Study of $B^{\pm} \rightarrow J/\psi \pi^{\pm}$ and $B^{\pm} \rightarrow J/\psi K^{\mp}$ decays: Measurement of the ratio of branching fractions and search for direct CP-violating charge asymmetries

0556-2821/2002/65(9)/091101(7)/$20.00 ©2002 The American Physical Society
B. AUBERT et al.

PHYSICAL REVIEW D 65 091101(R)

(BABAR Collaboration)

1Laboratoire de Physique des Particules, F-74941 Annecy-le-Vieux, France
2Università di Bari, Dipartimento di Fisica and INFN, I-70126 Bari, Italy
3Institute of High Energy Physics, Beijing 100039, China
4University of Bergen, Institute of Physics, N-5007 Bergen, Norway
5Lawrence Berkeley National Laboratory and University of California, Berkeley, California 94720
6University of Birmingham, Birmingham, B15 2TT, United Kingdom
7Ruhr Universität Bochum, Institut für Experimentalphysik 1, D-44780 Bochum, Germany
8University of Bristol, Bristol BS8 1TL, United Kingdom
9University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z1
10Brunel University, Uxbridge, Middlesex UB8 3PH, United Kingdom
11Budker Institute of Nuclear Physics, Novosibirsk 630090, Russia
12University of California at Irvine, Irvine, California 92697
13University of California at Los Angeles, Los Angeles, California 90024
14University of California at San Diego, La Jolla, California 92093
15University of California at Santa Barbara, Santa Barbara, California 93106
16University of California at Santa Cruz, Institute for Particle Physics, Santa Cruz, California 95064
17California Institute of Technology, Pasadena, California 91125
18University of Cincinnati, Cincinnati, Ohio 45221
19University of Colorado, Boulder, Colorado 80309
20Colorado State University, Fort Collins, Colorado 80523
21Technische Universität Dresden, Institut für Kern-und Teilchenphysik, D-01062 Dresden, Germany
22Ecole Polytechnique, F-91128 Palaiseau, France
23University of Edinburgh, Edinburgh EH9 3JZ, United Kingdom
24Elon University, Elon University, North Carolina 27244-2010
25Università di Ferrara, Dipartimento di Fisica and INFN, I-44100 Ferrara, Italy
26Florida A&M University, Tallahassee, Florida 32307
27Laboratori Nazionali di Frascati dell’INFN, I-00044 Frascati, Italy
28Università di Genova, Dipartimento di Fisica and INFN, I-16146 Genova, Italy
29Harvard University, Cambridge, Massachusetts 02138
30University of Iowa, Iowa City, Iowa 52242
31Iowa State University, Ames, Iowa 50011-3160
32Laboratoire de l’Accélérateur Linéaire, F-91898 Orsay, France
33Lawrence Livermore National Laboratory, Livermore, California 94550
34University of Liverpool, Liverpool L69 3BX, United Kingdom
35University of London, Imperial College, London, SW7 2BW, United Kingdom
36Queen Mary, University of London, E1 4NS, United Kingdom
37University of London, Royal Holloway and Bedford New College, Egham, Surrey TW20 0EX, United Kingdom
38University of Louisville, Louisville, Kentucky 40292
39University of Manchester, Manchester M13 9PL, United Kingdom
40University of Maryland, College Park, Maryland 20742
41University of Massachusetts, Amherst, Massachusetts 01003
42Massachusetts Institute of Technology, Laboratory for Nuclear Science, Cambridge, Massachusetts 02139
43McGill University, Montréal, Quebec, Canada H3A 2T8

091101-2
Based on the factorization hypothesis, a comparable prediction can be obtained with a simple model. If the leading-order tree diagram is the dominant contribution, its branching fraction is expected to be about 5% of the Cabibbo-allowed mode. If the leading-order tree diagram is the dominant contribution, its branching fraction is expected to be about 5% of the Cabibbo-allowed mode.

The decay $B^\pm \to J/\psi \pi^\pm$ is both Cabibbo suppressed and color suppressed. If the leading-order tree diagram is the dominant contribution, its branching fraction is expected to be about 5% of the Cabibbo-allowed mode. If the leading-order tree diagram is the dominant contribution, its branching fraction is expected to be about 5% of the Cabibbo-allowed mode.

