PDF hosted at the Radboud Repository of the Radboud University Nijmegen

The following full text is a publisher’s version.

For additional information about this publication click this link.
http://hdl.handle.net/2066/128839

Please be advised that this information was generated on 2019-09-02 and may be subject to change.
Search for $B$-meson decays to two-body final states with $a_0(980)$ mesons

SEARCH FOR $B$-MESON DECAYS TO TWO-BODY FINAL ...

**PHYSICAL REVIEW D 70, 111102 (2004)**

25Università di Ferrara, Dipartimento di Fisica and INFN, I-44100 Ferrara, Italy
26Florida A&M University, Tallahassee, Florida 32307, USA
27Laboratori Nazionali di Frascati dell’INFN, I-00044 Frascati, Italy
28Università di Genova, Dipartimento di Fisica and INFN, I-16146 Genova, Italy
29Harvard University, Cambridge, Massachusetts 02138, USA
30Università Heidelberg, Physikalisches Institut, Philosophenweg 12, D-69120 Heidelberg, Germany
31Imperial College London, SW7 2AZ, United Kingdom
32University of Iowa, Iowa City, Iowa 52242, USA
33Iowa State University, Ames, Iowa 50011-3160, USA
34Laboratoire de l’Accélérateur Linéaire, F-91898 Orsay, France
35Lawrence Livermore National Laboratory, Livermore, California 94550, USA
36University of Liverpool, Liverpool L69 7E, United Kingdom
37Queen Mary, University of London, E1 4NS, United Kingdom
38University of London, Royal Holloway and Bedford New College, Egham, Surrey TW20 0EX, United Kingdom
39University of Louisville, Louisville, Kentucky 40292, USA
40University of Manchester, Manchester M13 9PL, United Kingdom
41University of Maryland, College Park, Maryland 20742, USA
42University of Massachusetts, Amherst, Massachusetts 01003, USA
43Massachusetts Institute of Technology, Laboratory for Nuclear Science, Cambridge, Massachusetts 02139, USA
44McGill University, Montréal, QC, Canada H3A 2T8
45Università di Milano, Dipartimento di Fisica and INFN, I-20133 Milano, Italy
46University of Mississippi, University, Mississippi 38677, USA
47Université de Montréal, Laboratoire René J. A. Lévesque, Montréal, QC, Canada H3C 3J7
48Mount Holyoke College, South Hadley, Massachusetts 01075, USA
49Università di Napoli Federico II, Dipartimento di Scienze Fisiche and INFN, I-80126, Napoli, Italy
50NIKHEF, National Institute for Nuclear Physics and High Energy Physics, NL-1009 DB Amsterdam, The Netherlands
51University of Notre Dame, Notre Dame, Indiana 46556, USA
52Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
53Ohio State University, Columbus, Ohio 43210, USA
54University of Oregon, Eugene, Oregon 97403, USA
55Università di Padova, Dipartimento di Fisica and INFN, I-35131 Padova, Italy
56Universités Paris VI et VII, Laboratoire de Physique Nucléaire et de Hautes Energies, F-75252 Paris, France
57University of Pavia, Dipartimento di Elettronica and INFN, I-27100 Pavia, Italy
58University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
59Università di Perugia, Dipartimento di Fisica and INFN, I-06100 Perugia, Italy
60Università di Pisa, Dipartimento di Fisica, Scuola Normale Superiore and INFN, I-56127 Pisa, Italy
61Prairie View A&M University, Prairie View, Texas 77446, USA
62Princeton University, Princeton, New Jersey 08544, USA
63Università di Roma La Sapienza, Dipartimento di Fisica and INFN, I-00185 Roma, Italy
64Universität Rostock, D-18051 Rostock, Germany
65Rutherford Appleton Laboratory, Chilton, Didcot, Oxon, OX11 0QX, United Kingdom
66DSM/Dapnia, CEA/Saclay, F-91191 Gif-sur-Yvette, France
67University of South Carolina, Columbia, South Carolina 29208, USA
68Stanford Linear Accelerator Center, Stanford, California 94309, USA
69Stanford University, Stanford, California 94305-4060, USA
70State University of New York, Albany, New York 12222, USA
71University of Tennessee, Knoxville, Tennessee 37996, USA
72University of Texas at Austin, Austin, Texas 78712, USA
73University of Texas at Dallas, Richardson, Texas 75083, USA
74Università di Torino, Dipartimento di Fisica Sperimentale and INFN, I-10125 Torino, Italy
75Università di Trieste, Dipartimento di Fisica and INFN, I-34127 Trieste, Italy
76Vanderbilt University, Nashville, Tennessee 37235, USA
77University of Victoria, Victoria, British Columbia, Canada V8W 3P6
78University of Wisconsin, Madison, Wisconsin 53706, USA

