Improved Measurement of CP Asymmetries in $B^0\rightarrow(\bar{c}c)\bar{K}^{0(\ast)}$ Decays

We present results on time-dependent CP asymmetries in neutral B_0 decays to several CP eigenstates. The measurements use a data sample of about 227×10^6 $B\bar{B}$ decays collected by the BABAR detector at the PEP-II asymmetric-energy B Factory at SLAC. The amplitude of the CP asymmetry, $\sin^2 \beta$, in the standard model, is derived from decay-time distributions from events in which one neutral B meson...
charge-parity (CP) violation in the B meson system has been established by the BABAR [1] and Belle [2] collaborations. The standard model of electroweak interactions describes CP violation as a consequence of an irreducible phase in the three-generation Cabibbo-Kobayashi-Maskawa (CKM) quark-mixing matrix [3]. In this framework, measurements of CP asymmetries in the proper-time distribution of neutral B decays to CP eigenstates containing a charmonium and K0 meson provide a direct measurement of sin 2 β [4]. The angle β is arg [-Vcd* Vcb / Vub* Vub], where Vij are CKM matrix elements.

In this Letter we report on an updated measurement of sin 2 β in \((227 \pm 2) \times 10^6 \) \(B \bar{B} \) decays using \(B^0 \) decays to the final states \(J/\psi K_S^0, \psi(2S)K_S^0, \chi_c1K_S^0, \eta, \eta' \), and \(J/\psi K^{*0} (K^{*0} \to K^0 \pi^0) \) [5]. The BABAR detector and the measurement technique are described in detail in Refs. [6,7], respectively. Changes in the analysis with respect to the previously published results include 140 \(\times 10^6 \) more \(B \bar{B} \) events, an improved event reconstruction applied to all of the data, a new flavor-tagging algorithm, and fewer assumptions about the CP properties of background events.

The proper-time distribution of B meson decays to a CP eigenstate \(f \) can be expressed in terms of a complex parameter \(\lambda \) [8], which depends on both the \(B^0 \bar{B}^0 \) oscillation amplitude and the decay amplitudes for \(\bar{B}^0 \to \bar{f} \) and \(B^0 \to f \). The decay rate \(f_+(f_-) \) when the other B meson \(B_{\text{tag}} \) decays as a \(B^0 (\bar{B}^0) \) is given by

\[
\Gamma_\pm(\Delta t) = \frac{e^{-|\lambda|/\tau_{B^0}}}{4\tau_{B^0}} \left[1 \pm \frac{2 \text{Im} \lambda}{1 + |\lambda|^2} \sin(\Delta m_d \Delta t) \right. \\
\left. + \frac{1 - |\lambda|^2}{1 + |\lambda|^2} \cos(\Delta m_d \Delta t) \right],
\]

for a B from a \(Y(4S) \to B^0 \bar{B}^0 \) decay, where \(\Delta t \) is the difference between the proper decay times of the reconstructed B meson \(B_{\text{rec}} \) and \(B_{\text{tag}} \), \(\tau_{B^0} \) is the \(B^0 \) lifetime, and \(\Delta m_d \) is the \(B^0 \bar{B}^0 \) oscillation frequency. The decay width difference \(\Delta \Gamma \) between the \(B^0 \) mass eigenstates is assumed to be zero. The sine term is due to the interference between direct decay and decay after a net \(B^0 \bar{B}^0 \) oscillation. A nonzero cosine term arises from the interference between decay amplitudes with different weak and strong phases (direct CP violation) or from CP violation in \(B^0 \bar{B}^0 \) mixing.

In the standard model, CP violation in mixing is negligible, as is direct CP violation for \(b \to c\bar{c}s \) decays that contain a charmonium meson [8]. With these assumptions \(\lambda = \eta f e^{-2i\beta} \), where \(\eta_f \) is the CP eigenvalue of final state \(f \). Thus, the time-dependent CP asymmetry is

\[
A_{CP}(\Delta t) = \frac{f_+ - f_-}{f_+ + f_-} = -\eta_f \sin 2\beta \sin(\Delta m_d \Delta t),
\]

with \(\eta_f = -1 \) for \(J/\psi K^0_S, \psi(2S)K^0_S, \chi_c1K^0_S, \eta, \eta' \), and \(+1 \) for \(J/\psi K^{*0} \). Because of the presence of even \((L = 0, 2)\) and odd \((L = 1)\) orbital angular momenta in the \(J/\psi K^{*0} \) final state, there can be CP-even and CP-odd contributions to the decay rate. When the angular information in the decay is ignored, the measured CP asymmetry in \(J/\psi K^{*0} \) is reduced by a factor \(|1 - 2R_L| \), where \(R_L \) is the fraction of the \(L = 1 \) contribution. We have measured \(R_L = 0.230 \pm 0.015 \pm 0.004 \) [9], which gives an effective \(\eta_f = 0.51 \pm 0.04 \), after acceptance corrections.

