Measurement of the branching fractions for inclusive $B^-\to\bar{D}^0$ decays to flavor-tagged D_s^-, $\bar{D_s}$, and Λ_c^+

(BABAR Collaboration)

1Laboratoire de Physique des Particules, F-74941 Annecy-le-Vieux, France
2Università di Bari, Dipartimento di Fisica e INFN, I-70126 Bari, Italy
3Institute of High Energy Physics, Beijing 100039, China
4Institute of Physics, University of Bergen, N-5007 Bergen, Norway
5Lawrence Berkeley National Laboratory and University of California, Berkeley, California 94720, USA
6University of Birmingham, Birmingham, B15 2TT, United Kingdom
7Instituut voor Experimentalphysik 1, Ruhr Universität Bochum, D-44780 Bochum, Germany
8University of Bristol, Bristol BS8 1TL, United Kingdom
9University of British Columbia, Vancouver, BC, Canada V6T 1Z1
10Brunel University, Uxbridge, Middlesex UB8 3PH, United Kingdom
11Budker Institute of Nuclear Physics, Novosibirsk 630090, Russia
12University of California at Irvine, Irvine, California 92697, USA
13University of California at Los Angeles, Los Angeles, California 90024, USA
14University of California at Riverside, Riverside, California 92521, USA
15University of California at San Diego, La Jolla, California 92093, USA
16University of California at Santa Barbara, Santa Barbara, California 93106, USA
17Institute for Particle Physics, University of California at Santa Cruz, Santa Cruz, California 95064, USA
18California Institute of Technology, Pasadena, California 91125, USA
19University of Cincinnati, Cincinnati, OH 45221, USA
20University of Colorado, Boulder, Colorado 80309, USA
21Colorado State University, Fort Collins, Colorado 80523, USA
22Institut für Kern- und Teilchenphysik, Technische Universität Dresden, D-01062 Dresden, Germany
23Ecole Polytechnique, LLR, F-91128 Palaiseau, France
MEASUREMENT OF THE BRANCHING FRACTIONS FOR...

