Measurements of branching fractions in $B \rightarrow \phi K$ and $B \rightarrow \phi \pi$ and search for direct CP violation in $B^\pm \rightarrow \phi ^\pm$
AUBERT et al.

PHYSICAL REVIEW D 69, 011102(R) (2004)

(BABAR Collaboration)

1Laboratoire de Physique des Particules, F-74941 Annecy-le-Vieux, France
2Università di Bari, Dipartimento di Fisica e INFN, I-70126 Bari, Italy
3Institute of High Energy Physics, Beijing 100039, China
4University of Bergen, Inst. of Physics, N-5007 Bergen, Norway
5Lawrence Berkeley National Laboratory and University of California, Berkeley, California 94720, USA
6University of Birmingham, Birmingham, B15 2TT, United Kingdom
7Ruhr Universität Bochum, Institut für Experimentalphysik I, D-44780 Bochum, Germany
8University of Bristol, Bristol BS8 1TL, United Kingdom
9University of British Columbia, Vancouver, BC, Canada V6T 1Z1
10Brunel University, Uxbridge, Middlesex UB8 3PH, United Kingdom
11Budker Institute of Nuclear Physics, Novosibirsk 630090, Russia
12University of California at Irvine, Irvine, California 92697, USA
13University of California at Los Angeles, Los Angeles, California 90024, USA
14University of California at San Diego, La Jolla, California 92093, USA
15University of California at Santa Barbara, Santa Barbara, California 93106, USA
16University of California at Santa Cruz, Institute for Particle Physics, Santa Cruz, California 95064, USA
17California Institute of Technology, Pasadena, California 91125, USA
18University of Cincinnati, Cincinnati, Ohio 45221, USA
19University of Colorado, Boulder, Colorado 80309, USA
20Colorado State University, Fort Collins, Colorado 80523, USA
21Technische Universität Dresden, Institut für Kern- und Teilchenphysik, D-01109 Dresden, Germany
22Ecole Polytechnique, LLR, F-91128 Palaiseau, France
23University of Edinburgh, Edinburgh EH9 3JZ, United Kingdom
24Università di Ferrara, Dipartimento di Fisica e INFN, I-44100 Ferrara, Italy
25Florida A&M University, Tallahassee, Florida 32307, USA
26Laboratori Nazionali di Frascati dell’INFN, I-00044 Frascati, Italy
27Università di Genova, Dipartimento di Fisica e INFN, I-16146 Genova, Italy
28Harvard University, Cambridge, Massachusetts 02138, USA
29Imperial College London, London, SW7 2BW, United Kingdom
30University of Iowa, Iowa City, Iowa 52242, USA
31Iowa State University, Ames, Iowa 50011-3160, USA
32Laboratoire de l’Accélérateur Linéaire, F-91898 Orsay, France
33Lawrence Livermore National Laboratory, Livermore, California 94550, USA
34University of Liverpool, Liverpool L69 3BX, United Kingdom
35Queen Mary, University of London, E1 4NS, United Kingdom
36University of London, Royal Holloway and Bedford New College, Egham, Surrey TW20 0EX, United Kingdom
37University of Louisville, Louisville, Kentucky 40292, USA
38University of Manchester, Manchester M13 9PL, United Kingdom
39University of Maryland, College Park, Maryland 20742, USA
40University of Massachusetts, Amherst, Massachusetts 01003, USA
Decays of B mesons into charmless hadronic final states with a ϕ meson are dominated by $b \to s\bar{s}s$ gluonic penguin diagrams (Fig. 1), possibly with smaller contributions from electroweak penguin diagrams, while other standard model (SM) amplitudes are strongly suppressed [1]. In the standard model, CP violation arises from a single complex phase in the Cabibbo-Kobayashi-Maskawa (CKM) quark-mixing matrix [2]. Since many scenarios of physics beyond the SM introduce additional diagrams with heavy particles in the penguin loops and new CP-violating phases [3], a comparison of CP-violating observables with SM expectations is a sensitive probe for new physics. In the SM, neglecting CKM-suppressed contributions, the direct CP violation in $B^+ \to \phi K^+$ [4], detected as an asymmetry $A_{CP}(B^+ \to \phi K^+) = (0.41 \pm 0.03 \pm 0.06) \times 10^{-6}$ and $A_{CP}(B^0 \to \phi K^0) = (8.4_{-1.2}^{+1.3} \pm 0.5) \times 10^{-6}$. Additionally, we measure the CP-violating charge asymmetry $A_{CP}(B^+ \to \phi K^+) = (0.04 \pm 0.09 \pm 0.01$, with a 90% confidence-level interval of $[-0.10, 0.18]$, and set an upper limit on the CKM- and color-suppressed decay $B^+ \to \phi \pi^+$, $B(B^+ \to \phi \pi^+) < 0.41 \times 10^{-6}$ (at the 90% confidence level).