In addition to the CP modes described above, we utilize a large sample (\(B_{\text{raw}} \) to \(B^0 \) decays to the flavor eigenstates \(D^{(*)} h^+, h^+ = \tau^+, \rho^+, \chi^0, \) and \(a_1^+ \)) and \(J/\psi K^{*0} (K^{*0} \to K^0 \pi^0) \) for calibrating our flavor tagging and \(\Delta t \) resolution. Studies to measure apparent CP violation from unphysical sources are performed with a control sample of \(B^+ \) mesons decaying to the final states \(J/\psi K^{(*)+}, \psi(2S)K^+, \chi_c1K^+, \) and \(K^+ \). The event selection and candidate reconstruction are unchanged from those described in Refs. [1,7,10], except that only the \(\eta_c \) \(K_S^0 K^+ \pi^- \) channel is used in the \(B^+ \to \eta_c K^0_S \) and \(B^{(*)+} \to \eta_c K^{*0} \) modes (\(2.91 < m_{K_S^0 K^+ \pi^-} < 3.05 \) GeV/c^2).

The time interval \(\Delta t \) between the two B decays is calculated from the measured separation \(\Delta z \) between the decay vertices of \(B_{\text{rec}} \) and \(B_{\text{tag}} \) along the collision \((z) \) axis [7]. We find the \(z \) position of the \(B_{\text{rec}} \) vertex from its charged tracks. The \(B_{\text{tag}} \) decay vertex is determined by fitting tracks not belonging to the \(B_{\text{rec}} \) candidate to a common vertex, employing constraints from the beam spot location and the \(B_{\text{rec}} \) momentum [7]. We accept events with a calculated \(\Delta t \) uncertainty of less than 2.5 ps and

<table>
<thead>
<tr>
<th>Category</th>
<th>(\epsilon) (%)</th>
<th>(w) (%)</th>
<th>(\Delta w) (%)</th>
<th>(Q) (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lepton</td>
<td>8.6 ± 0.1</td>
<td>3.2 ± 0.4</td>
<td>-0.2 ± 0.8</td>
<td>7.5 ± 0.2</td>
</tr>
<tr>
<td>Kaon</td>
<td>10.9 ± 0.1</td>
<td>4.6 ± 0.5</td>
<td>-0.7 ± 0.9</td>
<td>9.0 ± 0.2</td>
</tr>
<tr>
<td>Kaon II</td>
<td>17.1 ± 0.1</td>
<td>15.6 ± 0.5</td>
<td>-0.7 ± 0.8</td>
<td>8.1 ± 0.2</td>
</tr>
<tr>
<td>Kaon-Pion</td>
<td>13.7 ± 0.1</td>
<td>23.7 ± 0.6</td>
<td>-0.4 ± 1.0</td>
<td>3.8 ± 0.2</td>
</tr>
<tr>
<td>Pion</td>
<td>14.5 ± 0.1</td>
<td>33.0 ± 0.6</td>
<td>5.1 ± 1.0</td>
<td>1.7 ± 0.1</td>
</tr>
<tr>
<td>Other</td>
<td>10.0 ± 0.1</td>
<td>41.1 ± 0.8</td>
<td>2.4 ± 1.2</td>
<td>0.3 ± 0.1</td>
</tr>
<tr>
<td>All</td>
<td>74.9 ± 0.2</td>
<td>30.5 ± 0.4</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

is fully reconstructed in a final state containing a charmonium meson and the other B meson is determined to be either a \(B^0 \) or \(B^0 \) from its decay products. We measure \(\sin 2\beta = 0.722 \pm 0.040 \text{(stat)} \pm 0.023 \text{(syst)} \) in agreement with the standard model expectation.
|Δt| < 20 ps. The fraction of events satisfying these requirements is 95%. The rms Δt resolution is 1.1 ps for the 99.7% of these events that exclude outliers.