PHYSICAL REVIEW D 70 091106

24University of Edinburgh, Edinburgh EH9 3JZ, United Kingdom
25Università di Ferrara, Dipartimento di Fisica and INFN, I-44100 Ferrara, Italy
26Florida A&M University, Tallahassee, Florida 32307, USA
27Laboratori Nazionali di Frascati dell’INFN, I-00044 Frascati, Italy
28Università di Genova, Dipartimento di Fisica e INFN, I-16146 Genova, Italy
29Harvard University, Cambridge, Massachusetts 02138, USA
30Physikalisches Institut, Universität Heidelberg, Philosophenweg 12, D-69120 Heidelberg, Germany
31Imperial College London, London, SW7 2AZ, United Kingdom
32University of Iowa, Iowa City, Iowa 52242, USA
33Iowa State University, Ames, Iowa 50011-3160, USA
34Università di Perugia, Dipartimento di Fisica and INFN, I-06100 Perugia, Italy
35Laboratoire de l’Accélérateur Linéaire, F-91898 Orsay, France
36Lawrence Livermore National Laboratory, Livermore, California 94550, USA
37University of Liverpool, Liverpool L69 7E, United Kingdom
38Queen Mary, University of London, E1 4NS, United Kingdom
39University of London, Royal Holloway and Bedford New College, Egham, Surrey TW20 0EX, United Kingdom
40University of Louisville, Louisville, Kentucky 40292, USA
41University of Manchester, Manchester M13 9PL, United Kingdom
42University of Maryland, College Park, Maryland 20742, USA
43University of Massachusetts, Amherst, Massachusetts 01003, USA
44Laboratory for Nuclear Science, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
45McGill University, Montréal, QC, Canada H3A 2T8
46Università di Milano, Dipartimento di Fisica and INFN, I-20133 Milano, Italy
47University of Mississippi, University, Mississippi 38677, USA
48Laboratoire René J. A. Lévesque, Université de Montréal, Montréal, QC, Canada H3C 3J7
49Mount Holyoke College, South Hadley, Massachusetts 01075, USA
50Università di Napoli Federico II, Dipartimento di Scienze Fisiche e INFN, I-80126, Napoli, Italy
51NIKHEF, National Institute for Nuclear Physics and High Energy Physics, NL-1009 DB Amsterdam, The Netherlands
52University of Notre Dame, Notre Dame, Indiana 46556, USA
53The Ohio State University, Columbus, Ohio 43210, USA
54University of Oregon, Eugene, Oregon 97403, USA
55Università di Padova, Dipartimento di Fisica e INFN, I-35131 Padova, Italy
56Laboratoire de Physique Nucléaire et de Hautes Energies, Universités Paris VI et VII, F-75252 Paris, France
57Università di Pavia, Dipartimento di Elettronica and INFN, I-27100 Pavia, Italy
58University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
59Università di Pisa, Dipartimento di Fisica, Scuola Normale Superiore and INFN, I-56127 Pisa, Italy
60Prairie View A&M University, Prairie View, Texas 77446, USA
61Princeton University, Princeton, New Jersey 08544, USA
62Università di Roma La Sapienza, Dipartimento di Fisica and INFN, I-00185 Roma, Italy
63University of Rostock, D-18051 Rostock, Germany
64Rutherford Appleton Laboratory, Chilton, Didcot, Oxon, OX11 0QX, United Kingdom
65DSM/Dapnia, CEA/Saclay, F-91191 Gif-sur-Yvette, France
66University of South Carolina, Columbia, South Carolina 29208, USA
67Stanford Linear Accelerator Center, Stanford, California 94309, USA
68Stanford University, Stanford, California 94305-4060, USA
69State University of New York, Albany, New York 12222, USA
70University of Tennessee, Knoxville, Tennessee 37996, USA
71University of Texas at Austin, Austin, Texas 78712, USA
72University of Texas at Dallas, Richardson, Texas 75083, USA
73Università di Torino, Dipartimento di Fisica Sperimentale and INFN, I-10125 Torino, Italy
74Università di Trieste, Dipartimento di Fisica and INFN, I-34127 Trieste, Italy
75Vanderbilt University, Nashville, Tennessee 37235, USA
76University of Victoria, Victoria, BC, Canada V8W 3P6
77University of Wisconsin, Madison, Wisconsin 53706, USA

*Now at Department of Physics, University of Warwick, Coventry, United Kingdom.
†Also with Università della Basilicata, Potenza, Italy.
‡Also with IFIC, Instituto de Física Corpuscular, CSIC-Universidad de Valencia, Valencia, Spain.
§Deceased.
We report on the inclusive branching fractions of B^- and of \bar{B}^0 mesons decaying to D^0X, \bar{D}^0X, D^+X, D^0X, D^+X, Λ_c^+X, $\bar{\Lambda}_c^- X$, based on a sample of $88.9 \times 10^6 BB$ events recorded with the BABAR detector at the Y(4S) resonance. Events are selected by completely reconstructing one B and searching for a reconstructed charmed particle in the rest of the event. We measure the number of charmed and of anticharmed particles per B decay and derive the total charm yield per B^- decay $n_c^- = 1.313 \pm 0.037 \pm 0.062^{+0.003}_{-0.002}$ and per \bar{B}^0 decay $n_{\bar{c}}^0 = 1.276 \pm 0.062 \pm 0.058^{+0.066}_{-0.046}$, where the first uncertainty is statistical, the second is systematic, and the third reflects the charm branching-fraction uncertainties.

The dominant process for the decay of a b quark is $b \to cW^+ \overline{c}$ [1], resulting in a (flavor) correlated c quark and a virtual W. In the decay of the W, the production of a $\overline{u}d$ or a $\overline{c}s$ pair are both Cabibbo-allowed and should be equal, the latter being suppressed only by a phase-space factor. The first process dominates hadronic b decays, while the second can be easily distinguished as it will produce a (flavor) anticorrelated \overline{c} quark. Experimentally, correlated and anticorrelated charm production can be investigated through the measurement of the inclusive B-decay rates to flavor-tagged charmed mesons or baryons. Current measurements [2–4] of these rates have statistically limited precision and do not distinguish among the different B parent states.

