Measurement of the branching fractions for $\psi(2S)\rightarrow e^+e^-$ and $\psi(2S)\rightarrow \mu^+\mu^-$

PHYSICAL REVIEW D, VOLUME 65, 031101(R)

0556-2821/2001/65(3)/031101(6)/$20.00 ©2001 The American Physical Society
We measure the branching fractions of the $\psi(2S)$ meson to the leptonic final states e^+e^- and $\mu^+\mu^-$ relative to that for $\psi(2S) \rightarrow J/\psi \pi^+\pi^-$. The method uses $\psi(2S)$ mesons produced in the decay of B mesons at the $Y(4S)$ resonance in a data sample collected with the BABAR detector at the Stanford Linear Accelerator Center. Using previous measurements for the $\psi(2S) \rightarrow J/\psi \pi^+\pi^-$ branching fraction, we determine the e^+e^- and $\mu^+\mu^-$ branching fractions to be 0.0078\pm0.0009\pm0.0008 and 0.0067\pm0.0008\pm0.0007, respectively.

The branching fraction of the $\psi(2S)$ to e^+e^- has previously been measured in e^+e^- collider experiments operating at the mass of the $\psi(2S)$ resonance [1] and in $p\bar{p}$ experiments [2,3]. The $\psi(2S) \rightarrow J/\psi \pi^+\pi^-$ branching fraction has been measured with substantially larger uncertainty in e^+e^- experiments [4] and in π^-B^0 collisions [5]. This paper reports new measurements of these quantities by the BABAR experiment, operating at the PEP-II e^+e^- collider at the Stanford Linear Accelerator Center.

PEP-II collides 9 GeV electrons on 3.1 GeV positrons to create a center-of-mass system with an energy of 10.58 GeV moving along the z axis with a Lorentz boost of $\beta\gamma=0.56$. At this energy, $Y(4S)$ resonance production makes up 23% of the total hadronic cross section. The $Y(4S)$ is assumed to decay 100% to a pair of B mesons. A large, clean sample of $\psi(2S)$ mesons is produced in the B decays. The e^+e^- and $\mu^+\mu^-$ branching fractions are obtained through their ratio to $J/\psi \pi^+\pi^-$, which is known with much better precision. This technique provides a significantly lower uncertainty on the $\mu^+\mu^-$ branching fraction than the current world average.

The data set used for this analysis corresponds to an integrated luminosity of 20.33\pm0.30 fb$^{-1}$ recorded at 10.58 GeV, and contains $(22.3^{+0.4}_{-0.2}) \times 10^6$ $Y(4S)$ mesons. An additional 2.6 fb$^{-1}$ has been recorded at an energy 40 MeV below the $Y(4S)$ resonance.

The BABAR detector is described in detail in Ref. [6]. The momenta of charged particles are measured and their trajectories reconstructed with two detector systems located in a 1.5 T solenoidal magnetic field: a five-layer, double-sided silicon vertex tracker (SVT) and a 40 layer drift chamber (DCH). The fiducial volume covers the polar angular region $0.41<\theta<2.54$ rad, which is 86% of the solid angle in
the center of mass. The transverse momentum resolution is 0.47% at 1 GeV/c.

The energies of electrons and photons are accurately measured by a CsI(Tl) calorimeter (EMC) in the fiducial volume 0.41 < \theta < 2.41 rad (84% of the center-of-mass solid angle) with an energy resolution at 1 GeV of 3.0%. Muons are detected in the IFR—the flux return of the solenoid, which is instrumented with resistive plate chambers. The DIRC, a unique Cherenkov radiation detection device, identifies charged particles.