DOI: 10.1103/PhysRevD.69.011102

PACS number(s): 13.25.Hw, 11.30.Er, 12.15.Hh
\(\rightarrow \phi K^\pm \), is expected to be zero; in the presence of large new-physics contributions to the \(b \rightarrow s \bar{s}s \) transition, it could be of order 1 [5]. The \(B \rightarrow \phi K \) and \(B \rightarrow \phi \pi \) decay rates are also sensitive to new physics; the latter is strongly suppressed in the SM, and a measurement of \(B(B \rightarrow \phi \pi) \geq 10^{-7} \) would serve as evidence for new physics [6]. The branching fractions of \(B^+ \rightarrow \phi K^+ \) and \(B^0 \rightarrow \phi K^0 \) have been studied by CLEO [7], BABAR [8,9], and Belle [10]; \(A_{CP}(B^+ \rightarrow \phi K^+) \) has been studied by BABAR [9].

This analysis is based on an integrated luminosity of about 82 fb\(^{-1}\), corresponding to approximately 89 million \(\bar{B}B \) pairs, collected at SLAC with the BABAR detector [11] at the PEP-II asymmetric-energy \(e^+e^- \) storage ring operating on the Y(4S) resonance.

The asymmetrical beam-configuration provides a boost to the Y(4S) in the laboratory frame (\(\beta \gamma = 0.56 \)), increasing the maximum momentum of the \(B \)-meson decay products to 4.4 GeV/c. Charged particles are detected and their momenta measured by a combination of a silicon vertex tracker (SVT), consisting of five double-sided layers, and a 40-layer central drift chamber (DCH), both operating in a 1.5-T solenoidal magnetic field. The tracking system covers 92% of the solid angle in the center-of-mass (CM) frame. The track-finding efficiency is, on average, (98 ± 1)% for momenta above 0.2 GeV/c and polar angles greater than 0.5 rad. Photons are detected by a CsI(Tl) electromagnetic calorimeter (EMC), which provides excellent angular and energy resolution with high efficiency for energies above 20 MeV.

Charged-particle identification is provided by measuring the average energy loss (\(dE/dx \)) in the two tracking devices and by the novel internally reflecting ring-imaging Cherenkov detector (DIRC) covering the central region. A \(\pi/K \) separation of better than 4\(\sigma \) is achieved for tracks with momenta below 3 GeV/c, decreasing to 2.4\(\sigma \) for the highest momenta arising from \(B^+ \rightarrow \phi h^+ \) decays. Electrons are identified with the use of the tracking system and the EMC.

