Smoking influences body weight such that smokers weigh less than non-smokers and smoking cessation often leads to weight increase. The relationship between body weight and smoking is partly explained by the effect of nicotine on appetite and metabolism. However, the brain reward system is involved in the control of the intake of both food and tobacco. We evaluated the effect of single-nucleotide polymorphisms (SNPs) affecting body mass index (BMI) on smoking behavior, and tested the 32 SNPs identified in a meta-analysis for association with two smoking phenotypes, smoking initiation (SI) and the number of cigarettes smoked per day (CPD) in an Icelandic sample (N = 34,216 smokers). Combined according to their effect on BMI, the SNPs correlate with both SI (r = 0.019, P = 0.00054) and CPD (r = 0.032, P = 8.0 × 10⁻⁵). These findings replicate in a second large data set (N = 127,274, thereof 76,242 smokers) for both SI (P = 1.2 × 10⁻⁵) and CPD (P = 9.3 × 10⁻⁵). Notably, the variant most strongly associated with BMI (rs1558902-A in FTO) did not associate with smoking behavior. The association with smoking behavior is not due to the effect of the SNPs on BMI. Our results strongly point to a common biological basis of the regulation of our appetite for tobacco and food, and thus the vulnerability to nicotine addiction and obesity.

Translational Psychiatry (2013) 3, e308; doi:10.1038/tp.2013.81; published online 1 October 2013

Keywords: addiction; body mass index; nicotine dependence; obesity; smoking
consistent with the notion that smoking influences body weight through nicotine’s effects on body and brain, the increase of metabolic rate and suppression of appetite. Here we report how variants correlating with BMI influence smoking behavior.

MATERIALS AND METHODS

Study subjects

Written informed consent was obtained from all subjects. Inclusion in the study required the availability of genotypes from ongoing SNP array typing in Iceland or previous GWAS,15–17 and the study populations have all been described previously.15–17 The GWAS of smoking initiation (SI) involved comparison of ever smokers and never smokers, and the studies of smoking quantity probing for smoking behavior of related individuals is correlated proportional to the kinship between them rather than assuming that the smoking phenotypes of all individuals are independent. Let g_i be the vector of smoking behavior measurements, and let x_i be the vector of BMI or height measurements. We assume that the expectation of the smoking behavior depends linearly on BMI or height, $E(Y) = x_i \beta_i + [b_i]$, and that the variance–covariance matrix of the smoking behavior depends only on the pairwise kinship between the study participants, $Var(y) = 2\sigma^2$.

A generalized form of linear regression was used to test the correlation between additive meta-analysis to combine the results for each SNP. After combining the significance levels of each study population were adjusted individually by using the method of genomic control.18 We used standard fixed-effects additive meta-analysis to combine the results for each SNP. After combining the results from all the populations, we again applied the method of genomic control and adjusted both smoking phenotypes accordingly ($\lambda_{GC} = 1.10$ for SI and $\lambda_{GC} = 1.06$ for SI and CPD, respectively).

As data were not available on the individual level, we could not predict SI and CPD on the individual level as was done in Iceland. In order to test for the association of the 32 SNPs associating with BMI and the 180 SNPs associating with height smoking behavior, we weighted the combined significance over all the populations of each SNP by the expected z-score associated with the SNP, assuming that the effect on smoking behavior was proportional to the effect on BMI or height as follows. Again let us take BMI as an example. For each of the 32 SNPs reported to associate with BMI, let f_i be its minor allele frequency and γ_i be its published effect on BMI. We denote the unknown effect of each SNP on smoking behavior being proportional to the SNP’s effect on BMI can be stated as $\gamma_i = k_{\beta_i}$ for some constant k. Quantifying the significance of the association of each SNP with smoking behavior by its z-score z_i, maximal power is achieved by weighing the SNPs according to the expected z-score. The expected z-score for the ith SNP is proportional to $\beta_i^2 \sqrt{f_i(1-f_i)}$, which we assume is proportional to $\gamma_i \sqrt{2f_i(1-f_i)}$, which we will refer to as w_i and use to weight the smoking behavior z-scores of the 32 BMI SNPs together: $z = \frac{\sum_{i=1}^{32} w_i z_i}{\sqrt{\sum_{i=1}^{32} w_i^2}}$. We test this by using the method of genomic control to adjust the significance levels of each study population.

