PDF hosted at the Radboud Repository of the Radboud University Nijmegen

The following full text is a publisher’s version.

For additional information about this publication click this link.
http://hdl.handle.net/2066/128902

Please be advised that this information was generated on 2019-10-11 and may be subject to change.
Measurement of the CP Asymmetry Amplitude $\sin 2\beta$ with B^0 Mesons

...
The BABAR Collaboration

1Laboratoire de Physique des Particules, F-74941 Annecy-le-Vieux, France
2Università di Bari, Dipartimento di Fisica e INFN, I-70126 Bari, Italy
3Institute of High Energy Physics, Beijing 100039, China
4University of Bergen, Institute of Physics, N-5007 Bergen, Norway
5Lawrence Berkeley National Laboratory and University of California, Berkeley, California 94720
6University of Birmingham, Birmingham B15 2TT, United Kingdom
7Ruhr Universität Bochum, Institut für Experimentalphysik 1, D-44780 Bochum, Germany
8University of Bristol, Bristol BS8 1TL, United Kingdom
9University of British Columbia, Vancouver, BC, Canada V6T 1Z1
10Brunel University, Uxbridge, Middlesex UB8 3PH, United Kingdom
11Budker Institute of Nuclear Physics, Novosibirsk 630090, Russia
12University of California at Irvine, Irvine, California 92697
13University of California at Los Angeles, Los Angeles, California 90024
14University of California at Santa Barbara, Santa Barbara, California 93106
15University of California at Santa Cruz, Institute for Particle Physics, Santa Cruz, California 95064
16University of California at Santa Cruz, Institute for Particle Physics, Santa Cruz, California 95064
17California Institute of Technology, Pasadena, California 91125
18University of Cincinnati, Cincinnati, Ohio 45221
19University of Colorado, Boulder, Colorado 80309
20Colorado State University, Fort Collins, Colorado 80523
21Technische Universität Dresden, Institut für Kern-und Teilchenphysik, D-01062 Dresden, Germany
22École Polytechnique, LLR, F-91128 Palaiseau, France
23University of Edinburgh, Edinburgh EH9 3JZ, United Kingdom
24Elnon University, Elon University, North Carolina 27244-2010
25Università di Ferrara, Dipartimento di Fisica and INFN, I-44100 Ferrara, Italy
26Florida A&M University, Tallahassee, Florida 32307
27Laboratori Nazionali di Frascati dell'INFN, I-00044 Frascati, Italy
28Università di Genova, Dipartimento di Fisica and INFN, I-16146 Genova, Italy
29Harvard University, Cambridge, Massachusetts 02138
30University of Iowa, Iowa City, Iowa 52242
31Iowa State University, Ames, Iowa 50011-3160
32Laboratoire de l’Accélérateur Linéaire, F-91898 Orsay, France
The standard model of electroweak interactions describes CP violation in weak interactions as a consequence of a complex phase in the three-generation Cabibbo-Kobayashi-Maskawa (CKM) quark-mixing matrix [1]. In this framework, measurements of CP asymmetries in the proper-time distribution of neutral B mesons to charmonium final states provide a direct measurement of $\sin 2\beta$ [2], where $\beta \equiv \arg[- V_{cd} V_{cb}^{*} / V_{td} V_{tb}^{*}]$.