*Now at Department of Physics, University of Warwick, Coventry, United Kingdom
†Also with Università della Basilicata, Potenza, Italy
‡Also with Instituto de Física Corpuscular, CSIC-Universidad de Valencia, Valencia, Spain
§Deceased
We present a search for $B$ decays to charmless final states involving charged or neutral $a_0$ mesons. The data sample corresponds to $89 \times 10^6 B\bar{B}$ pairs collected with the BABAR detector operating at the PEP-II asymmetric-energy $B$ Factory at Stanford Linear Accelerator Center. We find no significant signals and determine the following 90% C.L. upper limits: $\mathcal{B}(B^0 \to a_0^\pm \pi^\mp) < 5.1 \times 10^{-6}$, $\mathcal{B}(B^0 \to a_0^\pm K^\mp) < 2.1 \times 10^{-6}$, $\mathcal{B}(B^- \to a_0^\pm K^0) < 3.9 \times 10^{-6}$, $\mathcal{B}(B^+ \to a_0^\pm \pi^\mp) < 5.8 \times 10^{-6}$, $\mathcal{B}(B^+ \to a_0^+ K^0) < 2.5 \times 10^{-6}$, and $\mathcal{B}(B^0 \to a_0^\pm K^0) < 7.8 \times 10^{-6}$, where in all cases $\mathcal{B}$ indicates the product of branching fractions for $B \to a_0 X$ and $a_0 \to \eta\pi$, where $X$ indicates $K$ or $\pi$.

DOI: 10.1103/PhysRevD.70.111102 PACS numbers: 13.25.Hw, 11.30.Er, 12.15.Hh

We report results on measurements of $B$-meson decays to charmless final states with $a_0(980)$ mesons [1]. Both experimentally and theoretically, most work in charmless two-body $B$ decays has involved states with only pseudoscalar and vector mesons. The only charmless $B$ decay involving scalar mesons that has been observed is $B \to f_0(980)K$ [2]. There have been no previously published searches for $B$ decays to final states with $a_0$ mesons. In this paper we search for the decays $B \to a_0 \pi$, $B \to a_0 K$, and $B \to a_0 K^0$ for both charged and neutral $a_0$ mesons. These measurements should provide information both for $B$ decays to scalar mesons and the nature of those mesons.

Some specific predictions can be made for the decays $B \to a_0 \pi^\pm$ if factorization is assumed and if the decay is a tree or penguin (loop) process. The dominant such process is shown in Fig. 1(a). The companion tree process, shown in Fig. 1(b), is expected to be greatly suppressed, since the virtual $W$ cannot produce an $a_0$ meson [3]. This is a firm prediction of the standard model because the weak current has a $G$-parity even vector part and a $G$-parity odd axial-vector part. The latter can produce an axial-vector or pseudoscalar particle while the former produces a vector particle, but neither can produce a $G$-parity odd scalar meson. Penguin processes such as shown in Fig. 1(c) are allowed but are suppressed relative to the tree processes. Thus the decay $B \to a_0 \pi^\pm$ is expected to be "self-tagging" (the charge of the pion identifies the $B$ flavor). The decays with a kaon in the final state should be dominated by penguin processes (Fig. 1(d)); however, there is a cancellation between two terms in the penguin amplitudes for these decays [4], which leads to a prediction that the branching fraction should be rather small. The diagrams for neutral $B$ decays involving $a_0^0$ mesons are similar to those shown in Fig. 1.

