PDF hosted at the Radboud Repository of the Radboud University Nijmegen

The following full text is a publisher’s version.

For additional information about this publication click this link.
http://hdl.handle.net/2066/128912

Please be advised that this information was generated on 2018-12-01 and may be subject to change.
Study of $B^\pm \to J/\psi \pi^\pm$ and $B^\pm \to J/\psi K^\pm$ decays: Measurement of the ratio of branching fractions and search for direct CP-violating charge asymmetries

The decay $B^\pm \to J/\psi \pi^\pm$ is both Cabibbo suppressed and color suppressed. If the leading-order tree diagram is the dominant contribution, its branching fraction is expected to be about 5% of the Cabibbo-allowed mode $B^\pm \to J/\psi K^\pm$. A comparable prediction can be obtained with a simple model based on the factorization hypothesis [1]. Previous studies of this decay were performed by the CLEO [2] and Collider Detector at Fermilab (CDF) [3] Collaborations. Significant interference terms between the suppressed tree and penguin amplitudes could produce a direct CP-violating charge asymmetry in the $B^\pm \to J/\psi \pi^\pm$ decays at the few percent level [4]. On the contrary, a negligible direct CP violation is expected in the $B^\pm \to J/\psi K^\pm$ decays because for $b \to c\bar{c}e\bar{s}$ transitions the standard model predicts that the leading- and higher-order diagrams are characterized by the same weak phase.

In this paper we present a measurement of the ratio of branching fractions $B(B^\pm \to J/\psi \pi^\pm)/B(B^\pm \to J/\psi K^\pm)$ along with a search for direct CP violation in these channels. The data were recorded at the $Y(4S)$ resonance in 1999–2000 with the BABAR detector at the PEP-II asymmetric-energy e^+e^- collider at the Stanford Linear Accelerator Center. The integrated luminosity is 20.7 fb$^{-1}$, corresponding to 22.7 million $B\bar{B}$ pairs. We fully reconstruct $B^\pm \to J/\psi h^\pm$ decays, where $h^\pm = \pi^\pm, K^\pm$. Signal yields and charge asymmetries are determined from an unbinned maximum likelihood fit that exploits the kinematics of the decay to identify the π^\pm, K^\pm, and background components in the sample. This kinematic separation is sufficiently good so that no explicit particle identification is required on the charged hadron h^\pm, thereby simplifying the analysis. At the same time, particle identification can be used to perform a cross-check of the
measurement.

The BABAR detector is described in detail elsewhere [5]. A five-layer silicon vertex tracker (SVT) and a 40-layer drift chamber (DCH), in a 1.5-T solenoidal magnetic field, provide detection of charged particles and measurement of their momenta. The transverse momentum resolution is \(\sigma_p/p = (0.13 \pm 0.01)\% \cdot p + (0.45 \pm 0.03)\% \), where \(p \) is measured in GeV/c. Electrons are detected in a CsI electromagnetic calorimeter (EMC), while muons are identified in the magnetic flux return system (IFR), which is instrumented with multiple layers of resistive plate chambers. A ring-imaging Cherenkov detector (DIRC) with a quartz bar radiator provides charged particle identification.

An electron candidate is selected according to the ratio of the energy detected in the EMC to track momentum, the cluster shape in the EMC, the energy loss in the DCH, and the DIRC Cherenkov angle, if available. A muon candidate is selected according to the difference between the expected and measured thickness of absorber traversed, the match of the hits in the IFR with the extrapolated track, the average and spread in the number of hits per IFR layer, and the energy detected in the EMC.

\(J/\psi \rightarrow \mu^+ \mu^- \) candidates are constructed from two identified muons with polar angle in the range \([0.3, 2.7]\) radians and with invariant mass \(3.06 < M_{\mu^+\mu^-} < 3.14 \) GeV/c\(^2\). The absolute value of the cosine of the helicity angle of the \(J/\psi \) decay is required to be less than 0.9. \(J/\psi \rightarrow e^+e^- \) candidates are constructed from two identified electrons with polar angle in the range \([0.41, 2.40]\) radians and with invariant mass \(2.95 < M_{e^+e^-} < 3.14 \) GeV/c\(^2\). The absolute value of the cosine of the helicity angle is required to be less than 0.8.

