Search for CP violation and a measurement of the relative branching fraction
in $D^+ \to K^- \pi^+$ decays

SEARCH FOR CP VIOLATION AND A MEASUREMENT . . . PHYSICAL REVIEW D 71, 091101 (2005)

24Institut für Kern-und Teilchenphysik, Technische Universität Dresden, D-01062 Dresden, Germany
25Ecole Polytechnique, LLR, F-91128 Palaiseau, France
26University of Edinburgh, Edinburgh EH9 3JZ, United Kingdom
27Dipartimento di Fisica and INFN, Università di Ferrara, I-44100 Ferrara, Italy
28Laboratori Nazionali di Frascati dell’INFN, I-00044 Frascati, Italy
29Dipartimento di Fisica and INFN, Università di Genova, I-16146 Genova, Italy
30Harvard University, Cambridge, Massachusetts 02138, USA
31Physikalisches Institut, Universität Heidelberg, Philosophenweg 12, D-69120 Heidelberg, Germany
32Imperial College London, London, SW7 2AZ, United Kingdom
33University of Iowa, Iowa City, Iowa 52242, USA
34Iowa State University, Ames, Iowa 50011-3160, USA
35Laboratoire de l’Accélérateur Linéaire, F-91898 Orsay, France
36Lawrence Livermore National Laboratory, Livermore, California 94550, USA
37University of Liverpool, Liverpool L69 72E, United Kingdom
38Queen Mary, University of London, London, E1 4NS, United Kingdom
39Royal Holloway and Bedford New College, University of London, Egham, Surrey TW20 0EX, United Kingdom
40University of Louisville, Louisville, Kentucky 40292, USA
41University of Manchester, Manchester M13 9PL, United Kingdom
42University of Maryland, College Park, Maryland 20742, USA
43University of Massachusetts, Amherst, Massachusetts 01003, USA
44Laboratory for Nuclear Science, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
45McGill University, Montréal, Quebec, Canada H3A 2T8
46Dipartimento di Fisica and INFN, Università di Milano, I-20133 Milano, Italy
47University of Mississippi, University, Mississippi 38677, USA
48Laboratoire René J. A. Lévesque, Université de Montréal, Montréal, Quebec, Canada H3C 3J7
49Mount Holyoke College, South Hadley, Massachusetts 01075, USA
50Dipartimento di Scienze Fisiche and INFN, Università di Napoli Federico II, I-80126, Napoli, Italy
51National Institute for Nuclear Physics and High Energy Physics, NIKHEF, NL-1009 DB Amsterdam, The Netherlands
52University of Notre Dame, Notre Dame, Indiana 46556, USA
53The Ohio State University, Columbus, Ohio 43210, USA
54University of Oregon, Eugene, Oregon 97403, USA
55Dipartimento di Fisica and INFN, Università di Padova, I-35131 Padova, Italy
56Laboratoire de Physique Nucléaire et de Hautes Énergies, Universités Paris VI et VII, F-75252 Paris, France
57University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
58Dipartimento di Fisica e INFN, Università di Perugia, I-06100 Perugia, Italy
59Dipartimento di Fisica, Scuola Normale Superiore and INFN, Università di Pisa, I-56127 Pisa, Italy
60Prairie View A&M University, Prairie View, Texas 77446, USA
61Princeton University, Princeton, New Jersey 08544, USA
62Dipartimento di Fisica e INFN, Università di Roma La Sapienza, I-00185 Roma, Italy
63Universität Rostock, D-18051 Rostock, Germany
64Rutherford Appleton Laboratory, Chilton, Didcot, Oxon, OX11 0QX, United Kingdom
65DSM/Dapnia, CEA/Saclay, F-91191 Gif-sur-Yvette, France
66University of South Carolina, Columbia, South Carolina 29208, USA
67Stanford Linear Accelerator Center, Stanford, California 94309, USA
68Stanford University, Stanford, California 94305-4060, USA
69State University of New York, Albany, New York 12222, USA
70University of Tennessee, Knoxville, Tennessee 37996, USA
71University of Texas at Austin, Austin, Texas 78712, USA
72University of Texas at Dallas, Richardson, Texas 75083, USA
73Dipartimento di Fisica Sperimentale and INFN, Università di Torino, I-10125 Torino, Italy
74Dipartimento di Fisica and INFN, Università di Trieste, I-34127 Trieste, Italy
75Universitat de Valencia, E-46100 Burjassot, Valencia, Spain
76Vanderbilt University, Nashville, Tennessee 37235, USA
77University of Victoria, Victoria, British Columbia, Canada V8W 3P6
78Department of Physics, University of Warwick, Coventry CV4 7AL, United Kingdom
79University of Wisconsin, Madison, Wisconsin 53706, USA
80Yale University, New Haven, Connecticut 06511, USA