The nature of the $a_0$ is still not well understood. It is thought to be a $q\bar{q}$ state with a possible admixture of a $K\bar{K}$ bound-state component due to the proximity to the $K\bar{K}$ threshold [5,6]. The $a_0$ mass is known to be about 985 MeV and the dominant decay mode is $a_0 \to \eta\pi$ [5], which is the mode used in the present analysis. A recent analysis [7] that uses this $\eta\pi$ decay channel finds a Breit-Wigner width of $(71 \pm 7$ MeV), with no better fit obtained when the more correct Flatté shape [8] is used. Also since the branching fraction for $a_0 \to \eta\pi$ is not well known, we report the product branching fraction $\mathcal{B}(B \to a_0 X) \times \mathcal{B}(a_0 \to \eta\pi)$, where $X$ indicates $K$ or $\pi$.

The results presented here are based on data collected with the BABAR detector [9] at the PEP-II asymmetric $e^+e^-$ collider located at the Stanford Linear Accelerator Center. An integrated luminosity of 81.9 fb$^{-1}$, corresponding to 88.9 $\pm$ 1.0 million $B\bar{B}$ pairs, was recorded at the $Y(4S)$ resonance (center-of-mass energy $\sqrt{s} = 10.58$ GeV).

The track parameters of charged particles are measured by a combination of a silicon vertex tracker, with five layers of double-sided silicon sensors, and a 40-layer central drift chamber, both operating in the 1.5-T magnetic field of a superconducting solenoid. We identify photons and electrons using a CsI(Tl) electromagnetic calorimeter. Further charged particle identification (PID) is provided by the average energy loss ($dE/dx$) in the tracking devices and by an internally reflecting, ring-imaging Cherenkov detector (DIRC) covering the central region.

We select $a_0$ candidates from the decay channel $a_0 \to \eta\pi$ with the decays $\eta \to \gamma\gamma$ ($\eta_{\gamma\gamma}$) and $\eta \to \pi^+\pi^-\pi^0$ ($\eta_{3\pi}$). We apply the following requirements on the invariant masses (in MeV) relevant here: $500 < m_{\gamma\gamma} < 585$ for $\eta_{\gamma\gamma}$, $535 < m_{\pi\pi\pi} < 560$ for $\eta_{3\pi}$, $120 < m_{\gamma\gamma} < 150$ for

![FIG. 1. Feynman diagrams for decays involving charged $a_0$ mesons: (a) dominant and (b) $G$-parity-suppressed tree diagrams for $B^0 \to a_0^\mp \pi^\pm$, (c) penguin diagram for the same decay mode, and (d) penguin diagram for the decay $B^0 \to a_0^\pm K^+$.](Image)
π0, and 775 < m_{\eta\pi} < 1175 for a_0 \rightarrow \eta \pi. These requirements are typically quite loose compared with typical resolutions in order to achieve high efficiency and retain sufficient sidebands to characterize the background for subsequent fitting. We reconstruct K_0^0 candidates through the K_0^0 \rightarrow \pi^+ \pi^- decay; to obtain a low-background, well-understood K_0^0 sample, we require 488 < m_{\pi\pi} < 508 \text{ MeV}, the three-dimensional flight distance from the event primary vertex to be greater than 2 mm, and the angle between flight and momentum vectors, in the plane perpendicular to the beam direction, to be less than 40 mrad.

We make several PID requirements to ensure the identity of the pions and kaons. Secondary tracks in \eta_{3\pi} candidates must have measured DIRC, dE/dx, and electromagnetic calorimeter outputs consistent with pions. For the decays B \rightarrow a_0 h^+ [10], where h^+ indicates a charged pion or kaon, the particle h^+ must have an associated DIRC signal with a Cherenkov angle within 3.5 standard deviations of the expected value for either a \pi^+ or K^+ hypothesis (we describe below the separation between the two hypotheses).

