map $b_* (V) \to a_* (q(V))$ which is étale (in fact a homeomorphism) since p is. The result follows from Lemma 6.3. \(\square\)

Remark 6.5 (which we shall not use). If r is a local equivalence relation on a locale M, and \mathcal{U} is a connected atlas for r, then there is an induced geometric morphism $a : \text{sh}(M) \to \text{sh}(M, \mathcal{U})$, as in Section 4. The local equivalence relation $\text{Lker}(a)$ is in general larger than r. It coincides with r if r has an atlas consisting of charts (U, R) with the property that R is the kernel pair of $U \to U/R$.

7. The main theorem

We now prove the result announced in the title of the paper:

Theorem 7.1. For every étendue \mathcal{T}, there exists a locale M and a locally simply connected local equivalence relation r on M for which there exists an equivalence of topoi $\text{sh}(M, r) \simeq \mathcal{T}$.

In the proof, we shall use the following construction from [6]: for any topos \mathcal{E}, there exists a locale $X = X_{\mathcal{E}}$ in \mathcal{E} such that X is (internally) contractible and locally contractible, and moreover such that the topos $\mathcal{E}[X]$ of \mathcal{E}-internal sheaves on X is (externally) localic. In particular, this locale X has (internally in \mathcal{E}) a basis, containing X itself, and consisting of open $U \subseteq X$ which are connected and locally connected, and 'simply connected' in the sense that $U^\triangleright \to U^*\triangleright$ is a stable surjection of locales in \mathcal{E} (cf. Example (d) in Section 5 for notation). Moreover, these properties of the internal locale X are stable under pull-back along an
arbitrary geometric morphism $f : \mathcal{T} \to \mathcal{C}$. In the special case where $f : \mathcal{T} \to \mathcal{C}$ is such that both \mathcal{T} and $\mathcal{T}[f^*(X)]$ are localic, then $\mathcal{T}[f^*(X)] \to \mathcal{T}$ corresponds to an (external) map of locales $b : B \to A$, and the stable internal properties of X just listed can be rephrased as follows: b is an open surjection, and B has a basis, containing B itself, which consists of open sublocales $U \subseteq B$ with the property that each restriction $b|_U : U \to b(U)$ satisfies the conditions for the map $f : T \to X$ in Example (e) in Section 5; in particular, each such restriction is a simply connected map.

For the proof of the theorem, consider for the given étendue \mathcal{T} such a locale $X = X_\mathcal{T}$ in \mathcal{T}. Since $\mathcal{T}[X_\mathcal{T}]$ is localic, there is a locale M and a geometric morphism $a : \text{sh}(M) \to \mathcal{T}$ for which $\text{sh}(M) \simeq \mathcal{T}[X_\mathcal{T}]$, over \mathcal{T}. Moreover, a is a connected and locally connected geometric morphism, since $X_\mathcal{T}$ is a connected and locally connected locale in \mathcal{T}.

Now let G be an object with full support in \mathcal{T} for which \mathcal{T}/G is a localic topos (such a G exists since \mathcal{T} is an étendue). Thus there is a locale A and an étale surjection $p : \text{sh}(A) \to \mathcal{T}$ such that $\mathcal{T}/G \simeq \text{sh}(A)$, over \mathcal{T}. It follows that the pull-back of p along $a : \text{sh}(M) \to \mathcal{T}$ is again étale. Hence this pull-back is a localic topos, say $\text{sh}(B)$ as in

$$
\begin{array}{ccc}
\text{sh}(B) & \xrightarrow{b} & \text{sh}(A) \\
\downarrow^{q} & & \downarrow^{p} \\
\text{sh}(M) & \xrightarrow{a} & \mathcal{T}
\end{array}
$$

The local equivalence relation r on M in the statement of the theorem will be $\text{Lker}(a)$, as constructed in Section 6. A comparison of the pushout squares in the following two lemmas will now prove the equivalence of topoi $\text{sh}(M, r) \simeq \mathcal{T}$ asserted in the theorem.