RESULTS AND DISCUSSION

To study the correlation between obesity variants and smoking phenotypes, we focused on the 32 SNPs associating with BMI

<table>
<thead>
<tr>
<th>Table 1. Association of BMI, height and SNPs associating with BMI and height with smoking phenotypes in Iceland</th>
</tr>
</thead>
<tbody>
<tr>
<td>CPD</td>
</tr>
<tr>
<td>From</td>
</tr>
<tr>
<td>BMI</td>
</tr>
<tr>
<td>32 BMI SNPs</td>
</tr>
<tr>
<td>Height</td>
</tr>
<tr>
<td>180 Height SNPs</td>
</tr>
</tbody>
</table>

Abbreviations: BMI, body mass index; CI, confidence interval; SNP, single-nucleotide polymorphism.
described in a recent report of a study of 249,796 subjects.4 We weighted the 32 SNPs together based on their published effect on BMI and tested the correlation with both CPD and SI in 49,565 chip-typed Icelanders (Table 1). We also tested the correlation between the actual measured BMI and the smoking phenotypes in a slightly larger set of Icelanders. For comparison, we performed a corresponding study using Icelandic data on human height and 180 SNPs reported to influence human height in a recent study of 183,731 individuals15–17 (Table 1).

BMI associated with CPD \((r = 0.095, P = 2.5 \times 10^{-66}) \) but not SI \((r = -0.005, P = 0.29) \), whereas height did not associate with CPD \((r = -0.004, P = 0.46) \) and showed only weak association with SI \((r = -0.012, P = 0.013) \). The set of 32 BMI SNPs associated with both CPD \((r = 0.032, P = 8.0 \times 10^{-7}) \) and SI \((r = 0.019, P = 0.00054) \), whereas the set of 180 height SNPs associated with neither smoking behavior \((P = 0.84 \) and 0.44 for CPD and SI, respectively).

The correlation between the set of 32 BMI SNPs and BMI and the correlation between BMI and CPD predict a correlation between the 32 BMI SNPs and CPD of 0.013, which is significantly lower than the observed correlation of 0.032 between the set of 32 BMI SNPs and CPD \((P = 0.0033) \). The correlation between BMI and SI is negative so that the predicted correlation between the 32 BMI SNPs and SI is also negative and even more significantly different from the observed correlation of 0.019 than from 0. Hence, the observed associations between the BMI variants and the smoking phenotypes are not explained by the direct phenotypic correlations between BMI and smoking behavior.

To investigate the contributions of individual SNPs and to replicate our observations in other populations, we looked up the correlations of each of the 32 SNPs with CPD and SI, using data from our previous studies outside of Iceland15–17 \((N = 76,242 \) for CPD, and \(N = 127,274 \) for SI). For these studies, we utilized the fixed-effect additive meta-analysis results for \(\sim 2,500,000 \) SNPs obtained using the inverse-variance method for each of the two smoking phenotypes. Before conducting the meta-analysis, we performed a genomic control correction of each study.18 The combined \(\chi^2 \)-test statistics were still somewhat inflated by a factor of \(\lambda_{GC} = 1.10 \) (SI) and \(\lambda_{GC} = 1.06 \) (CPD). The correlations between the set of 32 BMI SNPs and the two smoking variables were significant in this replication sample with \(P = 1.2 \times 10^{-5} \) and \(9.3 \times 10^{-5} \), for SI and CPD, respectively. Combined with Iceland, the association between the 32 BMI SNPs and SI and CPD reached a significance of \(P = 1.2 \times 10^{-7} \) and \(P = 1.6 \times 10^{-9} \), respectively.

As expected, based on the correlations observed between the combined set of the 32 BMI SNPs (Table 1), we observe congruence in the effects that these SNPs have on BMI and smoking behavior. For most of the SNPs, the allele that associates with increased BMI also associates with both increased probability of SI and higher CPD (Figure 1). We note that the effect sizes are small and although the markers as a group clearly associate with the smoking behaviors, further studies are required to determine unequivocally which of the markers have an impact on smoking behavior. The SNP by far most strongly associated with BMI \((rs1558902-A \) in \(FTO \) represents a notable exception from the trend observed and shows no evidence for association with either CPD or SI.

Considering the 11 BMI SNPs most strongly associated with smoking \((P < 0.05) \), 9 SNPs associate with smoking initiation and 4 with CPD (Supplementary Table 1 and Figure 1). For smoking initiation the most significant associations were to rs10767664-A \(\text{(effect) = 0.050495, } P = 1.14 \times 10^{-9} \) \) in the Brain Neurotrophin Factor gene \((BDNF) \) and rs2867125-C \(\text{(effect) = 0.0397, } P = 0.000021 \) \) 45 kb upstream of the Transmembrane protein 18 gene \((TMEM18) \), and for CPD the most significant associations were with rs2867125-C \(\text{(effect) = 0.286, } P = 0.000046 \) \) \((TMEM18) \) and rs4771122-G \(\text{(effect) = 0.0193, } P = 0.000048 \) in the mitochondrial translational initiation factor 3 gene \((MTF3) \). In addition to rs286125-C \((TMEM18) \), rs2815752-A \((NEGR1) \) is among the top markers \((P < 0.05) \) for both SI \(\text{(effect) = 0.186, } P = 0.0244 \) and CPD \(\text{(effect) = 0.0097, } P = 0.0305 \). A SNP within the \(BDNF \) gene has previously been shown to associate with smoking initiation \((rs6265-C) \). This SNP is in linkage disequilibrium with the BMI-associated rs10767664 \((r^2 = 0.85 \) in Iceland). The association with SI remains significant after removing rs10767664 \((r = 1.3 \times 10^{-5}) \).