A B-meson candidate is characterized kinematically by the energy-substituted mass m_{ES} = [(1/2 s + p_0 \cdot p_B)/E_0^2 - p_h^2]^{1/2} and energy difference \Delta E = E_{h^+} - 1/2 \sqrt{s}, where (E_{h^+}, p_{h^+}) and (E_0, p_0) are the four vectors of the B candidate and the initial electron-positron system, respectively. The asterisk denotes the Y(4S) frame, and s is the square of the invariant mass of the electron-positron system. The \Delta E (m_{ES}) resolution is about 40 MeV (3.0 MeV). We require |\Delta E| \leq 0.2 \text{ GeV} and 5.2 \leq m_{ES} \leq 5.29 \text{ GeV}.

Backgrounds arise primarily from random combinations in continuum e^+ e^- \rightarrow q\bar{q} (q = u, d, s, c) events. We reduce these by using the angle \theta_t between the thrust axis of the B candidate in the Y(4S) frame and that of the rest of the charged tracks and neutral clusters in the event. The distribution of |\cos\theta_t| is sharply peaked near 1.0 for combinations drawn from jetlike q\bar{q} pairs and nearly uniform for B-meson decays. We require |\cos\theta_t| < 0.9 for the a_0K_0^0 decay modes. Based on a Monte Carlo study in which the relative branching fraction uncertainty is minimized, we tighten this requirement for the higher-background a_0h channels: 0.8 for a_0^0(\eta_{3\pi})h^+, 0.7 for a_0^- (\eta_{\gamma\gamma})h^+, and 0.6 for d_0^0 (\eta_{\gamma\gamma})h^+. We also use, in the fit described below, a Fisher discriminant \mathcal{F} that combines the angles with respect to the beam axis of the B momentum and B thrust axis [in the Y(4S) frame] and momenta describing the energy flow about the B thrust axis [11].

For the \eta \rightarrow \gamma\gamma modes we use additional event-selection criteria to further reduce backgrounds from charmless B decay modes such as B \rightarrow K^* \gamma and B \rightarrow \eta K^* +. We require |\cos\theta_{\text{dec}}| \leq 0.86, where \theta_{\text{dec}} is the \eta decay angle, the angle of the photons in the \eta rest frame with respect to the boost direction from the B to that frame. We also require \cos\theta_{\text{dec}} \geq 0.8, where \theta_{\text{dec}} is the a_0 decay angle, defined similarly to \theta_{\text{dec}}^\eta, with sign such that high-momentum \eta mesons populate the region near +1. These additional requirements reduce the BB background by a factor of 2–4, depending on the decay mode. From Monte Carlo (MC) simulation [12] we estimate that the residual charmless BB background is less than one event for all decays except a_0^0 (\eta_{\gamma\gamma})K^0 (the notation indicates the decay mode of the \eta used in reconstructing the a_0) and a_0^- (\eta_{\gamma\gamma})h^+, where we include in the fit a BB component, that we find to be less than 0.5% of the total sample in both cases.

We obtain yields and branching fractions from extended unbinned maximum-likelihood fits, with input observables \Delta E, m_{ES}, \mathcal{F}, m_{\eta\pi}, and for charged modes the PID variables S_\pi and S_K; the last quantities are the number of standard deviations between the measured Cherenkov angle and the expectation for pions and kaons.

For each event i, hypothesis j (signal, continuum background, BB background), and, for the a_0h^+ decays, flavor k, we define the probability density function (PDF)

$$P_{ij} = P_j(m_{ES})P_j(\Delta E_{i[k]}, S_{ik})P_j(\mathcal{F})P_j(m_{i[k]}).$$

The term in brackets for S pertains to the a_0h^+ modes. The absence of correlations among observables (except between \Delta E and S, which both depend on the momentum of the particle h^+) in the background \mathcal{P}_{ij[k]}, is confirmed in the (background-dominated) data samples entering the fit. For the signal component, we correct for effects due to the neglect of small correlations (more details are provided in the systematics discussion below). The likelihood function is

$$\mathcal{L} = \exp\left(-\sum_{j,k} Y_{jk} \prod_i N \left[ \sum_{j,k} Y_{jk} P_{jk} \right] \right),$$

where Y_{jk} is the yield of events of hypothesis j and flavor k that we find by maximizing \mathcal{L}, and N is the number of events in the sample.