Most of the charged and neutral D mesons produced in B decays come from correlated production $B \to DX$. However, a significant number of $B \to \bar{D}X$ decays are expected through $b \to c\overline{c}s$ transitions, such as $\bar{B} \to D^{(*)}\overline{D}^{(*)}K^{(*)}(n\pi)$. Although the branching fractions of the three-body decays $\bar{B} \to D^{(*)}\overline{D}^{(*)}K$ have been measured [5,6], it is not clear whether they saturate $B \to \bar{D}X$ transitions. It is therefore important to improve the precision on the branching fraction $\bar{B}(\bar{B} \to \bar{D}X)$.

By contrast, the anticorrelated D_s^+ production $B \to D_s^+D(n\pi)$ is expected to dominate B decays to D_s mesons, since correlated production needs an extra $\overline{c}s$ pair created from the vacuum to give $\bar{B} \to D_s^+K^-(n\pi)$. There is no prior published measurement of $\bar{B}(\bar{B} \to D_s^+X)$.

All strangeless charmed baryons decay to Λ_c^-. Correlated Λ_c are produced in decays such as $B^- \to \Lambda_c^+\overline{p}\pi^- (\pi)$, while anticorrelated $\bar{\Lambda}_c$ should originate from $B^- \to \Xi_c\overline{\Xi}_c (\pi)$. Another possibility is $B^- \to \Lambda_c^+ \overline{\Xi}_c K^-$, the baryonic analogue of the $D\overline{D}K$ decay. The rates for Ξ_c production in B decays [7] are unknown, because there is no absolute measurement of Ξ_c decay branching fractions.

This analysis uses $Y(4S) \to BB$ events in which either a B^+ or a B^0 meson (hereafter denoted B_{rec}) decays into a hadronic final state and is fully reconstructed. We then reconstruct D, D_s, and Λ_c from the recoiling B^- (\bar{B}^0) meson and compare the flavor of the charm hadron with that of the B_{rec}, thus allowing separate measurements of the $B^- (\bar{B}^0) \to D^0X$, D^+X, D_s^+X, Λ_c^+X and $B^- (\bar{B}^0) \to \overline{D}^0X$, D^-X, D_s^-X, $\overline{\Lambda}_c^-X$ branching fractions. We extract $\mathcal{B}(B^- \to \Lambda_c^+\overline{\Xi}_c K^-)$ from the missing-mass spectra of the $\Lambda_c^+K^-$ or $\overline{\Lambda}_c^-K^-$ systems recoiling against the B_{rec}.

We can then evaluate indirectly $\mathcal{B}(B^- \to \Xi_cX) = \mathcal{B}(B^- \to \overline{\Lambda}_c^-X) - \mathcal{B}(B^- \to \Lambda_c^+\overline{\Xi}_c K^-)$ and compute the average number of charm (anticharm) particles per B^- decay, $N_c^- (N_{\bar{c}}^-)$:

$$N_c^- = \sum_{X_c} \mathcal{B}(B^- \to X_c X),$$

$$N_{\bar{c}}^- = \sum_{X_{\bar{c}}} \mathcal{B}(B^- \to \overline{X}_c \overline{X}_c),$$

where the sum is performed over $X_c = D^+, D^0, D_s^+, \Lambda_c^+; \Xi_c, (c\overline{c})$ or $\overline{X}_c = D^-, \overline{D}^0, D_{s-}^-; \overline{\Lambda}_c^-; (c\overline{c})$ refers to all charmonium states collectively. We neglect Ξ_c production, as it requires both a $\overline{c}s$ and an $s\overline{s}$ pair in the decay to give $\Xi_c\overline{\Xi}_c$. We can sum $N_c^- + N_{\bar{c}}^-$ to obtain the average number of charm plus anticharm quarks per B^- decay, $n_c^- = N_c^- + N_{\bar{c}}^-$ (and similarly for \bar{B}^0 decays). In addition to the theoretical interest [8–11], the fact that anticorrelated charmed particles are a background for many studies also motivates a more precise measurement of their production rates in B decays.

