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THE JOURNAL OF SYMBOLIC Looic 

Volume 62, Number 4, Dec. 1997 

MINIMAL MODELS OF HEYTING ARITHMETIC 

IEKE MOERDIJK AND ERIK PALMGREN 

?1. Introduction. In this paper, we give a constructive nonstandard model of 
intuitionistic arithmetic (Heyting arithmetic). We present two axiomatisations of 
the model: one finitary and one infinitary variant. Using the model these axioma- 
tisations are proven to be conservative over ordinary intuitionistic arithmetic. The 
definition of the model along with the proofs of its properties may be carried out 
within a constructive and predicative metatheory (such as Martin-Ldf's type the- 
ory). This paper gives an illustration of the use of sheaf semantics to obtain effective 
proof-theoretic results. 

The axiomatisations of nonstandard intuitionistic arithmetic (to be called HAI 
and HAIt,, respectively) as well as their model are based on the construction in [5] 
of a sheaf model for arithmetic using a site of filters. In this paper we present a 
"minimal" version of this model, built instead on a suitable site of provable filter 
bases. The construction of this site can be viewed as an extension of the well-known 
construction of the classifying topos for a geometric theory which uses "syntactic 
sites". (Such sites can in fact be used to prove semantical completeness of first order 
logic in a strictly constructive framework, see [6].) 

We should mention that for classical nonstandard arithmetics there are several 
nonconstructive methods of proving conservativity over arithmetic, e.g. the com- 
pactness theorem, Mac Dowell-Specker's theorem [3]. A constructive conservation 
result was obtained by Dragalin [2] for the classical version of HAI. His argument 
used a boolean model construction. Alternatively, this can be proved by formal- 
ising definable ultrapowers in classical arithmetic. Coquand and Smith [1] proved 
conservativity of a weaker theory of nonstandard arithmetic (essentially our HAI 
without axioms (IV) and (VII)). 

The paper is organised as follows. In Section 2 we present the nonstandard 
arithmetic and some of its extensions and properties. As a prelude to the central 
results we give in Section 3 a universal model of intuitionistic arithmetic using a full 
subcategory of the site of filter bases. The filter base model is defined and studied 
in Section 4. 
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MINIMAL MODELS OF HEYTING ARITHMETIC 1449 

?2. The nonstandard arithmetic. The theory HAI is an extension of intuitionistic 
arithmetic HA. We expand the arithmetical language of HA with the unary predicate 
St and the denote the resulting language L'. The intended meaning of St(x) is that 
x is a standard number. The seven axiom groups of HAI are: 

(I) The axioms of HA in the arithmetical language. 
(II) St(x) A x = y -* St(y). 

(III) St(xl) A.. A St(xn) -* St( (xI,... , Xn)), for any function symbol f of HA. 
(IV) St(x) -* St(x). 

(V) 3x -St(x). 
(VI) The external induction schema. For any formula A (x, y) of the expanded 

language L' we assume 

A(X, 0) A Vsty [A(X, y) - A(X, s(y))] sty A(X, y), 

where Vsty... is shorthand for Vx (St(x) -* ..). 
(VII) The overspillprinciple. For an arithmetical formula A (X, y): 

VSty A(X, y) -) ]y St(y) A (Vu < y) A(X, u). 

From (I), (II) and (VI) it follows that the standard numbers consititute an initial 
segment: 

(1) Vxy [St(y) Ax <y -* St(x)]. 

In a classical version the overspill principle would be redundant since it then follows 
from (1) and the induction schema of (I). The theory HAI is in fact consistent with 
a non-classical axiom 

(NC) -'Vx (St(x) V - St(x)) 

(see Theorem 4.10). The model to be constructed validates the following infinitary 
rule 

(co -rule) F (T) H- A (-X, n) for all numerals n 
F(T) H VstyA(Y y) 

The infinitary calculus, HAIc,,, obtained by to HAI adding this rule will still be 
conservative over HA (Corollary 4.1 1). 

