Measurement of the time-dependent $CP$-violating asymmetry in $B^0 \to K^0 \pi^0 \gamma$ decays


© 2005 The American Physical Society
MEASUREMENT OF THE TIME-DEPENDENT CP...

PHYSICAL REVIEW D 72, 051103 (2005)

22Colorado State University, Fort Collins, Colorado 80523, USA
23Universität Dortmund, Institut für Physik, D-44221 Dortmund, Germany
24Technische Universität Dresden, Institut für Kern- und Teilchenphysik, D-01062 Dresden, Germany
25Ecole Polytechnique, LLR, F-91128 Palaiseau, France
26University of Edinburgh, Edinburgh EH9 3JZ, United Kingdom
27Università di Ferrara, Dipartimento di Fisica e INFN, I-44100 Ferrara, Italy
28Laboratori Nazionali di Frascati dell’INFN, I-00044 Frascati, Italy
29Università di Genova, Dipartimento di Fisica e INFN, I-16146 Genova, Italy
30Harvard University, Cambridge, Massachusetts 02138, USA
31Universität Heidelberg, Physikalisches Institut, Philosophenweg 12, D-69120 Heidelberg, Germany
32Imperial College London, London, SW7 2AZ, United Kingdom
33University of Iowa, Iowa City, Iowa 52242, USA
34Iowa State University, Ames, Iowa 50011-3160, USA
35Laboratoire de l’Accélérateur Linéaire, F-91898 Orsay, France
36Lawrence Livermore National Laboratory, Livermore, California 94550, USA
37University of Liverpool, Liverpool L69 7E, United Kingdom
38Queen Mary, University of London, E1 4NS, United Kingdom
39University of London, Royal Holloway and Bedford New College, Egham, Surrey TW20 0EX, United Kingdom
40University of Louisville, Louisville, Kentucky 40292, USA
41University of Manchester, Manchester M13 9PL, United Kingdom
42University of Maryland, College Park, Maryland 20742, USA
43University of Massachusetts, Amherst, Massachusetts 01003, USA
44Massachusetts Institute of Technology, Laboratoty for Nuclear Science, Cambridge, Massachusetts 02139, USA
45McGill University, Montréal, Quebec, Canada H3A 2T8
46Università di Milano, Dipartimento di Fisica e INFN, I-20133 Milano, Italy
47University of Mississippi, University, Mississippi 38677, USA
48Université de Montréal, Laboratoire René J. A. Lévesque, Montréal, Quebec, Canada H3C 3J7
49Mount Holyoke College, South Hadley, Massachusetts 01075, USA
50Università di Napoli Federico II, Dipartimento di Scienze Fisiche e INFN, I-80126, Napoli, Italy
51NIKHEF, National Institute for Nuclear Physics and High Energy Physics, NL-1009 DB Amsterdam, The Netherlands
52University of Notre Dame, Notre Dame, Indiana 46556, USA
53Ohio State University, Columbus, Ohio 43210, USA
54University of Oregon, Eugene, Oregon 97403, USA
55Università di Padova, Dipartimento di Fisica e INFN, I-35131 Padova, Italy
56Universités Paris VI et VII, Laboratoire de Physique Nucléaire et de Hautes Energies, F-75252 Paris, France
57University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
58Università di Perugia, Dipartimento di Fisica e INFN, I-06100 Perugia, Italy
59Università di Pisa, Dipartimento di Fisica, Scuola Normale Superiore e INFN, I-56127 Pisa, Italy
60Prairie View A&M University, Prairie View, Texas 77446, USA
61Princeton University, Princeton, New Jersey 08544, USA
62Università di Roma La Sapienza, Dipartimento di Fisica e INFN, I-00185 Roma, Italy
63Universität Rostock, D-18051 Rostock, Germany
64Rutherford Appleton Laboratory, Chilton, Didcot, Oxon, OX11 0QX, United Kingdom
65DSM/Dapnia, CEA/Saclay, F-91191 Gif-sur-Yvette, France
66University of South Carolina, Columbia, South Carolina 29208, USA
67Stanford Linear Accelerator Center, Stanford, California 94309, USA
68Stanford University, Stanford, California 94305-4060, USA
69State University of New York, Albany, New York 12222, USA
70University of Tennessee, Knoxville, Tennessee 37996, USA
71University of Texas at Austin, Austin, Texas 78712, USA
72University of Texas at Dallas, Richardson, Texas 75083, USA
73Università di Torino, Dipartimento di Fisica Sperimentale e INFN, I-10125 Torino, Italy
74Università di Trieste, Dipartimento di Fisica e INFN, I-34127 Trieste, Italy
75IFIC, Universitat de Valencia-CSIC, E-46071 Valencia, Spain
76Vanderbilt University, Nashville, Tennessee 37235, USA
77University of Victoria, Victoria, British Columbia, Canada V8W 3P6