The measurements presented here are based on a sample of $88.9 \times 10^6 BB$ pairs (81.9 fb$^{-1}$) recorded at the Y(4S) resonance with the BABAR detector at the PEP-II asymmetric-energy B-meson factory at the Stanford Linear Accelerator Center (SLAC). The BABAR detector is described in detail elsewhere [12]. Charged-particle trajectories are measured by a 5-layer double-sided silicon vertex tracker and a 40-layer drift chamber, both operating in a 1.5-T solenoidal magnetic field. Charged-particle identification is provided by the average energy loss (dE/dx) in the tracking devices and by an internally reflecting ring-imaging Cherenkov detector. Photons are detected by a CsI(Tl) electromagnetic calorimeter. We use Monte Carlo simulations of the BABAR detector based on GEANT4 [13] to optimize selection criteria and determine selection efficiencies.

We reconstruct B^+ and B^0 decays (B_{rec}) in the modes $B^+ \to \overline{D}^{(*)0}\pi^+, \overline{D}^{(*)0}\rho^+, \overline{D}^{(*)0}\rho_1^+$ and $B^0 \to D^{(*)-}\pi^+$.
MEASUREMENT OF THE BRANCHING FRACTIONS FOR...

D(*)\rightarrow p^+\, D(*)\rightarrow a_1^+\, \overline{D}^0\) candidates are reconstructed in the \(K^+\pi^-\, K^+\pi^-\pi^0\, K^+\pi^-\pi^+\pi^-\, \) and \(K^0_S\pi^+\pi^-\) decay channels, while \(D^-\) are reconstructed in the \(K^-\pi^+\pi^-\) and \(K^0_S\pi^-\) modes. \(D^0\) candidates are reconstructed in the \(D^{*-}\rightarrow D^{0}\pi^-\) and \(D^{*-}\rightarrow D^{0}\pi^0\, D^{0}\gamma\) decay modes. The first kinematic variable used to identify fully reconstructed \(B\) decays is the beam-energy substituted mass, \(m_{\text{ES}} = \sqrt{(s/2 + p_B^2)/E_\gamma - p_B^2}\), where \(p_B\) is the \(B_{\text{reco}}\) momentum and \((E_\gamma, p_\gamma)\) is the four-momentum of the initial \(e^+e^-\) system, both measured in the laboratory frame. The invariant mass of the initial \(e^+e^-\) system is \(\sqrt{s}\). The second variable is \(\Delta E = E_B - \sqrt{s}/2\), where \(E_B\) is the \(B_{\text{reco}}\) candidate energy in the center-of-mass frame. We require \(|\Delta E| < n\sigma_{\Delta E}\) with \(n = 2\) or \(3\), depending on the decay mode, and using the measured resolution \(\sigma_{\Delta E}\) for each decay mode.

In the \(m_{\text{ES}}\) spectra (Fig. 1), we define a signal region with \(5.274 < m_{\text{ES}} < 5.290\) GeV/c\(^2\) and a background control region with \(5.220 < m_{\text{ES}} < 5.260\) GeV/c\(^2\). For each of the \(B\)-decay modes, the combinatorial background in the signal region is derived from a fit to the \(m_{\text{ES}}\) distribution that uses an empirical phase-space threshold function [14] for the background, together with a signal function [15] peaked at the \(B\) meson mass. The numbers of reconstructed \(B^+\) and \(B^0\) candidates, \(N_{B^+} = 85840 \pm 1910\) (syst) and \(N_{B^0} = 48322 \pm 590\) (syst), are then obtained by subtracting this background from the total number of events found in the signal region. These measured \(B\) meson yields provide the normalization of all branching-fraction measurements reported below. The systematic uncertainties quoted above are computed by varying the boundaries of the signal and background regions and by comparing the shapes of the threshold function [14] in the data and in the simulation.

The contamination of \(B^0\) events in the \(B^+\) signal induces a background which peaks near the \(B\) mass. From the Monte Carlo simulation, the fraction of \(B^0\) events in the reconstructed \(B^+\) signal sample is found to be \(c_{0} = 0.034\) and the fraction of \(B^+\) events in the reconstructed \(B^0\) signal sample to be \(c_{+} = 0.019\). A 100% systematic uncertainty is conservatively assigned to these numbers but they will have a small effect on the final results.