In summary, we have demonstrated that as a group, the 32 common variants identified in GWAS of BMI also have an impact on the smoking behavior. A variant within the \(nAChR \) gene cluster

![Figure 1. Association of obesity variants with smoking initiation (SI) and CPD.](https://example.com/figure1)

Figure 1. Association of obesity variants with smoking initiation (SI) and CPD. The effects on smoking behaviors are depicted vs the effects on BMI from a large meta-analysis.4 (A) The effect on smoking initiation vs the effect on BMI. (B) The effect on CPD vs the effect on BMI. The BMI effect is in standard units, and the effects on SI and CPD were obtained using a standard fixed-effects additive meta-analysis to combine the results for each SNP from Iceland with additional data from three large GWAS.15–17 The effects on SI are the \(\beta \)-values from logistic regression treating ever smoking as the response and the allele counts as covariates, and the GWAS of CPD used smoking quantity in categories with each category representing 10 CPD (effect size of 0.1 = 1 CPD). The dots representing each data point are color coded to indicate the \(p \)-value obtained as red \((P < 0.0001) \), yellow \((P < 0.001) \), green \((P < 0.05) \) and black \((P \geq 0.05) \) and the input data are provided in (Supplementary Table 1).
CONFLICT OF INTEREST

Authors whose affiliations are listed as Decode genetics/AMGEN are employees of Decode genetics/AMGEN.

ACKNOWLEDGMENTS

We thank the participants in the genetic studies whose contributions made this work possible. This work was supported in part by NIH (R01-DA017932 and R01-DA022522) and the European Commission’s Sixth Framework Programme, Integrated Project GENADDICT (LSHM-CT-2004-005166). The ENGAGE smoking consortium was formed through a component of the Integrated Project ENGAGE, supported by the European Commission’s Seventh Framework Program, grant agreement HEALTH-F4-2007-201413. SB was funded by the FP7-PEOPLE-2009-IAPP 251592 grant (NextGene).

AUTHOR CONTRIBUTIONS

TET, DFG, and KS wrote the manuscript. The study was designed by and the results interpreted by TET, DFG, PS, SB, UT and KS. The meta-analyses of smoking GWAS data were performed by DFG. TET, DFG, PS, SBUS, GT, BW and VS worked on data management and analysis. Smoking GWAS consortia were coordinated by HF (TAG), PFS (TAG) JM (OX-GSK) and MIM (ENGAGE). All authors contributed to the final version of the paper.