\(B^\pm \) candidates are formed from the combination of a reconstructed \(J/\psi \), constrained to the world average mass [6], and a charged track \(h^\pm \). A vertex constraint is applied to the reconstructed tracks before computing two kinematic quantities of the \(B^\pm \) candidate used to discriminate signal from background. We define the beam energy-substituted mass \(m_{ES} \) as

\[
m_{ES} = \sqrt{(s/2 + p_t \cdot p_B)^2/E_B^2 - |p_B|^2},
\]

where \(s \) is the total energy of the \(e^+e^- \) system in the \(Y(4S) \) rest frame, and \((E_i, p_i) \) and \((E_B, p_B) \) are the four-momenta of the \(e^+e^- \) system and the reconstructed \(B \) candidate, both in the laboratory frame. We define the kinematic variable \(\Delta E_\pi \) (\(\Delta E_K \)) as the difference between the reconstructed energy of the \(B^\pm \) candidate and the beam energy in the \(Y(4S) \) rest frame assuming \(h^\pm = \pi^\pm(K^\pm) \). We require \(\Delta E_\pi < 120 \) MeV, \(\Delta E_K < 120 \) MeV, and \(m_{ES} > 5.2 \) GeV/c\(^2\). Figure 1 shows the distribution for the events in the data sample, along with the fit.

The selected sample contains 1074 \(B^\pm \rightarrow J/\psi (\rightarrow \mu^+\mu^-)h^\pm \) and 1081 \(B^\pm \rightarrow J/\psi (\rightarrow e^+e^-)h^\pm \) candidates. A fit to the \(\Delta E_K \) distribution with the sum of a Gaussian and a polynomial function, modeling the \(B^\pm \rightarrow J/\psi K^\pm \) signal and the background contribution is shown in Fig. 2.

The background contaminating the sample is characterized with events in the data that are sufficiently far from the typical signal regions (sidebands of the data sample). We define \(m_{ES} \) sideband events by the requirement that \(5.2 < m_{ES} < M_B - 4 \sigma(m_{ES}) = 5.27 \) GeV/c\(^2\), where \(M_B \) is the world average \(B^\pm \) mass [6] and \(\sigma(m_{ES}) \) is the \(m_{ES} \) resolution; their distribution in the \((\Delta E_\pi, \Delta E_K) \) plane is shown in Fig. 3. We define \(\Delta E_K \) and \(\Delta E_\pi \) sideband events by the requirement that \(120 > |\Delta E_K| > 4 \sigma(\Delta E) = 42 \) MeV and \(120 > |\Delta E_\pi| > 4 \sigma(\Delta E) = 42 \) MeV, where \(\sigma(\Delta E) \) is the width of the fitted Gaussian in Fig. 2. The distribution in \(m_{ES} \) of the sideband events is modeled by an ARGUS function [7], with an additional Gaussian peak in the \(m_{ES} \) signal region for events from other \(B \rightarrow J/\psi X \) decays. The number of background events in this peak has been estimated to be \(10 \pm 4 \) with detailed Monte Carlo simulation of inclusive charm decay processes. Figure 4 shows the \(m_{ES} \) distribution for the data sample, along with the fit.

Our fit to the data sample is based on maximizing the following extended likelihood function:

\[
L = e^{-N} \prod_{j=1}^{M} \sum_{i} P_j(\Delta E_{\pi}^i, p_{i}^j, m_{ES}^j) N_i,
\]

FIG. 2. The \(\Delta E_K \) distribution and fit for the events in the data sample with \(m_{ES} > 5.27 \) GeV/c\(^2\). The dashed curve represents the background contribution.
PDFs are mainly determined from data with limited input written as a product of one-dimensional PDFs:

\[\text{elements of the probability density functions from the laboratory frame to the } Y_{m} \text{ computed in the laboratory frame, and } M \text{ is the total number of events.} \]

The observables \(\Delta E_\pi \), the momentum \(p \) of the final-state charged hadron computed in the laboratory frame, and \(m_{ES} \) are used as arguments of the probability density functions (PDF) \(P_i \). The PDFs are mainly determined from data with limited input from simulation.