We now turn to the analysis of inclusive \(D, D^*_s,\) and \(\Lambda_c\) production in the decays of the \(B\) that recoil against the reconstructed \(B\). Charmed particles \(X_c\) (correlated production) are distinguished from anticharmed particles \(\overline{X}_c\) (anticorrelated production). They are reconstructed from charged tracks that do not belong to the \(B_{\text{reco}}\). The decay modes considered are listed in Table I.

For charged \(B\) decays, Fig. 2 shows the \(D, D^*_s,\) and \(\Lambda_c\) mass spectra of correlated and anticorrelated candidates.

<table>
<thead>
<tr>
<th>(X_c) decay mode</th>
<th>(B^+\rightarrow X_cX) Yield</th>
<th>(B^+\rightarrow X_cX) (B(%))</th>
<th>(B^0\rightarrow X_cX) Yield</th>
<th>(B^0\rightarrow X_cX) (B(%))</th>
</tr>
</thead>
<tbody>
<tr>
<td>(D^0) & (K^-\pi^+) & (1273 \pm 42) & 79.2 \pm 2.6 & 3.9 & 160 \pm 16) & 9.3 \pm 1.0 \pm 0.5 & 397 \pm 24 & 50.3 \pm 3.4 & 2.4 & 139 \pm 14 & 7.3 \pm 2.2 \pm 0.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(K^-\pi^+\pi^-) & (998 \pm 65) & 80.6 \pm 5.3 & 7.5 & 173 \pm 30 & 13.4 \pm 2.4 & 1.3 & 332 \pm 36 & 56.2 \pm 6.8 \pm 5.4 & 83 \pm 23 & 18.4 \pm 4.4 \pm 0.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(D^+\rightarrow K^-\pi^+\pi^-) & (262 \pm 29) & 9.8 \pm 1.2 & 1.2 & 98 \pm 20 & 3.8 \pm 0.9 \pm 0.4 & 452 \pm 31 & 39.7 \pm 3.0 \pm 2.8 & 125 \pm 18 & 2.3 \pm 1.8 \pm 0.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(D^+_s\rightarrow \phi\pi^+) & (11 \pm 5) & 2.2 \pm 1.1 \pm 0.3 & 82 \pm 11 & 16.5 \pm 2.3 \pm 1.7 & 24 \pm 6 & 8.3 \pm 2.8 \pm 0.8 & 28 \pm 6 & 9.9 \pm 2.9 \pm 1.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\Lambda_c\rightarrow K^0\pi^+) & (0 \pm 3) & 0.0 \pm 1.1 \pm 0.2 & 55 \pm 11 & 18.0 \pm 3.5 \pm 1.7 & 3 \pm 4 & 0.0 \pm 2.8 \pm 0.1 & 14 \pm 5 & 9.9 \pm 4.1 \pm 1.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(K^0\pi^+) & (0 \pm 3) & 0.0 \pm 0.9 \pm 0.2 & 31 \pm 9 & 9.2 \pm 2.7 \pm 0.8 & 12 \pm 5 & 5.0 \pm 3.4 \pm 0.4 & 23 \pm 6 & 13.3 \pm 4.3 \pm 1.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\Lambda_c^+\rightarrow pK^-\pi^+) & (41 \pm 9) & 3.5 \pm 0.8 \pm 0.3 & 33 \pm 9 & 2.9 \pm 0.8 \pm 0.3 & 28 \pm 8 & 4.9 \pm 1.7 \pm 0.4 & 16 \pm 6 & 2.0 \pm 1.2 \pm 0.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
recoiling against B^+'s reconstructed in the m_{ES} signal region, for some selected decay modes. These spectra are fitted with the sum of a Gaussian signal and a linear background (including a satellite peak for some channels [17]). The shaded areas correspond to well reconstructed D, D_s, or Λ_c from the combinatorial B_{reco} background. They are obtained from data in the m_{ES} background control region, normalized to the number of combinatorial background events expected under the B_{reco} peak. The background-subtracted reconstructed signal yields are listed in Table I. The reconstruction efficiencies for each charmed (anticharmed) final state $X_c \rightarrow f$ ($\bar{X}_c \rightarrow \bar{f}$) are computed from the simulation as a function of the charmed-particle momentum in the B^- center-of-mass frame and are applied event by event to obtain the efficiency-corrected charm signal yields $N(X_c \rightarrow f)$ [$N(\bar{X}_c \rightarrow \bar{f})$]. The final branching fractions are computed from these yields, the number of B_{reco}, and the intermediate branching fractions $\mathcal{B}(X_c \rightarrow f)$ taken from Ref. [18]. They are given by

