Observation of the Decay $B^\pm \rightarrow \pi^\pm \pi^0$, Study of $B^\pm \rightarrow K^\pm \pi^0$, and Search for $B^0 \rightarrow \pi^0 \pi^0$

of final states plays an important role in the understanding of CP violation in the B system. In the standard model, CP violation arises from a single complex phase in the Cabibbo-Kobayashi-Maskawa quark-mixing matrix V_{ij} [1]. Measurements of the time-dependent CP-violating asymmetry in the $B^0 \rightarrow \pi^+ \pi^-$ decay mode by the BABAR and Belle collaborations [2] provide information...
CsI (Tl) crystals. Tracks are identified as pions or kaons.

1.5 T superconducting solenoidal magnet. Photon (neutral tracker and a 40-layer drift chamber (DCH) inside a

measured with a 5-layer double-sided silicon vertex
detail in Ref. [8]. Charged particle (track) momenta are
asymmetric-energy beams at PEP-II and is described in

BABAR collected with the

fiducial volume, originate from the interaction point,

 backgrounds from false

candidates, the angle

candidates, the angle

or

events where an

each quark randomly combine to mimic a B decay.

Both backgrounds are separated from the signal using

the kinematic constraints of B mesons produced at the

Y(4S). The first kinematic variable is the beam-energy

substituted mass

where

is the total center-of-mass (c.m.) energy.

is the four momentum of the initial

system and

is the B momentum, both measured in the laboratory frame. The second variable is

where

is the B candidate energy in the c.m. frame. The pion mass is assigned to all

candidates for the

calculation.

The

background to

is reduced by using only candidates with

GeV. Remaining

background is further suppressed by removing candidates in which the additional

is identified. The track that gives a

invariant mass and

combination most consistent with the

and

mass is selected.

Requirements on the resulting

invariant mass and on the

combination remove roughly

of the remaining

background, with

efficiency for

. Only

of

decays, and a negligible fraction of non-resonant

decays, remain after all cuts. For

the

background is suppressed by selecting candidates with

GeV.

The jetlike

background is suppressed by requiring that the angle

between the sphericity

axes of the

candidate and of the remaining tracks and neutral clusters in the event, in the c.m. frame, satisfies

in Table I. The error in the estimated efficiency is dominated by the 5% systematic uncertainty in the single

reconstruction efficiency.

The number of signal

candidates is determined in an extended unbinned maximum likelihood fit. The probability

for a signal or background hypothesis is the product of probability density functions (PDFs) for the variables

given the set of parameters

. The likelihood function is given by a product over all

events and the

signal and background hypotheses:

\[
L = \exp \left(- \sum_{i=1}^{M} n_i \right) \prod_{j=1}^{N} \left(\sum_{i=1}^{M} N_i P_j (\tilde{x}_j; \tilde{\alpha}_i) \right). \tag{1}
\]
TABLE I. The results for both $B^\pm \to h^\pm \pi^0$ and $B^0 \to \pi^0 \pi^0$ are summarized. The number of B candidates N, total detection efficiencies ϵ, fitted signal yields N_s, significances S, charge-averaged branching fractions \mathcal{B}, asymmetries \mathcal{A}, and 90% C.L. asymmetry limits are shown. Errors are statistical and systematic, respectively, with the exception of ϵ whose error is purely systematic. The upper limit for the $B^0 \to \pi^0 \pi^0$ branching fraction corresponds to the 90% C.L., and the central value is shown in parentheses.

<table>
<thead>
<tr>
<th>Mode</th>
<th>N</th>
<th>ϵ (%)</th>
<th>N_s</th>
<th>$S(\sigma)$</th>
<th>\mathcal{B} (10$^{-6}$)</th>
<th>\mathcal{A}</th>
<th>\mathcal{A} (90% C.L.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\pi^+ \pi^0$</td>
<td>21752</td>
<td>26.1 \pm 1.7</td>
<td>125$^{+21}_{-21}$</td>
<td>10</td>
<td>7.7</td>
<td>$5.5^{+1.0}_{-1.0} \pm 0.6$</td>
<td>$0.03^{+0.15}_{-0.17} \pm 0.02$</td>
</tr>
<tr>
<td>$K^\pm \pi^0$</td>
<td>28.0 \pm 2.0</td>
<td>239$^{+21}_{-21}$</td>
<td>6</td>
<td>17.4</td>
<td>$12.8^{+1.2}_{-1.1} \pm 1.0$</td>
<td>$0.09 \pm 0.09 \pm 0.01$</td>
<td>$[-0.24, 0.06]$</td>
</tr>
<tr>
<td>$\pi^0 \pi^0$</td>
<td>3020</td>
<td>16.5 \pm 1.7</td>
<td>23$^{+10}_{-10}$</td>
<td>8</td>
<td>2.5</td>
<td>$<3.6 (1.6 -0.6 -0.3)$</td>
<td></td>
</tr>
</tbody>
</table>

For $B^\pm \to h^\pm \pi^0$ the probability coefficients are $N_i = \frac{1}{2}(1 - q_j \mathcal{A}_j)n_i$, where q_j is the charge of the track h, and the fit parameters n_i and \mathcal{A}_j are the number of events and asymmetry for the four $\pi^+ \pi^0$ and $K^+ \pi^0$ signal and background components. For $B^0 \to \pi^0 \pi^0$ the coefficients are $N_i = n_i$ where the three n_i are the number of signal candidates, $B^\pm \to \rho^0 \pi^0$ background, and $q\bar{q}$ background. Monte Carlo simulations are used to verify that the likelihood fits are unbiased.

