The following full text is a publisher's version.

For additional information about this publication click this link.
http://hdl.handle.net/2066/128630

Please be advised that this information was generated on 2019-10-27 and may be subject to change.
A common biological basis of obesity and nicotine addiction

Smoking influences body weight such that smokers weigh less than non-smokers and smoking cessation often leads to weight increase. The relationship between body weight and smoking is partly explained by the effect of nicotine on appetite and metabolism. However, the brain reward system is involved in the control of the intake of both food and tobacco. We evaluated the effect of single-nucleotide polymorphisms (SNPs) affecting body mass index (BMI) on smoking behavior, and tested the 32 SNPs identified in a meta-analysis for association with two smoking phenotypes, smoking initiation (SI) and the number of cigarettes smoked per day (CPD) in an Icelandic sample (N = 34,216 smokers). Combined according to their effect on BMI, the SNPs correlate with both SI (r = 0.019, P = 0.00054) and CPD (r = 0.032, P = 8.0 × 10⁻⁶). These findings replicate in a second large data set (N = 127,274, thereof 76,242 smokers) for both SI (P = 1.2 × 10⁻⁵) and CPD (P = 9.3 × 10⁻⁵). Notably, the variant most strongly associated with BMI (rs1558902-A in FTO) did not associate with smoking behavior. The association with smoking behavior is not due to the effect of the SNPs on BMI. Our results strongly point to a common biological basis of the regulation of our appetite for tobacco and food, and thus the vulnerability to nicotine addiction and obesity.

Translational Psychiatry (2013) 3, e308; doi:10.1038/tp.2013.81; published online 1 October 2013

Keywords: addiction; body mass index; nicotine dependence; obesity; smoking

INTRODUCTION

Smoking and obesity are major risk factors for many serious diseases. Eating and smoking are behavioral traits that are at least in part controlled by the same reward mechanisms. Genome-wide association studies (GWAS) have yielded 32 single-nucleotide polymorphisms (SNPs) associated with body mass index (BMI). Smoking and SNPs associated with increased smoking quantity have been shown to correlate with lower BMI.

According to the World Health Organization (WHO), more than one billion people smoke and over 400 million people are obese (BMI > 30 kg m⁻²), with both prevalences rising (see url section). Eating can become compulsive, and the neurobiological processes relating to overindulgence in food overlap with those involved in substance abuse and addiction. All drugs of abuse have been shown to increase dopamine in the mesolimbic reward system, and studies of both human brain images and animal brains have revealed that similar neurocircuits are involved in the regulation of rewarding and reinforcement in drug addiction and compulsive eating. Based on the many similarities between hyperphagia and excessive drug use in addiction, it has even been suggested that some forms of obesity should be included as a diagnosis in future editions of the Diagnostic and Statistical Manual of Mental Disorders.

Smoking influences body weight, such that smokers weigh less than non-smokers, and smoking cessation is often accompanied by an increase in weight. These effects have been largely attributed to nicotine that increases the metabolic rate and suppresses appetite. Although increased food intake upon smoking cessation is partly explained by a reward substitution mechanism, as food intake is increased to make up for the lack of nicotine, the absence of nicotine has also been shown to increase the reward value of certain foods. At the molecular level, these effects are most likely achieved through activation of the nicotinic acetylcholine receptors. The melanocortin (MC) system has a key role in regulating body weight, and nicotine was recently shown to interact directly with the MC system in the brain through activation of α₃β₄ nicotinic acetylcholine receptors on pro-opiomelanocortin (POMC) neurons in the arcuate nucleus of the hypothalamus. The POMC neurons project to secondary neurons influencing appetite, and nicotine activation leads to the release of melanocortin-4 agonists activating MC4 receptors in the paraventricular nucleus producing appetite suppression, an effect that is absent from POMC KO mice.

However, the relationship between smoking phenotypes and obesity is more complicated than can be accounted for by the known effects of nicotine on appetite and metabolism. This is evident from the fact that the number of cigarettes smoked per day (CPD) correlates with elevated BMI. Thus, although smokers weigh less than non-smokers, heavy smokers indeed weigh more than light smokers.