$$\mathcal{B}(B^- \rightarrow X_cX) = \frac{N(X_c \rightarrow f)}{N_{B^-} \times \mathcal{B}(X_c \rightarrow f)} - c_0 B_0.$$

Here the raw branching fraction for $B^- \rightarrow X_cX$ is modified by a small corrective term $c_0 B_0$ that accounts for the B^0 contamination in the reconstructed B^+ sample. The factor B_0 depends on the measured $B^0 \rightarrow X_cX$ and $B^+ \rightarrow X_cX$ branching fractions and on the $B^0 - B^+$ mixing parameter χ_d [18]. It ranges from less than 3% for Λ_c to as much as 50% for correlated D^0 and D^+. Doubly Cabibbo-suppressed D^0 decays are also taken into account. The branching fractions and their errors are given in Table I. The statistical and systematic uncertainties are computed separately for each channel. For example, the 3.9% absolute systematic uncertainty on $\mathcal{B}[B^- \rightarrow D^0(K^-\pi^+)X]$ reflects the quadratic sum of 1.8% attributed to N_{B^-}, 1.3% to the error on the rate of true Ds in the B combinatorial background, 0.8% to the Monte Carlo statistics, 1.2% to the track-finding efficiency, 2.5% to the particle identification, 1.2% to c_0, and 0.1% to B_0. We combine the results from the different D^0 and D_s decay modes to extract the final branching fractions listed in Table II.

To extract N_c from these numbers, we need to evaluate the contribution of $B^- \rightarrow \Lambda_c^+\bar{\Lambda}_c^-K^-$. Combining the four-momenta of the recoiling B^-, of a K^-, and of the reconstructed Λ_c^+ or $\bar{\Lambda}_c^-$ candidate, we compute the missing mass: the absence of signal at the Λ_c mass excludes a significant contribution of this process. We therefore take $\mathcal{B}(B^- \rightarrow \Xi_cX) = \mathcal{B}(B^- \rightarrow \Xi_cX)$ in the computation of N_c. Using Eqs. (1) and (2) and taking $\mathcal{B}[B^- \rightarrow (c\bar{c})X] = (2.3 \pm 0.3)\%$ [19,20], one obtains:

$$N_{c^-} = 0.983 \pm 0.030 \pm 0.046^{+0.028}_{-0.023},$$
$$N_{c^-} = 0.330 \pm 0.022 \pm 0.020^{+0.051}_{-0.031},$$
$$n_{c^-} = 1.313 \pm 0.037 \pm 0.063^{+0.083}_{-0.042}.$$

TABLE II. Combined B^- branching fractions. The first uncertainty is statistical, the second is systematic, and the third reflects charm branching-fraction uncertainties [18].