It is useful to define the new variables \(D = \Delta E_K - \Delta E_\pi = \gamma (\sqrt{p^2 + m_K^2} - \sqrt{p^2 + m_\pi^2}) \), where \(\gamma \) is the Lorentz boost from the laboratory frame to the Y(4S) rest frame, and \(S = \Delta E_K + \Delta E_\pi = 2 \Delta E_\pi + D \). These variables have the property that \((\Delta E_\pi, D) \) in the pion hypothesis, \((\Delta E_K, D) \) in the kaon hypothesis and \((S, D) \) in the background hypothesis are uncorrelated at the 1% level. Therefore, with appropriate transformations of variables, each \(P_i(\Delta E_\pi, p, m_{ES}) \) can be written as a product of one-dimensional PDFs:

\[
P_i(\Delta E_\pi, p, m_{ES}) = f_i(\Delta E_\pi) g_i(D) h_i(m_{ES}),
\]

where \(i = \pi, K, bkd \), \(N_j \) are the yields for the \(B^\pm \rightarrow J/\psi \pi^\pm \), \(B^\pm \rightarrow J/\psi K^\mp \), and background events in the sample, and \(M \) is the total number of events. The PDFs are mainly determined from data with limited input from simulation.

The distribution of \(\Delta E_K \) for the events in the \(m_{ES} \) sideband of the data sample.

where \(j \) is the index of the event, \(i \) is the index of the hypothesis \((i = \pi, K, bkd), N_j \) are the yields for the \(B^\pm \rightarrow J/\psi \pi^\pm \), \(B^\pm \rightarrow J/\psi K^\mp \), and background events in the sample, and \(M \) is the total number of events. The observables \(\Delta E_\pi \), the momentum \(p \) of the final-state charged hadron computed in the laboratory frame, and \(m_{ES} \) are used as arguments of the probability density functions (PDF) \(P_i \). The PDFs are mainly determined from data with limited input from simulation.

It is useful to define the new variables \(D = \Delta E_K - \Delta E_\pi = \gamma (\sqrt{p^2 + m_K^2} - \sqrt{p^2 + m_\pi^2}) \), where \(\gamma \) is the Lorentz boost from the laboratory frame to the Y(4S) rest frame, and \(S = \Delta E_K + \Delta E_\pi = 2 \Delta E_\pi + D \). These variables have the property that \((\Delta E_\pi, D) \) in the pion hypothesis, \((\Delta E_K, D) \) in the kaon hypothesis and \((S, D) \) in the background hypothesis are uncorrelated at the 1% level. Therefore, with appropriate transformations of variables, each \(P_i(\Delta E_\pi, p, m_{ES}) \) can be written as a product of one-dimensional PDFs:

\[
P_i(\Delta E_\pi, p, m_{ES}) = f_i(\Delta E_\pi) g_i(D) h_i(m_{ES}),
\]

where \(i = \pi, K, bkd \), \(N_j \) are the yields for the \(B^\pm \rightarrow J/\psi \pi^\pm \), \(B^\pm \rightarrow J/\psi K^\mp \), and background events in the sample, and \(M \) is the total number of events. The PDFs are mainly determined from data with limited input from simulation.

It is useful to define the new variables \(D = \Delta E_K - \Delta E_\pi = \gamma (\sqrt{p^2 + m_K^2} - \sqrt{p^2 + m_\pi^2}) \), where \(\gamma \) is the Lorentz boost from the laboratory frame to the Y(4S) rest frame, and \(S = \Delta E_K + \Delta E_\pi = 2 \Delta E_\pi + D \). These variables have the property that \((\Delta E_\pi, D) \) in the pion hypothesis, \((\Delta E_K, D) \) in the kaon hypothesis and \((S, D) \) in the background hypothesis are uncorrelated at the 1% level. Therefore, with appropriate transformations of variables, each \(P_i(\Delta E_\pi, p, m_{ES}) \) can be written as a product of one-dimensional PDFs:

\[
P_i(\Delta E_\pi, p, m_{ES}) = f_i(\Delta E_\pi) g_i(D) h_i(m_{ES}),
\]

where \(i = \pi, K, bkd \), \(N_j \) are the yields for the \(B^\pm \rightarrow J/\psi \pi^\pm \), \(B^\pm \rightarrow J/\psi K^\mp \), and background events in the sample, and \(M \) is the total number of events. The PDFs are mainly determined from data with limited input from simulation.

