Erratum: Spin asymmetries A_1 of the proton and the deuteron in the low x and low Q^2 region from polarized high energy muon scattering
[Phys. Rev. D 60, 072004 (1999)]

(Spin Muon Collaboration)
(Published 21 August 2000)

PACS number(s): 13.60.Hb, 13.88.+e, 99.10.+g

The virtual photon-proton (-deuteron) asymmetries $A_{1,d}^1$ presented in [1] were measured in the kinematic region where the four-momentum transfer Q^2 extended down to 0.01 GeV2. A full account of the formalism is given in [2]. In this kinematic region one cannot neglect m_p^2/Q^2 terms in the expression for the cross section. These terms were correctly taken into account in the unpolarized part of the cross section, σ [cf. Eq. (2.2) in [2]]; they were however omitted in the polarized part, $\Delta \sigma$ [Eqs. (2.4)–(2.6) in [2]].

The cross sections $\Delta \sigma ||$ and $\Delta \sigma T$, corresponding to the two configurations where the nucleon spin is either along or orthogonal to the muon spin [cf., Eq. (2.4) in [2]] should be written as follows:

\[
\frac{d^2 \Delta \sigma ||}{dxdQ^2} = 16\pi a^2 y \left[1 - \frac{y^2 y^2}{4} - \frac{m_p^2 y^2}{Q^2} g_1 - \frac{g_1}{2} g_2 \right]
\]

and

\[
\frac{d^3 \Delta \sigma T}{dxdQ^2 d\phi} = -\cos \phi \frac{8 a^2 y}{Q^4} \sqrt{1 - y} \gamma \sqrt{1 - y^2 y^2 / 4} \left[1 + \frac{2 m_p^2}{Q^2} \right] \left[g_1 + g_2 \right].
\]

The measured asymmetries A_1 and $A_{1,2}$ are related to A_1 and A_2 [cf., Eqs (2.7)–(2.8) in [2]] through the depolarization factor D,

\[
D = \frac{y[(1 + y^2 y/2)(2 - y) - 2y^2 m_p^2/Q^2]}{y^2(1 - 2m_p^2/Q^2)(1 + y^2) + 2(1 + R)(1 - y - y^2 y^2 / 4)},
\]

the factor d for the orthogonal spin configuration,

\[
d = \frac{\sqrt{1 - y - y^2 y^2 / 4(1 + y^2 y/2)}}{(1 - y/2)(1 + y^2 y/2) - y^2 m_p^2/Q^2} D,
\]

and kinematic factors η and ξ,

\[
\eta = \frac{y(1 - y - y^2 y^2 / 4 - y^2 m_p^2/Q^2)}{(1 + y^2 y/2)(1 - y/2) - y^2 m_p^2/Q^2}.
\]

0556-2821/2000/62(7)/079902(2)/$15.00 62 079902-1 ©2000 The American Physical Society
The only approximation applied in these equations is in neglecting terms \(\frac{m_p^2}{Q^2} \) which are of the order of \(10^{-7} \) in our kinematic range. With the above definition the depolarization factor is always smaller than unity.

The missing \(\frac{m_p^2}{Q^2} \) terms in the polarized part of the cross section is most apparent at low \(Q^2 \). Therefore our low \(x \), low \(Q^2 \) data presented in [1] were reanalyzed using the corrected equations. The results for the reanalyzed proton and deuteron spin asymmetries \(A_1^{p,d} \) and spin structure functions \(g_1^{p,d} \) are given here in Tables I and II for newly accessed region at low \(Q^2 \). The change in \(A_1^{p,d} \) and in its statistical error is significant only in the two bins corresponding to the smallest values of \(x \) and \(Q^2 \). The average values of \(x \) and \(Q^2 \) change in the first bin of \(x \) because \(D \) is used in the weight calculations. Changes at higher \(x \) are negligible and the physics conclusions given in [1] are unchanged.

\[
\xi = \frac{y(1 - y/2 - y^2 m_p^2/Q^2)}{1 + y^2/2}.
\]

The only approximation applied in these equations is in neglecting terms \(\frac{m_p^2}{Q^2} \) which are of the order of \(10^{-7} \) in our kinematic range. With the above definition the depolarization factor is always smaller than unity.