In this paper we present a measurement of the ratio of $B^\pm \to J/\psi \pi^\pm$ decays using a 20.7 fb$^{-1}$ data set collected with the BABAR detector. We observe a signal of 51 ± 10 $B^\pm \to J/\psi \pi^\pm$ events and determine the ratio $B(B^\pm \to J/\psi \pi^\pm)/B(B^\pm \to J/\psi K^\pm)$ to be $[3.91 \pm 0.78 \text{(stat)} \pm 0.19 \text{(syst)}] \%$. The CP-violating charge asymmetries for $B^\pm \to J/\psi \pi^\pm$ and $B^\pm \to J/\psi K^\pm$ decays are determined to be $A_\varphi = 0.01 \pm 0.22 \text{(stat)} \pm 0.01 \text{(syst)}$ and $A_K = 0.003 \pm 0.030 \text{(stat)} \pm 0.004 \text{(syst)}$.

Higher-order diagrams are characterized by the same weak phase.

In this paper we present a measurement of the ratio of $B^\pm \to J/\psi \pi^\pm$ and $B^\pm \to J/\psi K^\pm$ decays using a 20.7 fb$^{-1}$ data set collected with the BABAR detector. We observe a signal of 51 $B^\pm \to J/\psi \pi^\pm$ events and determine the ratio $B(B^\pm \to J/\psi \pi^\pm)/B(B^\pm \to J/\psi K^\pm)$ to be $[3.91 \pm 0.78 \text{(stat)} \pm 0.19 \text{(syst)}] \%$. The CP-violating charge asymmetries for $B^\pm \to J/\psi \pi^\pm$ and $B^\pm \to J/\psi K^\pm$ decays are determined to be $A_\varphi = 0.01 \pm 0.22 \text{(stat)} \pm 0.01 \text{(syst)}$ and $A_K = 0.003 \pm 0.030 \text{(stat)} \pm 0.004 \text{(syst)}$.

DOI: 10.1103/PhysRevD.65.091101

PACS number(s): 13.25.Hw, 12.38.Qk
measurement.

The BABAR detector is described in detail elsewhere [5]. A five-layer silicon vertex tracker (SVT) and a 40-layer drift chamber (DCH), in a 1.5-T solenoidal magnetic field, provide detection of charged particles and measurement of their momenta. The transverse momentum resolution is \(\sigma_p / p = (0.13 \pm 0.01) \% \cdot p / (0.45 \pm 0.03) \% \), where \(p \) is measured in GeV/c. Electrons are detected in a CsI electromagnetic calorimeter (EMC), while muons are identified in the magnetic flux return system (IFR), which is instrumented with multiple layers of resistive plate chambers. A ring-imaging Cherenkov detector (DIRC) with a quartz bar radiator provides charged particle identification.

An electron candidate is selected according to the ratio of the energy detected in the EMC to track momentum, the cluster shape in the EMC, the energy loss in the DCH, and the DIRC Cherenkov angle, if available. A muon candidate is selected according to the difference between the expected and measured thickness of absorber traversed, the match of the hits in the IFR with the extrapolated track, the average and spread in the number of hits per IFR layer, and the energy detected in the EMC.

\(J/\psi \rightarrow \mu^+ \mu^- \) candidates are constructed from two identified muons with polar angle in the range \([0.3,2.7]\) radians and with invariant mass \(3.06 < M_{\mu^+ \mu^-} < 3.14 \) GeV/c\(^2\). The absolute value of the cosine of the helicity angle of the \(J/\psi \) decay is required to be less than 0.9. \(J/\psi \rightarrow e^+ e^- \) candidates are constructed from two identified electrons with polar angle in the range \([0.41,2.40]\) radians and with invariant mass \(2.95 < M_{e^+ e^-} < 3.14 \) GeV/c\(^2\). The absolute value of the cosine of the helicity angle is required to be less than 0.8.