We fully reconstruct \(B \)-meson candidates in the decay modes \(\phi h^+ \) and \(\phi K^0 \), with \(\phi \rightarrow K^+ K^- \) and \(K^0 \rightarrow \pi^\pm \pi^- \). For the \(h^+ \) track and the charged-track daughters of the \(\phi \) we require at least 12 measured DCH hits and a minimal transverse-momentum \(p_T \) of 0.1 GeV/c. The tracks must originate from the interaction point (within 10 cm along the beam direction and 1.5 cm in the transverse plane). Looser criteria are applied to tracks belonging to \(K^0_s \rightarrow \pi^+ \pi^- \). We combine pairs of oppositely charged tracks originating from a common vertex to form \(K^0_s \) and \(\phi \) candidates. A \(K^0_s \rightarrow \pi^+ \pi^- \) candidate is accepted on the basis of requirements on the two-pion invariant mass (within 12 MeV/c\(^2 \) of the nominal \(K^0_s \) mass [12]), the flight-length \(\ell \) significance (\(\ell/\sigma_\ell > 3 \)), and the angle between the line connecting the \(B \) and \(K^0_s \) decay vertices and the \(K^0_s \) momentum (\(< 0.1 \) rad). Kaon tracks used to reconstruct the \(\phi \) meson are distinguished from pion and proton tracks using \(dE/dx \) information from the DCH in conjunction with \(dE/dx \) information from the SVT for track momenta below 0.7 GeV/c, and, for momenta above 0.7 GeV/c, with the measured Cherenkov angle and number of photons recorded by the DIRC.

For an extended unbinned maximum-likelihood (ML) fit we parameterize the distributions of kinematic and topological variables for signal and background events in terms of probability density functions (PDFs). Each \(B \) candidate is characterized by the energy difference \(\Delta E = (q_Y \cdot q_B / \sqrt{s}) - \sqrt{s}/2 \) and the beam-energy-substituted mass \(m_{ES} = [(s/2 + \hat{p}_Y \cdot \hat{p}_B)^2/\hat{E}_Y^2 - \hat{p}_B^2]^{1/2} \) [11]. Here \(q_Y \) and \(q_B \) are four-momenta of the Y(4S) and the \(B \) candidate, \(s = (q_Y q_B) \) is the square of the center-of-mass energy, \(\hat{p}_Y \) and \(\hat{p}_B \) are the three-momenta of the Y(4S) and the \(B \) in the laboratory frame, and \(E_Y = q_Y^0 \) is the energy of the Y(4S) in the laboratory frame. For signal events, \(\Delta E \) peaks at zero and \(m_{ES} \) peaks at the nominal \(B \) mass. The signal PDFs of both variables are adequately described by sums of two Gaussian distributions (whose means are not required to be the same). The backgroud shape in \(\Delta E \) is parametrized by a linear function and in \(m_{ES} \) by a threshold function [13]. Candidates for our analysis are required to satisfy \(|\Delta E| < 0.2 \) GeV and \(m_{ES} > 5.2 \) GeV/c\(^2 \). The variable \(\Delta E \) provides additional momentum-dependent \(\pi/K \) separation in the ML fit for the \(B^+ \rightarrow \phi h^+ \) branching fractions. The likelihood also incorporates the invariant mass of the \(\phi \rightarrow K^+ K^- \) candidate \(m_{KK} \) in the [0.99, 1.05] GeV/c\(^2 \) range, which is described by a relativistic Breit-Wigner function convolved with a Gaussian, \(\sigma = 1.0 \) MeV/c\(^2 \), determined in Monte Carlo (MC) simulation studies, to account for resolution effects, and the \(\phi \) helicity angle \(\theta_H \), which is defined as the angle between the directions of the \(K^+ \) and the parent \(B \) in the \(\phi \) rest frame. The \(\cos \theta_H \) distribution is a quadratic function for pseudoscalar-vector \(B \) decay modes and is nearly uniform for the combinatorial background.