<table>
<thead>
<tr>
<th>X_c</th>
<th>Correlated $\mathcal{B}(B^- \rightarrow X_cX)(%)$</th>
<th>Anticorrelated $\mathcal{B}(B^- \rightarrow X_cX)(%)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>D^0</td>
<td>$79.3 \pm 2.5 \pm 4.0^{+2.0}_{-1.9}$</td>
<td>$9.8 \pm 0.9 \pm 0.5^{+0.3}_{-0.3}$</td>
</tr>
<tr>
<td>D^+</td>
<td>$9.8 \pm 1.2 \pm 1.2^{+0.8}_{-0.7}$</td>
<td>$3.8 \pm 0.9 \pm 0.4^{+0.3}_{-0.3}$</td>
</tr>
<tr>
<td>D_s^+</td>
<td>$0.5 \pm 0.6 \pm 0.2^{+0.2}_{-0.1}$</td>
<td>$14.3 \pm 1.6 \pm 1.5^{+4.9}_{-3.0}$</td>
</tr>
<tr>
<td><2.2 at 90% C.L.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Λ_c^+</td>
<td>$3.5 \pm 0.8 \pm 0.3^{+1.3}_{-0.8}$</td>
<td>$2.9 \pm 0.8 \pm 0.3^{+1.1}_{-0.6}$</td>
</tr>
</tbody>
</table>
The reconstruction of D, D_s, and Λ_c from B^0 decays is performed in the same way as that in the B^- analysis. The corresponding yields are listed in Table I. We then compute for each decay channel $X_c \to f$ the efficiency-corrected signal yield $N(X_c \to f) [N(X_c \to \bar{f})]$ and define the raw branching fractions B_c and \bar{B}_c as
\[B_c = \frac{N(X_c \to f)}{N_{bg} \times B(X_c \to f)}, \]
\[\bar{B}_c = \frac{N(X_c \to \bar{f})}{N_{bg} \times B(X_c \to f)}. \]

After correcting these numbers for $B^0\bar{B}^0$ mixing, we obtain the final branching fraction for $B^0 \to X_c X_c$:
\[B(B^0 \to \bar{X}_c X_c) = \frac{B_c - \chi_d (B_c + \bar{B}_c) - c + \bar{B}_+}{1 - 2\chi_d}, \]
where $\chi_d = 0.181 \pm 0.004$ is the $B^0 - \bar{B}^0$ mixing parameter [18]. The correcting factor B_c accounts for B^+ contamination in the B^0 sample and depends on $B(B^- \to X_c X_c)$ and $B(B^+ \to X_c X_c)$. The results are given in Table I.

Combining the different D^0 or D^+ modes, we obtain the final branching fractions listed in Table III.

To compute N_c, we neglect $B^0 \to \Lambda_c \bar{X}_c K^0$ production and assume that $B(B^0 \to \Lambda_c X_c) = B(B^0 \to \bar{X}_c X_c)$. Substituting B^0 for B^+ in Eqs. (1) and (2) and taking $B(B^0 \to (c\bar{s})X_c) = (2.3 \pm 0.3)$% [19,20], we obtain:
\[N_c^0 = 1.039 \pm 0.051 \pm 0.049^{+0.039}_{-0.031}, \]
\[N_c^{\bar{X}_c} = 0.237 \pm 0.036 \pm 0.012^{+0.039}_{-0.024}, \]
\[n_c^0 = 1.276 \pm 0.062 \pm 0.058^{+0.066}_{-0.046}. \]

We also compute the fraction of anticorrelated charm production in B decays, $w(X_c) = B(B \to X_c \bar{X}_c) / [B(B \to X_c X_c) + B(B \to X_c \bar{X}_c)]$. Here, many systematic uncertainties cancel (tracking, K identification, D branching fractions, B counting). The results are given in Table IV. We obtain an upper limit on the correlated D^+_s fraction in B^- decays: $B(B^- \to D^+_s X_c) < 0.126$ at 90% C.L.

In conclusion, we have measured for the first time the branching fractions for inclusive decays of B mesons to flavor-tagged D, D_s, and Λ_c, separately for B^- and B^0. We observe significant production of anticorrelated D^0 and D^+ mesons in B decays (Table IV), with the branching fractions detailed in Tables II and III. The correlated D^+_s production in B^- decays is measured to be small.

As expected, the sum of all correlated charm branching fractions N_c is compatible with 1, for charged as well as for neutral B's. The numbers of charmed particles per B^- decay ($n_c = 1.313 \pm 0.037 \pm 0.066^{+0.066}_{-0.046}$) and per B^0 decay ($n_c^0 = 1.276 \pm 0.062 \pm 0.058^{+0.066}_{-0.046}$) are consistent with previous measurements [2,19,21] and with theoretical expectations [8–10].

We are grateful for the excellent luminosity and machine conditions provided by our PEP-II colleagues and for the substantial dedicated effort from the computing organizations that support BABAR. The collaborating institutions wish to thank SLAC for its support and kind hospitality. This work is supported by DOE and NSF (USA), NSERC (Canada), IHEP (China), CEA and CNRS-IN2P3 (France), BMBF and DFG (Germany), INFN (Italy), FOM (The Netherlands), NFR (Norway), MIST (Russia), and PPARC (United Kingdom). Individuals have received support from CONACyT (Mexico), A.P. Sloan Foundation, Research Corporation, and Alexander von Humboldt Foundation.