We determine the PDF parameters from simulation for the signal and BB background components and initial values of the continuum background parameters from (m_{ES}, \Delta E) sideband data. We parameterize each of the functions \mathcal{P}_j(m_{ES}), \mathcal{P}_j(\Delta E_k), \mathcal{P}_j(\mathcal{F}), and \mathcal{P}_j(S_k) with either a Gaussian function, the sum of two Gaussian functions, or an asymmetric Gaussian function, as required to describe the distribution. The component of \mathcal{P}_j(m_{\eta\pi}) which represents real a_0 mesons in the combinatorial background is described with the same Breit-Wigner parameters as are used for signal. Slowly varying distributions (a_0 candidate mass and \Delta E for combinatoric background) are represented by second order Chebychev polynomials. The q\bar{q} combinatorial background in m_{ES} is described by the function \( f(x) = x/\sqrt{1 - x^2} \exp[-\xi(1 - x^2)], \) with \( x = 2 m_{ES}/\sqrt{s} \) and free parameter \( \xi \); for BB background, we add a Gaussian function to the quantity
Additionally, the Breit-Wigner signal parameters for the $a_0$ mass and width are determined from an inclusive dataset that is much larger than the sample used for this analysis. The widths are consistent with expectations from the natural-width values of Ref. [7].

In Table I we show for each decay mode the measured product branching fraction, together with the quantities entering into its determination. In order to account for the uncertainties in the background PDF descriptions, we include as free parameters in the fit, in addition to the signal and background yields, the principle parameters describing the background PDFs: slopes for the polynomial shape for the $\Delta E$ and $m_{E_{S}}$ mass distributions, the parameter $\xi$ used in the $m_{E_{S}}$ description, and three parameters describing the asymmetric Gaussian function for $F$. For calculation of branching fractions, we assume that the decay rates of the $Y(4S)$ to $B^{+}B^{-}$ and $B^{0}\bar{B}^{0}$ are equal [13]. We combine branching fraction results from the two $\eta$ decay channels by adding the values of $-2\ln\mathcal{L}$, adjusted for a small fit bias (see below) and taking proper account of the correlated and uncorrelated systematic errors.

In order to check the suitability of the PDFs for describing the data, we show in Fig. 2 the distribution of the likelihood ratio $\mathcal{L}(S)/[\mathcal{L}(S) + \mathcal{L}(B)]$ for the full $a_0(\eta_{\gamma\gamma})h^{+}$ sample, where $\mathcal{L}(S)$ and $\mathcal{L}(B)$ are the signal and background likelihood, respectively. Signal would appear near 1.0 in this plot but very little is seen because of the small signal yield. There also is good agreement for similar plots for the other samples. In order to show distributions of the main fit observables $m_{E_{S}}$ and $\Delta E$, we require that this likelihood ratio be greater than a value that would optimize the branching fraction uncertainty, typically 0.9 for most samples. In Figs. 3 and 4 we show projections onto $m_{E_{S}}$ and $\Delta E$ of subsamples enriched with this requirement on the likelihood ratio (computed ignoring the PDF associated with the variable plotted).

The statistical error on the signal yield is taken as the change in the central value when the quantity $-2\ln\mathcal{L}$ increases by one unit from its minimum value. The significance is taken as the square root of the difference between the value of $-2\ln\mathcal{L}$ (with additive systematic uncertainties included) for zero signal and the value at the minimum, with other parameters free in both cases. The 90% confidence level upper limit is taken to be the branching fraction below which lies 90% of the total of the likelihood integral (with systematic uncertainties included) in the positive branching fraction region.