One might also try to extend HAI with the following transfer principle 

(TR) VstYX[Ast(X) < - A*(X)] 

for any arithmetical formula A(X), where Ast denotes the formula resulting when 
restricting the quantifiers of A to St. However we have 

PROPOSITION 2.1. HAI + (TR) proves the principle of excluded middle for all arith- 
meticalformulas. 

PROOF. We prove A V -,A for arithmetical A by induction on the number of 
quantifiers. For quantifier free A this is immediate, since = is decidable. Suppose 
VxVy- (A (x, -) V -A (x, y)). By induction on z we obtain for all y 

(2) Vz [(3x < z) A (x, ) V (Vx < z) A (X -)] 
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1450 IEKE MOERDIJK AND ERIK PALMGREN 

(3) Vz [(3x < z) -A(x,-) V (Vx < z) A(xx)]. 

Let - be standard numbers and let z be infinite. From (2) then follows 3xA (x, y-) V 
Vstx ,A(x, 5). By the transfer principle, 3Stx Ast(x, -) V Vstx ,Ast(x, -). Sincey5 
were arbitrary, we have again by transfer and logic, 

Vy [3x A (x, y-) V-3x A (x,7)]. 

Analogously, we obtain from (3) 

y [Vx A (x, -) V -Vx A (x,57)]. H 

REMARKS 2.2. By inspecting the proof we see that assuming transfer for arith- 
metical 3-A-formulas implies the principle of excluded middle for the very same 
formulas. However, the theory iHAW of [8] has such a restricted transfer principle, 
but induction only on standard natural numbers. This answers a question in [5, 
Remark 2.7]. 

A natural question is whether transfer holds in the model if we start out with 
Peano arithmetic (PA) instead of HA. Remark 4.12 below answers the question in 
the negative. 

?3. The minimal model of arithmetic. We construct a syntactic site from the 
formulas of arithmetic and then we build a universal (and minimal) model of 
HA using sheaves over this site. For sequences of variables 

- 
= x1,... , xn and 

YI= yl, ,yAn we letx = y-abbreviate the formula xl = yi A*.. A xn = Yn. As 
usual we write o (x) when the free variables of o are among Yx. 

DEFINITION 3.1. The syntactic category Sfor HA. The objects of the category are 
pairs (a, x) where o (x) is an arithmetical formula. The morphisms (or arrows) 
from (a, x) to (TV 5-) are triples (h; 0; v) such that 0(-u, -v) is an arithmetical formula 
which is provably functional in HA: 

(a) HA H V[ko(-s) -* 3]w / l(y ) A 0(_s )], 
(b) HA Vswz[F ( (-s) A 0(-s, TO A 0(-s, _z) 3-- w 

It is assumed that the substitutions are always done with fresh variables (computable 
from the arrows and objects). We use o (Y) as alternate notation for (a, x), and 
0 (Tu; v) for (ii; 0; -v). Two such arrows 0 (iu; -v) and 0'(iu'; v') are equal if 

HA H V [k (s) -* V (0(-s W) 3 0(s W))I 

The identity arrow on (a, Y) is given by (x; x = 5y; jy), where the sequences x and 5 
have no common variable. The composition of arrows 0 (iu; v) and p (fw; s) is 

(x; 3z_ 0(x, z) A p(z, y); y). 

LEMMA 3.2. The category S has pullbacks and terminal object, i. e., allfinite limits. 

PROOF. This is essentially straightforward. A terminal object is, e.g., (x = 0, x). 
The construction of the pullback object of the arrows 0 (x; -) : o (T) -* Vt (5-) and 
p(u;y): y (-u) -- yV (5-) is similar to the set-theoretic case: (s, -w, O (s) A y (T) A 
30z (s, z) A p(w, Z)). H 

We define the site on S by giving its base of coveringfamilies [4, Definition 111.2.2]. 
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MINIMAL MODELS OF HEYTING ARITHMETIC 1451 

DEFINITION 3.3. The syntactic site S = (S, J) is given by the following base J. 
The family of morphisms (ai (xi, 7): oj (xi,) -* vi(y))k is a covering of V(y-) if 

k 

HA F-Vu X 
[(-u) V 3-xi j(-sXi) A ai (Ti, u)] 

L =1 

If an arrow by itself forms a covering family, it is called a covering arrow. 