BMI and smoking data are widely available from various studies and large sample sizes have been obtained for GWAS of BMI and some smoking phenotypes, and these studies have uncovered a number of variants associating with obesity (BMI) and with smoking behavior. The variant most strongly correlating with CPD, rs1051730-A/rs1696968-A, correlates with reduced BMI in current and former smokers, but does not have an impact on the BMI of never smokers. This observation is...
consistent with the notion that smoking influences body weight through nicotine’s effects on body and brain, the increase of metabolic rate and suppression of appetite. Here we report how variants correlating with BMI influence smoking behavior.

MATERIALS AND METHODS

Study subjects

Written informed consent was obtained from all subjects. Inclusion in the study required the availability of genotypes from ongoing SNP array typing in Icelandic or previous GWAS.15–17 and the study populations have all been described previously.15–17 The GWAS of smoking initiation (SI) involved comparison of ever smokers and never smokers, and the studies of smoking quantity probed CPD as a quantitative trait among smokers only. The definitions of smokers and never smokers varied somewhat between studies,15–17 as questions addressing smoking behavior varied with most studies probing for regular smoking over a certain period of time. Questions probing for smoking quantity also varied between studies, and for analysis of smoking quantity we used CPD data for smokers in categories with each category representing 10 CPD (effect size of 0.1 = 1 CPD).15–17 CPD at the time of smoking was used for past smokers, and never smokers were excluded from analysis of CPD. All subjects were of European descent. The total sample sizes were \(N = 100,860\) and \(N = 161,490\) for CPD and SI, respectively.

Icelandic study design

A generalized form of linear regression was used to test the correlation between quantitative traits (BMI and height) and smoking phenotypes (CPD and SI) in Iceland. The generalized form assumes that the smoking behavior of related individuals is correlated proportional to the kinship between them rather than assuming that the smoking phenotypes of all individuals are independent. Let \(y\) be the vector of smoking behavior measurements, and let \(x\) be the vector of BMI or height measurements. We assume that the expectation of the smoking behavior depends linearly on BMI or height, \(Ey = \beta_x + \beta_i,\) and that the variance–covariance matrix of the smoking behavior depends only on the pairwise kinship between the study participants, \(Var(y) = 2\sigma^2_i,\) where

\[
\Phi_y = \left\{ \begin{array}{ll} 1 & i = j, \\ \frac{1}{2k_{ij}} & i \neq j, \end{array} \right.
\]

is based on the kinship between individuals as estimated from the Icelandic genealogical database (\(k_{ij}\)) and an estimate of the heritability of the trait (\(\sigma^2_i\)). Assuming normally distributed errors, the maximum likelihood method gives estimates for \(\beta\), which will asymptotically follow a normal distribution and can be used to estimate the correlation between height and BMI on the one side and CPD and SI on the other.

In order to test the correlation between the set of 32 BMI SNPs or the set of 180 height SNPs and smoking behavior, the same type of analysis was performed replacing the observed BMI and height with the BMI and height predicted based on the sets of 32 and 180 SNPs. We shall describe how this was achieved for BMI, the analysis for height being conceptually identical. For each of the 32 SNPs reported to associate with BMI, let \(\gamma\) be its minor allele frequency and \(\gamma\) be its published effect on BMI. For an individual with \(g_i\) minor alleles at SNP \(l\), the set of 32 BMI SNPs predict a BMI of

\[
\sum_{i=1}^{32} (g_i - \bar{g}) \gamma
\]

Conditional independence

We observe a correlation between the 32 BMI SNPs and smoking behavior. The 32 BMI SNPs associate with BMI and BMI associates with CPD. The question then arises of whether the correlation between the 32 BMI SNPs and CPD is all going through BMI. In other words, are the 32 BMI SNPs and CPD correlated conditional on BMI? Assuming that the 32 BMI SNPs and CPD are independent conditional on BMI, then the correlation between the 32 BMI SNPs and CPD will be the product of the correlation between the 32 BMI SNPs and BMI and the correlation between BMI and CPD. Denoting the estimator for the correlation between the 32 BMI SNPs and BMI \(r_{BMISNPs,BMI}\) and the variance of the estimator with \(Var(r_{BMISNPs,BMI})\), and similarly for the correlation between BMI and CPD. Then, \(r_{BMISNPs,BMI,CPD}\) is an estimator of the correlation between the 32 BMI SNPs and CPD, assuming conditional independence, and \(Var(r_{BMISNPs,BMI,CPD}) = Var(r_{BMISNPs,BMI}) + Var(r_{BMI,CPD}) - Cov(r_{BMISNPs,BMI}, r_{BMI,CPD})\) gives an estimate of the variance of the estimator. A standard test for the mean of two samples can now be applied to test the difference between the observed correlation between the 32 BMI SNPs and CPD and the correlation predicted based on the 32 BMI SNPs and CPD being independent conditional on BMI.