<table>
<thead>
<tr>
<th>Correlated X_c</th>
<th>$B(B^0 \to X_c)$ (%)</th>
<th>$B(B^0 \to \bar{X}_c)$ (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>D^0</td>
<td>51.1 ± 3.1 ± 2.5_{-1.3}^{+1.3}</td>
<td>6.3 ± 1.9 ± 0.5_{-0.2}^{+0.2}</td>
</tr>
<tr>
<td>D^+</td>
<td>39.7 ± 3.0 ± 2.8_{-2.5}^{+2.8}</td>
<td>2.3 ± 1.8 ± 0.3_{-0.2}^{+0.2}</td>
</tr>
<tr>
<td>D^+_s</td>
<td>3.9 ± 1.7 ± 0.4_{-0.8}^{+1.3}</td>
<td>10.9 ± 2.1 ± 0.8_{-2.3}^{+3.8}</td>
</tr>
<tr>
<td>Λ_c^+</td>
<td>4.9 ± 1.7 ± 0.4_{-1.0}^{+1.9}</td>
<td>2.0 ± 1.2 ± 0.2_{-0.4}^{+0.7}</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Anticorrelated X_c</th>
<th>$B(B^0 \to X_c)$ (%)</th>
<th>$B(B^0 \to \bar{X}_c)$ (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>D^0</td>
<td>51.1 ± 3.1 ± 2.5_{-1.3}^{+1.3}</td>
<td>6.3 ± 1.9 ± 0.5_{-0.2}^{+0.2}</td>
</tr>
<tr>
<td>D^+</td>
<td>39.7 ± 3.0 ± 2.8_{-2.5}^{+2.8}</td>
<td>2.3 ± 1.8 ± 0.3_{-0.2}^{+0.2}</td>
</tr>
<tr>
<td>D^+_s</td>
<td>3.9 ± 1.7 ± 0.4_{-0.8}^{+1.3}</td>
<td>10.9 ± 2.1 ± 0.8_{-2.3}^{+3.8}</td>
</tr>
<tr>
<td>Λ_c^+</td>
<td>4.9 ± 1.7 ± 0.4_{-1.0}^{+1.9}</td>
<td>2.0 ± 1.2 ± 0.2_{-0.4}^{+0.7}</td>
</tr>
</tbody>
</table>

| Table IV. Fraction w of anticorrelated charm. |
|------------------|------------------|
| **Mode** | **B^- decays** | **B^0 decays** |
| $D^0 X_c$ | 0.110 ± 0.010 ± 0.003 | 0.110 ± 0.031 ± 0.008 |
| $D^+ X_c$ | 0.278 ± 0.052 ± 0.009 | 0.055 ± 0.040 ± 0.006 |
| $\Lambda_c^+ X_c$ | 0.966 ± 0.039 ± 0.012 | 0.733 ± 0.092 ± 0.010 |
| $\Lambda_c^+ X_c$ | 0.452 ± 0.090 ± 0.003 | 0.286 ± 0.142 ± 0.007 |

[1] Throughout this paper, the named reaction refers also to its complex conjugate.
[16] Only $D^0 \rightarrow K^- \pi^+$ and $D^0 \rightarrow K^- \pi^+ \pi^+ \pi^-$ are used for the charm counting because $D^0 \rightarrow K^- \pi^+ \pi^0$ has a lower significance and $D^0 \rightarrow K_S^0 \pi^+ \pi^-$ is not self-tagging (one cannot distinguish between D^0 and \bar{D}^0).
[17] Satellite contributions include a reflection from $D^0 \rightarrow K^- K^+$ in the $D^0 \rightarrow K^- \pi^+$ mass spectrum and a signal at the D^+ mass (from $D^+ \rightarrow \phi \pi^+$ decays) in the $D_s^+ \rightarrow \phi \pi^+$ mass spectrum.