The branching fractions of interest are obtained by comparison to that of $\psi(2S) \rightarrow J/\psi \pi^+ \pi^-$. The number of $\psi(2S)$ mesons reconstructed in the final states $e^+e^- (N_{ee})$, $\mu^+\mu^- (N_{\mu\mu})$ and $J/\psi \pi^+ \pi^-$, with $J/\psi \rightarrow e^+e^- (N_{ee\pi\pi})$ or $J/\psi \rightarrow \mu^+\mu^- (N_{\mu\mu\pi\pi})$, is related to the total number of $\psi(2S)$ mesons produced in our data set $N_{\psi(2S)}$ by

$$N_{ee} = N_{\psi(2S)} B_{ee^+e^-} \epsilon_{ee},$$

$$N_{\mu\mu} = N_{\psi(2S)} B_{\mu^+\mu^-} \epsilon_{\mu\mu},$$

$$N_{ee\pi\pi} = N_{\psi(2S)} B_{J/\psi \rightarrow ee^+e^-} \epsilon_{ee\pi\pi},$$

$$N_{\mu\mu\pi\pi} = N_{\psi(2S)} B_{J/\psi \rightarrow \mu^+\mu^-} \epsilon_{\mu\mu\pi\pi}.$$

$B_{ee^+e^-}$, $B_{\mu^+\mu^-}$, and $B_{J/\psi \rightarrow ee^+e^-}$ are the branching fractions of the $\psi(2S)$ to e^+e^-, $\mu^+\mu^-$, and $J/\psi \pi^+ \pi^-$, respectively. We use world averages for $B_{J/\psi \rightarrow ee^+e^-}$, the J/ψ branching fraction to e^+e^-, and for $B_{J/\psi \rightarrow \mu^+\mu^-}$, the branching fraction to $\mu^+\mu^-$ [7]. ϵ_{ee} and $\epsilon_{\mu\mu}$ are the efficiencies for events containing $\psi(2S)$ mesons decaying to e^+e^- and $\mu^+\mu^-$, respectively to satisfy the event selection and meson reconstruction requirements: $\epsilon_{ee\pi\pi}$ and $\epsilon_{\mu\mu\pi\pi}$ are the efficiencies for $\psi(2S) \rightarrow J/\psi \pi^+ \pi^-$ decays with $J/\psi \rightarrow e^+e^-$ and $J/\psi \rightarrow \mu^+\mu^-$, respectively.

Equations (1), (3), and (4) can be combined to give two expressions for the e^+e^- to $J/\psi \pi^+ \pi^-$ branching ratio:

$$\frac{B_{ee^+e^-}}{B_{J/\psi \rightarrow ee^+e^-}} = \frac{N_{ee}}{N_{ee\pi\pi}} \frac{\epsilon_{ee\pi\pi}}{\epsilon_{ee}},$$

$$\frac{B_{\mu^+\mu^-}}{B_{J/\psi \rightarrow \mu^+\mu^-}} = \frac{N_{\mu\mu\pi\pi}}{N_{\mu\mu\pi\pi}} \frac{\epsilon_{\mu\mu\pi\pi}}{\epsilon_{\mu\mu}}.$$
74% of $J/\psi \rightarrow e^+e^-$ decays and 91% of $J/\psi \rightarrow \mu^+\mu^-$ fall within these ranges. All tracks in the fiducial volume not used in the J/ψ reconstruction are used as pion candidates. To avoid systematic errors and retain high efficiency, the tracks are not required to satisfy any specific quality requirements. A pair of oppositely-charged pions is required to have mass $m_{\pi\pi}$ in the region $0.45 < m_{\pi\pi} < 0.60 \text{ GeV}/c^2$. The $\psi(2S)$ mass is obtained after constraining the four tracks in the final state to a common origin.

$\psi(2S)$ candidates in all final states are required to have momentum less than 1.6 GeV/c as measured in the $Y(4S)$ rest frame. This requirement is fully efficient for $\psi(2S)$ mesons produced in B decays.