Observations of CP violation in B^0 decays were reported last year by the BABAR [3] and Belle [4] detectors.
Collaborations. The PEP-II collider has since delivered an additional 63 fb$^{-1}$, thereby approximately tripling the data sample near the Y(4S) resonance. In this Letter we report a more precise measurement of sin2β using the full sample of about 88 × 106 B\bar{B} decays. The BABAR detector and the measurement technique are described in detail in Refs. [5,6], respectively. Changes in the analysis with respect to the published result [3] include processing of all data with a uniform event reconstruction, a new flavor-tagging algorithm, and the addition of the decay mode B0 → K$^{0}_{S}\bar{\eta}_{c}$. We reconstruct a sample of neutral B mesons (B$_{CP}$) decaying to the final states J/ψK_{S}^{0}, ψ(2S)K$^{0}_{S}$, χ_{c1}K$^{0}_{S}$, ψ(2S)K$^{0}_{S}$, χ_{c1}K$^{0}_{S}$, J/ψK^{*0}(K$^{+}$$\pi^{-}$), and J/$\psi K^{0}$. The J/$\psi$ and ψ(2S) mesons are reconstructed through their decays to $e^{+}e^{-}$ and μ$^{+}$μ$^{-}$; the ψ(2S) is also reconstructed through its decay to J/$\psi\pi^{+}\pi^{-}$. We reconstruct χ_{c1} mesons in the decay mode J/$\psi\eta$ and ψ mesons in the K$^{0}_{S}$K$^{+}$π$^{-}$ and K$^{+}$$\pi^{-}$ final states [7]. The K$^{0}_{S}$ is reconstructed in its decay to π$^{+}$π$^{-}$ (and to π0π0 for the J/ψK^{*0} mode). We examine each event in the B$_{CP}$ sample for evidence that the recoiling B meson decayed as a B0 or B0 (flavor tag).

The proper-time distribution of B meson decays to a CP eigenstate with a B0 or B0 tag can be expressed in terms of a complex parameter λ that depends on both the B0-B0 oscillation amplitude and the amplitudes describing B0 and B0 decays to this final state [8]. The decay rate $f_{+}(f_{-})$ when the tagging meson is a B0 (B0) is given by

$$f_{\pm}(\Delta t) = \frac{e^{-|\Delta t|/\tau_{B^{\pm}}}}{4\tau_{B^{\pm}}} \left[\frac{1}{1 + |\lambda|^{2}} \sin(\Delta m_{d}\Delta t) \right. \\
+ \left. \frac{1}{1 + |\lambda|^{2}} \cos(\Delta m_{d}\Delta t) \right],$$

(1)

where $\Delta t = t_{rec} - t_{tag}$ is the difference between the proper decay times of the reconstructed B meson (B$_{rec}$) and the tagging B meson (B$_{tag}$), $\tau_{B^{\pm}}$ is the B0/B0 lifetime, and Δm_{d} is the B0/B0 oscillation frequency. The sine term in Eq. (1) is due to the interference between direct decay and decay after flavor change, and the cosine term is due to the interference between two or more decay amplitudes with different weak and strong phases. CP violation can be observed as a difference between the Δt distributions of B0/B0 tagged events or as an asymmetry with respect to $\Delta t = 0$ for either flavor tag.

In the standard model, $\lambda = \eta_{f}e^{-2i\beta}$ for charmonium-containing b → cτs decays, where η_{f} is the CP eigenvalue of the final state f. Thus, the time-dependent CP asymmetry is

$$A_{CP}(\Delta t) = \frac{f_{+}(\Delta t) - f_{-}(\Delta t)}{f_{+}(\Delta t) + f_{-}(\Delta t)} = -\eta_{f} \sin 2\beta \sin(\Delta m_{d}\Delta t),$$

(2)

with $\eta_{f} = -1$ for J/ψK^{0}_{S}, ψ(2S)K$^{0}_{S}$, χ_{c1}K$^{0}_{S}$, and $\eta_{K_{S}}$, and +1 for J/ψK_{S}^{*0}. Because of the presence of even (L = 0, 2) and odd (L = 1) orbital angular momenta in the B → J/ψK^{*0} final state, there can be CP-even and CP-odd contributions to the decay rate. When the angular information in the decay is ignored, the measured CP asymmetry in J/ψK^{*0} is reduced by a factor 1 − 2R_{cp}, where R_{cp} is the fraction of the L = 1 component. We have measured $R_{cp} = (16.0 \pm 3.5\%)$ [9], which gives $\eta_{f} = 0.65 \pm 0.07$ after acceptance corrections in the J/ψK^{*0} mode.