Replication outside of Iceland

The non-Icelandic studies shared only summary results from the genome-wide smoking behavior association scans in the form of effect sizes, \(P\)-values and allele frequencies. The \(-2.5\) million SNPs from the HapMap dataset were imputed and tested for association within each study population.15–17 The significance levels of each study population were adjusted individually using the method of genomic control.18 We used standard fixed-effects additive meta-analysis to combine the results for each SNP. After combining the results from all the populations, we again applied the method of genomic control and adjusted both smoking phenotypes accordingly (\(\omega_{GC} = 1.10\) and \(\omega_{GC} = 1.06\) for SI and CPD, respectively).

As data were not available on the individual level, we could not predict SI and CPD on the individual level as was done in Iceland. In order to test for the association of the 32 SNPs associating with BMI and the 180 SNPs associating with height with smoking behavior, we weighted the combined significance over all the populations of each SNP by the expected \(z\)-score associated with the SNP, assuming that the effect on smoking behavior was proportional to the effect on BMI or height as follows. Again let us take BMI as an example. For each of the 32 SNPs reported to associate with BMI, let \(f_i\) be its minor allele frequency and \(\gamma_i\) be its published effect on BMI. We denote the unknown effect of each SNP on smoking behavior by its \(\gamma\), which we assume is proportional to \(\gamma_i\). For constant \(k\), we obtain the following.

\[
\sum_{i=1}^{32} (g_i - \bar{g}) \gamma_i
\]

RESULTS AND DISCUSSION

To study the correlation between obesity variants and smoking phenotypes, we focused on the 32 SNPs associating with BMI

| Table 1. Association of BMI, height and SNPs associating with BMI and height with smoking phenotypes in Iceland |
|---|---|---|---|---|---|---|---|
| | CPD | | | Smoking |
| From | N | Correlation (95% CI) | P | N | Correlation (95% CI) | P |
| BMI | 33,620 | 0.095 (0.085, 0.106) | 2.5 \times 10^{-68} | 49,565 | -0.005 (-0.014, 0.004) | 0.29 |
| 32 BMI SNPs | 24,618 | 0.032 (0.019, 0.045) | 8.0 \times 10^{-7} | 34,216 | 0.019 (0.008, 0.030) | 0.00054 |
| Height | 33,875 | -0.004 (-0.015, 0.007) | 0.46 | 49,931 | -0.012 (-0.021, -0.002) | 0.013 |
| 180 Height SNPs | 24,630 | 0.001 (-0.011, 0.014) | 0.84 | 34,231 | 0.004 (-0.007, 0.015) | 0.44 |

Abbreviations: BMI, body mass index; CI, confidence interval; SNP, single-nucleotide polymorphism.

described in a recent report of a study of 249,796 subjects.4 We weighted the 32 SNPs together based on their published effect on BMI and tested the correlation with both CPD and SI in 49,565 chip-typed Icelanders (Table 1). We also tested the correlation between the actual measured BMI and the smoking phenotypes in a slightly larger set of Icelanders. For comparison, we performed a corresponding study using Icelandic data on human height and 180 SNPs reported to influence human height in a recent study of 183,731 individuals19 (Table 1). BMI associated with CPD (r = 0.0955, P = 2.5 × 10^{-68}) but not SI (r = -0.005, P = 0.29), whereas height did not associate with CPD (r = -0.004, P = 0.46) and showed only weak association with SI (r = 0.012, P = 0.013). The set of 32 BMI SNPs associated with both CPD (r = 0.032, P = 8.0 × 10^{-7}) and SI (r = 0.019, P = 0.00054), whereas the set of 180 height SNPs associated with neither smoking behavior (P = 0.84 and 0.44 for CPD and SI, respectively).