The following lemma provides plenty of sheaves over this site. 

LEMMA 3.4. The site (S, J) is subcanonical, i.e., every representable presheaf Homs 
(-, (y/, ,)) over S is a sheaf 

PROOF. We omit the straightforward proof, which is analogous to that of Theorem 
4.3 below. .H 

We are now ready to define the universal sheaf model of HA denoted [N]s. 

* The type of natural numbers is interpreted as the representable sheaf 

[N] = Homs(-, (z = z, z)). 

* The constant 0 is interpreted by the natural transformation 1 [N] given by 
?0](,) (a) = (x; z = 0; z), where z ? Y. 

* A function symbol f of type N n - N is interpreted by a natural transformation 

[fI: [NIn [N]. It is defined by letting, for ai(Yx;zi),... ana(Xn;Zn) E 

[N]V(, x), 

[If1() (a (xz;zl) . an (Xn; Zn)) = (; ]i A ai(uvi) A f(V) = z;z) 

where -i, z and v = v1,... , vn are freshly chosen variables. 
* For the equality relation define for a(x1, z1), Y(X2, Z2) E IN ((, X) 

IIfX(a (-x1 zi), y(2 Z2)) 

4==- HA V V[o (Y) - 3yz a(x, y) A y(x, z) A y = z]. 

This is indeed an (S, J)-relation, i.e., [=] is monotone and it has the cover property: 
if (fE : fi(Xi) -) f (y))ki is a cover and I( )(ai Pi, y ? Pi) holds for all 

= 1,... ,k, then already I1(a,y)( y). 

It is straightforward to check that this constitutes a model. Let IF be the forcing 
relation associated with the model. We will usually write V/(X) IF- A(a) instead of 
the formally correct (V/, x) IF A((x; a; y)) since the relevant data can be read off 
from the shorter notation. 

THEOREM 3.5. Let A (5-) be an arithmetical formula, where y =y, . . . , Yn. Then 
for parameters a, (xl, zi), ... I an (_Xn I Zn) E IN](V/, x) we have 
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1452 IEKE MOERDIJK AND ERIK PALMGREN 

PROOF. By induction on the complexity of A. We do two illustrative cases. 

Case A = I: By definition V/(Y) IF I(a1, ... , an) if, and only if, Vy(x) has an 
empty cover, i.e., HA F- [VY() - I]. Since each cai is functional on V/ (x) this is 
equivalent to 

HA [- VuTy'(ii) A ,y) -) I], 

where zi(u,yj) = A7i=1 c (uyi). 

Case A(y1,... ,y,) = 3z B(y1,... YnZ): We prove only the (?)-direction. 
Suppose 

(4) HA H Vuy [ '(-U) A i(uj) -3 A(y) 

Let y"'(T, z) = y,(ii) A 3-jZ(ii, y) A B(y, z). By (4), the projection r I = (iU, z;ii = 
T; v) : V'( u, z) -*t V (Y) is a covering arrow. Define a second projection 7r2 

( V/', -, z) - ) (w = w, w) by q = (T, z; z = w; w). It follows trivially that 

HA H Vz y w [yi'(-u,z) Au =v /A (v,y) Az = w -* B(y,w)]. 

So by the inductive hypothesis, 

'(U, Z) IF B(a ?o 7n,. .. , an 0 ill, 72). 

Since 7n1 is a covering arrow we have by definition 

V(-U) IF A(al,... an). H 

COROLLARY 3.6 (Completeness Theorem). A closed arithmetical formula is true 
in the model I[Ns exactly when it is provable in HA. 

PROOF. This follows from the previous theorem, by considering the equivalence 
at a terminal object in S. H 

REMARK 3.7. The above completeness proof is entirely constructive and can be 
formalised in a predicative metatheory. It goes through for any first order theory 
which has at least one closed term. For more details see [6]. 