Most of the yield uncertainties arising from lack of knowledge of the PDFs have been included in the statistical error since most background parameters are free in the fit. Varying the signal PDF parameters within their estimated uncertainties, we determine the uncertainties in the signal PDFs to be 1–5 events, depending on the final state. The

![Figure 2](color online). The likelihood ratio $\mathcal{L}(S)/[\mathcal{L}(S) + \mathcal{L}(B)]$ for $a_0(\eta_{\gamma\gamma})h^{+}$. The points represent the on-resonance data, the solid histograms are from MC generated from background (dark shaded) and background plus signal (light shaded) PDFs.

---

**TABLE I.** Signal yield, detection efficiency $\epsilon$ (%), daughter branching fraction product ($\prod B_i$%), significance (including additive systematic uncertainties, taken to be zero if corrected yield is negative), measured product branching fraction (see text), and the 90% C.L. upper limit on this branching fraction.

<table>
<thead>
<tr>
<th>Mode</th>
<th>Yield</th>
<th>$\epsilon$</th>
<th>$\prod B_i$</th>
<th>Signif.</th>
<th>$B(10^{-6})$</th>
<th>UL($10^{-6}$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$a_0(\eta_{\gamma\gamma})\pi^+$</td>
<td>18 $^{+1}_{-1.1}$</td>
<td>18.8</td>
<td>39.4</td>
<td>1.3</td>
<td>2.3 $^{+1.7}_{-1.5}$</td>
<td>± 0.9</td>
</tr>
<tr>
<td>$a_0(\eta_{3\gamma})\pi^+$</td>
<td>15 $^{+0.9}_{-0.9}$</td>
<td>15.5</td>
<td>22.6</td>
<td>1.6</td>
<td>3.9 $^{+2.9}_{-2.5}$</td>
<td>± 1.0</td>
</tr>
<tr>
<td>$a_0\pi^+$</td>
<td>2.0</td>
<td>2.8 $^{+1.3}_{-1}$</td>
<td>± 0.7</td>
<td>&lt; 5.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$a_0(\eta_{\gamma\gamma})K^+$</td>
<td>2 $^{+0.7}_{-0.7}$</td>
<td>17.9</td>
<td>39.4</td>
<td>0.1</td>
<td>0.0 $^{+0.9}_{-0.6}$</td>
<td>± 0.3</td>
</tr>
<tr>
<td>$a_0(\eta_{3\gamma})K^+$</td>
<td>13 $^{+0.8}_{-0.8}$</td>
<td>14.9</td>
<td>22.6</td>
<td>1.1</td>
<td>3.1 $^{+2.7}_{-2.1}$</td>
<td>± 1.9</td>
</tr>
<tr>
<td>$a_0K^0$</td>
<td>0.4</td>
<td>0.4 $^{+0.8}_{-0.8}$</td>
<td>± 0.2</td>
<td>&lt; 2.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$a_0(\eta_{\gamma\gamma})\bar{K}^0$</td>
<td>0 $^{+0.7}_{-0.6}$</td>
<td>15.8</td>
<td>7.9</td>
<td>0.5</td>
<td>2.7 $^{+6.1}_{-4.4}$</td>
<td>± 1.9</td>
</tr>
<tr>
<td>$a_0K^0$</td>
<td>0.6</td>
<td>1.5 $^{+2.4}_{-1.3}$</td>
<td>± 0.8</td>
<td>&lt; 3.9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$a_0(\eta_{\gamma\gamma})\pi^+$</td>
<td>17 $^{+0.7}_{-0.7}$</td>
<td>12.8</td>
<td>39.4</td>
<td>1.4</td>
<td>3.1 $^{+2.4}_{-2.0}$</td>
<td>± 1.2</td>
</tr>
<tr>
<td>$a_0(\eta_{3\gamma})\pi^+$</td>
<td>1 $^{+0.8}_{-0.8}$</td>
<td>9.5</td>
<td>22.6</td>
<td>0.3</td>
<td>1.2 $^{+3.9}_{-3.2}$</td>
<td>± 1.7</td>
</tr>
<tr>
<td>$a_0\pi^+$</td>
<td>1.4</td>
<td>2.6 $^{+2.0}_{-1.7}$</td>
<td>± 1.0</td>
<td>&lt; 5.8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$a_0(\eta_{\gamma\gamma})K^+$</td>
<td>0 $^{+0.5}_{-0.5}$</td>
<td>12.4</td>
<td>39.4</td>
<td>0.3</td>
<td>0.3 $^{+1.0}_{-0.6}$</td>
<td>± 0.4</td>
</tr>
<tr>
<td>$a_0(\eta_{3\gamma})K^+$</td>
<td>6 $^{+0.3}_{-0.3}$</td>
<td>9.1</td>
<td>22.6</td>
<td>0.5</td>
<td>1.9 $^{+3.8}_{-2.9}$</td>
<td>± 2.5</td>
</tr>
<tr>
<td>$a_0K^+$</td>
<td>0.4</td>
<td>0.4 $^{+1.0}_{-1.0}$</td>
<td>± 0.3</td>
<td>&lt; 2.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$a_0(\eta_{\gamma\gamma})\bar{K}^0$</td>
<td>0 $^{+0.5}_{-0.5}$</td>
<td>15.0</td>
<td>13.3</td>
<td>0.5</td>
<td>1.4 $^{+3.5}_{-2.4}$</td>
<td>± 1.2</td>
</tr>
<tr>
<td>$a_0(\eta_{3\gamma})\bar{K}^0$</td>
<td>4 $^{+0.4}_{-0.4}$</td>
<td>9.7</td>
<td>7.8</td>
<td>1.2</td>
<td>6.6 $^{+7.8}_{-5.4}$</td>
<td>± 2.8</td>
</tr>
<tr>
<td>$a_0(\eta_{\gamma\gamma})K^0$</td>
<td>1.0</td>
<td>2.8 $^{+5.1}_{-3.4}$</td>
<td>± 1.1</td>
<td>&lt; 7.8</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
contribution to this uncertainty from the parameterization of the $a_0$ signal shape is small. We verify that the value of the likelihood of each fit is consistent with the expectation found from an ensemble of simulated experiments.