It is useful to define the new variables \(D = \Delta E_K - \Delta E_\pi = \gamma (\sqrt{p^2 + m_K^2} - \sqrt{p^2 + m_\pi^2}) \), where \(\gamma \) is the Lorentz boost from the laboratory frame to the Y(4S) rest frame, and \(S = \Delta E_K + \Delta E_\pi = 2 \Delta E_\pi + D \). These variables have the property that \((\Delta E_\pi, D) \) in the pion hypothesis, \((\Delta E_K, D) \) in the kaon hypothesis and \((S, D) \) in the background hypothesis are uncorrelated at the 1% level. Therefore, with appropriate transformations of variables, each \(P_i(\Delta E_\pi, p, m_{ES}) \) can be written as a product of one-dimensional PDFs:

\[
P_i(\Delta E_\pi, p, m_{ES}) = f_i(\Delta E_\pi) g_i(D) h_i(m_{ES}),
\]

where \(i = \pi, K, bkd \), \(N_j \) are the yields for the \(B^\pm \rightarrow J/\psi \pi^\pm \), \(B^\pm \rightarrow J/\psi K^\mp \), and background events in the sample, and \(M \) is the total number of events. The PDFs are mainly determined from data with limited input from simulation.

It is useful to define the new variables \(D = \Delta E_K - \Delta E_\pi = \gamma (\sqrt{p^2 + m_K^2} - \sqrt{p^2 + m_\pi^2}) \), where \(\gamma \) is the Lorentz boost from the laboratory frame to the Y(4S) rest frame, and \(S = \Delta E_K + \Delta E_\pi = 2 \Delta E_\pi + D \). These variables have the property that \((\Delta E_\pi, D) \) in the pion hypothesis, \((\Delta E_K, D) \) in the kaon hypothesis and \((S, D) \) in the background hypothesis are uncorrelated at the 1% level. Therefore, with appropriate transformations of variables, each \(P_i(\Delta E_\pi, p, m_{ES}) \) can be written as a product of one-dimensional PDFs:

\[
P_i(\Delta E_\pi, p, m_{ES}) = f_i(\Delta E_\pi) g_i(D) h_i(m_{ES}),
\]

where \(i = \pi, K, bkd \), \(N_j \) are the yields for the \(B^\pm \rightarrow J/\psi \pi^\pm \), \(B^\pm \rightarrow J/\psi K^\mp \), and background events in the sample, and \(M \) is the total number of events. The PDFs are mainly determined from data with limited input from simulation.

It is useful to define the new variables \(D = \Delta E_K - \Delta E_\pi = \gamma (\sqrt{p^2 + m_K^2} - \sqrt{p^2 + m_\pi^2}) \), where \(\gamma \) is the Lorentz boost from the laboratory frame to the Y(4S) rest frame, and \(S = \Delta E_K + \Delta E_\pi = 2 \Delta E_\pi + D \). These variables have the property that \((\Delta E_\pi, D) \) in the pion hypothesis, \((\Delta E_K, D) \) in the kaon hypothesis and \((S, D) \) in the background hypothesis are uncorrelated at the 1% level. Therefore, with appropriate transformations of variables, each \(P_i(\Delta E_\pi, p, m_{ES}) \) can be written as a product of one-dimensional PDFs:

\[
P_i(\Delta E_\pi, p, m_{ES}) = f_i(\Delta E_\pi) g_i(D) h_i(m_{ES}),
\]

where \(i = \pi, K, bkd \), \(N_j \) are the yields for the \(B^\pm \rightarrow J/\psi \pi^\pm \), \(B^\pm \rightarrow J/\psi K^\mp \), and background events in the sample, and \(M \) is the total number of events. The PDFs are mainly determined from data with limited input from simulation.