The event selection, lepton, and K$^{\pm}$ identification, and J/ψ and ψ(2S) reconstruction used in this analysis are similar to those described in Ref. [6], as are the selection criteria for the channels J/ψK^{0}_{S}, ψ(2S)K$^{0}_{S}$, χ_{c1}K$^{0}_{S}$, J/ψK^{*0}, and J/ψK_{S}^{*0}. The B$^{0} → \eta_{c} K_{S}^{0}$ sample selection is described in Ref. [10]. In brief, the K$^{\pm}$ candidates must satisfy kaon identification criteria and the K$^{0}_{S}$ → π$^{+}$π$^{-}$ and π0 → γγ candidates are required to have reconstructed masses within 12.5 and 15 MeV/c2, respectively, of their nominal masses [11]. The η_{c} candidates (with 2.90 < $M_{K^{\pi}}$ < 3.15 GeV/c2) are combined with K$^{0}_{S}$ → π$^{+}$π$^{-}$ candidates reconstructed within 10 MeV/c2 of the K$^{0}_{S}$ nominal mass to form a B0 candidate. This sample includes a contribution of (15 ± 2)% from hadronic J/ψ decays to the KKπ final states.

We select candidates in the B$^{0} → J/$ψK$^{0}_{S}$, ψ(2S)K$^{0}_{S}$, χ_{c1}K$^{0}_{S}$, and J/ψK^{*0} samples by requiring that the difference ΔE between their energy and the beam energy in the center-of-mass frame be less than 3 standard deviations from zero. The ΔE resolution is about 10 MeV except for the mode with K$^{0}_{S}$ → π0π0 (33 MeV) and with K*0 (20 MeV). The B$^{0} → \eta_{c} K^{0}_{S}$ candidates are required to have $|\Delta E|$ less than 40 (70) MeV for the K$^{0}_{S}$K$^{+}$π$^{-}$ (K$^{0}_{S}$K*0) modes. For all modes except J/ψK_{S}^{*0}, the beam-energy-substituted mass

$$m_{ES} = \sqrt{(E_{beam} - p_{n}^{m})^{2}}$$

must be greater than 5.2 GeV/c2. To determine numbers of events and purities, a signal region 5270 (5273) < $m_{ES} < 5290 (5288)$ GeV/c2 is used for modes containing K$^{0}_{S}$ (K$^{0}_{S}$). In the J/ψK_{S}^{*0} mode, the ΔE resolution is 3.5 MeV (after B mass constraint) and the signal region is defined by $|\Delta E| < 10$ MeV.

A measurement of A_{CP} requires a determination of the experimental Δt resolution and the fraction w of events in which the tag assignment is incorrect. This mistag fraction reduces the observed CP asymmetry by a factor 1 − 2w. Mistag fractions and Δt resolution functions are determined from a sample of neutral B mesons that decay to flavor eigenstates (B$_{tag}$) consisting of the channels D$^{(*)0}$ → h$(h^{*} = \pi^{+}, \rho^{+},$ and $a_{1}^{+})$ and J/ψK^{*0} (K$^{0}_{S}$ → K$^{+}$π$^{-}$). Validation studies are performed with a control sample of B$^{+}$ mesons decaying to the final states J/ψK^{*0}, ψ(2S)K*0, χ_{c1}K$^{+}$, η$^{-}$K*0, and D$^{(*)0}$π$^{-}$. We use multivariate algorithms to identify signatures of B decays that determine the flavor of B$_{tag}$. Primary leptons from semileptonic B decays are selected from identified electrons and muons as well as isolated
energetic tracks. We use the charges of identified kaon candidates to define a kaon tag. Soft pions from \(D^{*+} \) decays are selected on the basis of their momentum and direction with respect to the thrust axis of \(B_{\text{tag}} \). A neural network, which combines the outputs of these physics-based algorithms, takes into account correlations between different sources of flavor information and provides an estimate of the mistag probability for each event.