Backgrounds in the candidate sample arise primarily from random combinations of tracks produced in the quark-antiquark continuum. In such events, particles appear bundled into jets, which can be identified with several variables computed in the CM frame. We use the angle \(\theta_F \) between the thrust axis of the \(B \) candidate and the thrust axis of the other charged and neutral particles [11]. We require the angle \(\theta_F \) to satisfy \(|\cos \theta_F| < 0.9 \). Other quantities that characterize the event topology are the CM angle \(\theta_B \) between the \(B \) momentum and the beam axis and the sum of the momenta \(p_i \) of the other charged and neutral particles in the event weighted with Legendre polynomials \(L_n(\theta_i) \), \(n = 0, 2 \), where \(\theta_i \) is the angle between the momentum of particle \(i \) and the thrust axis of the \(B \) candidate. We combine these variables into a Fisher discriminant \(F \) [15]. Contamination from other \(B \) decays, as well as \(\tau^+ \tau^- \) and \(e^+e^-\gamma\gamma \) production, is negligible, as demonstrated in MC simulation studies. Possible...
K^+K^- S-wave contributions, such as the $f_0(980)$ and the $a_0(980)$, are not expected to contribute under the ϕ mass peak [14] and are distinguished by their uniform distribution in cos θ_H; this systematic effect is small compared with current statistical and systematic uncertainties.

We use an unbinned extended ML fit to extract signal yields and charge asymmetries simultaneously. The likelihood for candidate j in the flavor category c is obtained by summing the product of event yield N_{ic} and probability P_{ic} over signal and background hypotheses i. The total extended likelihood \mathcal{L} for a sample of N events is given by

$$\mathcal{L} = \frac{1}{N!} \exp \left(- \sum_{i,c} N_{ic} \right) \prod_{i=1}^{N} \sum_{i,c} N_{ic} P_{ic}(\tilde{x}_j; \tilde{\alpha}_i) .$$

(1)

The probabilities P_{ic} are products of PDFs for each of the independent variables $\tilde{x}_j = \{ m_{ES}, \Delta E, F, m_{KK}, \cos \theta_H \}$. The $\tilde{\alpha}_i$ are the parameters of the distributions in \tilde{x}_j, which are fixed to values derived from signal MC, on-resonance sidebands in $(m_{ES}, \Delta E)$, and high-statistics data control channels $B^+ \to \pi^+\bar{D}^0$ ($\bar{D}^0 \to K^-\pi^-$) and $B^0 \to \pi^-D^-$ ($D^- \to K^0\pi^- \pi^-\pi^+$). The control channels have event topologies similar to those in $B^+ \to \phi K^+$ and $B^0 \to \phi K^0$, and are used to compare central values and resolutions of the variables m_{ES}, ΔE, and F in data and MC simulation. By minimizing the quantity $-\ln \mathcal{L}$ in two separate fits, we determine the branching fractions, B, and the charge asymmetry, A_{CP}, for ϕh^\pm and ϕK^0_s. In the ϕK^0_s case, there are two hypotheses, signal and background ($i=1,2$), and a single flavor category. In the fit for $B^\pm \to \phi h^\pm$ decays, we determine the flavor of the high-momentum track by comparing the measured Cherenkov angle with that expected for a pion or a kaon. In this way, the ϕh^\pm ($h=\pi,K$) decays are fitted simultaneously with two signal ($i=1$ for $B^+ \to \phi K^+$ and $i=2$ for $B^\pm \to \phi\pi^\pm$) and two corresponding background ($i=3,4$) hypotheses. We define the event yields n_{ic} in each of the two flavor categories ($c=1$ for $B^+ \to \phi h^+$ and $c=2$ for $B^\pm \to \phi h^\mp$) in terms of the charge asymmetry A_i and the total event yield n_{i1}; $n_{i1} = n_{i1}(1 + A_i)/2$ and $n_{i2} = n_{i1}(1 - A_i)/2$.

For charged tracks originating from the interaction point, we determine the ratio of track-finding efficiencies in data and MC simulation by conducting a study of a large sample of unambiguous charged-track candidates that have at least 10 measured hits in the SVT; the method relies on the fact that for both the SVT and the DCH the differences between the track-finding efficiencies in data and MC are small, and so the two detectors can be used to calibrate each other. The ratio of $K^0_s \to \pi^+\pi^-$ reconstruction efficiencies in data and MC simulation as a function of the K^0_s momentum and decay point is determined from a study of a large inclusive sample of $K^0_s \to \pi^+\pi^-$ decays; this method employs the results of the tracking-efficiency study that covers K^0_s decays occurring in the immediate vicinity of the interaction point. The charged-kaon–identification efficiencies in data and MC simulation are compared in a study of fully reconstructed $D^{*+} \to D^0\pi^+(D^0 \to K^-\pi^+)$ decays.