The variables \tilde{x}_j used for $B^\pm \to h^\pm \pi^0$ are m_{ES}, ΔE, the Cherenkov angle θ_c of the h^\pm track, and a Fisher discriminant \mathcal{F}. The Fisher discriminant is given by an optimized linear combination of $\sum_i p_i$ and $\sum_i p_i |\cos \theta_i|^2$, where p_i is the momentum and θ_i is the angle with respect to the thrust axis of the B candidate, both in the c.m. frame, for all tracks and neutral clusters not used to reconstruct the B meson.

The PDFs for m_{ES}, ΔE, θ_c, and \mathcal{F} for the background are determined using data, while the PDFs for signal are found from a combination of simulated events and data. The m_{ES} distribution for background is modeled as a threshold function [10], whose shape parameter is a free parameter of the fit. The ΔE distribution for background is modeled as a quadratic function whose parameters are determined from the m_{ES} sideband in the data. The m_{ES} and ΔE distributions for the signal are modeled as Gaussian distributions with a low-side power-law tail whose parameters are found with simulated events. The ΔE resolution is approximately 42 MeV based on simulated events and $B^\pm \to D^0 \rho^\pm (\rho^- \to \pi^- \pi^0)$ events with an energetic π^0. To allow for EMC energy scale variations, the mean of the ΔE PDF is a free parameter of the fit. To account for the use of the pion mass hypothesis, the mean of ΔE is shifted for the $K^\pm \pi^0$ PDFs. The \mathcal{F} distribution is modeled as a bifurcated Gaussian and a double Gaussian for signal and background, respectively, whose parameters are determined from the signal from simulation and for the background from m_{ES} sidebands. The difference of the measured and expected values of θ_c for the pion or kaon hypothesis, divided by the uncertainty on θ_c, is modeled as a double Gaussian function. A control sample of kaon and pion tracks, from the decay $D^{*+} \to D^0 \pi^+$, $D^0 \to K^- \pi^+$, is used to parametrize σ_{θ_c} as a function of the track polar angle.

The variables \tilde{x}_j used for $B^0 \to \pi^0 \pi^0$ are m_{ES}, ΔE, and another Fisher discriminant \mathcal{F}_T. The \mathcal{F}_T combines \mathcal{F} with information from the B tagging algorithm described in Ref. [3]. The tagging algorithm uniquely classifies events according to their lepton, kaon, and slow pion (from $D^{*+} \to D^0 \pi^0_{slow}$) content, using all tracks in the event. Nine event classes, in decreasing order of their significance, on the background rejection, contain the following: a high momentum electron and a kaon, a high momentum muon and a kaon, a high momentum electron, a high momentum muon, a kaon and a slow pion, a well-identified kaon, a slow pion, any kaon, or none of the above. These event classes are assigned an index, which is a new discriminating variable, and is combined with \mathcal{F} into a second Fisher discriminant \mathcal{F}_T, optimized using simulated events.

The m_{ES} distribution for $q\bar{q}$ background is parameterized by the same threshold function used in the $B^\pm \to h^\pm \pi^0$ analysis, where the shape parameter is determined from the data with $|\cos \theta_{\tilde{q}}| > 0.9$. The ΔE distribution for the $q\bar{q}$ background is modeled as a quadratic polynomial with parameters found from on-resonance data in the m_{ES} sidebands and off-resonance data. The m_{ES} and ΔE variables in both $B^0 \to \pi^+ \pi^0$ and $B^0 \to \rho^+ \pi^0$ are correlated, so a two dimensional PDF derived from a smoothed simulated distribution is used. The ΔE resolution is approximately 80 MeV. The \mathcal{F}_T distribution for $q\bar{q}$, $B^\pm \to \rho^\pm \pi^0$, and $B^0 \to \pi^0 \pi^0$ is modeled as the sum of three Gaussians. For $q\bar{q}$ the parameters are found using both m_{ES} sideband and off-resonance data. For $B^0 \to \pi^0 \pi^0$ and $B^0 \to \rho^+ \pi^0$ the parameters are found using a sample of fully reconstructed $B^0 \to D^{(*)} n \pi$ ($n = 1, 2, 3$) events.

The decay $B^0 \to \rho^+ \pi^0$ has not been observed; Ref. [11] sets an upper limit of $|B(B^0 \to \rho^+ \pi^0)| < 4.3 \times 10^{-5}$ at 90% C.L. based on a measured central value of $B(B^0 \to \rho^+ \pi^0) = 2.4 \times 10^{-5}$. Therefore we fix the number of $B^0 \to \rho^+ \pi^0$ events in the fit to $n_{\rho \pi^0} = 8.4$, based on this central value, and evaluate the systematic uncertainty of allowing $n_{\rho \pi^0}$ to vary from 4.2 to 15 events.

The results of the maximum likelihood fits are summarized in Table I. Distributions of some of the variables used in the fits are shown in Figs. 1 and 2 for $B^\pm \to h^\pm \pi^0$ and $B^0 \to \pi^0 \pi^0$, respectively. The data shown are for
events that have passed a probability ratio cut optimized to enhance the signal to background fraction. The likelihood function for $B^0 \to \pi^0 \pi^0$ is shown in Fig. 2(d). The statistical errors on the number of events are given by the change in signal yield n_i that corresponds to an increase in $-2 \ln L$ of one unit. The dominant systematic uncertainty in the likelihood fit is estimated by varying the PDF parameters by their statistical errors or by comparing the result with an alternate parametrization.

For $B^\pm \to \pi^\pm \pi^0$, the dominant systematic uncertainty is due to the \mathcal{F} PDF for signal (± 6.2 events) and background (± 7.6 events) PDFs, while for $B^\pm \to K^\pm \pi^0$ it is due to the m_{ES} PDF for signal (± 0.8 events). Systematic uncertainties on the CP asymmetries are evaluated from PDF parameter variations, which mostly cancel in the asymmetry ratio, and from the upper limit on intrinsic charge bias in the detector (1.0%) [12].

For $B^0 \to \pi^0 \pi^0$, systematic uncertainties from the PDFs are due to the \mathcal{F}_T PDF for $q\bar{q}$ background (± 1.7 events), the m_{ES} PDF for $q\bar{q}$ background (± 1.0 events), and the ΔE PDF for $q\bar{q}$ background (± 0.2 events). Additional systematic uncertainties for $B^0 \to \pi^0 \pi^0$ arise from uncertainty in the EMC energy scale (± 0.5 events), the $B^\pm \to \rho^\pm \pi^0$ rejection cut (± 1.3 events), and uncertainty in the assumed $\mathcal{B}^\pm \to \rho^\pm \pi^0$ branching fraction (± 1.0 events). The significance of the event yield, also listed in Table I, is evaluated from the maximum likelihood fit with the signal yield fixed to zero. The upper limit for $B^0 \to \pi^0 \pi^0$ is evaluated by finding $n_{\pi^0 \pi^0}$ where $\int_0^{n_{\pi^0 \pi^0}} L(n) dn / \int_0^\infty L(n) dn = 0.9$. For both signal and upper limits, systematic uncertainties are included with a worst case assumption for efficiencies and PDF variations.

We observe $\mathcal{B}(B^\pm \to \pi^\pm \pi^0) = (5.5^{+1.0}_{-1.0} \pm 0.6) \times 10^{-6}$, with a statistical significance of 7.7σ from zero. This result is consistent with several prior measurements reporting evidence for this decay [13–15]. We measure $\mathcal{B}(B^\pm \to K^\pm \pi^0) = (12.8^{+1.2}_{-1.1} \pm 1.0) \times 10^{-6}$. The charge asymmetries are $\mathcal{A}_{\pi^+ \pi^-} = -0.03^{+0.18}_{-0.07} \pm 0.02$ and $\mathcal{A}_{K^+ \pi^-} = -0.09 \pm 0.09 \pm 0.01$, and no evidence of direct CP violation is observed. Our limit $\mathcal{B}(B^+ \to \rho^+ \pi^-) < 3.6 \times 10^{-6}$ improves upon prior results [14,16].
\[\mathcal{B}(B^0 \to \pi^0 \pi^0)/\mathcal{B}(B^\pm \to \pi^\pm \pi^0) < 0.61 \text{ at a 90\% confidence level. Assuming isospin relations for } B \to \pi \pi [5], \]

this corresponds to an upper limit of \(|\alpha_{eff} - \alpha| < 51^\circ \).

We are grateful for the excellent luminosity and machine conditions provided by our PEP-II colleagues, and for the substantial dedicated effort from the computing organizations that support BABAR. The collaborating institutions wish to thank SLAC for its support and kind hospitality. This work is supported by DOE and NSF (U.S.A.), NSERC (Canada), IHEP (China), CEA and CNRS-IN2P3 (France), BMBF and DFG (Germany), INFN (Italy), FOM (The Netherlands), NFR (Norway), MIST (Russia), and PPARC (United Kingdom). Individuals have received support from the A. P. Sloan Foundation, the Research Corporation, and the Alexander von Humboldt Foundation.

*Also with Università di Perugia, Perugia, Italy.
† Also with Università della Basilicata, Potenza, Italy.
‡ Also with IFIC, Instituto de Física Corpuscular, CSIC-Universidad de Valencia, Valencia, Spain.
§ Deceased.

[10] The threshold function used for the \(m_{ES} \) PDF is \((m_{ES}/m_0)\sqrt{1 - (m_{ES}/m_0)^2} \exp[-\xi(1 - (m_{ES}/m_0)^2)] \), where \(m_0 \) is the \(m_{ES} \) end point, and \(\xi \) the shape parameter. See ARGUS Collaboration, H. Albrecht et al., Z. Phys. C 48, 543 (1990).