Lemma 7.2. The pull-back square (7.1) of topoi is also a pushout square.

Proof. The maps p and q are étale surjections, hence descent maps [7, 13]. In other words, $\text{sh}(M)$ is obtained by descent from the simplicial topos of sheaves on the simplicial locale

$$B_. = (\cdots B \times_M B \times_M B \rightrightarrows B \times_M B \rightrightarrows B),$$

and \mathcal{T} is similarly obtained from the simplicial topos

$$\text{sh}(A_.) = (\cdots \text{sh}(A) \times_{\mathcal{T}} \text{sh}(A) \rightrightarrows \text{sh}(A)).$$

Moreover, all the components of the simplicial map $\text{sh}(B_.) \to \text{sh}(A_.)$ are pull-
backs of the map \(a : \text{sh}(M) \to \mathcal{T} \), hence are connected and locally connected. The lemma thus follows from Lemma 3.5. \(\square \)

Lemma 7.3. With \(A, B, \) etc. as above, there is a pushout square of topoi

\[
\begin{array}{ccc}
\text{sh}(B) & \xrightarrow{b} & \text{sh}(A) \\
\downarrow{q} & & \downarrow \\
\text{sh}(M) & \longrightarrow & \text{sh}(M, \text{Lker}(a))
\end{array}
\]

Proof. Note first that by the properties of the \([6]\)-construction listed above, the map \(b : B \to A \) is connected, locally connected, and simply connected. Hence by Lemma 5.1, the map \(b : B \to A \) induces an equivalence of categories \(\text{sh}(A) \cong \text{sh}(B, \text{Lker}(b)) \). In particular, the latter is a topos. Write \(\mathcal{P} \) for the pushout of \(\text{sh}(B) \to \text{sh}(B, \text{Lker}(b)) \) and \(q : \text{sh}(B) \to \text{sh}(M) \). By the explicit description of pushouts of topoi given in Section 3, \(\mathcal{P} \) is the category of triples \((F, F', \sigma)\), where \(F' \) is a \(\text{Lker}(b) \)-sheaf on \(B \), \(F \) is a sheaf on \(M \), and \(\sigma \) is an isomorphism \(q^*(F) \cong F' \) of sheaves on \(B \). In other words, \(\mathcal{P} \) is (equivalent to) the category of sheaves \(F \) on \(M \) such that \(q^*(F) \) is an \(\text{Lker}(b) \)-sheaf. But, by Lemma 6.4, \(\text{Lker}(b) = q^* \text{Lker}(a) \), so by Remark 2.1, we conclude that the pushout \(\mathcal{P} \) is equivalent to the category \(\text{sh}(M, \text{Lker}(a)) \). This proves the lemma. \(\square \)

Note that we have proved that \(\text{sh}(M, \text{Lker}(a)) \) is a topos without invoking Theorem 5.3 and the (as yet unproved) fact that \(\text{Lker}(a) \) is locally simply connected, as we asserted in the theorem. To prove this fact, it suffices to show that \(\text{Lker}(b) \) is locally simply connected, since \(q : B \to M \) is \'etale and \(\text{Lker}(b) = q^* \text{Lker}(a) \). But as explained above, the properties of the \([6]\)-construction imply that \(B \) has a basis of open sublocales \(U \subset B \) for which \(U \to b(U) \) is a connected, locally connected, and simply connected map, so that \(\text{Ker}(b|_U) \) is a simply connected (and locally connected) equivalence relation on \(U \). Since the collection of these \(U \subset B \) form a basis for \(B \), the local equivalence relation \(\text{Lker}(b) \) must be locally simply connected.

This completes the proof of the theorem. \(\square \)

Acknowledgment

The authors wish to thank their respective institutions, Aarhus University and University of Utrecht, for financial and other support that made frequent mutual visits possible; and the University of Cambridge, Peterhouse and St. John’s College for their hospitality to both authors during some of the most decisive periods of our joint collaboration.
References