\(B^\pm \) candidates are formed from the combination of a reconstructed \(J/\psi \), constrained to the world average mass \([6]\), and a charged track \(h^\pm \). A vertex constraint is applied to the reconstructed tracks before computing two kinematic quantities of the \(B^\pm \) candidate used to discriminate signal from background.

We define the beam energy-substituted mass \(m_{\text{ES}} \) as:

\[
m_{\text{ES}} = \sqrt{(s/2 + p_j p_i)^2/E_j^2 - |p_i|^2},
\]

where \(\sqrt{s} \) is the total energy of the \(e^+ e^- \) system in the \(Y(4S) \) rest frame, and \((E_j,p_j)\) and \((E_i,p_i)\) are the four-momenta of the \(e^+ e^- \) system and the reconstructed \(B^\pm \) candidate, both in the laboratory frame. We define the kinematic variable \(\Delta E_{\pi^0} (\Delta E_K) \) as the difference between the reconstructed energy of the \(B^\pm \) candidate and the beam energy in the \(Y(4S) \) rest frame assuming \(h^\pm = \pi^\pm (K^\pm) \). We require \(|\Delta E_{\pi^0}| < 120 \) MeV, \(|\Delta E_K| < 120 \) MeV, and \(m_{\text{ES}} > 5.2 \) GeV/c\(^2\). Figure 1 shows the distribution for Monte Carlo simulations of \(B^\pm \rightarrow J/\psi \pi^\pm \) and \(B^\pm \rightarrow J/\psi K^\pm \) events in \(\Delta E_{\pi^0}, \Delta E_K \) plane.

The selected sample contains 1074 \(B^\pm \rightarrow J/\psi \rightarrow \mu^+ \mu^- \) \(h^\pm \) and 1081 \(B^\pm \rightarrow J/\psi \rightarrow e^+ e^- \) \(h^\pm \) candidates. A fit to the \(\Delta E_K \) distribution with the sum of a Gaussian and a polynomial function, modeling the \(B^\pm \rightarrow J/\psi K^\pm \) signal and the background contribution is shown in Fig. 2.

The background contaminating the sample is characterized with events in the data that are sufficiently far from the typical signal regions (sidebands of the data sample). We define \(m_{\text{ES}} \) sideband events by the requirement that \(5.2 < m_{\text{ES}} < M_B - 4 \sigma(m_{\text{ES}}) = 5.27 \) GeV/c\(^2\), where \(M_B \) is the world average \(B^\pm \) mass [6] and \(\sigma(m_{\text{ES}}) \) is the \(m_{\text{ES}} \) resolution; their distribution in the \(\Delta E_{\pi^0}, \Delta E_K \) plane is shown in Fig. 3. We define \(\Delta E_K \) and \(\Delta E_{\pi^0} \) sideband events by the requirement that \(120 > |\Delta E_{\pi^0}| > 4 \sigma(\Delta E) = 42 \) MeV and \(120 > |\Delta E_K| > 4 \sigma(\Delta E) = 42 \) MeV, where \(\sigma(\Delta E) \) is the width of the fitted Gaussian in Fig. 2. The distribution in \(m_{\text{ES}} \) of the sideband events is modeled by an ARGUS function [7], with an additional Gaussian peak in the \(m_{\text{ES}} \) signal region for events from other \(B \rightarrow J/\psi X \) decays. The number of background events in this peak has been estimated to be \(10 \pm 4 \) with detailed Monte Carlo simulation of inclusive charmum decay. Figure 4 shows the \(m_{\text{ES}} \) distribution for the data sample, along with the fit.

Our fit to the data sample is based on maximizing the following extended likelihood function:

\[
L = e^{-\sum \sum_j^M P_i N_i},
\]

where \(P_i \) is the probability for an event with \(m_{\text{ES}} > 5.27 \) GeV/c\(^2\). The dashed curve represents the background contribution.
where \(j \) is the index of the event, \(i \) is the index of the hypothesis \((i = \pi, K, bkd)\), \(N_i \) are the yields for the \(B^\pm \rightarrow J/\psi \pi^\pm \), \(B^\pm \rightarrow J/\psi K^\pm \), and background events in the sample, and \(M \) is the total number of events. The observables \(\Delta E_\pi \), the momentum \(p \) of the final-state charged hadron computed in the laboratory frame, and \(m_{ES} \) are used as arguments of the probability density functions (PDF) \(P_i \). The PDFs are mainly determined from data with limited input from simulation.