We use multivariate algorithms to identify signatures of B decays that determine (“tag”) the flavor at decay of the B_{tag} to be either a B^0 or B̄^0. Primary leptons from semi-leptonic B decays are selected from identified electrons and muons as well as isolated energetic tracks. The charges of identified kaon candidates define a kaon tag. Soft pions from D^{+}\to K^-\pi^+ decays are selected on the basis of their momentum and direction with respect to the thrust axis of B_{tag}.

These algorithms are combined to account for correlations among different sources of flavor information and to provide an estimate of the mistag probability for each event. These algorithms have been improved relative to Ref. [1]. In addition, the correlations among the mistag parameters and those of the Δτ resolution function are reduced.

The beam-energy substituted mass m_{ES} = \sqrt{(E_{beam}^m)^2 - (p_{T}^m)^2} (all modes except for J/ψK^0_L) or the difference ΔE between the candidate center-of-mass energy and E_{beam}^m (J/ψK^0_L channel) are used to determine the composition of our final sample (Fig. 1). Here, E_{beam}^m and p_{T}^m are the beam energy and B momentum in the center-of-mass frame. Events with m_{ES} > 5.2 GeV/c^2 (ΔE < 80 MeV) are used so that the properties of the background contributions can be measured. The more restricted signal region (Table II) contains 7730 CP candidate events that satisfy the tagging and vertexing requirements.

For all modes except η_{s}, K^0_S and J/ψK^0_L we use simulated events to estimate the fractions of events that peak in the m_{ES} signal region due to cross-feed from other decay modes (peaking background). For the η_{s}, K^0_S mode the cross-feed fraction is determined from a fit to the M_{KKπ} and m_{ES} distributions in data. For the J/ψK^0_L decay mode,

```
TABLE II. Number of events N_{tag} in the signal region after tagging and vertexing requirements, signal purity P including the contribution from peaking background, and results of fitting for CP asymmetries in the B_{CP} sample and various subsamples. In addition, results on the B_{fav} and charged B control samples test that no artificial CP asymmetry is found where we expect no CP violation (sin2β = 0). Errors are statistical only. The signal region is 5.27 < m_{ES} < 5.29 GeV/c^2 (|ΔE| < 10 MeV for J/ψK^0_L).

<table>
<thead>
<tr>
<th>Sample</th>
<th>N_{tag}</th>
<th>P (%)</th>
<th>sin2β</th>
</tr>
</thead>
<tbody>
<tr>
<td>Full CP sample</td>
<td>7730</td>
<td>76</td>
<td>0.722 ± 0.040</td>
</tr>
<tr>
<td>J/ψK^0_L, ψ(2S)K^0_S, χ_{s1}K^0_S, η, K^0_S</td>
<td>4370</td>
<td>90</td>
<td>0.75 ± 0.04</td>
</tr>
<tr>
<td>J/ψK^0_L</td>
<td>2788</td>
<td>56</td>
<td>0.57 ± 0.09</td>
</tr>
<tr>
<td>J/ψK^0_L (K^0_S → K^0_L π^0)</td>
<td>572</td>
<td>68</td>
<td>0.96 ± 0.32</td>
</tr>
<tr>
<td>1999–2002 data</td>
<td>3032</td>
<td>77</td>
<td>0.74 ± 0.06</td>
</tr>
<tr>
<td>2003–2004 data</td>
<td>4698</td>
<td>77</td>
<td>0.71 ± 0.05</td>
</tr>
<tr>
<td>J/ψK^0_L, ψ(2S)K^0_S, χ_{s1}K^0_S, η, K^0_S only (η_f = -1)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>J/ψK^0_L (K^0_S → π^+ π^-)</td>
<td>2751</td>
<td>96</td>
<td>0.79 ± 0.05</td>
</tr>
<tr>
<td>J/ψK^0_L (K^0_S → π^0 π^0)</td>
<td>653</td>
<td>88</td>
<td>0.65 ± 0.12</td>
</tr>
<tr>
<td>ψ(2S)K^0_L (K^0_S → π^+ π^-)</td>
<td>485</td>
<td>82</td>
<td>0.88 ± 0.14</td>
</tr>
<tr>
<td>χ_{s1}K^0_S</td>
<td>194</td>
<td>81</td>
<td>0.69 ± 0.23</td>
</tr>
<tr>
<td>η, K^0_S</td>
<td>287</td>
<td>64</td>
<td>0.17 ± 0.25</td>
</tr>
<tr>
<td>Lepton category</td>
<td>490</td>
<td>96</td>
<td>0.75 ± 0.08</td>
</tr>
<tr>
<td>Kaon I category</td>
<td>648</td>
<td>93</td>
<td>0.75 ± 0.08</td>
</tr>
<tr>
<td>Kaon II category</td>
<td>1021</td>
<td>89</td>
<td>0.77 ± 0.09</td>
</tr>
<tr>
<td>Kaon-Pion category</td>
<td>769</td>
<td>90</td>
<td>0.77 ± 0.15</td>
</tr>
<tr>
<td>Pion category</td>
<td>835</td>
<td>87</td>
<td>0.96 ± 0.22</td>
</tr>
<tr>
<td>Other category</td>
<td>607</td>
<td>88</td>
<td>0.23 ± 0.51</td>
</tr>
<tr>
<td>B_{fav} sample</td>
<td>75 878</td>
<td>85</td>
<td>0.021 ± 0.013</td>
</tr>
<tr>
<td>B^+ sample</td>
<td>18 294</td>
<td>88</td>
<td>0.003 ± 0.020</td>
</tr>
</tbody>
</table>
```
the composition, effective η_f, and ΔE distribution of the individual background sources are determined either from simulation (for $B \to J/\psi X$) or from the $m_{c\bar{c}}$ sidebands in data (for fake $J/\psi \to \ell^+\ell^-$).