By using the outputs of the physics-based algorithms and the estimated mistag probability, each event is assigned to one of four hierarchical, mutually exclusive tagging categories. The Lepton category contains events with an identified lepton and a supporting kaon tag if present. Events with a kaon candidate and soft pion with opposite charge and similar flight direction are assigned to the Kaon I category. Events with only a kaon tag are assigned to the Kaon I or the Kaon II category depending on the estimated mistag probability. The Kaon II category also contains the remaining events with a soft pion. All other events are assigned to the Inclusive category or excluded from further analysis based on the estimated mistag probability. The tagging efficiencies \(\epsilon_i \) for the four tagging categories are measured from data and summarized in Table I. The figure of merit for tagging is the effective tagging efficiency \(Q = \sum \epsilon_i (1 - 2w_i)^2 \). This algorithm improves \(Q \) by about 7% (relative) over the algorithm used in Ref. [6].

The time interval \(\Delta t \) between the two \(B \) decays is calculated from the measured separation \(\Delta z \) between the decay vertices of \(B_{\text{rec}} \) and \(B_{\text{tag}} \) along the collision (z) axis [6]. We determine the z position of the \(B_{\text{rec}} \) vertex from its charged tracks. The \(B_{\text{tag}} \) decay vertex is determined by fitting tracks not belonging to the \(B_{\text{rec}} \) candidate to a common vertex, employing constraints from the beam spot location and the \(B_{\text{rec}} \) momentum [6]. We accept events with a \(\Delta t \) uncertainty of less than 2.5 ps and \(|\Delta t| < 20 \) ps. The fraction of events satisfying these requirements is 95%. The rms \(\Delta t \) resolution for 99.7% of these events is 1.1 ps.

The signal region contains 2641 events which satisfy the tagging and vertexing requirements. In Table II we list the number of events and the signal purity for the tagged \(B_{CP} \) candidates. The purities are determined from fits to the \(m_{\text{ES}} \) (all \(K_S \) modes) or \(\Delta E (K_L^0 \text{ mode}) \) distributions in data or from Monte Carlo simulation (\(K^{*0} \) mode). Figure 1 shows the \(m_{\text{ES}} \) distribution for modes containing a \(K_S^0 \) or \(K^{*0} \) and \(\Delta E \) distribution for the \(J/\psi K_L^0 \) candidates. For all modes except \(\eta, K_S^0 \) and \(J/\psi K_L^0 \), we use simulated events to estimate the fractions of events in the Gaussian component of the \(m_{\text{ES}} \) fits due to cross feed from other decay modes. For the \(\eta, K_S^0 \) mode the cross-feed fraction is determined from a fit to the \(M_{KK\pi} \) and \(m_{\text{ES}} \) distributions. These fractions range from \((0.3 \pm 0.1\%) \) for \(J/\psi K_L^0 \) (\(K_S^0 \rightarrow \pi^- \pi^+ \pi^- \)) to \((13.1 \pm 5.9\%) \) for \(\eta, K_S^0 \). For the \(J/\psi K_{L}^0 \) and \(J/\psi K^{*0} \) decay modes, the composition, effective \(\eta, J \), and \(\Delta E \) distribution \((J/\psi K_{L}^0 \) only) of the individual background sources are determined either from simulation (for \(B \rightarrow J/\psi X \)) or from the \(m_{\ell^-\ell^-} \) sidebands in data (for fake \(J/\psi \rightarrow \ell^+\ell^- \)).