It is useful to define the new variables \(D = \Delta E_K - \Delta E_\pi = \gamma (\sqrt{p^2 + m_K^2} - \sqrt{p^2 + m_\pi^2}) \), where \(\gamma \) is the Lorentz boost from the laboratory frame to the Y(4S) rest frame, and \(S = \Delta E_K + \Delta E_\pi = 2 \Delta E_\pi + D \). These variables have the property that \((\Delta E_\pi, D) \) in the pion hypothesis, \((\Delta E_K, D) \) in the kaon hypothesis and \((S, D) \) in the background hypothesis are uncorrelated at the 1% level. Therefore, with appropriate transformations of variables, each \(P_i(\Delta E_\pi, p, m_{ES}) \) can be written as a product of one-dimensional PDFs:

\[
P_i(\Delta E_\pi, p, m_{ES}) = f_i(\Delta E_\pi) g_i(D) h_i(m_{ES}),
\]

where \(i = \pi, K, bkd \), \(N_j \) are the yields for the \(B^\pm \rightarrow J/\psi \pi^\pm \), \(B^\pm \rightarrow J/\psi K^\mp \), and background events in the sample, and \(M \) is the total number of events. The PDFs are mainly determined from data with limited input from simulation.
TABLE I. Measurements of $\mathcal{B}(B^\pm \to J/\psi \pi^\pm)/\mathcal{B}(B^\pm \to J/\psi K^\pm)$ obtained with the original (fit 1) and a modified likelihood function (fit 2) that includes particle identification for h^\pm. The error on the difference Δ between the two measurements is estimated as $\sigma_\Delta = \sqrt{|\sigma_1^2 - \sigma_2^2|}$.

<table>
<thead>
<tr>
<th>Sample</th>
<th>Fit 1</th>
<th>Fit 2</th>
<th>Δ/σ_Δ</th>
</tr>
</thead>
<tbody>
<tr>
<td>$J/\psi(\mu^+ \mu^-)h^\pm$</td>
<td>$(4.2 \pm 1.0%)$</td>
<td>$(4.7 \pm 1.1%)$</td>
<td>1.1</td>
</tr>
<tr>
<td>$J/\psi(e^+ e^-)h^\pm$</td>
<td>$(3.5 \pm 1.2%)$</td>
<td>$(4.1 \pm 1.3%)$</td>
<td>1.2</td>
</tr>
</tbody>
</table>

The dominant systematic error (0.17%) comes from the uncertainty in the correction factors, Δ_μ and Δ_π, due to the limited statistics of the simulated samples. The uncertainty in the fixed parameters of the PDFs, determined by fits to simulated or nonsignal data sets, affects several aspects of the likelihood fit: the characterization of the S and D distributions, the characterization of the m_{ES} distribution for the background (including the fraction of peaking background events), and the fraction of signal events in the tails of the ΔE distribution. This uncertainty contributes 0.07% to the systematic error. Contributions due to any possible difference in the reconstruction efficiencies for $J/\psi \pi^\pm$ and $J/\psi K^\pm$ events are found to be negligible, as are uncertainties due to inaccuracies in the description of the tails of the ΔE resolution function.

Our determination of the ratio of branching fractions is consistent with the expectation reported in [1] and with previous measurements [2,3], but has a substantially lower uncertainty than the world average value of $(5.1 \pm 1.4\%)$ [6].

To study direct CP violation in these channels, we modify the likelihood function in Eq. (2) as follows:

$$L' = e^{-\Sigma N_i \sum_{j=1}^{M} P_i'(\Delta E_{\pi}, p, m_{ES}, q_i) N_i},$$

where q is the charge of h^\pm. We factorize the PDFs as

$$P_i'(\Delta E_{\pi}, p, m_{ES}, q_i) = P_i(\Delta E_{\pi}, p, m_{ES}) c_i(q),$$

where $c_i(q)$ is the probability for the final state charged hadron, in a certain hypothesis, to have charge q. The c_i can be written in terms of the CP-violating charge asymmetries A_i, as

$$c_i(q) = \frac{1}{2} \left\{ (1 - A_i) f^+ (+q) + (1 + A_i) f^- (-q) \right\},$$

where

$$A_i = \frac{N_i^- - N_i^+}{N_i^- + N_i^+},$$

$$f^+(q) = \begin{cases} 1 & \text{if } q = +1, \\ 0 & \text{if } q = -1, \end{cases}$$

$$f^-(q) = \begin{cases} 1 & \text{if } q = -1, \\ 0 & \text{if } q = +1, \end{cases}$$
\begin{equation}
 f^-(q) = \begin{cases}
 0 & \text{if } q = +1, \\
 1 & \text{if } q = -1.
 \end{cases}
\end{equation}