The correlation between the set of 32 BMI SNPs and BMI and the correlation between BMI and CPD predict a correlation between the 32 BMI SNPs and CPD of 0.013, which is significantly lower than the observed correlation of 0.032 between the set of 32 BMI SNPs and CPD (P = 0.0033). The correlation between BMI and SI is negative so that the predicted correlation between the 32 BMI SNPs and SI is also negative and even more significantly different from the observed correlation of 0.019 than from 0. Hence, the observed associations between the BMI variants and the smoking phenotypes are not explained by the direct phenotypic correlations between BMI and smoking behavior.

To investigate the contributions of individual SNPs and to replicate our observations in other populations, we looked up the correlations of each of the 32 SNPs with CPD and SI, using data from our previous studies outside of Iceland15-17 (N = 76,242 for CPD, and N = 127,274 for SI). For these studies, we utilized the fixed-effect additive meta-analysis results for ~2,500,000 SNPs obtained using the inverse-variance method for each of the two smoking phenotypes. Before conducting the meta-analysis, we performed a genomic control correction of each study.18 The combined χ²-test statistics were still somewhat inflated by a factor of λGC = 1.10 (SI) and λGC = 1.06 (CPD). The correlations between the set of 32 BMI SNPs and the two smoking variables were significant in this replication sample with P = 1.2 × 10^{-5} and 9.3 × 10^{-5} for SI and CPD, respectively. Combined with Iceland, the association between the 32 BMI SNPs and SI and CPD reached a significance of P = 1.2 × 10^{-7} and P = 1.6 × 10^{-9}, respectively.

As expected, based on the correlations observed between the combined set of the 32 BMI SNPs (Table 1), we observe congruence in the effects that these SNPs have on BMI and smoking behavior. For most of the SNPs, the allele that associates with increased BMI also associates with both increased probability of SI and higher CPD (Figure 1). We note that the effect sizes are small and although the markers as a group clearly associate with the smoking behaviors, further studies are required to determine unequivocally which of the markers have an impact on smoking behavior. The SNP by far most strongly associated with BMI (rs1558902-A in FTO) represents a notable exception from the trend observed and shows no evidence for association with either CPD or SI.

Considering the 11 BMI SNPs most strongly associated with smoking (P < 0.05), 9 SNPs associate with smoking initiation and 4 with CPD (Supplementary Table 1 and Figure 1). For smoking initiation the most significant associations were to rs10767664-A (effect = 0.050495, P = 1.14 × 10^{-9}) in the Brain Neurotrophin Factor gene (BDNF) and rs2867125-C (effect = 0.0397, P = 0.000201) 45 kb upstream of the Transmembrane protein 18 gene (TMEM18), and for CPD the most significant associations were with rs2867125-C (effect = 0.286, P = 0.000346) (TMEM18) and rs4771122-G (effect = 0.0193, P = 0.00048) in the mitochondrial translational initiation factor 3 gene (MTF3). In addition to rs286125-C (TMEM18), rs2815752-A (NEGR1) is among the top markers (P < 0.05) for both SI (effect = 0.186, P = 0.0244) and CPD (effect = 0.0097, P = 0.0305). A SNP within the BDNF gene has previously been shown to associate with smoking initiation (rs6265-C).16 This SNP is in linkage disequilibrium with the BMI-associated rs10767664 (r² = 0.85 in Iceland). The association with SI remains significant after removing rs10767664 (P = 1.3 × 10^{-9}).