We determine \(\sin 2\beta \) with a simultaneous unbinned maximum likelihood fit to the \(\Delta t \) distributions of the tagged \(B_{CP} \) and \(B_{\text{flav}} \) samples. In this fit the \(\Delta t \) distributions of the \(B_{CP} \) sample are described by Eq. (1) with \(|\lambda| \) = 1. The \(\Delta t \) distributions of the \(B_{\text{flav}} \) sample evolve according to the known frequency for flavor oscillation in \(B^0 \) mesons. The observed amplitudes for the \(CP \) asymmetry in the \(B_{CP} \) sample and for flavor oscillation in the \(B_{\text{flav}} \) sample are reduced by the same factor \(1 - 2w \) due to flavor mistags. Events are assigned signal and background probabilities based on the \(m_{\text{ES}} \) (all modes except \(J/\psi K^{*0} \) and \(J/\psi K_L^0 \)) or \(\Delta E (J/\psi K_L^0) \) distributions. The \(\Delta t \) distributions for the signal are convolved with a common resolution function, modeled by the sum of three Gaussians [6]. Backgrounds are incorporated with an empirical description of their \(\Delta t \) spectrum, containing prompt and nonprompt components convolved with a resolution function [6] distinct from that of the signal.

<table>
<thead>
<tr>
<th>Category</th>
<th>(\epsilon) (%)</th>
<th>(w) (%)</th>
<th>(\Delta w) (%)</th>
<th>(Q) (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lepton</td>
<td>9.1 ± 0.2</td>
<td>3.3 ± 0.6</td>
<td>-1.5 ± 1.1</td>
<td>7.9 ± 0.3</td>
</tr>
<tr>
<td>Kaon I</td>
<td>16.7 ± 0.2</td>
<td>10.0 ± 0.7</td>
<td>-1.3 ± 1.1</td>
<td>10.7 ± 0.4</td>
</tr>
<tr>
<td>Kaon II</td>
<td>19.8 ± 0.3</td>
<td>20.9 ± 0.8</td>
<td>-4.4 ± 1.2</td>
<td>6.7 ± 0.4</td>
</tr>
<tr>
<td>Inclusive</td>
<td>20.0 ± 0.3</td>
<td>31.5 ± 0.9</td>
<td>-2.4 ± 1.3</td>
<td>2.7 ± 0.3</td>
</tr>
<tr>
<td>All</td>
<td>65.6 ± 0.5</td>
<td>28.1 ± 0.7</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

FIG. 1. Distributions for \(B_{CP} \) candidates satisfying the tagging and vertexing requirements: (a) \(m_{\text{ES}} \) for the final states \(J/\psi K_{S}^{0}, \psi(2S)K_{S}^{0}, \chi_{c1} K_{S}^{0}, \eta, K_{S}^{0}, \text{and } J/\psi K^{*0}(K_{S}^{0} \rightarrow K_{L}^{0} \pi^{0}), \text{and } \Delta E \text{ for the final state } J/\psi K_{L}^{0}. \)
We also measure the parameter $|A|$ in Eq. (1) from a fit to the $\eta_f = -1$ sample, which has high purity and requires minimal assumptions on the effect of backgrounds. This parameter is sensitive to the difference in the number of B^0 and \bar{B}^0-tagged events. In order to account for differences in reconstruction and tagging efficiencies for B^0 and \bar{B}^0 mesons, we incorporate five

$$\sin2\beta = 0.741 \pm 0.067(\text{stat}) \pm 0.034(\text{syst}).$$

Figure 2 shows the Δt distributions and asymmetries in yields between B^0 tags and \bar{B}^0 tags for the $\eta_f = -1$ and $\eta_f = +1$ samples as a function of Δt, overlaid with the projection of the likelihood fit result.