*Also with Università della Basilicata, Potenza, Italy.
†Deceased.
We report on a search for the CP asymmetry in the singly Cabibbo-suppressed decays $D^+ \to K^-K^+\pi^+$ and in the resonant decays $D^+ \to \phi\pi^+$ and $D^+ \to \bar{K}^0 K^+$ based on a data sample of 79.9 fb$^{-1}$ recorded by the BABAR detector. We use the Cabibbo-favored $D_s^+ \to K^-K^+\pi^+$ branching fraction as normalization in the measurements to reduce systematic uncertainties. The CP asymmetries obtained are $A_{CP}(K^-K^+\pi^+) = (1.4 \pm 1.0\text{(stat)} \pm 0.8\text{(syst)}) \times 10^{-2}$, $A_{CP}(\phi\pi^+) = (0.2 \pm 1.5\text{(stat)} \pm 0.6\text{(syst)}) \times 10^{-2}$, and $A_{CP}(\bar{K}^0 K^+) = (0.9 \pm 1.7\text{(stat)} \pm 0.7\text{(syst)}) \times 10^{-2}$. The relative branching fraction $\Gamma(D^+ \to K^-K^+\pi^+)/\Gamma(D^+ \to K^+\pi^+\pi^+)$ is also measured and is found to be $(10.7 \pm 0.1\text{(stat)} \pm 0.2\text{(syst)}) \times 10^{-2}$.

DOI: 10.1103/PhysRevD.71.091101

PACS numbers: 11.30.Er, 13.25.Ft, 14.40.Lb

I. INTRODUCTION

Singly Cabibbo-suppressed (SCS) D-meson decays are predicted in the standard model (SM) to exhibit CP-violating charge asymmetries of the order of 10^{-3} [1]. Direct CP violation in SCS decays could arise from the interference between tree-level [Fig. 1(a)] and penguin [Fig. 1(b)] decay processes. Doubly Cabibbo-suppressed and Cabibbo-favored (CF) decays are expected to be CP invariant in the SM because they are dominated by a single weak amplitude. Measurements of CP asymmetries in SCS processes greater than $O (10^{-3})$ would be evidence of physics beyond the standard model [2].

We define the CP asymmetry by

$$A_{CP} = \frac{|\mathcal{A}|^2 - |\bar{\mathcal{A}}|^2}{|\mathcal{A}|^2 + |\bar{\mathcal{A}}|^2},$$

where \mathcal{A} is the total decay amplitude for D^+ decays and $\bar{\mathcal{A}}$ is the amplitude for the charge-conjugate decays. A_{CP} is nonzero only if there are at least two different decay amplitudes with a CP-violating relative weak phase and a CP-conserving relative strong phase due to final-state interactions. Equation (1) can be expressed as an asymmetry of branching fractions. We assume that the total decay rates for D^+ and D^- are equal (CP invariance). Assuming further that CF decays are invariant under CP, we use branching fractions for CF decays as normalization factors to reduce experimental systematics due to particle identification (PID) and tracking:

$$A_{CP} = \frac{B(D^+ \to K^-K^+\pi^+) - B(D^+ \to K^+\pi^+\pi^+)}{B(D^+ \to K^-K^+\pi^+) + B(D^+ \to K^+\pi^+\pi^+)}$$

(Throughout this paper we assume that the production of D^+ and D_s^+ mesons is charge symmetric.)

We also measure the CP asymmetry in the resonant decays $D^+ \to \phi\pi^+$ and $D^+ \to \bar{K}^0 K^+$, and determine the relative branching fraction $\Gamma(D^+ \to K^-K^+\pi^+)/\Gamma(D^+ \to K^+\pi^+\pi^+)$.

II. DETECTOR AND DATA SAMPLE

This analysis is performed with a data sample recorded on and below the $Y(4S)$ resonance with the BABAR detector at the PEP-II asymmetric-energy e^+e^- storage rings at the Stanford Linear Accelerator Center.

The BABAR detector is described in detail in Ref. [3]. The silicon vertex tracker (SVT) and the 40-layer cylindrical drift chamber (DCH) embedded in a 1.5-T solenoid measure the momenta and energy loss dE/dx of charged particles. A ring-imaging Cherenkov detector (DIRC) is used for charged-particle identification. Photons are detected and electrons identified with a CsI(Tl) electromagnetic calorimeter.

We split the 89.7 fb$^{-1}$ data sample into a randomly selected subsample of 9.8 fb$^{-1}$ to optimize the selection criteria and the remainder (a 79.9 fb$^{-1}$ sample) for the final analysis. This procedure eliminates selection bias. We apply the same selection criteria to the CF and SCS modes whenever possible. We determine selection efficiencies from a sample (145 fb$^{-1}$ equivalent) of Monte Carlo (MC) [4] generated $e^+e^- \to c\bar{c}$ events. The EVTGEN [5] package was used as the event generator.

III. DATA ANALYSIS

We reconstruct D^+ and D_s^+ [6] decays by selecting events containing at least three charged tracks. Tracks are required to have at least 12 measured DCH coordinates, a minimum transverse momentum of 0.1 GeV/c, and to originate within 1.5 cm in xy (transverse to the beam) and ± 10 cm along the z axis (along the e^+ beam) of the nominal interaction point. Kaons are identified by a selection on the ratio of likelihood functions derived from dE/dx in the SVT and DCH, and from the Cherenkov angle and number of photons in the DIRC. Pions are identified as tracks that fail a loose kaon identification criterion. The three charged tracks are further constrained
to originate at a common vertex, the fit for which is accepted if the \(\chi^2 \) satisfies \(P(\chi^2) > 1\% \). We reject \(D^+ \) and \(D_s^+ \) mesons from \(B \) decays, and thereby reduce backgrounds, by requiring that their momenta in the center-of-mass (c.m.) frame be above 2.4 GeV/c.

In order to reduce the remaining combinatorial background we consider likelihood ratios formed from the probability density functions (PDFs) of the following discriminating variables for the \(D^+ \) and \(D_s^+ \) decays: c.m. momentum (\(p_{\text{c.m.}} \)), vertex-fit probability with a beam-spot constraint (\(P_{\text{BS}}(\chi^2) \)), and the distance in the \(xy \) plane from the interaction point to the \(D^+ \) or \(D_s^+ \) vertex (\(d_{xy} \)). The quantity \(P_{\text{BS}}(\chi^2) \) is the probability that the decay tracks form a vertex within the beam-spot region. Most of the \(D^+ \) mesons decay outside this region, thus the probability \(P_{\text{BS}}(\chi^2) \) is small for the \(D^+ \) signal and is large for combinatorial background. Background distributions are taken from sidebands in the \(K^-K^+\pi^+ \) mass, while signal distributions are obtained from the signal regions, with the normalized sideband distributions subtracted.

For \(D^\pm \) decays, the \(m_{KK\pi} \) signal band is defined as [1.840, 1.896] GeV/c\(^2\) and the sideband mass regions as [1.805, 1.833] GeV/c\(^2\) and [1.903, 1.931] GeV/c\(^2\) [see Fig. 2(a)]. Product likelihoods are constructed for the signal, \(\mathcal{L}_{\text{sig}} = \prod_i \mathcal{L}_{\text{sig}}(x_i) \), and the background, \(\mathcal{L}_{\text{bkg}} = \prod_i \mathcal{L}_{\text{bkg}}(x_i) \), where \(i \) runs over two or more of the variables described.

About 16% of the events have more than one \(D^+ \) meson candidate. For such events the candidate with the highest likelihood ratio is selected.

The sensitivity \(S/\Delta S \), where \(S \) and \(\Delta S \) refer to the signal yield and its uncertainty, is optimized as a function of the product likelihood ratio \(r = \mathcal{L}_{\text{sig}}/\mathcal{L}_{\text{bkg}} \) formed using \(p_{\text{c.m.}} \) and \(P_{\text{BS}}(\chi^2) \); the optimal selection is found to be \(r \geq 4.3 \). This criterion is applied to both CF and SCS decays. When we use the analogous ratio \(r_1 \), obtained by including the PDF for \(d_{xy} \) in \(\mathcal{L}_{\text{sig}} \) and \(\mathcal{L}_{\text{bkg}} \), the sensitivity is nearly as good [\(d_{xy} \) is highly correlated with \(P_{\text{BS}}(\chi^2) \)]. The results we find using \(r_1 \) provide a measure of systematic uncertainty.

The subsamples for the decays \(D^+ \to \phi\pi^+ \) and \(D^+ \to K^{0}\bar{K}^+ \) are selected by requiring that the invariant mass of the resonant decays be within 10 and 50 MeV/c\(^2\) of the nominal \(\phi \) and \(K^{0}\bar{K}^0 \) masses, respectively [7]. In addition, the resonant signal samples are enhanced by a selection on the cosine of the helicity angle (\(\cos \theta_{H} \)). In the \(D^+ \to \phi\pi^+ \) decay mode, the helicity angle is defined as the angle between the \(K^- \) and the \(\pi^+ \) in the \(\phi \) rest frame. In the \(D^+ \to K^{0}\bar{K}^0 \) decay mode, the helicity angle is defined as the angle between the \(K^- \) and the \(\pi^+ \) in the \(K^{0}\bar{K}^0 \) rest frame. Maximum sensitivity is obtained when \(|\cos \theta_{H}| \geq 0.2 \) and \(|\cos \theta_{H}| \geq 0.3 \) for \(D^+ \to \phi\pi^+ \) and for \(D^+ \to K^{0}\bar{K}^0 \), respectively.

The CF \(D_s^+ \to K^-K^+\pi^+ \) decays are selected by a procedure identical to that for the SCS \(D^+ \to K^-K^+\pi^+ \) decays. We choose the signal \(m_{KK\pi} \) region to be [1.944, 1.992] GeV/c\(^2\), while the sidebands are chosen to be [1.914, 1.938] and [1.998, 2.022] GeV/c\(^2\), respectively [see Fig. 2(b)]. In addition, contamination from \(D^+ \to K^-\pi^+\pi^+ \) decays is removed as follows: for all \(KK\pi \) candidates, the kaon with the same charge as the pion is treated as a pion and then the \(K\pi\pi \) invariant mass is calculated. We observe a \(D^+ \) peak, indicating that part of the \(D^+ \) signal is composed of misidentified \(D^+ \) candidates. Events in the region \(1.855 \leq m_{KK\pi} \leq 1.883 \) GeV/c\(^2\) are removed from the \(D_s^+ \) sample. Contamination from \(D^+ \to D^0(\to K^-\pi^+, K^-\nu\bar{\nu})\pi^+ \) decays is removed by eliminating events for which \(m_{K^-\pi^+} \geq 1.84 \) GeV/c\(^2\). Candidates for \(D^+ \to K^-\pi^+\pi^+ \) are eliminated if either \(K\pi \) combination satisfies this requirement on \(m_{K^-\pi^+} \). Partially reconstructed \(D^+ \to D^0(\to K^-\pi^+\pi^0)\pi^+ \) decays can also be misidentified as \(K^-K^+\pi^+ \) candidates if the \(\pi^0 \) is missed and the charged pion is misidentified as a kaon. Most of these decays are eliminated by assigning a pion mass to kaon tracks and removing candidates for which the mass difference \((m_{K^-\pi^+} - m_{K^-\nu\bar{\nu}}) \) lies in the range [0.139, 0.150] GeV/c\(^2\).

Figure 2 shows the mass distributions obtained after all selection criteria are applied. The yields, listed in Table I,
Table I. Yields of background subtracted events, separately for each charge.

<table>
<thead>
<tr>
<th>Parent charge</th>
<th>+</th>
<th>-</th>
</tr>
</thead>
<tbody>
<tr>
<td>(D^\pm \to K^-K^+\pi^\mp)</td>
<td>21632 ± 228</td>
<td>20940 ± 226</td>
</tr>
<tr>
<td>(D^\pm \to \phi\pi^\mp)</td>
<td>5452 ± 87</td>
<td>5327 ± 86</td>
</tr>
<tr>
<td>(D^\pm \to K^{0}\bar{K}^\mp)</td>
<td>5247 ± 96</td>
<td>5113 ± 96</td>
</tr>
<tr>
<td>(D_s^- \to K^-K^+\pi^-)</td>
<td>23066 ± 217</td>
<td>22928 ± 214</td>
</tr>
</tbody>
</table>

Table II. Efficiencies for positively (\(e^+\)) and negatively (\(e^-\)) charged \(D\) and \(D_s\) meson decays. Efficiencies are in percent. The stated uncertainties are due to MC statistics only.

<table>
<thead>
<tr>
<th>Decay</th>
<th>(e^+)</th>
<th>(e^-)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(D^\pm \to K^-K^+\pi^\mp)</td>
<td>8.20 ± 0.04</td>
<td>8.26 ± 0.04</td>
</tr>
<tr>
<td>(D^\pm \to \phi\pi^\mp)</td>
<td>7.67 ± 0.07</td>
<td>7.63 ± 0.07</td>
</tr>
<tr>
<td>(D^\pm \to K^{0}\bar{K}^\mp)</td>
<td>5.88 ± 0.07</td>
<td>5.90 ± 0.07</td>
</tr>
<tr>
<td>(D_s^- \to K^-K^+\pi^-)</td>
<td>3.77 ± 0.02</td>
<td>3.79 ± 0.02</td>
</tr>
</tbody>
</table>

Table III. Results of the CP-asymmetry measurements, \(A_{CP}\). Also listed are the values for \(A_{CP}^{(2)}\), the asymmetry computed without the normalization mode.

<table>
<thead>
<tr>
<th>Decay</th>
<th>(A_{CP}^{[10^{-2}]}})</th>
<th>(A_{CP}^{(2)[10^{-2}]}})</th>
</tr>
</thead>
<tbody>
<tr>
<td>(K^-K^+\pi^\mp)</td>
<td>+1.36 ± 1.01</td>
<td>+2.07 ± 0.84</td>
</tr>
<tr>
<td>(\phi\pi^\mp)</td>
<td>+0.24 ± 1.45</td>
<td>+0.94 ± 1.33</td>
</tr>
<tr>
<td>(K^{0}\bar{K}^\mp)</td>
<td>+0.88 ± 1.67</td>
<td>+1.58 ± 1.57</td>
</tr>
</tbody>
</table>

The efficiencies needed for the \(A_{CP}\) calculation are obtained from a sample of MC generated \(c\bar{c}\) events to which the same selection criteria are applied. The efficiencies for each decay mode are shown in Table II.

We obtain \(A_{CP}\) using Eq. (2) and replacing branching fractions with efficiency-corrected yields. The results are shown in Table III. We also studied the CP asymmetry in 16 bins of the \(D^+ \to K^-K^+\pi^+\) Dalitz plot and found that the asymmetry is consistent with being constant (with a probability of 51%) and zero.

We use the CF sample of \(D^+ \to K^-\pi^+\pi^+\) decays, obtained using selection criteria identical to the SCS case, to determine the relative branching fraction \(\Gamma(D^+ \to K^-K^+\pi^+)/\Gamma(D^+ \to K^-\pi^+\pi^+)\) as follows. The CF and SCS Dalitz plots are first divided into equally populated bins (16 bins for the SCS mode, 64 for the CF mode). Next, the signal and normalization yields and efficiencies are calculated bin by bin. The efficiency-corrected yields are then summed and divided to obtain the ratio. Figure 3 shows the mass distribution in the CF \(D^+ \to K^-\pi^+\pi^+\) mode, for which the average efficiency is 10.03 ± 0.01(stat)%. We obtain a relative branching fraction of \((10.7 ± 0.1(stat)) \times 10^{-2}\). The difference in the relative branching fractions measured separately for \(D^+\) and \(D^-\) mesons is consistent with the CP asymmetry reported above.

IV. SYSTEMATIC UNCERTAINTIES AND CROSS-CHECKS

The only difference between the final states from \(D_s^-\) and \(D^\pm\) decays considered here is a slightly harder momentum spectrum for the \(D_s^-\) decay products. In turn, these small differences are corrected for by the efficiencies which come from MC. Any charge asymmetry in the detection of pions thus cancels when \(D_s^- \to K^-K^+\pi^-\) decays are used as normalization, as in Eq. (2). We estimate the systematic uncertainty on the CP asymmetries by combining estimates of the contributions from various identified sources listed in Table IV.

The uncertainty due to small differences in momentum spectra of \(\pi\), \(K\) from \(D^+\) and \(D_s^+\) decays, 0.06%, is conservatively estimated as 3 times the maximum difference in \(\pi\), \(K\) asymmetries in the efficiencies from tracks from \(D^+\) vs those from \(D_s^+\) decays. We evaluate an uncertainty for the background subtraction by increasing by 50% the widths of the sideband mass regions. The uncertainty is taken to be the resulting difference in the central value of \(A_{CP}\). The uncertainties in the likelihood-ratio technique are estimated with two variants: (i) tightening the likelihood ratio to produce a 10% change in the yields, and (ii) using the likelihood ratio \(r_1\) (described above) in place of \(r\). The systematic uncertainty is chosen to be the larger of the two.

Table IV. Systematic uncertainties for the CP asymmetries.

<table>
<thead>
<tr>
<th>Source</th>
<th>(K^-K^+\pi^\mp)</th>
<th>(\phi\pi^\mp)</th>
<th>(K^{0}\bar{K}^\mp)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MC simulation</td>
<td>0.06</td>
<td>0.06</td>
<td>0.06</td>
</tr>
<tr>
<td>Background estimate</td>
<td>0.63</td>
<td>0.32</td>
<td>0.49</td>
</tr>
<tr>
<td>Selection criteria</td>
<td>0.46</td>
<td>0.54</td>
<td>0.54</td>
</tr>
<tr>
<td>Total</td>
<td>0.78</td>
<td>0.63</td>
<td>0.73</td>
</tr>
</tbody>
</table>
The measurements of the CP asymmetries are summarized in Table VI. These results are in agreement with previous published results [9], with our results in the resonant modes having significantly smaller uncertainties.

Further, we obtain a branching fraction for $D^+ \rightarrow K^- K^+ \pi^+$ relative to that for $D^+ \rightarrow K^- \pi^+ \pi^+$ decays of $(10.7 \pm 0.1(\text{stat}) \pm 0.2(\text{syst})) \times 10^{-2}$. This result is a significant improvement over previous measurements [10].

ACKNOWLEDGMENTS

We are grateful for the excellent luminosity and machine conditions provided by our PEP-II colleagues, and for the substantial dedicated effort from the computing organizations that support BABAR. The collaborating institutions wish to thank SLAC for its support and kind hospitality. This work is supported by DOE and NSF (USA), NSERC (Canada), IHEP (China), CEA and CNRS-IN2P3 (France), BMBF and DFG (Germany), INFN (Italy), FOM (The Netherlands), NFR (Norway), MIST (Russia), and PPARC (United Kingdom). Individuals have received support from CONACyT (Mexico), A.P. Sloan Foundation, Research Corporation, and Alexander von Humboldt Foundation.

[6] Charge conjugation is assumed throughout the selection unless otherwise indicated.