The J/ψ and $\psi(2S)$ reconstruction efficiencies are determined by simulation and include contributions from acceptance, track quality, particle identification and, for $\psi(2S) \rightarrow J/\psi \pi^+\pi^-$, the J/ψ and $\pi^+\pi^-$ mass windows. The efficiency and systematic error on lepton identification have been obtained from data by comparing the ratio of J/ψ mesons in B decays in which one or both leptons satisfy the requirements. The efficiency and systematic error of the track-quality selection have been studied by comparing the independent SVT and DCH tracking efficiencies in hadronic events. The meson reconstruction efficiency is 0.602 ± 0.004 for the e^+e^- case, 0.535 ± 0.004 for $\mu^+\mu^-$, 0.207 ± 0.002 for $e^+e^-\pi^+\pi^-$, and 0.211 ± 0.002 for $\mu^+\mu^-\pi^+\pi^-$, where the uncertainties are simulation statistics only.

The e^+e^- efficiency is higher than $\mu^+\mu^-$ in $\psi(2S) \rightarrow l^+l^-$ or $J/\psi \rightarrow l^+l^-$ reconstruction because electron identification is more efficient than muon identification. Conversely, a J/ψ decaying to e^+e^- is less likely to be reconstructed in the specified mass window than one decaying to $\mu^+\mu^-$. Together, these two effects result in little difference between the $e^+e^-\pi^+\pi^-$ and $\mu^+\mu^-\pi^+\pi^-$ efficiencies. Overall, the $J/\psi\pi^+\pi^-$ efficiencies are lower than l^+l^- due to the reconstruction of the pion pair. The efficiencies appearing in Eqs. (1)-(4) are the product of these meson reconstruction efficiencies and the event selection values given earlier.

Lepton identification uncertainty is 1.8% for e^+e^- and 1.4% for $\mu^+\mu^-$, and cancels in branching ratios where the $\psi(2S)$ and J/ψ decay to the same final state, Eqs. (5) and (8). A 2.4% systematic error on the efficiency of the track quality requirements applied to the J/ψ and $\psi(2S)$ in the l^+l^- final state cancels in all four ratios.

The number of mesons in the e^+e^- and $\mu^+\mu^-$ final states is extracted by a fit to the mass distribution of candidates (Fig. 1). A third-order Chebychev polynomial is used for backgrounds. The signals are fit by probability distribution functions (pdf’s) obtained from a complete simulation of $B \rightarrow \psi(2S)X$ events, with $\psi(2S) \rightarrow e^+e^-$ or $\psi(2S) \rightarrow \mu^+\mu^-$. Only candidates constructed from the correct combination of particles are used in the pdf. The signal pdf’s are convoluted with a Gaussian distribution to match the mass resolution of 12 MeV/c2 observed in a data sample of 14 000 $J/\psi \rightarrow \mu^+\mu^-$ decays.

Despite the algorithm to recover radiated photons, the pdf for the e^+e^- final state is sensitive to the fraction of events in which one or both electrons undergo bremsstrahlung. The pdf is adjusted to reflect the fraction obtained in a study of the mass distribution of 15 000 $J/\psi \rightarrow e^+e^-$ decays in data. To enhance the sensitivity of the study, the algorithm to recover radiated photons is not used in the reconstruction of the J/ψ.

For $\psi(2S) \rightarrow J/\psi \pi^+\pi^-$, an analogous fit procedure is performed to the distribution of the mass difference between the $\psi(2S)$ and the J/ψ candidates (Fig. 2). This quantity reduces the impact of J/ψ mass resolution, including final state radiation and bremsstrahlung. The distribution predicted by the simulation is convoluted with a Gaussian distribution whose standard deviation is left as a free parameter in the fit. The mass difference resolution is 3.2 MeV/c2.

The signal yields returned by the fits are 552 ± 50 for e^+e^-, 437 ± 44 for $\mu^+\mu^-$, 474 ± 44 for $e^+e^-\pi^+\pi^-$, and 498 ± 42 for $\mu^+\mu^-\pi^+\pi^-$, where errors are statistical only.