It is useful to define the new variables \(D = \Delta E_K - \Delta E_\pi \)

\[
D = \gamma(\sqrt{p^2 + m_K^2} - \sqrt{p^2 + m_\pi^2}),
\]

where \(\gamma \) is the Lorentz boost from the laboratory frame to the \(Y(4S) \) rest frame, and \(S = \Delta E_K + \Delta E_\pi = 2 \Delta E_\pi + D \). These variables have the property that \((\Delta E_\pi, D) \) in the pion hypothesis, \((\Delta E_K, D) \) in the kaon hypothesis and \((S, D) \) in the background hypothesis are uncorrelated at the 1% level. Therefore, with appropriate transformations of variables, each \(P_i(\Delta E_\pi, p, m_{ES}) \) can be written as a product of one-dimensional PDFs:

\[
P_{\pi}(\Delta E_\pi, p, m_{ES}) = f_{\pi}(\Delta E_\pi)g_{\pi}(p)h_{\pi}(m_{ES}),
\]

(3)

\[
P_K(\Delta E_\pi, p, m_{ES}) = f_K(\Delta E_K)g_K(p)h_K(m_{ES}),
\]

(4)

\[
P_{bkd}(\Delta E_\pi, p, m_{ES}) = f_{bkd}(S)g_{bkd}(D)h_{bkd}(m_{ES}).
\]

(5)

FIG. 3. Distribution of \(\Delta E_K \) vs \(\Delta E_\pi \) for the events in the \(m_{ES} \) sideband of the data sample.

 FIG. 4. The \(m_{ES} \) distribution and fit for the events in the data sample. The ARGUS (dashed curve) and peaking (dotted curve) components of the background are also displayed.

 FIG. 5. The \(S \) distribution and fit for the events in the \(m_{ES} \) sideband of the data sample.

The \(f_{\pi}(\Delta E_\pi), f_K(\Delta E_K), h_{\pi}(m_{ES}) \), and \(h_K(m_{ES}) \) components are the \(\Delta E \) and \(m_{ES} \) resolution functions for the signals. The mean values and the Gaussian widths are allowed to float as free parameters in the likelihood fit and are extracted together with the yields. This strategy reduces the systematic error due to possible inaccuracies of the \(\Delta E \) and \(m_{ES} \) description in Monte Carlo simulations.

The \(h_{bkd} \) component is represented by a phenomenological function with eight fixed parameters, all estimated from the distribution of \(S \) for the events in the \(m_{ES} \) sideband (Fig. 5).

The \(h_{bkd} \) component is represented by the sum of an ARGUS and a Gaussian function, with parameters estimated from the distribution of \(m_{ES} \) for the events in the \(\Delta E_K \) and \(\Delta E_\pi \) sidebands.

The \(g \) components are each represented by a phenomenological function with seven fixed parameters. The parameters are estimated with Monte Carlo simulations for the \(\pi \) and \(K \) hypotheses, and with events in the \(m_{ES} \) sideband for the background case. A comparison of the \(D \) distributions in the three hypotheses shows that this variable, introduced by our procedure for factorizing PDFs, provides little discriminating power.

From the maximum likelihood fit to the selected sample we obtain \(N_{\pi} = 52 \pm 10 \), \(N_K = 1284 \pm 37 \), and \(N_{bkd} = 819 \pm 31 \). The correlation coefficient between \(N_{\pi} \) and \(N_K \) is \(-0.04\). The confidence level of the fit, defined as the probability to obtain a maximum value of the likelihood smaller than the observed value, is 54%, estimated by Monte Carlo techniques. The statistical significance of the \(B^\pm \rightarrow J/\psi \pi^\pm \) signal, evaluated from the change in the maximum value of \(\ln L \) when we constrain \(N_{\pi} = 0 \), is 7.0\(\sigma \).