In summary, we have demonstrated that as a group, the 32 common variants identified in GWAS of BMI also have an impact on the smoking behavior. A variant within the nAChR gene cluster...
at chr5 15q25 (rs1051730-A) was discovered in GWAS of smoking behavior,20,21 and subsequently shown to correlate with reduced BMI in smokers without an effect on the BMI of never smokers,6 thus most likely influencing BMI mainly through its effect on smoking behavior. The variants studied here represent a different class of SNPs affecting both BMI and smoking: They were found in GWAS of BMI and influence BMI in both smokers and never smokers, and the alleles correlating with elevated BMI tend to increase the propensity to smoke and/or associate with increased cigarette intake. We note that, in Iceland, the correlation between the predicted BMI and observed BMI is similar for smokers (0.15, \(P = 3.0 \times 10^{-97}, N = 20462\)) and never smokers (0.13, \(P = 7.2 \times 10^{-31}, N = 7910\)). The direction of this trend is opposite to what would be expected based on the known effects of nicotine on BMI, and inconsistent with an effect rooted in nicotine-mediated increase of metabolic rate and suppression of appetite. That the majority of variants known to associate with elevation of BMI correlate with smoking behaviors in this manner points to a common biological basis to regulation of the intake of food and tobacco.

CONFLICT OF INTEREST
Authors whose affiliations are listed as Decode genetics/AMGEN are employees of Decode genetics/AMGEN.

ACKNOWLEDGMENTS
We thank the participants in the genetic studies whose contributions made this work possible. This work was supported in part by NIH (R01-DA017932 and R01-DA022522) and the European Commission’s Sixth Framework Programme, Integrated Project GENADDICT (LSHM-CT-2004-005166). The ENGAGE smoking consortium was formed through a component of the Integrated Project ENGAGE, supported by the European Commission’s Seventh Framework Program, grant agreement HEALTH-F4-2007–201413. SB was funded by the FP7-PEOPLE-2009-IAPP 251592 grant (NextGene).

AUTHOR CONTRIBUTIONS
TET, DFG, and KS wrote the manuscript. The study was designed by and the results interpreted by TET, DFG, PS, SB, UT and KS. The meta-analyses of smoking GWAS data were performed by DFG. TET, DFG, PS, SB,US, GT, BW and VS worked on data management and analysis. Smoking GWAS consortia were coordinated by HF (TAG), PFS(TAG) JM (OX-GSK) and MIM (ENGAGE). All authors contributed to the final version of the paper.

REFERENCES

CONSORTIA
The data utilized came from three large GWAS done by the ENGAGE, TAG, and OX-GSK consortia (references 15–17). The additional collaborators from these three consortia are listed below.

ENGAGE Consortium—Ida Surakka8,9, Jacqueline M Vink10, Najaf Amin11, Frank Geller12, Thorunn Rafnar11, Tónu Esko13,14, Stefan Walter15, Christian Gieger15, Rajesh Rawal15, Massimo Mangino16, Inga Prokopenko5,6, Reedik Mägi5,6,13, Kaisu Keskitalo19, Iris H. Gudjonsdottir16, Solveig Grettarsdottir16, Hreinn Stefansson14, Yurii S Aulchenko17, Mari Nellis12,14, Katja K Aben17,22, Martin den Heijer21,22,23, Nicole Soranzo16,24, Ana M Valdes16, Claire Steves16, André G Uitterlinden12,15, Albert Hofman15, Norbert Damen15, Barbara Nitz15, Samuli Ripatti25, Markus Perola9,13, Johannes Kettunen14, Anna-Liisa Hartikainen10, Timo Aho10, Anneli Poussa10, Jaana Laitinen12, Martin Isohanni31, Shen Huei-Yen31,32, Maxine Allen1, Maria Krestyaninova33, 1

19 This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Unported License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-nd/3.0/

 Supplementary Information accompanies the paper on the Translational Psychiatry website (http://www.nature.com/tp)
Common biological basis of obesity and nicotine addiction