The asymmetry observables \(A_\ell \) are allowed to float as free parameters in the likelihood fit and are extracted together with the yields.

We impose additional requirements on the charged track \(h^\pm \) in the events to be used in the fit, selecting only those tracks for which the tracking efficiency has been accurately measured from data. Tracks are required to have a polar angle in the range \([0.41, 2.54]\) radians, to include at least 12 DCH hits, to have \(p_t > 100 \text{ MeV}/c \), and to point back to the nominal interaction point within 1.5 cm in the vertical plane and within 3 cm along the longitudinal direction. The selected sample contains 982 \(B^- \to J/\psi \pi^\pm \) and 970 \(B^+ \to J/\psi h^\pm \) candidates.

From the maximum likelihood fit to the data sample we obtain \(A_\pi = 0.01 \pm 0.22 \), \(A_K = -0.001 \pm 0.030 \), and \(A_{bbd} = 0.018 \pm 0.039 \). The correlation coefficient between \(A_\pi \) and \(A_K \) is \(-0.03 \).

The uncertainty in the fixed parameters of the PDFs, determined by fits to simulated or non-signal data sets, contributes 0.0056 and 0.0002 to the systematic error on \(A_\pi \) and \(A_K \), respectively. The difference in tracking efficiency between positively and negatively charged tracks—primarily pions—has been studied in hadronic events by comparing the independent SVT and DCH tracking systems. The corrections to the asymmetries \(A_\pi \) and \(A_K \) are negligible. The uncertainty on the corrections contributes 0.0026 and 0.0020 to the systematic error on \(A_\pi \) and \(A_K \), respectively. The fake asymmetry due to the different probability of interaction of \(K^+ \) and \(K^- \) in the detector material before the DCH is estimated to be \(-0.0039 \). We correct \(A_K \) for this quantity and conservatively assume a contribution of 0.0039 to the systematic uncertainty. This represents the dominant systematic error on \(A_K \). A more careful evaluation of the materials and of \(K^+/K^- \) cross-section differences will make it possible to substantially reduce this contribution.

We determine the \(CP \)-violating charge asymmetries to be

\[A_\pi = 0.01 \pm 0.22 \text{(stat)} \pm 0.01 \text{(syst)}, \]

\[A_K = 0.003 \pm 0.030 \text{(stat)} \pm 0.004 \text{(syst)}. \]

These results are consistent with standard model expectations and with the measurement reported in [8].

As a cross-check, \(A_K \) has been determined also with a simple analysis based on the counting of \(B^\pm \to J/\psi \pi^\pm \) signal events in the \(m_{ES} \) peak. The result is compatible with the likelihood fit analysis: \(A_K = 0.005 \pm 0.030 \text{(stat)} \pm 0.004 \text{(syst)}. \)

We observe no evidence for \(CP \) violation in \(B^\pm \to J/\psi \pi^\pm \) or \(B^\pm \to J/\psi K^\pm \) decays. These results are statistically limited and can be expected to improve with additional data.

We are grateful for the excellent luminosity and machine conditions provided by our PEP-II colleagues. The collaborating institutions wish to thank SLAC for its support and kind hospitality. This work is supported by DOE and NSF (USA), NSERC (Canada), IHEP (China), CEA and CNRS-IN2P3 (France), BMBF (Germany), INFN (Italy), NFR (Norway), MIST (Russia), and PPARC (United Kingdom). Individuals have received support from the Swiss NSF, A. P. Sloan Foundation, Research Corporation, and Alexander von Humboldt Foundation.