8Also with Università di Perugia, Dipartimento di Fisica, Perugia, Italy
9Also with Università della Basilicata, Potenza, Italy
‡Deceased
We present a measurement of the time-dependent CP-violating asymmetry in $B^0 \rightarrow K^{*0} \gamma$ decays with $K^{*0} \rightarrow K^0 \pi^0$ based on 232 $\times 10^6$ $Y(4S) \rightarrow B\overline{B}$ decays collected with the BABAR detector at the PEP-II asymmetric-energy $e^+e^-$ collider at SLAC. In a sample containing 157 $\pm$ 16 signal decays, we measure $S_{K^{*0}\gamma} = -0.21 \pm 0.40 \pm 0.05$ and $C_{K^{*0}\gamma} = -0.40 \pm 0.23 \pm 0.03$, where the first error is statistical and the second systematic. We also explore $B^0 \rightarrow K_S^{*0} \pi^0 \gamma$ decays with $1.1 < m_{K_S^{*0}\pi^0} < 1.8$ GeV/$c^2$ and find 59 $\pm$ 13 signal events with $S_{K_S^{*0}\pi^0\gamma} = 0.9 \pm 1.0 \pm 0.2$ and $C_{K_S^{*0}\pi^0\gamma} = -1.0 \pm 0.5 \pm 0.2$.

DOI: 10.1103/PhysRevD.72.051103

The BABAR detector is fully described in Ref. [10]. The components that are most important for this analysis are a five-layer double-sided silicon micro-strip detector (SVT), a 40-layer drift chamber (DCH) and a CsI(Tl) electromagnetic calorimeter (EMC). For event simulation we use the Monte-Carlo event generator EVTGEN [11] and GEANT4 [12].

At the $Y(4S)$ resonance time-dependent CPV asymmetries are extracted from the distribution of the difference of the proper decay times $\Delta t = t_C^B - t_{tag}$, where $t_C^B$ refers to the decay time of the signal $B (B_{CP})$ and $t_{tag}$ to that of the other $B (B_{tag})$. The $\Delta t$ distribution for $B_{CP} \rightarrow f$ follows

$$P(\pm \Delta t) = \frac{e^{-|\Delta t|/\tau_B}}{4\tau_B} [1 \pm S_f \sin(\Delta m_d \Delta t)] \mp C_f \cos(\Delta m_d \Delta t)],$$

where the upper (lower) sign corresponds to $B_{tag}$ decaying as $B^0 (\bar{B}^0)$, $\tau_B$ is the $B^0$ lifetime and $\Delta m_d$ is the mixing frequency. The coefficients $C_f$ and $S_f$ can be expressed in terms of the $B^0$-$\bar{B}^0$ mixing amplitude and the decay amplitudes for $B^0 \rightarrow f$ and $\bar{B}^0 \rightarrow \bar{f}$ [13]. Direct CP violation in the decay $B^0 \rightarrow f$ results in a nonzero value of $C_f$. For $B^0 \rightarrow K^{*0} \gamma$ direct CP violation is constrained by measurements of the partial rate asymmetry in decays with $K^{*0} \rightarrow K^+ \pi^-$, $A_{CP}^{K^{*0}\gamma} = -C_{K^{*0}\gamma} = -0.010 \pm 0.028$ [14], which is in good agreement with the SM prediction [15].

We search for $B^0 \rightarrow K_S^{*0} \pi^0 \gamma$ decays in $B\overline{B}$ candidate events, which are selected based on charged particle multiplicity and event topology [16]. Candidates for $K_S^{*0} \rightarrow \pi^+ \pi^-$ are formed from pairs of oppositely charged tracks with a vertex $\chi^2$ probability larger than 0.001, a $\pi^+ \pi^-$ invariant mass 487 $< m_{\pi^+ \pi^-} < 507$ MeV/$c^2$ ($\sim 3\sigma$) and a reconstructed decay length greater than 5 times its uncertainty. Photon candidates are reconstructed from clusters in the EMC that are isolated from any charged tracks and have the expected lateral shower shape. We form $\pi^0 \rightarrow \gamma \gamma$ candidates with an invariant mass 115 $< m_{\gamma \gamma} < 155$ MeV/$c^2$ ($\sim 3\sigma$) and energy $E_{\pi^0} > 590$ MeV from pairs of candidate photons each of which carries a minimum energy of 30 MeV. For the photon from the $B$ decay, the so-called primary photon,
we require an energy in the $e^+e^-$ frame of $1.5 < E_\gamma < 3.5$ GeV. We veto primary photons that form a $\pi^0 \rightarrow \gamma \gamma$ ($\eta \rightarrow \gamma \gamma$) candidate with invariant mass $115 < m_{\gamma\gamma} < 155$ MeV/c$^2$ ($470 < m_{\gamma\gamma} < 620$ MeV/c$^2$) when combined with another photon with energy $E_\gamma > 50$ MeV ($E_\gamma > 250$ MeV).

To identify $B^0$ decays in $K^0_S\pi^0\gamma$ combinations we use the energy-substituted mass

$$m_{ES} = \sqrt{(s/2 + p_i \cdot p_0)/E_i - p_i^2}$$

and the energy difference $\Delta E = E_i^* - \sqrt{s}/2$. Here $(E_i, p_i)$ and $(E_0, p_0)$ are the four-vectors of the initial $e^+e^-$ system and the $B$ candidate, respectively, $\sqrt{s}$ is the center-of-mass energy, and the asterisk denotes the $e^+e^-$ rest frame. For signal decays, the $m_{ES}$ distribution peaks near the $B$ mass with a resolution of about 3.5 MeV/c$^2$ and $\Delta E$ peaks near 0 MeV with a resolution of about 50 MeV. Both $m_{ES}$ and $\Delta E$ exhibit a low-side tail from energy leakage in the EMC. We require $5.2 < m_{ES} < 5.3$ GeV/c$^2$ and $|\Delta E| < 250$ MeV, which includes the signal region as well as a large “sideband” region for background estimation. We also require $|\cos \theta_i^*| > 0.8$, where $\theta_i^*$ is the angle between the $K^0_L$ and the primary photon in the $K^0_S\pi^0$ rest frame (the “heliciti” angle).

Event topology is exploited to further suppress the background from continuum $e^+e^- \rightarrow q\bar{q}$ ($q = u, d, s, c$) events. We calculate the ratio $L_2/L_0$ of two moments defined as $L_j = \sum |p_i^*| |\cos \theta_i^*| |V|$, where $p_i^*$ is the momentum of particle $i$ in the $e^+e^-$ rest frame, $\theta_i^*$ is the angle between $p_i^*$ and the thrust axis of the $B$ candidate and the sum runs over all reconstructed particles except for the $B$ candidate daughters. We require $L_2/L_0 < 0.55$, which suppresses the background by more than a factor 3 at the cost of approximately 10% signal efficiency. After all selections are applied the average candidate multiplicity in events with at least one candidate is approximately 1.1. We select the candidate with a reconstructed $\pi^0$ mass closest to the expected value and if ambiguity persists we select the candidate with $K^0_S$ mass closest to the expected value.

Selected events are divided in events with $0.8 < m_{K^0_S\pi^0} < 1.0$ GeV/c$^2$, where signal decays are predominantly $B^0 \rightarrow K^{*0}\gamma$, and events with $1.1 < m_{K^0_S\pi^0} < 1.8$ GeV/c$^2$, where the contribution from $K^*(892)$ is small. In the data we find respectively 1469 and 2629 candidate events in these categories. The selection efficiency for $B^0 \rightarrow K^{*0}\gamma$, evaluated with simulated events, is approximately 16%. Using the current world average for the branching fraction [17] we expect $176 \pm 18$ signal events. Compared to our previous measurement [7] the current event selection is more effective in suppressing background from $B$ decays, leading to a reduced systematic uncertainty from an eventual CPV asymmetry in the background without a significant loss in statistical sensitivity. The selection efficiency for $B^0 \rightarrow K^0_S\pi^0\gamma$ events with $1.1 < m_{K^0_S\pi^0} < 1.8$ GeV/c$^2$ is approximately 15%, but depends on the helicity structure. Besides the $K^* (892)$ the only observed $K\pi$ resonance in $B \rightarrow K\pi\gamma$ decays is the $K^0_S (1430)$. Using the world average for the $B^0 \rightarrow K^0_S(1430)\gamma$ branching fraction [18] we expect 24 $\pm 7$ events. However, since upper bounds on other resonances are weak, the actual observed signal yield may be appreciably higher.

For each $B$ candidate we examine the remaining tracks in the event to determine the decay vertex position and the flavor of $B_{\text{tag}}$. Using a neural network based on kinematic and particle identification information [19] each event is assigned to one of seven mutually exclusive tagging categories, designed to combine flavor tags with similar performance and $\Delta t$ resolution. We parametrize the performance of this algorithm in a data sample ($B_{\text{tag}}$) of fully reconstructed $B^0 \rightarrow D^{(*)}-\pi^+\rho^-/a_1^-$ decays. The average effective tagging efficiency obtained from this sample is $Q = \sum \epsilon_f(1 - 2w)^2 = 0.305 \pm 0.004$, where $\epsilon_f$ and $w$ are the efficiencies and mistag probabilities, respectively, for events tagged in category $e = 1, \ldots, 7$.

The proper-time difference is extracted from the separation of the $B_{\text{CP}}$ and $B_{\text{tag}}$ decay vertices in a manner analogous to Ref. [20]. The $B_{\text{tag}}$ vertex is reconstructed from the remaining charged particles in the event [16]. To reconstruct the $B_{\text{CP}}$ vertex from the single $K^0_S$ trajectory we exploit the knowledge of the average interaction point (IP), which is determined from the spatial distribution of vertices in two-track events and is calculated separately for each 10-minute period of data-taking. We compute $\Delta t$ and its uncertainty from a geometric fit [21] to the $Y(4S) \rightarrow B^0\bar{B}^0$ system that takes this IP constraint into account. We further improve the $\Delta t$ resolution by constraining the sum of the two $B$ decay times ($t_{\text{CP}} + t_{\text{tag}}$) to be equal to $2\tau_{B^0}$ with an uncertainty $\sqrt{2}\tau_{B^0}$. We have verified in a Monte-Carlo simulation that this procedure provides an unbiased estimate of $\Delta t$.

The per-event estimate of the uncertainty on $\Delta t$ reflects the strong dependence of the $\Delta t$ resolution on the $K^0_S$ flight direction and on the number of SVT layers traversed by the $K^0_S$ decay daughters. In about 70% of the events both pion tracks are reconstructed from at least 4 SVT hits, leading to sufficient resolution for the time-dependent measurement. The average $\Delta t$ resolution in these events is about 1.1 ps. For events that fail this criterion or for which $\sigma(\Delta t) > 2.5$ ps or $|\Delta t| > 20$ ps, the $\Delta t$ information is not used. However, these events still contribute to the measurement of $C_{K^0\pi\gamma}$, which can also be extracted from flavor-tagging information alone.

Signal yields and CPV asymmetries are extracted using an unbinned maximum-likelihood fit to $m_{ES}, \Delta E, L_2/L_0,
flavor-tag, $\Delta t$ and $\sigma(\Delta t)$, as in Ref. [7]. For the analysis of the $B^0 \to K^{*0}\gamma$ sample $m_{K^0\pi^0}$ is also used in the fit. Because we expect a contribution from other $B$ decays ("$B\bar{B}$ background"), we allow the fit to extract the fraction of such decays as well. We have verified using fits to simulated samples that the correlation between the observables is sufficiently small that the event likelihoods for signal $P_S$, $B\bar{B}$ background $P_{B\bar{B}}$ and continuum background $P_{\tau\tau}$ can be described by the product of one-dimensional probability density functions (PDF). The PDFs for signal events and $B\bar{B}$ background events are parametrized using either the $B_{\text{flav}}$ sample (for the flavor-tag efficiency, mistag probabilities and $\Delta t$-resolution function) or simulated events. For the continuum background, we select the functional form of the PDFs in background-enhanced samples. We exploit the large fraction of background events in the final sample to extract the background parameters along with the physics measurements in the fit. The asymmetry in the rate of $B^0$ versus $\bar{B}^0$ tags in background events is also extracted from the fit.

The PDF for the $\Delta t$ of signal events and $B\bar{B}$ background events is obtained from the convolution of Eq. (1) with a resolution function $R(\delta t = \Delta t - \Delta t_{\text{true}}, \sigma_{\Delta t})$. The asymmetries $S_{B\bar{B}}$ and $C_{B\bar{B}}$ for the $B\bar{B}$ background are fixed to zero in the fit, but we account for a possible deviation from zero in the systematic uncertainty. The resolution function is parametrized as the sum of three Gaussian distributions [16]. The first two Gaussian distributions have a width proportional to the reconstructed $\sigma_{\Delta t}$ and a nonzero mean proportional to $\sigma_{\Delta t}$ to account for the small bias in $\Delta t$ from charm decays on the $B_{\text{tag}}$ side. The third distribution is centered at zero with a fixed width of 8 ps. We have verified in simulation that the parameters of $R(\delta t, \sigma_{\Delta t})$ for $B^0 \to K^0\pi^0\gamma$ events are similar to those obtained from the $B_{\text{flav}}$ sample, even though the distributions of $\sigma_{\Delta t}$ differ considerably. We therefore extract these parameters from a fit to the $B_{\text{flav}}$ sample. We assume that the continuum background consists of prompt decays only and find that the $\Delta t$ distribution is well described by a resolution function with the same functional form as used for signal events. The parameters of the background function are determined in the fit.

Figure 1 shows the background-subtracted distributions for $m_{ES}$ and $\Delta E$ for the selected $B^0 \to K^{*0}\gamma$ candidates. The background subtraction is performed with the event weighting technique described in [22]. Events contribute according to a weight constructed from the covariance matrix for the signal, $B\bar{B}$ background and continuum background yields and the probability $P_S$, $P_{B\bar{B}}$ and $P_{\tau\tau}$ for the event, computed without the use of the variable that is being displayed. The curves in the figure represent the signal PDFs used in the fit. Figure 2 shows the background-subtracted distributions of $\Delta t$ for $B^0$- and $\bar{B}^0$-tagged events, and the asymmetry as a function of $\Delta t$.

In the fit to the $B^0 \to K^{*0}\gamma$ sample we find $157 \pm 16$ signal events, with

$$S_{K^{*0}\gamma} = -0.21 \pm 0.40 \pm 0.05$$

and

$$C_{K^{*0}\gamma} = -0.40 \pm 0.23 \pm 0.03,$$

where the first error is statistical and the second systematic. The systematic uncertainties are described below. The linear correlation coefficient between $S_{K^{*0}\gamma}$ and $C_{K^{*0}\gamma}$ is 0.07. The value of $C_{K^{*0}\gamma}$ is consistent with the expectation of no direct $CP$ violation. Since its uncertainty is much larger than that obtained from the partial rate asymmetry in self-tagging decays [14], we also perform the fit with $C_{K^{*0}\gamma}$.
The counterintuitive increase in the error on $B$ and $m$ background-subtracted distributions for $K^*_{S} \pi^0 \gamma$ corresponding to $-2 \Delta \log L = 1$, 2 and 3. The dashed circle is the physical boundary.

fixed to zero and find

$$S_{K^* \pi^0 \gamma} (C = 0) = -0.22 \pm 0.42 \pm 0.05.$$  

The counterintuitive increase in the error on $S_{K^* \pi^0 \gamma}$ is a consequence of the likelihood contours in the S-C plane, shown in Fig. 3, not being perfectly ellipsoidal.

Figure 4 shows the background-subtracted $K^*_S \pi^0$ invariant mass distribution for $B^0 \rightarrow K^* \pi^0 \gamma$ candidates. The $K^*(892)$ resonance is clearly visible and there is some evidence for the $K^*_2(1430)$. Figure 5 shows the background-subtracted distributions for $m_{ES}$ and $\Delta E$ events in the range $1.1 < m_{K^*_S \pi^0} < 1.8$ GeV/$c^2$. In the fit to this sample we find $59 \pm 13$ signal events with

$$S_{K^*_S \pi^0 \gamma} = 0.9 \pm 1.0 \pm 0.2$$

and

$$C_{K^*_S \pi^0 \gamma} = -1.0 \pm 0.5 \pm 0.2.$$  

FIG. 3. Constant-likelihood contours in the $S$-$C$ plane for $B^0 \rightarrow K^* \gamma$ corresponding to $-2 \Delta \log L = 1$, 2 and 3. The dashed circle is the physical boundary.

FIG. 4. Distribution for $m_{K^*_S \pi^0}$ obtained with the weighting technique described in the text. For events with $m_{K^*_S \pi^0} > 1.1$ GeV/$c^2$ the cut on the cosine of the helicity angle $\cos \theta_K$ is not applied.

The linear correlation coefficient between $S_{K^*_S \pi^0 \gamma}$ and $C_{K^*_S \pi^0 \gamma}$ is $-0.09$.

We consider several sources of systematic uncertainties related to the level and possible asymmetry of the background contribution from other $B$ decays. We evaluate this contribution using simulated samples of generic $B$ decays and of generic $B \rightarrow X_s \gamma$ decays. For the latter we use the Kagan-Neubert model [23] for the photon energy spectrum and JETSET for the fragmentation of the $s$ quark. Since the final state multiplicity predicted by the fragmentation model is significantly different from a recent BABAR measurement [24], we reweight events according to their multiplicity. From these studies we estimate about 30 (40) events in the $K^*$ (non-$K^*$) sample, with approximately equal contributions from $B \rightarrow X_s \gamma$ decays and other (generic) $B$ decays. The $B \bar{B}$ background yields extracted for the fit to the data are $9 \pm 13$ and $110 \pm 40$ events, respectively. Although these agree with the expected yields, the latter are numerically larger. Therefore, we use the expected yields when evaluating the impact of a potential CPV asymmetry in the $B \bar{B}$ background. We vary $S_{B \bar{B}}$ and $C_{B \bar{B}}$ within an appropriate range that is derived from the composition of the $B \bar{B}$ background sample and assign a systematic uncertainty of 0.04 (0.03) on $S$ ($C$) in the $K^*$ sample and an uncertainty of 0.2 for both $S$ and $C$ in the non-$K^*$ sample.

We quantify possible systematic effects due to the vertex reconstruction method in the same manner as in Ref. [20], estimating systematic uncertainties on $S$ ($C$) of 0.023 (0.014) due to the vertex reconstruction technique and uncertainties in the resolution function, and 0.020 (0.007) due to possible misalignments of the SVT. Finally, we include a systematic uncertainty due to imperfect knowledge of the PDFs used in the fit, which amounts to 0.02 (0.01) for the $K^*$ (non-$K^*$) sample.
In summary, we have performed a new measurement of the time-dependent CPV asymmetry in $B^0 \to K^{*0}\gamma$ decays. Within the large statistical uncertainties our measurement is consistent with the SM expectation of a small CPV asymmetry and with other measurements [8]. We have also explored the possibility of measuring the CPV asymmetry in the region with a $K_{33}^{0}\pi^{0}$ invariant mass above the $K^{*0}$ region, $1.1 < m_{K_{33}^{0}\pi^{0}} < 1.8$ GeV/$c^2$. We find that the signal yield, though consistent with the expectation, is too small for a meaningful asymmetry measurement. These results supersede our previous measurement [7] which was based on a subset of the data presented here.

We are grateful for the extraordinary contributions of our PEP-II colleagues in achieving the excellent luminosity and machine conditions that have made this work possible. The success of this project also relies critically on the expertise and dedication of the computing organizations that support BABAR. The collaborating institutions wish to thank SLAC for its support and the kind hospitality extended to them. This work is supported by the US Department of Energy and National Science Foundation, the Natural Sciences and Engineering Research Council (Canada), Institute of High Energy Physics (China), the Commissariat à l’Énergie Atomique and Institut National de Physique Nucléaire et de Physique des Particules (France), the Bundesministerium für Bildung und Forschung and Deutsche Forschungsgemeinschaft (Germany), the Istituto Nazionale di Fisica Nucleare (Italy), the Foundation for Fundamental Research on Matter (The Netherlands), the Research Council of Norway, the Ministry of Science and Technology of the Russian Federation, and the Particle Physics and Astronomy Research Council (United Kingdom). Individuals have received support from CONACyT (Mexico), the A.P. Sloan Foundation, the Research Corporation, and the Alexander von Humboldt Foundation.

[6] Unless explicitly stated, charge conjugate decay modes are included implicitly throughout this paper.