TE Thorgerisson et al

Research Institute, Evanston, Illinois, USA. 3Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, California, USA. 38Biostatistics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Maryland, USA. 4International Agency for Research on Cancer (IARC), Lyon, France. 57Institut Català d’Oncologia, Barcelona, Spain. 36General Hospital, Pordenone, Italy. 39Institute of Hygiene and Epidemiology, First Faculty of Medicine, Charles University, Prague, Czech Republic. 40Institut National de la santé et de la Recherche Médicale (INSERM) U794, Paris, France. 41Institut Gustave Roussy, Villejuif, France. 42Department of Environmental Medicine and Public Health, University of Padua, Padua, Italy. 43University of Glasgow Medical Faculty Dental School, Glasgow, UK. 44Specialized Institute of Hygiene and Epidemiology, Banska Bystrica, Slovakia. 45Department of Cancer Epidemiology and Genetics, Masaryk Memorial Cancer Institute, Brno, Czech Republic. 46Palacky University, Olomouc, Czech Republic. 57Trinity College School of Dental Science, Dublin, Ireland. 48Cancer Registry of Norway, Oslo, Norway. 49University of Athens School of Medicine, Athens, Greece. 50Department of Cancer Epidemiology and Prevention, Maria Sklodowska-Curie Cancer Center and Institute of Oncology, Warsaw, Poland. 51University of Newcastle Dental School, Newcastle, UK. 52University of Aberdeen School of Medicine, Aberdeen, UK. 53Institute of Public Health, Bucharest, Romania. 54Center for Experimental Research and Medical Studies, University of Turin, Turin, Italy. 55National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, USA. 56Institute of Occupational Medicine, Lodz, Poland. 57Institute of Carcinogenesis, Cancer Research Centre, Moscow, Russia. 58Croatian National Cancer Registry, Zagreb, Croatia. 59Centre National de Genotypage, Institut Genomique, Commissariat a l’énergie Atomique, Evry, France. 60Fondation Jean Dausset-Centre d’Etude du Polymorphisme Humain (CEPH), Paris, France. 61Genetic Unit, Azienda Sanitaria di Firenze, Florence, Italy. 62Genetics of Complex Traits, Peninsula Medical School, The University of Exeter, Exeter, UK. 63Laboratory of Epidemiology and Biometry, National Institute on Aging, Bethesda, Maryland, USA. 64Tuscany Health Regional Agency, Florence, Italy. 65Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, Massachusetts, USA. 66Department of Molecular Biology, Massachusetts General Hospital, Boston, Massachusetts, USA. 67Diabetes Unit, Massachusetts General Hospital, Boston, Massachusetts, USA. 68Center for Human Genetics Research, Massachusetts General Hospital, Boston, Massachusetts, USA. 69Department of Genetics, Harvard Medical School, Boston, Massachusetts, USA. 70Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA. 71Cardiovascular Epidemiology and Genetics, Institut Municipal d’Investigacion Medica, Barcelona, Spain. 72Harvard Medical School, Boston, Massachusetts, USA. 73Department of Clinical Sciences, Hypertension and Cardiovascular Diseases, University Hospital Malmö, Lund University, Malmö, Sweden. 74National Heart, Lung, and Blood Institute’s Framingham Heart Study, Framingham, Massachusetts, USA. 75National Institute for Health and Welfare (THL), Helsinki, Finland. 76Department of Medical Genetics, Institute of Harvard and Massachusetts Institute of Technology, Cambridge, Massachusetts, USA. 77EMGO Institute, Vrije Universiteit (VU) Medical Center, Amsterdam, The Netherlands. 78Department of Psychiatry, VU University Medical Center, Amsterdam, The Netherlands. 79Biological Psychology, VU University Amsterdam, Amsterdam, The Netherlands. 80Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Maryland, USA. 81Program in Molecular and Genetic Epidemiology, Department of Epidemiology, Harvard University, Boston, Massachusetts, USA. 82Channing Laboratory, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, USA. 83Department of Epidemiology, Erasmus Medical Center, Rotterdam, The Netherlands. 