There are 34 free parameters in the fit: $\sin 2\beta$ (1), the average mistag fractions w and the differences Δw between B^0 and \bar{B}^0 mistag fractions for each tagging category (8), parameters for the signal Δt resolution (8), and parameters for background time dependence (6), Δt resolution (3), and mistag fractions (8). We fix $\tau_{B^0} = 1.542$ ps and $\Delta m_d = 0.489$ ps$^{-1}$ [11]. The determination of the mistag fractions and Δt resolution function parameters for the signal is dominated by the high-statistics B_{flav} sample. The measured mistag fractions are listed in Table I. Background parameters are determined from events with $m_{ES} < 5.27$ GeV/c2 (except $J/\psi K^0_S$ and $J/\psi K^{*0}$). The largest correlation between $\sin 2\beta$ and any linear combination of the other free parameters is 0.13. We observe a bias of 0.014 ± 0.005 in the fitted value of $\sin 2\beta$ in simulated events. Part of this bias (0.004) is due to a correlation between the mistag fractions and the Δt resolution not explicitly incorporated in the fit. Therefore we subtract 0.014 from the fitted value of $\sin 2\beta$ in data and include 0.010 in the systematic error.

The fit to the B_{CP} and B_{flav} samples yields

$$\sin2\beta = 0.741 \pm 0.067(\text{stat}) \pm 0.034(\text{syst}).$$

TABLE II. Number of events N_{tag} in the signal region after tagging and vertexing requirements, signal purity P, and results of fitting for CP asymmetries in the B_{CP} sample and in various subsamples, as well as in the B_{flav} and charged B control samples. Errors are statistical only.

<table>
<thead>
<tr>
<th>Sample</th>
<th>N_{tag}</th>
<th>$P(%)$</th>
<th>$\sin 2\beta$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$J/\psi K^0_S, \psi(2S)K^0_S, \chi_c K^0_S, \eta, K^0_S$</td>
<td>1506</td>
<td>94</td>
<td>0.76 ± 0.07</td>
</tr>
<tr>
<td>$J/\psi K^0_S (\eta_f = +1)$</td>
<td>988</td>
<td>55</td>
<td>0.72 ± 0.16</td>
</tr>
<tr>
<td>$J/\psi K^{*0}(K^{*0} \to K^0\pi^0)$</td>
<td>147</td>
<td>81</td>
<td>0.22 ± 0.52</td>
</tr>
</tbody>
</table>

| | | | |
| Full CP sample | 2641 | 78 | 0.74 ± 0.07 |

$J/\psi K^0_S, \psi(2S)K^0_S, \chi_c K^0_S, \eta, K^0_S$ only ($\eta_f = -1$)

$J/\psi K^0_S (K^0_S \to \pi^+\pi^-)$	974	97	0.82 ± 0.08
$J/\psi K^0_S (K^0_S \to \pi^0\pi^0)$	170	89	0.39 ± 0.24
$\psi(2S)K^0_S$	150	97	0.69 ± 0.24
$\chi_c K^0_S$	80	95	1.01 ± 0.40
η, K^0_S	132	73	0.59 ± 0.32

Lepton category	220	98	0.79 ± 0.11
Kaon I category	400	93	0.78 ± 0.12
Kaon II category	444	93	0.73 ± 0.17
Inclusive category	442	92	0.45 ± 0.28

B^0 tags	740	94	0.76 ± 0.10
\bar{B}^0 tags	766	93	0.75 ± 0.10

B_{flav} sample	25375	85	0.02 ± 0.02
B^+ sample	22160	89	0.02 ± 0.02
the measurements and theoretical estimates of the magnitudes of CKM matrix elements in the context of the standard model, it provides a precise and model-independent constraint on the position of the apex of the Unitarity Triangle [12].

We are grateful for the excellent luminosity and machine conditions provided by our PEP-II colleagues, and for the substantial dedicated effort from the computing organizations that support BABAR. The collaborating institutions wish to thank SLAC for its support and kind hospitality. This work is supported by DOE and NSF (U.S.A.), NSERC (Canada), IHEP (China), CEA and CNRS-IN2P3 (France), BMBF and DFG (Germany), INFN (Italy), NFR (Norway), MIST (Russia), and PPARC (United Kingdom). Individuals have received support from the A.P. Sloan Foundation, Research Corporation, and Alexander von Humboldt Foundation.

*Also with Università di Perugia, I-06100 Perugia, Italy.

[7] Charge conjugation is implied throughout this Letter, unless explicitly stated.