We recall the notion of elementary embedding between first order structures living 
in two different topoi, introduced in [5]. Let Xf be an L-structure in 8, and let A" 
be another one but in 8". An elementary embedding (ph): (I,A") (8,) 
consists of a geometric morphism p: 8" - 8' and a homomorphism of L-structures 
h: p* (A) -*> I such that for an L-formula A (x1,... ,Xn) and arbitrary arrows 

...an: E -A Min?, 

(5) E U- AX(aln. .. , arn) <=,> p*(E) Ah'A(h ? h*@ ),*** P*(an)) 

( IF and Ik' refer to the Beth-Kripke-Joyal semantics for 8' and 8", respectively.) 
Note that it is X' that is embedded in ./6'. In case only the direction (X-) of (5) holds, 
the pair (p, h) is called a weak elementary embedding. If 8' is classical (boolean) 
and p is surjective, these notions of embedding are in fact the same. 

THEOREM 3.8 (Minimality). Let 8' be a topos that contains a model X of HA. 
Then there exists a weak elementary embedding (8, .X) -* (Sh(S), [N]s). 

This content downloaded from 131.174.17.24 on Thu, 7 Aug 2014 05:40:23 AM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp


MINIMAL MODELS OF HEYTING ARITHMETIC 1453 

PROOF (SKETCH). By a characterisation of geometric morphisms [4, Ch. VII] 
into a Grothendieck topos Sh(C) we know that every such is given by a left exact, 
continuous functor C -* 8. Such a functor is required to preserve finite limits and 
to send covers to epimorphic families. Define q: S -* 8' on objects and morphisms 
as follows 

q(a(Yx)) = : (p(X) 8 

q(a (-, y)) = (x, y) E X~n+m : a (-X, ) 

where = x1,... , and y = y1, .. ,Ym. The quantifiers in o and a range overAX7. 
Since X7 is a model of HA, q is easily seen to be a left exact, continuous functor. Let 
p = ( *, p*) be the geometric morphism associated with q. We then have a natural 
isomorphism pry A q where y is the Yoneda functor ([4, Ch. VII]). In particular 
there is an isomorphism h : p* ([NI) --A X. From the left exactness of p* and the 
natural isomorphism it follows that (p, h) is a weak elementary embedding. -H 

REMARK 3.9. The above theorem states a minimality property of the universal 
model of HA. However, we note that it refers to the impredicative notion of topos. 
An appropriate reformulation in terms of sites would be necessary in a predicative 
framework. 

?4. A minimal model of nonstandard arithmetic. The construction of the minimal 
model follows the same pattern as in Section 3. However we start out with a richer 
syntactic site consisting of filter bases. 

A provable filter base is an arithmetical formula F ( p; x) = F (p ,I , Pm; XI I ... * 
Xn) such that 

(6) Vpq3r HA H Vx[F(i,Yx) --F(p,x) AAF(q,x)] 

where the indices -p, q and T vary over sequences of numerals. Generally, when 
m, p, q or r occur under the provability sign, we adopt the convention that they 
always range over sequences of numerals. We often write x E Fpr for F (p, x) and 

F-T CHA Fi for HA F- VY [x E F -* x E Fi4. Set-theoretic notation n, u, ... with 
the obvious translation to formulas will also be used. A map between two filter 
bases F (p; x) and G (q; 7) is a formula a (X, y) such that 

3p HA H (V- E FT) 3!y-a(xy) 

The sequence of numerals -p is called a functionality index of a. Two such maps 
a(T, y) and fl (1, -v) are considered equal (a 'HA fi) if for some 

- 
we have HA F 

(Vx E FT) Vy T[a (T, y- f(, y) ]. A map a (x, j) is continuous if 

Vfq 3p HA H (V E Fp) (3y E Go) a (x, y). 

DEFINITION 4.1. The category F of provable filter bases. The objects are triples 
s = (F, p; x) such that F (p; x) is a provable filter base. An arrow between Y- = 

F(-; x) and ' = G (q; 57) is a triple (x; a; 57) such that a (X, y) is a continuous map 

F(T;Y) -- G(-q;7). Composition of arrows a(X, 57) 7 and fl (iiv) : - 

X is given by (fi o a) (X, -v) = ]7 a (X, y) A fl(y, U). The identity arrow on F (p; x) 
is defined by i (x, y) _ (x = y). 
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1454 IEKE MOERDIJK AND ERIK PALMGREN 

Note that according to this definition, the formerly given category S is in fact a 
full subcategory of F consisting of the filter bases with no indices, i.e., trivial filter 
bases. 

LEMMA 4.2. The category F has allfinite limits. 

PROOF. The category axioms follows by intuitionistic logic, once we know that 
composition is well defined and respects -HA. This is left for the reader to check. 

To construct the pullback of two arrows 

(p (x, z) : F (-; x) -- H (r; z) V/ (Y, z) : G (q; y) 3- H (r, -z) 

define the filterbase 

(F XH G)(; ,y) _F(, x) A G(-q,) A 3z (px, z) A y/(Y, z), 

and two projections rI S xy ' Sr and 7r2 S xy ' -* ' by r, (x,Y,z) 

(x= z) and 7r2(x,y-,z) (y5= 
A terminal object is, for instance, I(p, y) -(y = 0). It is straightforward to 

check that these constructions satisfy the universal properties. H 

We now define a site on F by giving a base K of covering families. Let Y = F (q; y-) 
be a filter base. A finite family of morphisms (a1i (xi, y-) : Fi (-pi;Y) S) )I is a 
covering of S if 

n 

Vp-- **3i HA H (Vy E F7) V3xi E Fpi ai (Xi,Y 
i=l 

THEOREM 4.3. The site (F, K) is subcanonical. 

PROOF. First we need to check that K indeed satisfies the axioms for a base of a 
site (cf. [4, p. 11 1]). We check stability under pullbacks, and leave the other axioms 
to the reader. Suppose that (ai: c i __ 

-)n covers 9 and that ,B -: 9- is 
an arbitrary arrow. We have to show that (7r : g-i XF g __ g)7n is a covering. 
Let 

- = Fi(pi;xi), 9 = F(p;y), = G(q,v) and ac = aic(xi,y). Letpi, i be 
indices for 5' x gr 3 where i = 1,... , n. Since (ai) is a cover, there is p such that 

Fp CHA al[Fj ] U ... U a [F']. 

By the continuity of fi we find some q such that fl[Gq] CHA Fp, and Gq CHA 

G-, n n Gqn Thus 

G7 CHA 7r [(Fl XF G)fi,-j]U U rn [(Fn XF G)P]. 

To check subcanonicity write P = HomF(-, ') and consider a covering (ak 
-*k _ 

S)n=, For each pair of maps in the covering family form the pullback 
square 

g-k x gie 7ki)7 ie 

1l 1 
ki 

5-k Ok -+ - 
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and suppose that f1k E p(Y-k) (k = 1,... , n) satisfy the matching conditions 

P (7rke (Ak) -HA P Ue) h 

Thus we can choose Jn... ., such that for any k, ? 

(7) HA H (Vx c Fk ) (VC Fate) V 

[aXk (X, -Z) A ae (-y, -Z) 3 v (fik (-X,)(3h (-y, -v))] 

and such that Pk is a functionality index for both ak and 13k (k = 1,... , n). We 
define 

n 

3(Zn V) V 3Xk E F4k ak(Xk, ) A 13k(Xk, V) 

k=1 

Since (ak) is a cover there is p such that FT C?HA a, [Fj ] U ... U an [Fpnj. By (7) it 

follows that fi is a map which is functional on FT. The continuity of fl 
follows from the continuity of the Pk's and that (Kk) is a cover. Again, by (7) it is 
clear that /3 o ak -HA P3k. It is straightforward to check that / indeed is the unique 
such arrow. -1 

We define an interpretation of the arithmetical language in Sh(F) and call the 
resulting model [N]IF. 

* The type of natural numbers is interpreted by the representable sheaf 

[N] = HOmF(-,(x = x,p;x)). 

* For every function symbol f : Nn N define a natural transformation 

j[f I [N]n [N]J by 
n 

IfIF(-p;-x) (al, an) = (X;3SI ... Sn A ai (Y si) A A (sI,. nSn) = V; V). 
i=l 

* For the constant 0 define a natural transformation [0?]: 1 [Ni by 

I[O1F(p;X) (a) = (X; O = V; V) - 

* For the equality = define an (F, K)-relation 

kIIF(P;X)((a, Y) 3p HA F- (Vx c FT) 3yz a(Y, y) A y(x, z) A y = z. 

Observe that [=]_9- (a, y) iff a -HA y, by using the equality axioms. The interpreta- 
tion is extended to terms in the usual way and the following lemma helps calculating 
it. 

LEMMA 4.4. Let t(T) be a term where x = xI,... , x". Then for any filter base 
5 = (F, yp; -) and any al, .. , an E IN [(Y), 

IWtXAF (ahI , An) -HA 3SI ... Sn A ai (ii, si) A t(sl, . .. Sn) = V; V) 

PROOF. By induction on t. H 

Let I- be the forcing relation associated with the interpretation given above. 
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1456 IEKE MOERDIJK AND ERIK PALMGREN 

THEOREM 4.5. Let A(Y) be an arithmetical formula where x = xl,... , x" . Then 
for anyfilter base Y = F( ,ia) and any a1,... , an E [NJ(s) 

5V 1 A(ai, . .., an) 
n 

-3p H A (V_ E Fp) 3Y I.. Yn Aai (9 yi) A A (y, ,) ..Yn). 
i=1 

PROOF. The proof proceeds by induction on A and it is analogous to that of 
Theorem 3.5 above and Lemma 2.2 in [5]. We do the case of universal quantification 
as an illustration. Let A (x) = Vy B (x, y). Suppose Y 1F A (a 1, .... , an). Let ' 

be the filter base G (p; iu, v) _ F (; ii). There are obvious projections 7r1: > -+ 

and 7r2 E [N](V). By the definition of forcing for the universal quantifier, 1 - 
B (a& o 71i, *, n ? 7ri, 702). According to the inductive hypothesis this is equivalent 
to there existing some - such that 

(8) HA F- (W e Fp) Vv 3y [a(ii, y) A B(-, v)] 

where y-= Yi,... , yn and ai(i, 7) = = (-, yi). This yields the conclusion. 

Conversely, suppose that (8) holds. Let y: -+ and 3 E [NJ(') be arbitrary, 
where = G (q, vi). By the continuity of y, there is some q such that y [GV] CHA Fp. 
Thus 

HA F- (Vi E Gq) 3iiy3z [y~,) A((U, y5) A(vz) AB(yz)] 

By the inductive hypothesis, 1 I- B(aI o y, ... , aen o Yk). A 

COROLLARY 4.6. (Sh(F), [NIF) is a universal model of HA, i.e., a closed arithmeti- 
calformula holds in the model iff it is provable in HA. A 

We define an interpretation of the standard predicate. Let 

/ E StN('7) , '- 3m3p HAF- (ViE Fp) (3y < m)3(iiy), 

where /3 E [N](Y) and Y = F (-; ii). It is easy to check that this indeed is 
an (F, K)-relation. In the model, universal quantification over standard numbers 
correspond in the following way to quantification over numerals. 

LEMMA 4.7. Let A(x, y) be any L'-formula. Then 7 1H- Vsty A(-, y) if and only 
if, for all numerals n it is the case that 57 1H A(ei, n). 

PROOF. The direction (=X) is clear. 
(X=): Let /3: ' --+ 5 and let 3 E [NJ(') with 3 E StN (?). Hence for some m 

and some q 

(9) HA F- (VW E G4Q) (3y < m)3(T,y). 

Define filter bases 9'k for each numeral k = 0,... , m, 

;f E G4K7 = E Gq A 6 (T, k). 

We have inclusion morphisms a : -+k > A. By (9) the family (a g'k > 0)1m- is a 
covering. Thus it suffices to show 
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This follows by monotonicity from the assumption, since 3 o a7 is constant k as a 
morphism in [NJ (Skk). A 

The following result states that formulas VSty A are respresentable in case A is 
arithmetical. 

COROLLARY 4.8. For an element a E [NJ (Y) and an arithmeticalformula A (x, y), 

i7 I 1 VSly A (a, y) if and only if a&: - > is an arrow, 

where ' is thefilter base given by G(q, x)- (Vy < q) A(x, y). 

PROOF. By Lemma 4.7 and Theorem 4.5, we get that 7 1H- Vsty A(a, y) is equiv- 
alent to 

Vq37 HA- (V E F7)3xa(u,x) A (Vy < q)A(x,y), 

i.e.,oa: & - is an arrow. A 

The negation of the standard predicate is explained by 

LEMMA 4.9. For Y = F(7p; i) and a E [N](1G), 

I- 1 St(ae) Vn3- HA F- (V E F) y a)(u, y) A y > n. 

PROOF. (<=): Suppose that y: > Y is an arrow with 1 - St(a o y), where 
= G (-; T). Hence for some n and some I, 

HA F- (Vwei c G-q) 3ui3y y (,ii) A a(ii,y) A y ? n. 

From the assumption we have - such that 

HA F- (V E FT) 3y a(ii, y) Ay > n + 1. 

Assume 7i is a functionality index of a. By continuity of y, there exists GF C?HA GW 
such that 

HAF- (VI E GF) (3ii E F7T)3yy(T,ii) Aa(ii,y) Ay > n + 1. 

Thus HA F- (Vu E G7) I, i.e., l H- I. 
(=X): For every numeral n define a filter base in by u E Fi - i E FT A (]y < 

n) a (x, y). The inclusion / : i9n > is an arrow. Clearly i'n I- St(a o q). Thus 
by assumption i F1. Hence for some p, we have HA F- (Vui E FT) [(]y < 
n) a (iu, y) - I]. By choosing 

- to be a functionality index of a, the desired 
conclusion follows. A 

The righthand side of the lemma can be read as: a is an arrow from Y to the 
base of the Frechet filter. 

THEOREM 4.10. The L'-structure (Sh(F), ([NIF, St)) is a model of HAI, ? (NC). 

PROOF. Axiom group (I) is valid by Theorem 4.5. Axioms (II) and (III) are 
straightforward to check. 

To check the stability axiom (IV), suppose F 1- St(a). Consider the filterbase 
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The natural projection 7r: Y - is an arrow. We have trivially 

Vm 3p, n HA F (Vi E Fp)[(3y> n) a(u, y) -> (y > m) a(u, y)]. 

According to Lemma 4.9 this means 1' H- St(a o 7A,). By the assumption and 
monotonicity, 1' 1- I, i.e., 37i3n HA F- (Vu E FT)3yoa(iu,y) A y < n, i.e., 

1 H- St(a). 

To verify (V) consider the base for the Frechet filter: _ C (p; x) -x > p. Let 
a E [N](F) be given by a (x, y) -(x = y). By Lemma 4.9, we have I H- St(a). 
The constant map from F to a terminal object J is a covering, so J I- 3x 'St(x). 

The external induction schema (VI) follows readily from Lemma 4.7. 

The most complicated schema to check is the overspill principle (VII). We check 
the equivalent formulation: V [V sty A(ix, y) -+ 3y St(y) A A(x, y)]. It is suf- 
ficient to prove that for all oi = a,... ., aen E [N](Y) satisfying the assumption 

i H- Vsty A (-, y) we have 7 1- 3y St(y) A A (e, y). Let oa(-u, x) be shorthand 
for Ai= I ai (ii, xi) and write 7 = F(J; ii). By the assumption and Lemma 4.7, it 
follows that 7 1 - A(-, m) for any numeral m. Thus 

(10) Vm 3p HA F (V E Fp) 3x a(u, x) A A(Y, m). 

Define a filter base by 

uV E Gpim-ai E F7T A [m = 0 V3x (i,) A v > m - 1 AA(Y,v)]. 