Table I. Summary of branching fraction (B) and direct CP-asymmetry (A_{CP}) results.

<table>
<thead>
<tr>
<th>Mode</th>
<th>e (%)</th>
<th>N_{sig}</th>
<th>$B (10^{-6})$</th>
<th>A_{CP}</th>
</tr>
</thead>
<tbody>
<tr>
<td>ϕK^0</td>
<td>6.7</td>
<td>50.9^{+9}_{-10}</td>
<td>$8.4^{+1.3}_{-1.1} \pm 0.5$</td>
<td>—</td>
</tr>
<tr>
<td>ϕK^+</td>
<td>19.6</td>
<td>173 ± 15</td>
<td>$10.0^{+0.9}_{-0.8} \pm 0.5$</td>
<td>$0.04 \pm 0.09 \pm 0.01$</td>
</tr>
<tr>
<td>$\phi \pi^+$</td>
<td>20.4</td>
<td>$0.9^{+2.4}_{-0.9}$</td>
<td><0.41 (90% CL)</td>
<td>—</td>
</tr>
</tbody>
</table>

Results of the branching-fraction and CP-asymmetry fits are given in Table I. Equal production rates of $B^0\bar{B}^0$ and $B^+\bar{B}^-$ are assumed. Figure 2 shows the m_{ES} and ΔE distributions of $\phi K^0_s(\pi^+\pi^-)$ and ϕK^+ events together with the likelihood projections from the B fits. Goodness-of-fit tests have been performed to confirm that the values of likelihood \mathcal{L} obtained in the fits are consistent with MC-based expectations.

Systematic uncertainties in the ML fit originate from assumptions about the signal and background distributions and are dominated by the limited sideband and control-channel statistics. We simultaneously vary all PDF parameters within their uncertainties, and derive the associated systematic errors: 0.005 for A_{CP}, 2.0% for $B(\phi K^+)$, and 2.8% for $B(\phi K^0)$. To account for the systematic uncertainty on the upper limit on $B(\phi \pi^+)$, we increase the upper limit by one standard deviation due to PDF variations (10.9%) and due to uncertainty in the reconstruction efficiency (4.2%). The dominant systematic errors in the efficiency come from track finding (2.4% for $B(\phi \pi^+)$ and 4.2% for $B(\phi K^0)$), charged-kaon identification (2% per ϕ), and K^0_s reconstruction efficiency (2%). Other systematic errors from event-selection

![Figure 2](image-url)
criteria, daughter branching fractions, MC statistics, $B\bar{B}$ backgrounds and B-meson counting sum in quadrature to 3.0\%. The systematic uncertainty on \mathcal{A}_{CP} due to charge asymmetries in tracking and the DIRC is less than 0.01.

In summary, we have studied branching fractions and charge asymmetries in the B-meson final states f_{h^+} and f_{K^0}; the results are listed in Table I. We do not observe a significant charge asymmetry in the mode $B^+ \rightarrow f\pi^+$ and do not see evidence for $B^+ \rightarrow f_{K^0}$. Our branching fraction and charge asymmetry measurements are consistent with, and supersede, our previous results reported in Refs. [8,9]. They are also consistent with existing SM predictions.

We are grateful for the excellent luminosity and machine conditions provided by our PEP-II colleagues, and for the substantial dedicated effort from the computing organizations that support BABAR. The collaborating institutions wish to thank SLAC for its support and kind hospitality. This work is supported by DOE and NSF (USA), NSERC (Canada), IHEP (China), CEA and CNRS-IN2P3 (France), BMBF and DFG (Germany), INFN (Italy), FOM (The Netherlands), NFR (Norway), MIST (Russia), and PPARC (United Kingdom). Individuals have received support from the A. P. Sloan Foundation, Research Corporation, and Alexander von Humboldt Foundation.

[14] See, for example, Note on Scalar Mesons in Ref. 12.