We determine $\sin\beta$ with a simultaneous maximum likelihood fit to the Δt distributions of the tagged B_{CP} and B_{flav} samples. The Δt distributions of the B_{CP} sample are modeled by Eq. (1) with $|\lambda| = 1$. Those of the B_{flav} sample evolve according to the known frequency for flavor oscillation in B^0 mesons. The observed amplitudes for the CP asymmetry in the B_{CP} sample and for flavor oscillation in the B_{flav} sample are assumed to be reduced by the same factor $1 - 2w$ due to flavor mistags. The Δt distributions for the signal are convolved with a common resolution function, modeled by the sum of three Gaussians [7]. Backgrounds are incorporated with an empirical description of their Δt spectra, containing prompt and nonprompt components convolved with a resolution function [7] distinct from that of the signal.

There are 65 free parameters in the fit: $\sin\beta$ (1), the average mistag fractions w and the differences Δw between B^0 and \bar{B}^0 mistag fractions for each tagging category (12), parameters for the signal Δt resolution (7), parameters for CP background time dependence (8), and the difference between B^0 and \bar{B}^0 reconstruction and tagging efficiencies (7), for B_{flav} background, time dependence (3), Δt resolution (3), and mistag fractions (24). For the CP modes (except for $J/\psi K^0_L$), the apparent CP asymmetry of the nonpeaking background in each tagging category is allowed to float. This asymmetry is parameterized so that it does not depend on the value of $\sin\beta$.

We fix $\tau_B = 1.536$ ps, $\Delta m_f = 0.502$ ps$^{-1}$ [11], $|\lambda| = 1$, and $\Delta \Gamma = 0$. The determination of the mistag fractions and Δt resolution function parameters for the signal is dominated by the high-statistics B_{flav} sample. Background parameters are determined mainly from events with $m_{ES}^2 < 5.27$ GeV/c^2.

The fit to the B_{CP} and B_{flav} samples yields
\[
\sin2\beta = 0.722 \pm 0.040(\text{stat}) \pm 0.023(\text{syst}).
\]

Fig. 2 shows the Δt distributions and asymmetries in yields between B^0 tags and \bar{B}^0 tags for the $\eta_f = -1$ and $\eta_f = +1$ samples as a function of Δt, overlaid with the projection of the likelihood fit result.

In a separate fit with only the $\eta_f = -1$ sample, we obtain $|\lambda| = 0.950 \pm 0.031(\text{stat}) \pm 0.015(\text{syst})$. The correlation between the coefficients multiplying the $\sin(\Delta m_f \Delta t)$ and $\cos(\Delta m_f \Delta t)$ terms in Eq. (1) is -2%.