Uncertainties in our knowledge of the efficiency, found from auxiliary studies, include 0.8% · $N_t$, 2.5% · $N_\gamma$, and 4% for a $K_S^0$ decay, where $N_t$ and $N_\gamma$ are the number of signal tracks and photons, respectively. Our estimate of the number of produced $B\bar{B}$ events is uncertain by 1.1%. The neglect of correlations among observables in the fit can cause a systematic bias; the correction for this bias (between $-3$ and $+3$ events) and assignment of the resulting systematic uncertainty (0.5–2 events) is determined from simulated samples with varying background populations. Published data [5] provide the uncertainties in the $B$-daughter product branching fractions (1%–2%). Selection efficiency uncertainties are 0.5%–3.5% for $\cos\theta_T$ and 0.5% for PID (for the $a_0h^+$ modes).

In conclusion, we do not find significant signals for these $B$-meson decays to states with $a_0$ mesons. The measured branching fractions and 90% C.L. upper limits are given in Table I. Assuming $\eta\pi$ to be the dominant $a_0$ decay mode, we rule out the predictions for the decay $B^- \rightarrow a_0\overline{K}^0$ derived in Ref. [14].

We are grateful for the excellent luminosity and machine conditions provided by our PEP-II colleagues and for the substantial dedicated effort from the computing organizations that support BABAR. The collaborating institutions wish to thank SLAC for its support and kind hospitality. This work is supported by DOE and NSF (USA), NSERC (Canada), IHEP (China), CEA and CNRS-IN2P3 (France), BMBF and DFG (Germany), INFN (Italy), FOM (The Netherlands), NFR (Norway), MIST (Russia), and PPARC (United Kingdom). Individuals have received support from CONACyT (Mexico), A.P. Sloan Foundation, Research Corporation, and Alexander von Humboldt Foundation.

[1] Throughout this note, when we refer to $a_0$, we mean specifically $a_0(980)$.

