The following full text is a publisher's version.

For additional information about this publication click this link.
http://hdl.handle.net/2066/129035

Please be advised that this information was generated on 2019-01-10 and may be subject to change.
Erratum: Spin asymmetries A_1 of the proton and the deuteron in the low x and low Q^2 region from polarized high energy muon scattering

[Phys. Rev. D 60, 072004 (1999)]

(Spin Muon Collaboration)
(Published 21 August 2000)

PACS number(s): 13.60.Hb, 13.88.1 of the proton and the deuteron in the low Q^2 region.

The cross section A_1 and A_1^d presented in [1] were measured in the kinematic region where the four-momentum transfer Q^2 extended down to 0.01 GeV2. A full account of the formalism is given in [2]. In this kinematic region one cannot neglect m^2/Q^2 terms in the expression for the cross section. These terms were correctly taken into account in the unpolarized part of the cross section, σ [cf. Eq. (2.2) in [2]]; they were however omitted in the polarized part, $\Delta \sigma$ [Eqs. (2.4)–(2.6) in [2]].

The cross sections $\Delta \sigma_\parallel$ and $\Delta \sigma_\perp$, corresponding to the two configurations where the nucleon spin is either along or orthogonal to the muon spin [cf., Eq. (2.4) in [2]] should be written as follows:

$$\frac{d^2 \Delta \sigma_\parallel}{dx \, dQ^2} = \frac{16 \pi \alpha^2 y}{Q^4} \left[1 - \frac{y}{2} - \frac{y^2 y^2}{4} - \frac{m^2}{Q^2} \right] g_1 - \frac{y^2 y}{2} g_2. \tag{1}$$

and

$$\frac{d^3 \Delta \sigma_\perp}{dx \, dQ^2 \, d\phi} = -\cos \phi \frac{8 \alpha^2 y}{Q^4} \sqrt{1 - \frac{y^2 y^2}{4}} \left[\frac{y}{2} \left(1 + \frac{2 m^2}{Q^2} \right) g_1 + g_2 \right]. \tag{2}$$

The measured asymmetries A_1 and A_\perp are related to A_1 and A_2 [cf., Eqs (2.7)–(2.8) in [2]] through the depolarization factor D,

$$D = \frac{y [(1 + y^2 y/2) (2 - y) - 2 y^2 m^2/Q^2]}{y^2 (1 - 2 m^2/Q^2)(1 + y^2) + 2 (1 + R)(1 - y - y^2 y^2/4)}, \tag{3}$$

the factor d for the orthogonal spin configuration,

$$d = \frac{\sqrt{1 - y - y^2 y^2/4 (1 + y^2 y/2)}}{(1 - y/2) (1 + y^2 y/2) - y^2 m^2/Q^2} D, \tag{4}$$

and kinematic factors η and ξ,

$$\eta = \frac{y (1 - y - y^2 y^2/4 - y^2 m^2/Q^2)}{(1 + y^2 y/2) (1 - y/2) - y^2 m^2/Q^2}. \tag{5}$$
The only approximation applied in these equations is in neglecting terms \(m_\mu^2/Q^2 \) which are of the order of \(10^{-7} \) in our kinematic range. With the above definition the depolarization factor is always smaller than unity.

The missing \(m_\mu^2/Q^2 \) terms in the polarized part of the cross section is most apparent at low \(Q^2 \). Therefore our low \(x \), low \(Q^2 \) data presented in [1] were reanalyzed using the corrected equations. The results for the reanalyzed proton and deuteron spin asymmetries \(A_{1p}^{p,d} \) and spin structure functions \(g_1^{p,d} \) are given here in Tables I and II for newly accessed region at low \(Q^2 \). The change in \(A_{1p}^{p,d} \) and in its statistical error is significant only in the two bins corresponding to the smallest values of \(x \) and \(Q^2 \). The average values of \(x \) and \(Q^2 \) change in the first bin of \(x \) because \(D \) is used in the weight calculations. Changes at higher \(x \) are negligible and the physics conclusions given in [1] are unchanged.

Table I. Modifications to Tables III and V in Ref. [1]. The asymmetry \(A_{1p}^{p} \) and the spin structure function \(g_1^{p} \) at the average \(Q^2 \) for newly accessed region at low \(x \).

<table>
<thead>
<tr>
<th>(x)</th>
<th>(\langle Q^2 \rangle) (GeV(^2))</th>
<th>(A_{1p}^{p})</th>
<th>(g_1^{p})</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.00011</td>
<td>0.03</td>
<td>0.026±0.023±0.009</td>
<td>3.5±3.1±0.4</td>
</tr>
<tr>
<td>0.00022</td>
<td>0.06</td>
<td>0.019±0.019±0.005</td>
<td>2.5±2.5±0.6</td>
</tr>
<tr>
<td>0.00039</td>
<td>0.10</td>
<td>0.002±0.020±0.002</td>
<td>0.3±2.5±0.2</td>
</tr>
<tr>
<td>0.00063</td>
<td>0.17</td>
<td>-0.004±0.022±0.002</td>
<td>-0.4±2.3±0.2</td>
</tr>
</tbody>
</table>

Table II. Modifications to Tables IV and VI in Ref. [1]. The asymmetry \(A_{1d}^{d} \) and the spin dependent structure function \(g_1^{d} \) at the average \(Q^2 \) for newly accessed region at low \(x \).

<table>
<thead>
<tr>
<th>(x)</th>
<th>(\langle Q^2 \rangle) (GeV(^2))</th>
<th>(A_{1d}^{d})</th>
<th>(g_1^{d})</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.00011</td>
<td>0.03</td>
<td>-0.013±0.050±0.006</td>
<td>-1.7±6.6±0.6</td>
</tr>
<tr>
<td>0.00022</td>
<td>0.06</td>
<td>0.056±0.040±0.015</td>
<td>7.6±5.3±1.6</td>
</tr>
<tr>
<td>0.00039</td>
<td>0.10</td>
<td>0.030±0.043±0.008</td>
<td>3.7±5.3±1.0</td>
</tr>
<tr>
<td>0.00063</td>
<td>0.17</td>
<td>0.047±0.046±0.012</td>
<td>5.0±4.9±1.2</td>
</tr>
</tbody>
</table>