Then the natural projections : >-+ 5 and 7r2 : > -+ N are morphisms. We 
need to check that 7ri is a covering map, i.e., that for all 7, m there exists -q with 
HA F- (Vu E F4) 3v (i, v E G7im). Suppose that m > 0. We have HA F- (V-u E 

F7) 3x `a(, x) A A(x, m), for some T. Now take -q such that F 7 CHA F7f n Fp. By 
Lemma 4.9, IF St(7r2), so we need only show ' IF- A(a&I o rl, .. , c0 o 1, 7r2), 

i.e., 
373m HAF- (Vi,v EGp,m)3x()!(ux)AA(xv). 

Taking m > 0 and FT small this follows trivially. 

The co-rule is evident by Lemma 4.7. 

Finally (NC) is checked analogously to Proposition 2.5 of [5]. A 

COROLLARY 4.11. The theory HAI,, + (NC) is a conservative extension of HA. A 

REMARKS 4.12. We note that all the constructions of this section work if we start 
out with PA instead of HA as the theory. The corresponding site of filter bases is 
denoted Fc. Let PAIW,, be as HAI,, except that the principle of excluded middle is 
assumed for all arithmetical formulas. This theory extended with (NC) is modelled 
by Sh(F,) and is hence a conservative extension of PA. Note that this proves that 
(TR) does not hold in Sh(Fc), since the infinitary rule would then yield the false 
conclusion that PA is co-complete. 

THEOREM 4.13 (Minimality). Let ? be a topos with an L'-structure (X, St') which 
is a model of HAI. Suppose further that St' C X is the natural numbers object in A. 
Then there exists a weak elementary extension of L(HA)-structures 
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PROOF (SKETCH). As in Theorem 3.8 we find a left exact, continuous functor 
q:F - '.Defineqby 

q(F(7p;x)) = {i n C:JY (VT E St')F(r, )} ' 

q~t~~y))= I(-, -v) E Jln +m: ~n) 

Note that since St' is the set of natural numbers in A, it coincides with the inter- 
pretation of HA-numerals in X. From this observation and the fact that (X, St') 
is a model of HAI it follows easily that q is a functor which preserves finite limits. 
To prove that q sends covers to epimorphic families we use the overspill property 
of (A, St'). Let (i (Ti, jY) : F'(VPi; xi) -+ G(Tr;y))y be a cover. Define new filter 
bases X', i= 1)... ,n, by 

H'(k, xi)-(h(Vpi < k) F'(pi, -xi). 

It is easily seen that (aci d X' -+ >) is also a cover. We use the convention that 
if p (T) is an HA-formula, where 

- 
= x1,... , x", then & (x) denotes the m-ary 

relation in 9' resulting from interpreting it in ?. By interpretation of the cover 
statement we have that 

(Vk1,... ,kn E St') (3s E St') (Vv E X) 

[G (-s, v) =>V (3u;E X (Hi ) (ki, _ujE) A ctag(-Uji ;)] 

holds in '. Now reason in A, and suppose that vi E q (G (; fy)). Hence for all 
k1,... ,kn E St', 

n 

( 1 1) V (:]i E X) (Hi ) g(ki, ui) A aig( (i v). 
i=1 

It follows by the overspill principle that (11) holds for some infinite k1,... kn. 
Hence we have some i and some -ii E X such that (F')9(pj, Ti) and c'(hUj, U) 
holds for any Pi E St'. Thus q(ai)(TU) = vU and ii E q (Fi(Pi; xi)). This proves 
that (q(ai): q(F) -+ q(G)<1 is an epimorphic family. - 

We may combine Theorems 3.5 and 4.5, and the fact that S is a full subcategory of 
F to obtain an example of an (strong) elementary embedding. Note that with respect 
to this strong elementary embedding, the embedding constructed in Theorem 4.13 
is a lifting of that of Theorem 3.8. 

THEOREM 4.14. There exists an elementary embedding 

(Sh(F), [N]IF) - (Sh(S), j[N]s). 
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