REFERENCES

23 This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Unported License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-nd/3.0/.
Research Institute, Evanston, Illinois, USA. 34Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, California, USA. 35Biostatistics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Maryland, USA. 36International Agency for Research on Cancer (IARC), Lyon, France. 37Institut Català d’Oncologia, Barcelona, Spain. 38General Hospital, Pordenone, Italy. 39Institute of Hygiene and Epidemiology, First Faculty of Medicine, Charles University, Prague, Czech Republic. 40Institut Nacional de la Santé et de la Recherche Médicale (INSERM) U794, Paris, France. 41Institut Gustave Roussy, Villejuif, France. 42Department of Environmental Medicine and Public Health, University of Padua, Padua, Italy. 43University of Glasgow Medical Faculty Dental School, Glasgow, UK. 44Specialized Institute of Hygiene and Epidemiology, Banská Bystrica, Slovakia. 45Department of Cancer Epidemiology and Genetics, Masaryk Memorial Cancer Institute, Brno, Czech Republic. 46Palacky University, Olomouc, Czech Republic. 47Trinity College School of Dental Science, Dublin, Ireland. 48Cancer Registry of Norway, Oslo, Norway. 49University of Athens School of Medicine, Athens, Greece. 50Department of Cancer Epidemiology and Prevention, Maria Sklodowska-Curie Cancer Center and Institute of Oncology, Warsaw, Poland. 51University of Newcastle Dental School, Newcastle, UK. 52University of Aberdeen School of Medicine, Aberdeen, UK. 53Institute of Public Health, Bucharest, Romania. 54Center for Experimental Research and Medical Studies, University of Turin, Turin, Italy. 55National Institute of Environmental Health Sciences, National Institutes of Health, National Institute of Occupational Medicine, Institute of Occupation Health, Institute of Occupational Medicine, Lodz, Poland. 56Institute of Carcinogenesis, Cancer Research Centre, Moscow, Russia. 57Croatian National Cancer Registry, Zagreb, Croatia. 58Centre National de Genotypage, Institut Genomique, Commissariat à l’énergie Atomique, Evry, France. 59Foundation Jean Dausset-Centre d’Etude du Polymorphisme Humain (CEPH), Paris, France. 60Geriatric Unit, Azienda Sanitaria di Firenze, Florence, Italy. 61Genetics of Complex Traits, Peninsula Medical School, The University of Exeter, Exeter, UK. 62Laboratory of Epidemiology, Demography and Biometry, National Institute on Aging, Bethesda, Maryland, USA. 63Tuscany Health Regional Agency, Florence, Italy. 64Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, Massachusetts, USA. 65Department of Molecular Biology, Massachusetts General Hospital, Boston, Massachusetts, USA. 66Diabetes Unit, Massachusetts General Hospital, Boston, Massachusetts, USA. 67Center for Human Genetics Research, Massachusetts General Hospital, Boston, Massachusetts, USA. 68Department of Genetics, Harvard Medical School, Boston, Massachusetts, USA. 69Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA. 70Department of Molecular Biology, Massachusetts General Hospital, Boston, Massachusetts, USA. 71Cardiovascular Epidemiology and Genetics, Institut Municipal d’Investigacio Medica, Barcelona, Spain. 72Harvard Medical School, Boston, Massachusetts, USA. 73Department of Clinical Sciences, Hypertension and Cardiovascular Diseases, University Hospital Malmö, Lund University, Malmö, Sweden. 74National Heart, Lung, and Blood Institute’s Framingham Heart Study, Framingham, Massachusetts, USA. 75National Institute for Health and Welfare (THL), Helsinki, Finland. 76Department of Medical Genetics, VU University Medical Center, Amsterdam, University of Helsinki, Helsinki, Finland. 77EMGO Institute, Vrije Universiteit (VU) Medical Center, Amsterdam, The Netherlands. 78Department of Psychiatry, VU University Medical Center, Amsterdam, The Netherlands. 79Biological Psychology, VU University Amsterdam, Amsterdam, The Netherlands. 80Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Maryland, USA. 81Program in Molecular and Genetic Epidemiology, Department of Epidemiology, Harvard University, Boston, Massachusetts, USA. 82Channing Laboratory, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, USA. 83Department of Epidemiology, Erasmus Medical Center, Member of the Netherlands consortium on Healthy Aging, Rotterdam, The Netherlands. 84Department of Child and Adolescent Psychiatry, Erasmus Medical Center, Rotterdam, The Netherlands. 85Department of Internal Medicine, Erasmus Medical Center, Rotterdam, The Netherlands. 86Centre for Medical Systems Biology, Erasmus Medical Center, Rotterdam, The Netherlands. 87Department of Public Health, Erasmus Medical Center, Rotterdam, The Netherlands. 88Division of Preventive Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA. 89Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA. 90Department of Psychiatry and Neurobehavorial Sciences, University of Virginia, Charlottesville, Virginia, USA. 91Virginia Institute for Psychiatric and Behavioral Genetics, Virginia Commonwealth University, Richmond, Virginia, USA. 92Massey Cancer Center, Virginia Commonwealth University, Richmond, Virginia, USA. 93Department of Psychiatry, University of Pennsylvania, Philadelphia, Pennsylvania, USA. 94Department of Functional Genomics, VU Amsterdam, Amsterdam, The Netherlands. 95Department of Medical Genomics, VU University Medical Center Amsterdam, Amsterdam, The Netherlands. 96Department of Psychiatry, University of North Carolina, Chapel Hill, North Carolina, USA. 97Abramson Cancer Center, University of Pennsylvania, Philadelphia, Pennsylvania, USA. 98Institute for Molecular Medicine, University of Helsinki, Helsinki, Finland. 99Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, Durham, North Carolina, USA. 100Department of Hygiene and Epidemiology, University of Ioannina School of Medicine, Ioannina, Greece. 101Tufts Clinical and Translational Science Institute, Tufts University School of Medicine, Boston, Massachusetts, USA. 102Center for Genetic Epidemiology and Modeling, Institute for Clinical Research and Health Policy Studies, Tufts Medical Center, Boston, