Study of $B \rightarrow D_{sJ}^{(*)+} \overline{D}^{(*)}$ Decays

Based on a data sample of $122 \times 10^6 \ B \overline{B}$ pairs collected with the BABAR detector at the PEP-II B factory, we obtain branching fractions for these modes, including the previously unseen decays $B \rightarrow D_{sJ}^{(*)} D^*$. In addition, we perform an angular analysis of the decays $B^+ \rightarrow D_{sJ}^{(*)+} D^{(*)0}$ and $B^0 \rightarrow D_{sJ}^{(*)+} D^{(*)-}$ with the subsequent decays $D_{sJ}^{(*)}(2317)^+ \rightarrow D_s^+ \pi^0$, $D_{sJ}(2460)^+ \rightarrow D_s^0 \gamma$, and $D_{sJ}(2460)^+ \rightarrow D_s^+ \pi^0$. We report a study of $D_{sJ}^{(*)}(2317)^+$ and $D_{sJ}(2460)^+$ meson production in B decays. We observe the decays $B^+ \rightarrow D_{sJ}^{(*)+} D^{(*)0}$ and $B^0 \rightarrow D_{sJ}^{(*)+} D^{(*)-}$ with the subsequent decays $D_{sJ}^{(*)}(2317)^+ \rightarrow D_s^+ \pi^0$, $D_{sJ}(2460)^+ \rightarrow D_s^0 \gamma$, and $D_{sJ}(2460)^+ \rightarrow D_s^+ \pi^0$. Based on a data sample of $122 \times 10^6 \ B \overline{B}$ pairs collected with the BABAR detector at the PEP-II B factory, we obtain branching fractions for these modes, including the previously unseen decays $B \rightarrow D_{sJ}^{(*)} D^*$. In addition, we perform an angular
The unexpected observation of a narrow $D^{*+}_{sJ}(2460)$ resonance with a mass of 2317 MeV/c² was recently reported by the BABAR Collaboration [1] and confirmed by the CLEO experiment [2]. CLEO observed a second D^{*+}_{sJ} resonance with a mass close to 2460 MeV/c² [2], previously suggested [1] and later confirmed [3] by BABAR. The Belle Collaboration confirmed both resonances and found two additional decay modes for the higher-mass state [4]. D^{*+}_{sJ} and D^{*+}_{sJ} are resonances which are usually interpreted as P-wave $c\bar{s}$ quark states [5–8], although other interpretations [9–13] cannot be ruled out, and are referred to in the following as $D^{*+}(2317)$ and $D^{*+}(2460)$ mesons.

The new states were first observed in $e^+e^-\rightarrow c\bar{c}$ collisions. Their observation in exclusive $K^+\pi^-$ final states was recently reported [14], and the measurement of the different branching fractions can help clarify the nature of these states.

In this Letter we consider the $D^{*+}_{sJ}(2317)$ production modes $B^+\rightarrow D^{*+}_{sJ}(2317)^0$ and $B^0\rightarrow D^{*+}_{sJ}(2317)^-$ with the subsequent decays $D^{*+}_{sJ}(2317)^0\rightarrow D^+_s\pi^0$, $D^{*+}(2460)^0\rightarrow D^+_s\pi^0$, and $D^{*+}_{sJ}(2317)^-\rightarrow D^+_s\gamma$. Our intention is to observe previously unseen decay chains, measure branching fractions for all channels, and determine the $D^{*+}_{sJ}(2317)$ spin by means of an angular analysis. Charge-conjugate reactions are assumed throughout this Letter.

The measurements reported here use 113 fb⁻¹ of data, corresponding to $(122.1 \pm 1.3) \times 10^6 B\bar{B}$ pairs, collected at the $\Upsilon(4S)$ resonance with the BABAR detector [15] at the PEP-II asymmetric-energy B factory.

We reconstruct $B\rightarrow D^{*+}_{sJ}(2317)\overline{D}^{(*)0}$ mesons in the modes $\overline{D}^{(*)0}\rightarrow K^+\pi^-$, $K^+\pi^-\pi^0$, $K^+\pi^-\pi^+\pi^-$, $D^-\rightarrow K^-\pi^-\pi^0$, and $D^+_s\rightarrow \phi\pi^+$ ($\phi\rightarrow K^+K^-$), $K^0\bar{K}^0$ ($K^0\rightarrow K^-\pi^+$). The reconstructed mass of the \overline{D} and D^+_s candidates is required to be within 2.5σ (3σ for $K^+\pi^-$, $K^+\pi^-\pi^0$, and $\phi\pi^+$) of the nominal D masses, where the D mass resolution σ, found in the data, is close to 12 MeV/c² for $\overline{D}\rightarrow K^+\pi^-\pi^0$ decays and varies from 5.3 to 6.3 MeV/c² for the other decay modes.

The D^+ candidates are reconstructed in the decay modes $D^+\rightarrow D^0\pi^+$, $D^{*+}\rightarrow D^{*0}\pi^+$, $D^{*+}\rightarrow D^{*0}\gamma$, and $D^{*+}\rightarrow D^+_s\gamma$. The mass difference Δm between the D^+ and D candidates is required to be within 2 MeV/c² of its nominal value [16] for $D^{*+}\rightarrow D^0\pi^+$ and $D^{*+}\rightarrow D^{*0}\pi^0$ (10 MeV/c² for $D^{*+}\rightarrow D^{*0}\gamma$ and $D^{*+}\rightarrow D^+_s\gamma$), corresponding to about $5\sigma_{\Delta m}$ for D^{*+} and $2\sigma_{\Delta m}$ for D^{*0} and D^{*0}. The selected pairs of D^{*+}_{sJ} and $\overline{D}^{(*)0}$ candidates are combined with a photon or a π^0 to form B candidates. The photon energy is required to be greater than 100 MeV. The neutral pions are built from pairs of photons with energies above 30 MeV and an invariant mass between 115 and 150 MeV/c². A mass-constrained kinematic fit is applied to all the intermediate particles. In order to suppress combinatorial background, we require the $\overline{D}^{(*)0}/\gamma$ invariant mass to be greater than 2.3 and 2.4 GeV/c² for \overline{D} and \overline{D} final states, respectively. Events compatible with being two-body decays $B\rightarrow D^{*+}_{sJ}(2460)\overline{D}$ are rejected.

We define a B signal region in terms of the beam energy substituted mass, $m_{ES}=\sqrt{s}/4-p_B^2$, and the difference between the reconstructed energy of the B candidate and the beam energy, $\Delta E=E_B-\sqrt{s}/2$, where \sqrt{s} is the total energy in the $\Upsilon(4S)$ center-of-mass frame and E_B (p_B) is the energy (momentum) of the B candidate in the same frame. We require $5.272 < m_{ES} < 5.288$ GeV/c² and $|\Delta E| < 32(40)$ MeV for π^0/γ final states. The width of the signal box is approximately 3σ in m_{ES} and $\pm 2\sigma$ in ΔE. We also define in the $D^{*+}_{sJ}(2317)$ mass spectra a signal region $m(D^{*+}_{sJ}(2317)/\gamma) < m(D^{*+}_{sJ}(2317)/\gamma) < 2.5\sigma$ and a sideband region from 4σ to 12σ away from the nominal value, with $m(D^{*+}_{sJ}(2317)/\gamma) = 2.317$ GeV/c² (2.460 GeV/c²) for $D^+_s\pi^0$ ($D^+_s\pi^0$, $D^*_s\gamma$). The resolution $\sigma = 8$ MeV/c² (12 MeV/c²) for π^0/γ final states is obtained from simulated signal events.

The B signal region in terms of m_{ES}, m_{ES}, and $D^{*+}_{sJ}(2317)$ mass spectra of the selected events are shown in Fig. 1 for each of the three $D^{*+}_{sJ}(2317)$ final states after combining the charged and neutral $B\rightarrow D^{*+}_{sJ}(2317)/\overline{D}$ modes and summing over all the \overline{D} and D^{*+}_{sJ} decays. Data points in each plot show the distribution of one variable in the signal regions of the other two. We also show (cross-hatched histograms) the ΔE and m_{ES} spectra of events in the D^{*+}_{sJ} sidebands.

Only one B signal candidate per event, based on the smallest $|\Delta E|$, is entered in the $D^{*+}_{sJ}(2317)$ and $D^*_s\gamma$ mass spectra and kept for further analysis. The $D^{*+}_{sJ}(2317)$ yields, masses, and resolutions, obtained from fitting a Gaussian signal function and an exponential background to these spectra, are given in Table I. The measured resolutions are compatible with expectations from the simulation, assuming zero intrinsic width for $D^{*+}_{sJ}(2317)$. We have also confirmed that the yields obtained from fits to the m_{ES} and ΔE spectra are in good agreement with the yields fitted from the $D^{*+}_{sJ}(2317)$ mass spectra.

The branching fraction measurement is based on the individual $D^*_s\pi^0$, $D^{*+}_{sJ}(2317)$, and $D^*_s\gamma$ mass spectra for each of the 12 $D^{*+}_{sJ}(2317)/\gamma$ final states. As shown in Fig. 2, signals for $B\rightarrow D^{*+}_{sJ}(2460)\overline{D}$ are observed in all channels. The results of likelihood fits to these distributions, using
a Gaussian signal and an exponential background function, are overlaid. In these fits, the Gaussian mean value is fixed to 2317 (2460) MeV/c^2 for D^*_sJ(2317)^+ (D^*_sJ(2460)^+). Its width is fixed to 8 (12) MeV/c^2 for π^0 (γ) final states, as obtained from the simulation and confirmed with the data (Table I). The D^*_sJ(2317)^+ event yields and the statistical significances are listed in Table II. The significance is defined as \(\sqrt{-2\ln(L_0/L_{\text{max}})} \), where \(L_{\text{max}} \) and \(L_0 \) are the likelihood values with the nominal and with zero signal yield, respectively. A significance larger than 4 is observed for 10 of the 12 modes.

From the D^*_sJ(2317)^+ event yields in the data, we compute cross-feed-corrected branching fractions, using the signal efficiency and the relative contributions from cross feed between the different D^*_sJ(2317)^+ decay modes as obtained from simulated signal events. The resulting branching fractions are given in Table II, together with the efficiencies, including the intermediate branching fractions, and the internal cross-feed contributions.

The dominant systematic errors come from the tracking efficiency (1.3% per track), γ and π^0 efficiencies (2.5% per γ), the Δm requirement on the D^*_s+ and D^*0 selections (≈ 5% per D^*), efficiency of the ΔE requirement (≈ 6%), D^*_sJ(2317)^+ mass resolutions assumed in the fits (5% to 10%), and background fitting model (5%). We assume equal production rates for B^+B^- and B^0\overline{B}^0 pairs and do not include a systematic error related to this assumption. The errors from the individual D^*_sJ(2317)^+ and D^*_s(2460)^+ branching fractions, as taken from [16], are given separately (Table II). They are dominated by the 25% relative error on \(\mathcal{B}(D^*_s \rightarrow \phi \pi^+) \).

From the measured branching fractions for B → D^*_sJ(2460)^0 in the D^*_s+ π^0 and in the D^*_s+ γ final states, we compute the ratio

\[
\frac{\mathcal{B}[D_s J(2460)^+ \rightarrow D_s^+ \gamma]}{\mathcal{B}[D_s J(2460)^0 \rightarrow D_s^+ \pi^0]} = 0.274 \pm 0.045 \pm 0.020,
\]

where the first and second uncertainties are statistical and

The results have been selected. Curves correspond to fits results.
We perform a helicity analysis of the $D_{sJ}(2460)^+$ state, using the decays $B^+ \rightarrow D_{sJ}(2460)^+ \bar{D}^0$ and $B^0 \rightarrow D_{sJ}(2460)^+ D^-$, with $D_{sJ}(2460)^+ \rightarrow D_s^+ \gamma$. The helicity angle θ_h is defined as the angle between the $D_s^{(*)+}$ momentum in the B-meson rest frame and the D_s momentum in the $D_{sJ}^{(*)+}$ rest frame. Since the $\bar{D}\gamma$ mass is correlated with the helicity angle, the selection requirement $m(\bar{D}\gamma) > 2.3$ GeV/c^2 is omitted for the angular analysis. We perform $m(D_s\gamma)$ fits for five different $\cos(\theta_h)$ regions, using the same fit functions and parameters.

<table>
<thead>
<tr>
<th>B mode</th>
<th>Yield</th>
<th>Cross feed</th>
<th>Efficiency (10^{-4})</th>
<th>B(10^{-3})</th>
<th>Significance</th>
</tr>
</thead>
<tbody>
<tr>
<td>$B^0 \rightarrow D_{sJ}(2317)^+ D^- [D_s^+ \pi^0]$</td>
<td>34.7 ± 8.0</td>
<td>0.3</td>
<td>1.6</td>
<td>1.8 ± 0.4 ± 0.3^{+0.0}_{-0.0}</td>
<td>5.5</td>
</tr>
<tr>
<td>$B^0 \rightarrow D_{sJ}(2317)^+ D^- [D_s^+ \pi^0]$</td>
<td>23.5 ± 6.1</td>
<td>0.0</td>
<td>1.3</td>
<td>1.5 ± 0.4 ± 0.2^{+0.0}_{-0.0}</td>
<td>5.2</td>
</tr>
<tr>
<td>$B^0 \rightarrow D_{sJ}(2317)^+ \bar{D}^0 [D_s^+ \pi^0]$</td>
<td>32.7 ± 10.8</td>
<td>0.3</td>
<td>2.6</td>
<td>1.0 ± 0.3 ± 0.1^{+0.0}_{-0.0}</td>
<td>3.1</td>
</tr>
<tr>
<td>$B^0 \rightarrow D_{sJ}(2317)^+ \bar{D}^0 [D_s^+ \pi^0]$</td>
<td>17.6 ± 6.8</td>
<td>7.2</td>
<td>1.0</td>
<td>0.9 ± 0.6 ± 0.2^{+0.0}_{-0.0}</td>
<td>2.5</td>
</tr>
<tr>
<td>$B^0 \rightarrow D_{sJ}(2460)^+ D^- [D_s^+ \pi^0]$</td>
<td>17.4 ± 5.1</td>
<td>0.1</td>
<td>0.5</td>
<td>2.8 ± 0.8 ± 0.5^{+0.0}_{-0.0}</td>
<td>4.2</td>
</tr>
<tr>
<td>$B^0 \rightarrow D_{sJ}(2460)^+ D^- [D_s^+ \pi^0]$</td>
<td>26.5 ± 5.7</td>
<td>0.0</td>
<td>0.4</td>
<td>5.5 ± 1.2 ± 1.0^{+0.0}_{-0.0}</td>
<td>7.4</td>
</tr>
<tr>
<td>$B^0 \rightarrow D_{sJ}(2460)^+ \bar{D}^0 [D_s^+ \pi^0]$</td>
<td>29.0 ± 6.8</td>
<td>2.2</td>
<td>0.8</td>
<td>2.7 ± 0.7 ± 0.5^{+0.0}_{-0.0}</td>
<td>5.1</td>
</tr>
<tr>
<td>$B^0 \rightarrow D_{sJ}(2460)^+ \bar{D}^0 [D_s^+ \pi^0]$</td>
<td>30.5 ± 6.4</td>
<td>2.5</td>
<td>0.3</td>
<td>7.6 ± 1.7 ± 1.8^{+0.0}_{-0.0}</td>
<td>7.7</td>
</tr>
<tr>
<td>$B^0 \rightarrow D_{sJ}(2460)^+ D^- [D_s^+ \gamma]$</td>
<td>24.8 ± 6.5</td>
<td>0.5</td>
<td>2.6</td>
<td>0.8 ± 0.2 ± 0.1^{+0.0}_{-0.0}</td>
<td>5.0</td>
</tr>
<tr>
<td>$B^0 \rightarrow D_{sJ}(2460)^+ D^- [D_s^+ \gamma]$</td>
<td>53.0 ± 7.8</td>
<td>0.1</td>
<td>1.9</td>
<td>2.3 ± 0.3 ± 0.3^{+0.0}_{-0.0}</td>
<td>11.7</td>
</tr>
<tr>
<td>$B^0 \rightarrow D_{sJ}(2460)^+ \bar{D}^0 [D_s^+ \gamma]$</td>
<td>31.9 ± 9.0</td>
<td>1.4</td>
<td>4.1</td>
<td>0.6 ± 0.2 ± 0.1^{+0.0}_{-0.0}</td>
<td>4.3</td>
</tr>
<tr>
<td>$B^0 \rightarrow D_{sJ}(2460)^+ \bar{D}^0 [D_s^+ \gamma]$</td>
<td>34.6 ± 7.6</td>
<td>6.5</td>
<td>1.7</td>
<td>1.4 ± 0.4 ± 0.3^{+0.0}_{-0.0}</td>
<td>6.0</td>
</tr>
</tbody>
</table>
The resulting angular distribution, after applying corrections for detector acceptance and selection efficiency, is shown in Fig. 3. The predicted spectra for two different assumptions for the D_sJ spin, which have been normalized to the data, are overlaid. We exclude the $J = 2$ hypothesis (χ^2/d.o.f. = 36.4/4) and find good agreement with $J = 1$ (χ^2/d.o.f. = 4.0/4). A D_sJ spin $J = 0$ is ruled out by parity and angular momentum conservation in the decay $D_sJ(2460)^+ \rightarrow D_s^+ \gamma$.

In summary, we have observed and measured the branching fractions for the decays $B \rightarrow D_sJ(2317)^+ \overline{D}^{(*)}$, $D_sJ(2317)^+ \rightarrow D_s^- \pi^0$, and $B \rightarrow D_sJ(2460)^+ \overline{D}^{(*)}$, $D_sJ(2460)^+ \rightarrow D_s^+ \pi^0$. The modes involving a D_s^+ have been seen for the first time. The angular analysis of the decay $B \rightarrow D_sJ(2460)^+ \overline{D}^*$ with $D_sJ(2460)^+ \rightarrow D_s^+ \gamma$ excludes $J^P = 2^+$ and supports the hypothesis that the $D_sJ(2460)^+$ is a $J^P = 1^+$ state.

We are grateful for the excellent luminosity and machine conditions provided by our PEP-II colleagues and for the substantial dedicated effort from the computing organizations that support BABAR. The collaborating institutions wish to thank SLAC for its support and kind hospitality. This work is supported by DOE and NSF (USA), NSERC (Canada), IHEP (China), CEA and CNRS-IN2P3 (France), BMBF and DFG (Germany), INFN (Italy), FOM (The Netherlands), NFR (Norway), MIST (Russia), and PPARC (United Kingdom). Individuals have received support from CONACyT (Mexico), A. P. Sloan Foundation, Research Corporation, and Alexander von Humboldt Foundation.

References: