The following full text is a publisher's version.

For additional information about this publication click this link.
http://hdl.handle.net/2066/128735

Please be advised that this information was generated on 2018-11-26 and may be subject to change.
Measurement of the Cabibo-Kobayashi-Maskawa Angle γ in $B^+ \to D^{(*)} K^{\mp}$ Decays with a Dalitz Analysis of $D \to K_S^0 \pi^- \pi^+$

1Laboratoire de Physique des Particules, F-74941 Annecy-le-Vieux, France
2IFAE, Universitat Autonoma de Barcelona, E-08193 Bellaterra, Barcelona, Spain
3Dipartimento di Fisica and INFN, Universitá di Bari, I-70126 Bari, Italy
4Institute of High Energy Physics, Beijing 100039, China
5Institute of Physics, University of Bergen, N-5007 Bergen, Norway
6Lawrence Berkeley National Laboratory and University of California, Berkeley, California 94720, USA
7University of Birmingham, Birmingham, B15 2TT, United Kingdom
8Institut für Experimentalphysik 1, Ruhr Universität Bochum, D-44780 Bochum, Germany
9University of Bristol, Bristol BS8 1TL, United Kingdom
10University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z1
11Braunschweig University, Braunschweig, Lower Saxony, Germany
12Budker Institute of Nuclear Physics, Novosibirsk 630090, Russia
13University of California at Irvine, Irvine, California 92697, USA
14University of California at Los Angeles, Los Angeles, California 90024, USA
15University of California at Riverside, Riverside, California 92521, USA
16University of California at Santa Barbara, Santa Barbara, California 93106, USA
17University of California at San Diego, La Jolla, California 92093, USA
18University of Birmingham, Birmingham, B15 2TT, United Kingdom
19Institut für Experimentalphysik 1, Ruhr Universität Bochum, D-44780 Bochum, Germany
20University of Bristol, Bristol BS8 1TL, United Kingdom
21University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z1
22Braunschweig University, Braunschweig, Lower Saxony, Germany
23Budker Institute of Nuclear Physics, Novosibirsk 630090, Russia
24University of California at Irvine, Irvine, California 92697, USA
25University of California at Los Angeles, Los Angeles, California 90024, USA
26University of California at Riverside, Riverside, California 92521, USA
27University of California at Santa Barbara, Santa Barbara, California 93106, USA
28Institute of Particle Physics, University of California at Santa Cruz, Santa Cruz, California 95064, USA

(BABAR Collaboration)
We report on a measurement of the Cabibbo-Kobayashi-Maskawa CP-violating phase γ through a Dalitz analysis of neutral D decays to $K_S^0 \pi^- \pi^+$ in the processes $B^- \to D^{(*)0} K^-$, $D^+ \to D^0 \pi^0$, $D^+ \to D^0 \pi^0$, $D^+ \to D^{0*} K^-$, and $\mathcal{A}(B^- \to D^{(*)0} K^-)$. As a consequence of parity and angular momentum conservation in the $D^{(*)0}$ decay, the factor κ takes the value $+1$ for $B^- \to D^0 K^-$ and $B^- \to D^{0*}(D^0 \pi^0) K^-$, and -1 for $B^- \to D^{0*}(D^0 \gamma) K^-$. We first determine $\mathcal{A}_D(m_2^2, m_3^2)$ through a Dalitz analysis of a high-statistics sample of tagged D^0 mesons from inclusive $D^{(*)} \to D^{(*)0} \pi^0$ decays reconstructed in data. We then perform a simultaneous fit to the $|\mathcal{A}_+^{(*)}(m_2^2, m_3^2)|^2$ and $|\mathcal{A}_-^{(*)}(m_2^2, m_3^2)|^2$ distributions for the $B^- \to D^{(*)0} K^-$ samples to determine the CP parameters $r^{(*)}_B$, $\delta^{(*)}_B$, and γ. We emphasize that in this analysis the Dalitz amplitude is only a means to extract the CP parameters.

B^- candidates are formed by combining a mass-constrained $D^{(*)0}$ candidate with a track identified as a kaon [9]. We accept $K_S^0 \to \pi^+ \pi^-$ candidates that have a two-pion invariant mass within 9 MeV/c^2 of the K_S^0 mass [4] and a cosine of the angle between the line connecting the D^0 and K_S^0 decay vertices and the K_S^0 momentum (in the plane transverse to the beam) greater than 0.99. D^0 candidates are selected by requiring the $K_S^0 \pi^- \pi^+$ invariant mass to be within 12 MeV/c^2 of the D^0 mass [4]. The π^0 candidates from $D^{(*)0} \to D^{(*)0} \pi^0$ are formed from pairs of photons with invariant mass in the range [115, 150] MeV/c^2, and with photon energy greater than 30 MeV. Photon candidates from $D^{(*)0} \to D^{(*)0} \gamma$ are selected if their energy

\[\mathcal{A}_D(m_2^2, m_3^2) + \kappa r_B^{(*)} e^{i\delta_B^{(*)} - \gamma} \mathcal{A}_D(m_2^2, m_3^2),\]

where m_2^2 and m_3^2 are the squared invariant masses of the $K_S^0 \pi^- \pi^+$ and $K_S^0 \pi^- \pi^+$ combinations, respectively, and $\mathcal{A}_D(m_2^2, m_3^2)$ is the $D^0 \to K_S^0 \pi^- \pi^+$ decay amplitude. Here, $r_B^{(*)}$ and $\delta_B^{(*)}$ are the amplitude ratios and relative strong phases between the amplitudes $\mathcal{A}(B^- \to D^{(*)0} K^-)$ and $\mathcal{A}(B^- \to D^{(*)0} K^-)$.
is greater than 100 MeV. \(D^{*0} \to D^{0} \pi^{0}(D^{0}\gamma)\) candidates are required to have a \(D^{*0} \to D^{0}\) mass difference within 2.5(10) MeV/c\(^2\) of its nominal value [4].

The beam-energy substituted \(B\) mass \(m_{\text{ES}}\) [12] (Fig. 1) and the difference \(\Delta E\) between the reconstructed energy of the \(B^-\) candidate and the beam energy in the \(e^+e^-\) c.m. frame are used to identify signal \(B^-\) decays. We require \(m_{\text{ES}} > 5.2\) GeV/c\(^2\) and \(|\Delta E| < 30\) MeV. Since the background is dominated by random combinations of tracks arising from \(e^+e^- \to q\bar{q}, q = (u, d, s, c)\) (continuum) events, we require \(|\cos\theta^*_e| < 0.8\), where \(\theta^*_e\) is the c.m. angle between the thrust axis of the \(B^-\) candidate and that of the remaining particles in the event. The reconstruction efficiencies (purities in the signal region \(m_{\text{ES}} > 5.272\) GeV/c\(^2\)) are 18\% (63\%), 5.9\% (86\%), and 8.1\% (52\%) for the \(B^- \to \bar{D}^{0}K^-\), \(B^- \to D^{0}(\bar{D}^{0}\pi^{0})K^-\), and \(B^- \to D^{0}(\bar{D}^{0}\gamma)K^-\) decay modes, respectively. The cross feed among the different samples is negligible.

The \(D^{0}\) decay amplitude is determined from an unbinned maximum-likelihood Dalitz fit to a high-purity (97\%) sample of 81 496 \(D^{*+} \to D^{0}\pi^+\) decays reconstructed in 91.5 fb\(^{-1}\) of data (Fig. 2). We use the isobar formalism described in Ref. [13] to express \(\mathcal{A}_D\) as a sum of two-body decay-matrix elements (subscript \(r\)) and a nonresonant (subscript NR) contribution,

\[
\mathcal{A}_D(m_{\pi^+}^2, m_{\pi^-}^2) = \sum_r a_re^{i\phi_r} \mathcal{A}_r(m_{\pi^+}^2, m_{\pi^-}^2) + a_{\text{NR}}e^{i\phi_{\text{NR}}},
\]

where each term is parameterized with an amplitude \(a_r\) and a phase \(\phi_r\). The function \(\mathcal{A}_r(m_{\pi^+}^2, m_{\pi^-}^2)\) is the Lorentz-invariant expression for the matrix element of a \(D^0\) meson decaying into \(K_S^0\pi^-\pi^+\) through an intermediate resonance \(r\), parameterized as a function of the position in the Dalitz plane.

Table I summarizes the values of \(a_r\) and \(\phi_r\), obtained using a model consisting of 16 two-body elements comprising 13 distinct resonances and accounting for efficiency variations across the Dalitz plane and the small background contribution. For \(r = \rho(770), \rho(1450)\) we use the functional form suggested in Ref. [14], while the remaining resonances are parameterized by a spin-dependent relativistic Breit-Wigner distribution. For intermediate states with a \(K^*\), the regions of interference between DCS and CA decays are particularly sensitive to \(\gamma\), and we include the DCS component when a significant contribution is expected. In addition, we find that the inclusion of the scalar \(
\pi\pi\) resonances \(\sigma\) and \(\sigma'\) significantly improves the quality of the fit [15]. Since the two \(\sigma\) resonances are not well established and are only introduced to improve the description of our data, the uncertainty on their existence is considered in the systematic errors. We estimate the goodness of fit through a two-dimensional \(\chi^2\) test and obtain \(\chi^2 = 3824\) for 3054–32 degrees of freedom.

We simultaneously fit the \(B^- \to \bar{D}^{(*)0}K^-\) samples using an unbinned extended maximum-likelihood fit to extract the \(CP\)-violating parameters along with the signal and background yields. Three different background components are included: the \(D\) decays, the \(\pi\pi\) background, and the \(\pi\pi\) background from the reaction \(\pi^+\pi^-\pi^\pi^-\). The sum of fit fractions is 1.24.

![FIG. 2](color online). (a) The \(D^{*0} \to K_S^0\pi^-\pi^+\) Dalitz distribution from \(D^{*+} \to D^{0}\pi^+\) events, and projections on (b) \(m_{\pi^+}^2\), (c) \(m_{\pi^-}^2\), and (d) \(m_{\pi^0}\). The curves are the fit projections.

<table>
<thead>
<tr>
<th>Resonance</th>
<th>Amplitude</th>
<th>Phase (deg)</th>
<th>Fit fraction</th>
</tr>
</thead>
<tbody>
<tr>
<td>(K^{*}(892))(^-)</td>
<td>1.781 ± 0.018</td>
<td>131.0 ± 0.8</td>
<td>0.586</td>
</tr>
<tr>
<td>(K_S^0(1430))(^-)</td>
<td>2.45 ± 0.08</td>
<td>-8.3 ± 2.5</td>
<td>0.083</td>
</tr>
<tr>
<td>(K_S^0(1430))(^-)</td>
<td>1.05 ± 0.06</td>
<td>-54.3 ± 2.6</td>
<td>0.027</td>
</tr>
<tr>
<td>(K^*(1410))(^-)</td>
<td>0.52 ± 0.09</td>
<td>154.0 ± 20</td>
<td>0.004</td>
</tr>
<tr>
<td>(K^*(1680))(^-)</td>
<td>0.89 ± 0.30</td>
<td>-139 ± 14</td>
<td>0.003</td>
</tr>
<tr>
<td>(K^{*}(892))(^+)</td>
<td>0.180 ± 0.008</td>
<td>-44.1 ± 2.5</td>
<td>0.006</td>
</tr>
<tr>
<td>(K_S^0(1430))(^+)</td>
<td>0.37 ± 0.07</td>
<td>18 ± 9</td>
<td>0.002</td>
</tr>
<tr>
<td>(K_S^0(1430))(^+)</td>
<td>0.075 ± 0.038</td>
<td>-104 ± 23</td>
<td>0.000</td>
</tr>
<tr>
<td>(\rho(770))</td>
<td>1 (fixed)</td>
<td>0 (fixed)</td>
<td>0.224</td>
</tr>
<tr>
<td>(\omega(782))</td>
<td>0.0391 ± 0.0016</td>
<td>115.3 ± 2.5</td>
<td>0.006</td>
</tr>
<tr>
<td>(f_0(980))</td>
<td>0.482 ± 0.012</td>
<td>-141.8 ± 2.2</td>
<td>0.061</td>
</tr>
<tr>
<td>(f_0(1370))</td>
<td>2.25 ± 0.30</td>
<td>113.2 ± 3.7</td>
<td>0.032</td>
</tr>
<tr>
<td>(f_2(1270))</td>
<td>0.922 ± 0.041</td>
<td>-21.3 ± 3.1</td>
<td>0.030</td>
</tr>
<tr>
<td>(\rho(1450))</td>
<td>0.52 ± 0.09</td>
<td>38 ± 13</td>
<td>0.002</td>
</tr>
<tr>
<td>(\sigma)</td>
<td>1.36 ± 0.05</td>
<td>-177.9 ± 2.7</td>
<td>0.093</td>
</tr>
<tr>
<td>(\sigma')</td>
<td>0.340 ± 0.026</td>
<td>153.0 ± 3.8</td>
<td>0.013</td>
</tr>
<tr>
<td>Nonresonant</td>
<td>3.53 ± 0.44</td>
<td>128 ± 6</td>
<td>0.073</td>
</tr>
</tbody>
</table>
ments are considered: continuum events, $B^- \rightarrow \bar{D}^{(*)0} \pi^-$ and $Y(4S) \rightarrow BB$ (other than $B^- \rightarrow \bar{D}^{(*)0} \pi^-$) decays. In addition to m_{ES}, the fit uses ΔE and a Fisher discriminant
[12] to distinguish signal from $B^- \rightarrow \bar{D}^{(*)0} \pi^-$ and continuum background, respectively. The log-likelihood is

$$\ln L = -\sum_i N_i \ln \left[\sum_{c} \mathcal{P}(\tilde{\xi}_i) \mathcal{P}^{Dalitz}(\tilde{\eta}_j) \right],$$

where $\tilde{\xi}_i = \{m_{ES}, \Delta E, \mathcal{F}\}$, and $\tilde{\eta}_j = (m^2, m^2_\pi)$, characterize the event j. Here, $\mathcal{P}(\tilde{\xi}_i)$ and $\mathcal{P}^{Dalitz}(\tilde{\eta}_j)$ are the probability density functions (PDF’s), and N_i the event yield for signal or background component c. For signal events, $\mathcal{P}^{Dalitz}(\tilde{\eta}_j)$ is given by $|\mathcal{A}^{Dalitz}(\tilde{\eta})|^2$ corrected by the efficiency variations. All PDF shape parameters used to describe signal, continuum, and $B^- \rightarrow \bar{D}^{(*)0} \pi^-$ components are determined directly from $B^- \rightarrow \bar{D}^{(*)0}K^-$ and $B^- \rightarrow \bar{D}^{(*)0} \pi^-$ signal, sideband regions, and off-peak data, and are fixed in the final fit for CP parameters and event yields. Only the m_{ES}, ΔE, and Dalitz PDF’s for BB background events are determined from a detailed Monte Carlo simulation. $B^- \rightarrow \bar{D}^{(*)0} \pi^-$ candidates have been selected using criteria similar to those applied for $B^- \rightarrow \bar{D}^{(*)0}K^-$ but requiring the bachelor pion not to be consistent with the kaon hypothesis.

The CP fit yields $282 \pm 20, 90 \pm 11$, and 44 ± 8 signal \bar{D}^0K^-, $\bar{D}^0(\bar{D}^0 \pi^0)K^-$, and $\bar{D}^{0(\pi)}\gamma K^-$ candidates, respectively, consistent with expectations based on measured branching fractions and efficiencies estimated from Monte Carlo simulation. The results for the CP-violating parameters $z^{(c)} = (x^{(c)}, y^{(c)})$, where $x^{(c)}$ and $y^{(c)}$ are defined as the real and imaginary parts of the complex amplitude ratios $r^{(c)}e^{i(\delta^{(c)}-\gamma)}$, respectively, are summarized in Table II. Here, $r^{(c)}$ is the amplitude ratio between the amplitudes $b \rightarrow u$ and $b \rightarrow c$, separately for B^+ and B^-. The only nonzero statistical correlations involving the CP parameters are for the pairs z_0, z_1, z_2, and z_3, which amount to 3%, 6%, -17%, and -27%, respectively. The $z^{(c)}$ variables are more suitable fit parameters than $r^{(c)}$, $\delta^{(c)}$, and γ because they are better behaved near the origin, especially in low-statistics samples. Figures 3(a) and 3(b) show the one- and two-standard deviation confidence-level contours (statistical only) in the $z^{(c)}$ planes for \bar{D}^0K^- and $\bar{D}^{0(\pi)}\gamma K^-$, and separately for $B^- \rightarrow \bar{D}_2(\pi)K^-$ and $B^+ \rightarrow \bar{D}_2(\pi)K^+$. The separation between the B^- and B^+ regions in these planes is an indication of direct CP violation.

The largest single contribution to the systematic uncertainties in the CP parameters comes from the choice of the Dalitz model used to describe the $D^0 \rightarrow K^0_S \pi^+ \pi^+$ decay amplitudes. To evaluate this uncertainty we use the nominal Dalitz model (Table I) to generate large samples of pseudoexperiments. We then compare experiment by experiment the values of $z^{(c)}$ obtained from fits using the nominal model and a set of alternative models. We find that removing different combinations of K^* and ρ resonances (with low fit fractions), or changing the functional form of the resonance shapes, has little effect on the total χ^2 of the fit, or on the values of $z^{(c)}$. However, models where one or both of the σ and ρ resonances are removed lead to a significant increase in the χ^2 of the fit. We use the average variations of $z^{(c)}$ corresponding to this second set of alternative models as the systematic uncertainty due to imperfect knowledge of A_D.

The experimental systematic uncertainties include the errors on the m_{ES}, ΔE, and \mathcal{F} PDF parameters for signal and background, the uncertainties in the knowledge of the Dalitz distribution of background events, the efficiency variations across the Dalitz plane, and the uncertainty in the fraction of events with a real D^0 produced in a back-to-

![FIG. 3](https://example.com/fig3.png)

FIG. 3 (color online). Contours at 39.3% (dark) and 86.5% (light) confidence level (statistical only) in the $z^{(c)}$ planes for (a) $\bar{D}_2 \bar{K}^-$ and (b) $\bar{D}_2^{0(\pi)} \gamma K^-$, separately for B^- (thick and solid lines) and B^+ (thin and dotted lines). Projections in the $r^{(c)}$ planes of the five-dimensional one-standard (dark) and two-standard (light) deviation regions, for (c) $\bar{D}^0 \bar{K}^-$ and (d) $\bar{D}_2^{0(\pi)} \gamma K^-$.

Table II

CP-violating parameters $z^{(c)}$ obtained from the CP fit to the $B^- \rightarrow \bar{D}^{(*)0}K^-$ samples. The first error is statistical, the second is the experimental systematic uncertainty, and the third reflects the Dalitz model uncertainty.

<table>
<thead>
<tr>
<th></th>
<th>$x^{(c)}$</th>
<th>$y^{(c)}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>z_0</td>
<td>$0.08 \pm 0.07 \pm 0.03 \pm 0.02$</td>
<td>$0.06 \pm 0.09 \pm 0.04 \pm 0.04$</td>
</tr>
<tr>
<td>z_1</td>
<td>$-0.13 \pm 0.07 \pm 0.03 \pm 0.03$</td>
<td>$0.02 \pm 0.08 \pm 0.02 \pm 0.02$</td>
</tr>
<tr>
<td>z_2</td>
<td>$-0.13 \pm 0.09 \pm 0.03 \pm 0.02$</td>
<td>$-0.14 \pm 0.11 \pm 0.02 \pm 0.03$</td>
</tr>
<tr>
<td>z_3</td>
<td>$0.14 \pm 0.09 \pm 0.03 \pm 0.03$</td>
<td>$0.01 \pm 0.12 \pm 0.04 \pm 0.06$</td>
</tr>
</tbody>
</table>
back configuration with a negatively charged kaon. Less significant systematic uncertainties originate from the imprecise knowledge of the fraction of real D^0's, the invariant mass resolution, and the statistical errors in the Dalitz amplitudes and phases from the fit to the tagged D^0 sample. The possible effect of CP violation in $B^- \rightarrow \bar{D}^{(*)0}\pi^-$ decays and $B\bar{B}$ background was found to be negligible.

A frequentist (Neyman) construction of the confidence regions of $p = (r_B, r_B', \delta_B, \delta_B', \gamma)$ based on the constraints on Z^ε has been adopted [4]. Using a large number of pseudoexperiments corresponding to the nominal CP fit model but with many different values of the CP fit parameters, we construct an analytical (Gaussian) parameterization of the PDF of Z^ε as a function of p. For a given p, the five-dimensional confidence level $C = 1 - \alpha$ is calculated by integrating over all points in the fit parameter space closer (larger PDF) to p than the fitted data values. The one- (two-)standard deviation region of the CP parameters is defined as the set of p values for which α is smaller than 3.7% (45.1%).

Figures 3(c) and 3(d) show the two-dimensional projections in the $r_B^{(\varepsilon)}$-γ planes, including systematic uncertainties, for $\bar{D}^{(*)0}K^-$ and $D^{(*)0}K^-$. The figures show that this Dalitz analysis has a twofold ambiguity, $(\gamma, \delta_B^{(\varepsilon)}) \rightarrow (\gamma + 180^\circ, \delta_B^{(\varepsilon)} + 180^\circ)$. The significance of direct CP violation, obtained by evaluating C for the most probable CP conserving point, corresponds to 1.6, 2.1, and 2.4 standard deviations, for $\bar{D}^{(*)0}K^-$ and $D^{(*)0}K^-$, and their combination, respectively. Similar results are obtained using a Bayesian technique with uniform a priori probability distributions for $r_B^{(\varepsilon)}$, $\delta_B^{(\varepsilon)}$, and γ.

In summary, we have measured the direct CP-violating parameters in $B^- \rightarrow \bar{D}^{(*)0}K^-$ using a Dalitz analysis of $\bar{D}^{(*)} \rightarrow K^0_S \pi^- \pi^+$ decays, obtaining $r_B = 0.12 \pm 0.08 \pm 0.03 \pm 0.04$ [0.0, 0.28], $r_B' = 0.17 \pm 0.10 \pm 0.03 \pm 0.03$ [0.0, 0.35], $\delta_B = 104 \pm 45^{+17+16}_{-21-24}$, $\delta_B' = -64 \pm 41^{+14+12}_{-12-15}$, and $\gamma = 70 \pm 31^{+12+14}_{-10-11}$ [12$^\circ$, 137$^\circ$]. The first error is statistical, the second is the experimental systematic uncertainty, and the third reflects the Dalitz model uncertainty. The values inside square brackets indicate the two-standard deviation intervals. The results for γ from $B^- \rightarrow \bar{D}^{(*)0}K^-$ and $B^- \rightarrow D^{(*)0}K^-$ alone are (70 \pm 38$^\circ$) and (71 \pm 35$^\circ$), respectively (statistical errors only). The constraint on γ is consistent with that reported by the Belle Collaboration [8], which has a slightly better statistical precision since our $r_B^{(\varepsilon)}$ constraint favors smaller values.

We are grateful for the excellent luminosity and machine conditions provided by our PEP-II colleagues, and for the substantial dedicated effort from the computing organizations that support BABAR. The collaborating institutions wish to thank SLAC for its support and kind hospitality. This work is supported by DOE and NSF (USA), NSERC (Canada), IHEP (China), CEA and CNRS-IN2P3 (France), BMBF and DFG (Germany), INFN (Italy), FOM (The Netherlands), NRF (Norway), MIST (Russia), and PPARC (United Kingdom). Individuals have received support from CONACyT (Mexico), A.P. Sloan Foundation, Research Corporation, and Alexander von Humboldt Foundation.

\footnotesize

*Also at Università di Perugia, Dipartimento di Fisica, Perugia, Italy.

†Also at Università della Basilicata, Potenza, Italy.

‡Deceased.

[5] Reference to the charge-conjugate state is implied here and throughout the text unless otherwise stated.

[15] The σ and σ' masses and widths are determined from the data. We find (in MeV/c^2) $M_\sigma = 484 \pm 9$, $\Gamma_\sigma = 383 \pm 14$, $M_{\sigma'} = 1014 \pm 7$, and $\Gamma_{\sigma'} = 88 \pm 13$. Errors are statistical.