The distribution of \(\ln(P_{\pi}/P_K) \) for the sample, after subtraction of the background component in each bin, is shown in Fig. 6. The background distribution is normalized to the number of background events from the fit. The distribution of \(\ln(P_{\pi}/P_K) \) for simulated signal samples, normalized to the yields extracted from the likelihood fit, is also shown. The distribution in \(\Delta E_\pi \) for the events in the data sample with \(m_{ES} > 5.27 \text{ GeV}/c^2 \) is shown in Fig. 7, along with the likelihood fit result.

Possible biases in the fitting procedure were investigated by performing the fit on simulated samples of known composition and of the same size as the data. The differences, \(\Delta_{\pi} \) and \(\Delta_K \), between the extracted and the input values are con-
FIG. 6. The $\ln(P_{\pi}/P_K)$ distribution for events in the data sample (after the subtraction of the background component in each bin) and from Monte Carlo simulations of $B^+ \rightarrow J/\psi \pi^+ (K^\pm)$ events; the distributions are normalized to the yields extracted from the maximum likelihood fit.

The use of particle identification for the charged hadron h^\pm has been investigated by adding to the likelihood, as an additional argument, the Cherenkov angle θ_c measured in the DIRC for this track. The PDFs for the variable θ_c are determined from data and parametrized as Gaussian functions, with mean values and widths that depend on the momentum of the track. A fit with a modified likelihood function is performed with the subsample of events where the particle identification information is available. The ratio of branching fractions is determined separately for the $J/\psi(\mu^+\mu^-)h^\pm$ and $J/\psi(e^+e^-)h^\pm$ samples. A detailed comparison, reported in Table I shows that the addition of particle identification does not significantly change the statistical precision of the results, which are consistent to within 1.6σ.

Based on the fitted event yields, we find the ratio of branching fractions to be

$$B(B^+ \rightarrow J/\psi \pi^+) \over B(B^+ \rightarrow J/\psi K^\pm) = [3.91 \pm 0.78 \text{(stat)} \pm 0.19 \text{(syst)}] \%.$$

The dominant systematic error (0.17%) comes from the uncertainty in the correction factors, Δ_θ and Δ_K, due to the limited statistics of the simulated samples. The uncertainty in the fixed parameters of the PDFs, determined by fits to simulated or nonsignal data sets, affects several aspects of the likelihood fit: the characterization of the S and D distributions, the characterization of the m_{ES} distribution for the background (including the fraction of peaking background events), and the fraction of signal events in the tails of the ΔE distribution. This uncertainty contributes 0.07% to the systematic error. Contributions due to any possible difference in the reconstruction efficiencies for $J/\psi \pi^+$ and $J/\psi K^\pm$ events are found to be negligible, as are uncertainties due to inaccuracies in the description of the tails of the ΔE resolution function.

Our determination of the ratio of branching fractions is consistent with the expectation reported in [1] and with previous measurements [2,3], but has a substantially lower uncertainty than the world average value of $(5.1 \pm 1.4)\%$ [6].

To study direct CP violation in these channels, we modify the likelihood function in Eq. (2) as follows:

$$L' = e^{-\sum_{N_i} \prod_{j=1}^{M} P_i'(\Delta E_{\pi}, p_j, m_{ES}, q_i) N_i},$$

where q is the charge of h^\pm. We factorize the PDFs as

$$P_i'(\Delta E_{\pi}, p_j, m_{ES}, q) = P_i(\Delta E_{\pi}, p_j, m_{ES}) c_i(q),$$

where $c_i(q)$ is the probability for the final state charged hadron, in a certain hypothesis, to have charge q. The c_i can be written in terms of the CP-violating charge asymmetries A_i, as

$$c_i(q) = i \frac{1}{2} [(1 - A_i) f^+(q) + (1 + A_i) f^-(q)],$$

where

$$A_i = \frac{N_i^+ - N_i^-}{N_i^+ + N_i^-},$$

$$f^+(q) = \begin{cases} 1 & \text{if } q = +1, \\ 0 & \text{if } q = -1, \end{cases}$$

TABLE I. Measurements of $B(B^+ \rightarrow J/\psi \pi^+) / B(B^+ \rightarrow J/\psi K^\pm)$ obtained with the original (fit 1) and a modified likelihood function (fit 2) that includes particle identification for h^\pm. The error on the difference Δ between the two measurements is estimated as $\sigma_\Delta = \sqrt{\sigma_1^2 + \sigma_2^2}$.

<table>
<thead>
<tr>
<th>Sample</th>
<th>Fit 1</th>
<th>Fit 2</th>
<th>Δ/σ_Δ</th>
</tr>
</thead>
<tbody>
<tr>
<td>$J/\psi(\mu^+\mu^-)h^\pm$</td>
<td>(4.2 \pm 1.0)%</td>
<td>(4.7 \pm 1.1)%</td>
<td>1.1</td>
</tr>
<tr>
<td>$J/\psi(e^+e^-)h^\pm$</td>
<td>(3.5 \pm 1.2)%</td>
<td>(4.1 \pm 1.3)%</td>
<td>1.2</td>
</tr>
</tbody>
</table>
The asymmetry observables A_i are allowed to float as free parameters in the likelihood fit and are extracted together with the yields.

We impose additional requirements on the charged track h^\pm in the events to be used in the fit, selecting only those tracks for which the tracking efficiency has been accurately measured from data. Tracks are required to have a polar angle in the range $[0.41, 2.54]$ radians, to include at least 12 DCH hits, to have $p_t > 100$ MeV/c, and to point back to the nominal interaction point within 1.5 cm in the vertical plane and within 3 cm along the longitudinal direction. The selected sample contains 982 $B^- \rightarrow J/\psi h^-$ and 970 $B^+ \rightarrow J/\psi h^+$ candidates.

From the maximum likelihood fit to the data sample we obtain $A_\pi = 0.01 \pm 0.22$, $A_K = -0.001 \pm 0.030$, and $A_{bkd} = 0.018 \pm 0.039$. The correlation coefficient between A_π and A_K is -0.03.

The uncertainty in the fixed parameters of the PDFs, determined by fits to simulated or nonsignal data sets, contributes 0.0056 and 0.0002 to the systematic error on A_π and A_K, respectively. The difference in tracking efficiency between positively and negatively charged tracks—primarily pions—has been studied in hadronic events by comparing the independent SVT and DCH tracking systems. The corrections to the asymmetries A_π and A_K are negligible. The uncertainty on the corrections contributes 0.0026 and 0.0020 to the systematic error on A_π and A_K, respectively. The fake asymmetry due to the different probability of interaction of K^+ and K^- in the detector material before the DCH is estimated to be -0.0039. We correct A_K for this quantity and conservatively assume a contribution of 0.0039 to the systematic uncertainty. This represents the dominant systematic error on A_K. A more careful evaluation of the materials and of K^+/K^- cross-section differences will make it possible to substantially reduce this contribution.

We determine the CP-violating charge asymmetries to be

$$A_\pi = 0.01 \pm 0.22 \text{(stat)} \pm 0.01 \text{(syst)},$$

$$A_K = 0.003 \pm 0.030 \text{(stat)} \pm 0.004 \text{(syst)}.$$

These results are consistent with standard model expectations and with the measurement reported in [8].

As a cross-check, A_K has been determined also with a simple analysis based on the counting of $B^\pm \rightarrow J/\psi \pi^\pm$ signal events in the m_{ES} peak. The result is compatible with the likelihood fit analysis: $A_K = 0.005 \pm 0.030 \text{(stat)} \pm 0.004 \text{(syst)}$.

We observe no evidence for CP violation in $B^\pm \rightarrow J/\psi \pi^\pm$ or $B^\pm \rightarrow J/\psi K^\pm$ decays. These results are statistically limited and can be expected to improve with additional data.

We are grateful for the excellent luminosity and machine conditions provided by our PEP-II colleagues. The collaborating institutions wish to thank SLAC for its support and kind hospitality. This work is supported by DOE and NSF (USA), NSERC (Canada), IHEP (China), CEA and CNRS-IN2P3 (France), BMBF (Germany), INFN (Italy), NFR (Norway), MIST (Russia), and PPARC (United Kingdom). Individuals have received support from the Swiss NSF, A. P. Sloan Foundation, Research Corporation, and Alexander von Humboldt Foundation.