The missing \(\frac{m_p^2}{Q^2} \) terms in the polarized part of the cross section is most apparent at low \(Q^2 \). Therefore our low \(x \), low \(Q^2 \) data presented in [1] were reanalyzed using the corrected equations. The results for the reanalyzed proton and deuteron spin asymmetries \(A_1^{p,d} \) and spin structure functions \(g_1^{p,d} \) are given here in Tables I and II for newly accessed region at low \(Q^2 \). The change in \(A_1^{p,d} \) and in its statistical error is significant only in the two bins corresponding to the smallest values of \(x \) and \(Q^2 \). The average values of \(x \) and \(Q^2 \) change in the first bin of \(x \) because \(D \) is used in the weight calculations. Changes at higher \(x \) are negligible and the physics conclusions given in [1] are unchanged.

\[
\xi = \frac{y(1 - y/2 - y^2 m_p^2/Q^2)}{1 + y^2/2}.
\]

The only approximation applied in these equations is in neglecting terms \(\frac{m_p^2}{Q^2} \) which are of the order of \(10^{-7} \) in our kinematic range. With the above definition the depolarization factor is always smaller than unity.

The missing \(\frac{m_p^2}{Q^2} \) terms in the polarized part of the cross section is most apparent at low \(Q^2 \). Therefore our low \(x \), low \(Q^2 \) data presented in [1] were reanalyzed using the corrected equations. The results for the reanalyzed proton and deuteron spin asymmetries \(A_1^{p,d} \) and spin structure functions \(g_1^{p,d} \) are given here in Tables I and II for newly accessed region at low \(Q^2 \). The change in \(A_1^{p,d} \) and in its statistical error is significant only in the two bins corresponding to the smallest values of \(x \) and \(Q^2 \). The average values of \(x \) and \(Q^2 \) change in the first bin of \(x \) because \(D \) is used in the weight calculations. Changes at higher \(x \) are negligible and the physics conclusions given in [1] are unchanged.

The only approximation applied in these equations is in neglecting terms \(\frac{m_p^2}{Q^2} \) which are of the order of \(10^{-7} \) in our kinematic range. With the above definition the depolarization factor is always smaller than unity.

The missing \(\frac{m_p^2}{Q^2} \) terms in the polarized part of the cross section is most apparent at low \(Q^2 \). Therefore our low \(x \), low \(Q^2 \) data presented in [1] were reanalyzed using the corrected equations. The results for the reanalyzed proton and deuteron spin asymmetries \(A_1^{p,d} \) and spin structure functions \(g_1^{p,d} \) are given here in Tables I and II for newly accessed region at low \(Q^2 \). The change in \(A_1^{p,d} \) and in its statistical error is significant only in the two bins corresponding to the smallest values of \(x \) and \(Q^2 \). The average values of \(x \) and \(Q^2 \) change in the first bin of \(x \) because \(D \) is used in the weight calculations. Changes at higher \(x \) are negligible and the physics conclusions given in [1] are unchanged.

\[
\xi = \frac{y(1 - y/2 - y^2 m_p^2/Q^2)}{1 + y^2/2}.
\]

The only approximation applied in these equations is in neglecting terms \(\frac{m_p^2}{Q^2} \) which are of the order of \(10^{-7} \) in our kinematic range. With the above definition the depolarization factor is always smaller than unity.

The missing \(\frac{m_p^2}{Q^2} \) terms in the polarized part of the cross section is most apparent at low \(Q^2 \). Therefore our low \(x \), low \(Q^2 \) data presented in [1] were reanalyzed using the corrected equations. The results for the reanalyzed proton and deuteron spin asymmetries \(A_1^{p,d} \) and spin structure functions \(g_1^{p,d} \) are given here in Tables I and II for newly accessed region at low \(Q^2 \). The change in \(A_1^{p,d} \) and in its statistical error is significant only in the two bins corresponding to the smallest values of \(x \) and \(Q^2 \). The average values of \(x \) and \(Q^2 \) change in the first bin of \(x \) because \(D \) is used in the weight calculations. Changes at higher \(x \) are negligible and the physics conclusions given in [1] are unchanged.

\[
\xi = \frac{y(1 - y/2 - y^2 m_p^2/Q^2)}{1 + y^2/2}.
\]