Systematic errors on the fitting technique are obtained by performing the fits on multiple simulated data sets containing both signal and background events. Additional contributions come from varying the mass regions included in the fit and increasing or decreasing the power of the background polynomial. Fitting systematics are 2.3% for e^+e^-, 5.3% for $\mu^+\mu^-$, 5.4% for $e^+e^-\pi^+\pi^-$, and 2.1% for $\mu^+\mu^-\pi^+\pi^-$. These systematic errors are conservative in the sense that the procedure to derive them incorporates a component of the statistical error, which would be reduced with additional data.

We repeat the analysis with the data recorded below the $Y(4S)$ resonance. The total $\psi(2S)$ yield, summed over the four modes, is 5 ± 12 events, indicating that the contribution...
of continuum-produced \(\psi(2S) \) mesons is negligible in the on-resonance sample.

The two values for the \(e^+e^- \) to \(J/\psi \pi^+\pi^- \) branching ratio obtained with Eqs. (5) and (6) are in good agreement: the result found with \(\mu^+\mu^-\pi^+\pi^- \) is 0.97±0.14 times that with \(e^+e^-\pi^+\pi^- \). By construction, this ratio is identical for the \(\mu^+\mu^- \) final state. The results from Eqs. (5) and (6) are combined, distinguishing correlated and uncorrelated statistical and systematic errors, to give

\[
B_{ee}/B_{J/\psi \pi^+\pi^-} = 0.0252±0.00028±0.0011, \tag{9}
\]

where the first error is statistical and the second systematic. Similarly, Eqs. (7) and (8) are combined to obtain

\[
B_{\mu\mu}/B_{J/\psi \pi^+\pi^-} = 0.0216±0.0026±0.0014. \tag{10}
\]

The systematic errors are dominated by the fitting technique. Other contributions, which are the same for both results, include 1.6% for particle identification, 1.2% for the uncertainty in \(J/\psi \) branching fractions, and 0.9% for differences between the simulated and measured [11] \(\pi^+\pi^- \) mass and angular distributions in the \(J/\psi \pi^+\pi^- \) final states.

We use the current world average value of 0.310±0.028 for the \(\psi(2S) \to J/\psi \pi^+\pi^- \) branching fraction [7] to extract results for the \(\psi(2S) \) leptonic branching fraction:

\[
B_{ee}=0.0078±0.0009±0.0008, \tag{11}
\]

\[
B_{\mu\mu}=0.0067±0.0008±0.0007. \tag{12}
\]

The ratio of the leptonic branching fractions can be derived without the use of the \(\psi(2S) \to J/\psi \pi^+\pi^- \) sample:

\[
\frac{B_{\mu\mu}}{B_{ee}} = \frac{N_{\mu\mu} e_{ee}}{N_{ee} e_{ee}} = 0.86±0.12±0.05. \tag{13}
\]

The systematic error is dominated by the uncertainty in the fitting technique.

In summary, we have measured the branching ratios \(B_{ee}/B_{J/\psi \pi^+\pi^-} \) and \(B_{\mu\mu}/B_{J/\psi \pi^+\pi^-} \). We multiply these by the world average for the \(J/\psi \pi^+\pi^- \) branching fraction to obtain the branching fraction of the \(\psi(2S) \) to \(e^+e^- \) and to \(\mu^+\mu^- \). These results are consistent with earlier measurements, but have, in the case of \(\mu^+\mu^- \), a substantially smaller uncertainty.

We are grateful for the excellent luminosity and machine conditions provided by our PEP-II colleagues. The collaborating institutions wish to thank SLAC for its support and kind hospitality. This work is supported by DOE and NSF (USA), NSERC (Canada), IHEP (China), CEA and CNRS-IN2P3 (France), BMBF (Germany), INFN (Italy), NFR (Norway), MIST (Russia), and PPARC (United Kingdom). Individuals have received support from the Swiss NSF, A. P. Sloan Foundation, Research Corporation, and Alexander von Humboldt Foundation.