The sources of systematic error are summarized in Table III. These include the uncertainties in the level and

FIG. 1. Distributions for B_{CP} and B_{flav} candidates satisfying the tagging and vertexing requirements: (a) m_{ES} for the final states $J/\psi K^0_L$, $\psi(2S)K^0_L$, $\chi_c K^0_L$, and ηK^0_L; (b) ΔE for the final state $J/\psi K^0_L$; (c) m_{ES} for $J/\psi K^{*0}$ ($K^{*0} \to K^0 \pi^0$); and (d) m_{ES} for the B_{flav} sample. In each plot, the shaded region is the estimated background contribution.
\[\text{CP asymmetry of the peaking background, the assumed parameterization of the } \Delta t \text{ resolution function, possible differences between the } B_{\text{flav}} \text{ and } B_{\text{CP}} \text{ mistag fractions, knowledge of the event-by-event beam spot position, and the possible interference between the suppressed } b \to \bar{u}c\bar{d} \text{ amplitude with the favored } b \to c\bar{u}d \text{ amplitude for some tagside } B \text{ decays [12]. In addition, we include the variation due to the assumed values of } |\lambda| \text{ and } \Delta \Gamma. \text{ We assign the change in the measured } \sin^2 \beta \text{ when we float } |\lambda| \text{ and when we set } \Delta \Gamma/\Gamma = \pm 0.02, \text{ the latter being considerably larger than recent standard model estimates [13]. The total systematic error on } \sin^2 \beta (|\lambda|) \text{ is 0.023 (0.015).}

The large } B_{\text{CP}} \text{ sample allows a number of consistency checks, including separation of the data by decay mode and tagging category, as shown in Table II. Considering statistical errors only, the probability of finding a worse agreement in measured } \sin^2 \beta \text{ values across decay modes is 7\% and between tagging categories is 86\%. The results of fits to the control samples of non-CP decay modes indicate no statistically significant asymmetry. This measurement of } \sin^2 \beta \text{ supersedes our previous result [1] and is consistent with the range implied by other measurements and theoretical estimates of the magnitudes of CKM matrix elements in the context of the standard model [14]. The theoretical uncertainty on the interpretation of the measurement of } \sin^2 \beta \text{ in these modes is approximately 0.01 [8]. As the current measurement is statistics limited, future measurements will add further model-independent constraints on the position of the apex of the unitarity triangle [14]. We are grateful for the excellent luminosity and machine conditions provided by our PEP-II colleagues, and for the substantial dedicated effort from the computing organizations that support BABAR. The collaborating institutions wish to thank SLAC for its support and kind hospitality. This work is supported by DOE and NSF (USA), NSERC (Canada), IHEP (China), CEA and CNRS-IN2P3 (France), BMBF and DFG (Germany), INFN (Italy), FOM (The Netherlands), NFR (Norway), MIST (Russia), and PPARC (United Kingdom). Individuals have received support from CONACyT (Mexico), A. P. Sloan Foundation, Research Corporation, and Alexander von Humboldt Foundation.}

*Now at Department of Physics, University of Warwick, Coventry, United Kingdom
†Also with Università della Basilicata, Potenza, Italy
‡Also with IFIC, Instituto de Fisica Corpuscular, CSIC-Universidad de Valencia, Valencia, Spain
§Deceased.

[5] Charge-conjugate reactions are included implicitly unless otherwise specified.
[14] See, for example, F. I. Gilman, K. Kleinknecht, and B. Renk, in Ref. [8], p. 130.

\begin{table}[h]
\centering
\caption{Sources of systematic error on \(\sin^2 \beta\) and \(|\lambda|\).}
\begin{tabular}{|l|cc|}
\hline
Source & \(\sigma (\sin^2 \beta)\) & \(\sigma (|\lambda|)\) \\
\hline
CP backgrounds & 0.012 & 0.002 \\
\Delta t resolution function & 0.011 & 0.003 \\
\(J/\psi K_S\) backgrounds & 0.011 & not applicable \\
Mistag fraction differences & 0.007 & 0.001 \\
Beam spot & 0.007 & 0.001 \\
\Delta m_{d, t}, \tau_B, \Delta \Gamma/\Gamma, |\lambda| & 0.005 & 0.001 \\
Tag-side interference & 0.001 & 0.014 \\
MC statistics & 0.003 & 0.003 \\
Total systematic error & 0.023 & 0.015 \\
\hline
\end{tabular}
\end{table}