84Department of Child and Adolescent Psychiatry, Erasmus Medical Center, Rotterdam, The Netherlands. 85Department of Internal Medicine, Erasmus Medical Center, Rotterdam, The Netherlands. 86Centre for Medical Systems Biology, Erasmus Medical Center, Rotterdam, The Netherlands. 87Department of Public Health, Erasmus Medical Center, Rotterdam, The Netherlands. 88Division of Preventive Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA. 89Department of Cardiovascular Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA. 90Department of Psychiatry and Neurobehavioral Sciences, University of Virginia, Charlottesville, Virginia, USA. 91Virginia Institute for Psychiatric and Behavioral Genetics, Virginia Commonwealth University, Richmond, Virginia, USA. 92Massey Cancer Center, Virginia Commonwealth University, Richmond, Virginia, USA. 93Department of Psychiatry, University of Pennsylvania, Philadelphia, Pennsylvania, USA. 94Department of Functional Genomics, VU Amsterdam, Amsterdam, The Netherlands. 95Department of Medical Genomics, VU University Medical Center Amsterdam, Amsterdam, The Netherlands. 96Department of Psychiatry, University of North Carolina, Chapel Hill, North Carolina, USA. 97Abramson Cancer Center, University of Pennsylvania, Philadelphia, Pennsylvania, USA. 98Institute for Molecular Medicine, University of Helsinki, Helsinki, Finland. 99Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, Durham, North Carolina, USA. 100Deapal Genetics, Hygiene and Epidemiology, University of Ioannina School of Medicine, Ioannina, Greece. 101Tufts Clinical and Translational Science Institute, Tufts University School of Medicine, Boston, Massachusetts, USA. 102Center for Genetic Epidemiology and Modeling, Institute for Clinical Research and Health Policy Studies, Tufts Medical Center, Boston, Massachusetts, USA. 103Department of Biostatistics, University of North Carolina, Chapel Hill, North Carolina, USA. 104Oxford-GSK Consortium—Jason S Liu1, Federica Tozzi2,3, Dawn M Waterworth4, Sreekumar G Pillai, Pierandrea Mugglia, Lefkos Middleton1, Wade Berrettini, Christopher W Knoff, Xin Yuan, Gérard Waerbeke1,10,11, Peter Vollenweider11,10,12, Nicholas J Wareham5, Jing Hua Zhao13, Ruth JF Loos13, Inês Barroso14, W-Tee Khaw, Scott Grundy16, Philip Barter17, Robert Mahley8,19,18,10,12, Antero Kesaniemi20, Ruth McPherson11,22,23, John Vincent23, John Straus23, James Kennedy23, Anne Farmer24, Peter McGuffin24, Richard Day25, Keith Matthews26, Per Bakke26, Amund Gulsvik26, Susanne Lucea26, Marcus Ising 26, Tanja Brueckl26, Sonja Horstmann27, Joachim Heinrich27,28,29,30, Rajesh Rawal28, Norbert Dahmen31, Claudia Lamina28,32, Ozren Polasek33, Lina Zgaga34, Jennifer Huffman35, Susan Campbell35, Jaspal Kooner36, John C Matthews37, Mary Susan Burnett37, Joe Devaney38, Augusto D Pichard39, Kenneth M Kent39, Lowell Satther39, Joseph M Lindsay39, Ron Waksman39, Stephen Epstein39, Jim W Wilson40, Sarah H Wild40, Harry Campbell39, Veronique Vitart41, Murendach P Reilly41, Yingxia Li42, Li Mingyao42,61, Li Mingyao Li42, Li Mingyao42,61, Robert Wilensky42,61, William Matthew42, Hakon H Hakonarson43, Daniel J Rader44, Andre Franke14, Michael Wigg45, Arne Schäfer46, Manuela Udaskorina45, Antonio Terracciano46, Ian Barr47, Fabio Busonero47, Paul Scheet47, David Schlessinger48, David St Clair49, Dan Rujescu49, Gonçalo R Abecasis50, Hans Jörgen Grabe51, Alexander Teumer51, Henry Völkle52, Astrid Petersmann52, Ulrich John53, Igor Rudan54, Caroline Hayward54, Alan F Wright54, Ivar Kocic53, Benjamin J Wright54, John R Thompson55, Anthony J Balmforth56, Alistair S Hall57, Niles J Samani58, Carl A Anderson59, Tariq Ahmed60, Christopher G Mathew60, Miles Parkes60, Jack Satsangi60, Mark Caulfield60, Patricia B Munroe60, Martin Farrall61, Anna Dominiczak63, Jane Worthington66,67, Wendy Thomson66,67, Steve Eyer66,67, Anne Barton66,67, Vincent Moores68, Clyde Franks68.

1Department of Statistics, University of Oxford, 2South Parks Road, Oxford OX1 3TG, UK. 2Clinical Sciences-Aptuit Medicines