The following full text is a publisher's version.

For additional information about this publication click this link.
http://hdl.handle.net/2066/128753

Please be advised that this information was generated on 2019-03-25 and may be subject to change.
SEARCH FOR $B \to J/\psi D$ DECAYS

PHYSICAL REVIEW D 71, 091103 (2005)

23Institut für Physik, Universität Dortmund, D-44221 Dortmund, Germany
24Institut für Kern- und Teilchenphysik, Technische Universität Dresden, D-01062 Dresden, Germany
25Ecole Polytechnique, LRL, F-91128 Palaiseau, France
26University of Edinburgh, Edinburgh EH9 3JZ, United Kingdom
27Dipartimento di Fisica and INFN, Università di Ferrara, I-44100 Ferrara, Italy
28Laboratori Nazionali di Frascati dell’INFN, I-00044 Frascati, Italy
29Dipartimento di Fisica e INFN, Università di Genova, I-16146 Genova, Italy
30Harvard University, Cambridge, Massachusetts 02138, USA
31Physikalisches Institut, Universität Heidelberg, Philosophenweg 12, D-69120 Heidelberg, Germany
32Imperial College London, London SW7 2AZ, United Kingdom
33University of Iowa, Iowa City, Iowa 52242, USA
34Iowa State University, Ames, Iowa 50011-3160, USA
35Laboratoire de l’Accélérateur Linéaire, F-91898 Orsay, France
36Lawrence Livermore National Laboratory, Livermore, California 94550, USA
37University of Liverpool, Liverpool L69 72E, United Kingdom
38Queen Mary, University of London, E1 4NS, United Kingdom
39Royal Holloway and Bedford New College, University of London, Egham, Surrey TW20 0EX, United Kingdom
40University of Louisville, Louisville, Kentucky 40292, USA
41University of Manchester, Manchester M13 9PL, United Kingdom
42University of Maryland, College Park, Maryland 20742, USA
43University of Massachusetts, Amherst, Massachusetts 01003, USA
44Laboratory for Nuclear Science, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
45McGill University, Montréal, Québec, Canada H3A 2T8
46Dipartimento di Fisica and INFN, Università di Milano, I-20133 Milano, Italy
47University of Mississippi, University, Mississippi 38677, USA
48Laboratoire René J. A. Lévesque, Université de Montréal, Montréal, Québec, Canada H3C 3J7
49Mount Holyoke College, South Hadley, Massachusetts 01075, USA
50Dipartimento di Scienze Fisiche and INFN, Università di Napoli Federico II, I-80126, Napoli, Italy
51NIKHEF, National Institute for Nuclear Physics and High Energy Physics, NL-1009 DB Amsterdam, The Netherlands
52University of Notre Dame, Notre Dame, Indiana 46556, USA
53The Ohio State University, Columbus, Ohio 43210, USA
54University of Oregon, Eugene, Oregon 97403, USA
55Dipartimento di Fisica and INFN, Università di Padova, I-35131 Padova, Italy
56Laboratoire de Physique Nucléaire et de Hautes Energies, Universités Paris VI et VII, F-75252 Paris, France
57University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
58Dipartimento di Fisica and INFN, Università di Perugia, I-06100 Perugia, Italy
59Dipartimento di Fisica, Scuola Normale Superiore and INFN, Università di Pisa, I-56127 Pisa, Italy
60Prairie View A&M University, Prairie View, Texas 77446, USA
61Princeton University, Princeton, New Jersey 08544, USA
62Dipartimento di Fisica and INFN, Università di Roma La Sapienza, I-00185 Roma, Italy
63University of Rostock, D-18051 Rostock, Germany
64Rutherford Appleton Laboratory, Chilton, Didcot, Oxon OX11 0QX, United Kingdom
65DSM/Dapnia, CEA/Saclay, F-91191 Gif-sur-Yvette, France
66University of South Carolina, Columbia, South Carolina 29208, USA
67Stanford Linear Accelerator Center, Stanford, California 94309, USA
68Stanford University, Stanford, California 94305-4060, USA
69State University of New York, Albany, New York 12222, USA
70University of Tennessee, Knoxville, Tennessee 37996, USA
71University of Texas at Austin, Austin, Texas 78712, USA
72University of Texas at Dallas, Richardson, Texas 75083, USA
73Dipartimento di Fisica Sperimentale and INFN, Università di Torino, I-10125 Torino, Italy
74Dipartimento di Fisica and INFN, Università di Trieste, I-34127 Trieste, Italy
75IFIC, Universitat de Valencia-CSIC, E-46071 Valencia, Spain
76Vanderbilt University, Nashville, Tennessee 37235, USA
77University of Victoria, Victoria, British Columbia, Canada V8W 3P6
78Department of Physics, University of Warwick, Coventry CV4 7AL, United Kingdom
79University of Wisconsin, Madison, Wisconsin 53706, USA

*Also at Università della Basilicata, Potenza, Italy.
†Deceased.
Measurements of the inclusive spectrum of charmonium mesons in B decays are in conflict with conventional expectations. The spectra of the momentum of the J/ψ mesons in the $Y(4S)$ rest frame observed by CLEO [1] and by BABAR [2] (Fig. 1), compared with calculations using nonrelativistic QCD (NRQCD) [3], show an excess at low momentum, corresponding to a branching fraction of approximately 6×10^{-8}. Various hypotheses have been proposed to explain this low-momentum excess.

Brodsky and Navarra [4] have suggested that the decay $B \rightarrow J/\psi \Lambda \bar{p}$ [5], with the possible formation of a $\Lambda \bar{p}$ bound state, could explain the CLEO result. The kinematic boundary of this structure corresponds to the case where the J/ψ recoils nearly monoenenergetically in the B rest frame against a $2\text{ GeV}/c^2$ particle. The $\Lambda \bar{p}$ state could be observed near or just below threshold. BABAR has searched for these decays and obtained an upper limit of 2.6×10^{-5} at 90% confidence level (C.L.) [6], too small to support the mechanism proposed in [4].

Decays to a J/ψ meson and a hybrid meson, i.e. a bound state of two quarks and a gluon, have been proposed [7,8]. In this case the hybrid meson, possibly a $s\bar{d}g$ state, would need to have a mass of about $2\text{ GeV}/c^2$. No experimental evidence has been found to support this mechanism.

If B mesons were decaying to a narrow resonance and a J/ψ meson, the J/ψ meson would be monoenenergetic in the B rest frame. Such peaks would appear smeared with an rms of $0.12\text{ GeV}/c$ in Fig. 1, due to the motion of the B in the $Y(4S)$ rest frame.

The presence of $b\bar{u}c\bar{c}$ components (intrinsic charm) in the B-meson wave function has also been proposed. In that case the charmonium meson is obtained merely by dissociation when the b quark decays. Intrinsic charm was first introduced by Brodsky et al. [9] to explain an unexpectedly large cross section for charmed-particle production in hadron collisions. Using the estimated amount of intrinsic charm in the proton as an input, Chang and Hou predict $B \rightarrow J/\psi D(\pi)$ decays with branching fractions of the order of 10^{-4} [10]. The dominant final state is expected to be $B \rightarrow J/\psi D\pi$, for which BABAR has reported an upper limit at 90% C.L. of 5.2×10^{-5} for $B^+ \rightarrow J/\psi D^0\pi^+$ [11]. Four-body decays such as $B \rightarrow J/\psi D\pi\pi$ should be extremely suppressed by the small phase space available near the kinematical limit. The remaining untested final state is $J/\psi D$. Calculations by Eilam et al. using perturbative QCD [12] predict branching fractions (BF’s) for $B \rightarrow J/\psi D$ decays on the order of 10^{-8} to 10^{-7}. The observation of a signal with a BF significantly larger would suggest the presence of intrinsic charm inside the B meson.

In this paper we report a search for decays $B \rightarrow J/\psi D$, with D^0 decaying to $K^+\pi^-$, $D^+ \rightarrow K^0_S\pi^+$, K^0_S to $\pi^+\pi^-$, and $J/\psi \rightarrow \ell^+\ell^-$, where ℓ is e or μ.

The data used in this analysis were collected with the BABAR detector at the PEP-II storage ring and comprise an integrated luminosity of 112 fb^{-1} taken at the $Y(4S)$ resonance. The BABAR detector is described in detail elsewhere [13]. A five-layer, double-sided silicon vertex tracker (SVT) surrounds the interaction point and provides precise reconstruction of track angles and B-decay vertices. A 40-layer drift chamber (DCH) provides measurements of the transverse momenta of charged particles. An internally reflecting ring-imaging Cherenkov detector (DIRC) is used for particle identification. A CsI(Tl) crystal electromagnetic calorimeter (EMC) detects photons and electrons. The calorimeter is surrounded by a solenoidal magnet providing a 1.5-T field. The flux return is instrumented with resistive plate chambers used for muon and neutral-hadron identification.
We select multihadron events by demanding a minimum of three reconstructed charged tracks in the polar angle range $0.41 < \theta_{lab} < 2.54$ rad. A charged track must be reconstructed in the DCH, and, except for the reconstruction of $K_S^0 \rightarrow \pi^+ \pi^-$, it must originate at the nominal interaction point to within 1.5 cm in the plane transverse to the beam and to within 10 cm along the beam. Events are required to have an $Y(4S)$ production point within 0.5 cm of the average position of the interaction point in the plane transverse to the beam line, and within 6 cm longitudinally. Neutral clusters are defined as electromagnetic depositions in the calorimeter in the polar angle range $0.410 < \theta_{lab} < 2.409$ rad that are not associated with charged tracks and that have an energy greater than 30 MeV and a shower shape consistent with a photon interaction. We require the total energy for charged tracks and photon candidates in the fiducial region to be greater than 4.5 GeV. To reduce continuum $e^+ e^- \rightarrow q\bar{q}$ background, we require the ratio of second-to-zeroth Fox-Wolfram moments R_2 [14] of the event, calculated with both charged tracks and neutral clusters, to be less than 0.5. Charged tracks are required to be in regions of polar angle for which the particle identification (PID) efficiency is well measured. For electrons, muons, and kaons the acceptable ranges are 0.40 to 2.40, 0.30 to 2.70, and 0.45 to 2.50 rad, respectively.

We further select signal events as described in the following. Event selection is optimized by maximizing the sensitivity $s = \epsilon / (a/2 + \sqrt{N_B})$, where $a = 3$ is the number of standard deviations of significance desired [15]. The maximum of this ratio is independent of the unknown signal branching fraction. The signal efficiency ϵ after all selection requirements is estimated from simulated Monte Carlo (MC) samples. The number of background events N_B, scaled to the integrated luminosity of the data, is estimated using inclusive $Y(4S) \rightarrow B\bar{B}$ and $e^+ e^- \rightarrow q\bar{q}$ MC samples.

We reconstruct J/ψ candidates from a pair of oppositely charged lepton candidates that form a good vertex. Muon (electron) candidates are identified with a neural-network (cut-based) selector. For $J/\psi \rightarrow e^+ e^-$ decays, electron candidates are provisionally combined with nearby photon candidates in order to recover some of the energy lost through bremsstrahlung. These bremsstrahlung-photon candidates are characterized by a deposit of more than 30 MeV in the electromagnetic calorimeter and a polar angle within 35 mrad of the electron direction, as well as an azimuthal angle either within 50 mrad of the electron direction, or between the electron direction at the origin and the azimuth of the impact point in the EMC. The lepton-pair invariant mass must be in the range [3.00, 3.14] GeV/c2 for both lepton flavors.

We form K_S^0 candidates from oppositely charged tracks originating from a common vertex and having an invariant mass in the range [487, 510] MeV/c2. The K_S^0 flight length must be greater than 1 mm, and its direction in the plane perpendicular to the beam line must be within 0.2 rad of the K_S^0 momentum vector. All charged tracks are taken as pion candidates, and kaon candidates are identified with a likelihood selector based on Cherenkov-angle measurements from the DIRC and specific ionization in the SVT and in the DCH. Candidates for D mesons are formed from $K\pi$ combinations; a requirement on the $K\pi$ invariant mass $m_{K\pi}$ is applied during the optimization of the selection. The analysis is then performed in a larger window $1.80 < m_{K\pi} < 1.92$ GeV/c2. The high statistics decays $B \rightarrow J/\psi K^*$ with the same $J/\psi K^*$ final state are used as a control sample to evaluate the possible differences between data and MC. These are selected with requirements similar to those of the signal, except for an $m_{K\pi}$ range of [0.79, 0.99] GeV/c2. The J/ψ and K_S^0 candidates are constrained to their nominal masses [16] to improve the resolution of the measurement of the four-momentum of their parent-B candidate.

Candidate B mesons are formed from J/ψ and D candidates. Two kinematic variables are used to further remove incorrectly reconstructed B candidates. The first is the difference $\Delta E = E_B - E_{\text{beam}}$ between the B-candidate energy and the beam energy in the $Y(4S)$ rest frame. In the absence of experimental effects, correctly reconstructed signal candidates have $\Delta E = 0$. The ΔE resolution is 7.5 MeV. For the signal region, ΔE is required to be in the range $[-15, +12]$ MeV. The second variable is the energy-substituted mass $m_{ES} \equiv (E_{\text{beam}} - p_B^2)^{1/2}$, where p_B^2 is the momentum of the B candidate in the $Y(4S)$ rest frame. The energy-substituted mass m_{ES} peaks at the nominal B mass of 5.279 GeV/c2 for the signal. Its typical resolution is 2.5 MeV/c2. A requirement of $5.274 < m_{ES} < 5.284$ GeV/c2 was obtained in the optimization of the signal selection. The analysis is then performed in the window $5.2 < m_{ES} < 5.3$ GeV/c2. If more than one B candidate is found in an event, the one having the smallest $|\Delta E|$ is retained.

Non-D $B \rightarrow J/\psi K\pi$ decays that have m_{ES}, ΔE, and m_{ES} distributions similar to those of the signal are found to be the dominant contribution to the remaining background after selection cuts are applied. Signal events can be separated from non-D events by their peaking at the D invariant mass in the $m_{K\pi}$ spectrum. In MC samples, this spectrum shows a small but significant number of true D mesons: a D meson from the decay of one B was combined with a J/ψ meson from the decay of the other B. We subtract this combinatorial background using the m_{ES} distribution: the $m_{K\pi}$ distribution of the events in the sideband $(5.21 < m_{ES} < 5.27$ GeV/c2) is subtracted from the distribution of the events in the signal region, with a scaling factor R that is the ratio of the combinatorial background in the signal region and in the sideband. The value of R is obtained from the integrals of the ARGUS shape [17] in fits of the m_{ES} distribution with a Gaussian function for the signal and an ARGUS shape for the combinatorial back-
B. AUBERT et al.

No significant signal for $B \rightarrow J/\psi D$ is observed. The numbers of events obtained are $-0.6 \pm 1.2 \pm 0.2 (J/\psi D^0)$ and $1.2 \pm 1.9 \pm 0.2 (J/\psi D^+)$, where the first uncertainty is statistical, and the second one is the systematic contribution due to the uncertainties in the scaling factor for background subtraction, and of the D mass and mass resolution used in the fit. The branching fractions are

$$\mathcal{B} = \frac{S}{N_{\text{evt}} \times \epsilon \times b},$$

where S is the number of signal events obtained from the fit, $N_{\text{evt}} = 124 \times 10^6$ is the number of $B\bar{B}$ events in the data sample, and b is the product of the branching fractions of the secondary decays (Table I).

Additional contributions to the systematic uncertainty of the branching fraction are described in the following. The relative uncertainty in the number of $B\bar{B}$ events is 1.1%. The secondary branching fractions and their uncertainties are taken from PDG [16]. Other estimated uncertainties are from tracking efficiency (1.3% per track added linearly), K^0_S reconstruction (2.5%), PID efficiency (3.0%) and the statistical uncertainty in the selection efficiency. The uncertainty in the selection efficiency due to the uncertainty of the MC/data difference of the central value and of the width of the peaks in m_{ES}, m_{ES}, and ΔE is estimated from the $J/\psi K^+$ control sample. A summary of the multiplicative contributions to the systematics can be found in Table II. The ratio of B^0 to B^+ production in $Y(4S)$ decays is assumed to be unity. The related uncertainty is small and is neglected here.

We obtain upper bounds on the branching fractions at 90% confidence level (C.L.) assuming Gaussian statistics for the statistical uncertainties and taking into account the

TABLE I. Number of signal events, efficiency, secondary branching fraction, measured branching fraction (\mathcal{B}) and upper limit (UL) at 90% C.L.

<table>
<thead>
<tr>
<th></th>
<th>S</th>
<th>ϵ (%)</th>
<th>b (10^{-3})</th>
<th>\mathcal{B} (10^{-5})</th>
<th>UL (10^{-5})</th>
</tr>
</thead>
<tbody>
<tr>
<td>$J/\psi D^0$</td>
<td>-0.6 ± 1.2</td>
<td>23.3 ± 0.3</td>
<td>4.49</td>
<td>-0.46 ± 0.93</td>
<td>1.3</td>
</tr>
<tr>
<td>$J/\psi D^+$</td>
<td>1.2 ± 1.9</td>
<td>22.6 ± 0.2</td>
<td>1.15</td>
<td>3.7 ± 5.9</td>
<td>12.3</td>
</tr>
</tbody>
</table>

TABLE II. Summary of the contributions to the relative systematic uncertainty (%).

<table>
<thead>
<tr>
<th></th>
<th>$J/\psi D^0 (K^+\pi^-)$</th>
<th>$J/\psi D^+ (K_S^0\pi^+)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>B counting</td>
<td>1.1</td>
<td>1.1</td>
</tr>
<tr>
<td>Secondary BF's</td>
<td>2.7</td>
<td>6.8</td>
</tr>
<tr>
<td>Tracking</td>
<td>5.2</td>
<td>3.9</td>
</tr>
<tr>
<td>K^0_S</td>
<td>\cdots</td>
<td>2.5</td>
</tr>
<tr>
<td>PID</td>
<td>3.0</td>
<td>3.0</td>
</tr>
<tr>
<td>MC statistics</td>
<td>1.5</td>
<td>1.0</td>
</tr>
<tr>
<td>Sample selection</td>
<td>1.0</td>
<td>0.8</td>
</tr>
<tr>
<td>Total</td>
<td>6.9</td>
<td>8.9</td>
</tr>
</tbody>
</table>
systematic uncertainties. We have used a Bayesian method with uniform prior for positive BF values in the derivation of these limits. We obtain upper limits of 1.3×10^{-5} for $B^0 \rightarrow J/\psi D^0$ and 1.2×10^{-4} for $B^+ \rightarrow J/\psi D^+$. These results are significantly lower than the predictions of Ref. [10]. Together with the small upper limits on the branching fraction for decays $B \rightarrow J/\psi D \pi$ [11], we conclude that intrinsic charm as the explanation of the low-momentum J/ψ excess in B decays is not supported.

We are grateful for the excellent luminosity and machine conditions provided by our PEP-II colleagues, and for the substantial dedicated effort from the computing organizations that support BABAR. The collaborating institutions wish to thank SLAC for its support and kind hospitality. This work is supported by DOE and NSF (USA), NSERC (Canada), IHEP (China), CEA and CNRS-IN2P3 (France), BMBF and DFG (Germany), INFN (Italy), FOM (The Netherlands), NFR (Norway), MIST (Russia), and PPARC (United Kingdom). Individuals have received support from CONACyT (Mexico), A.P. Sloan Foundation, Research Corporation, and Alexander von Humboldt Foundation.

[5] Charge-conjugate modes are included implicitly throughout this paper.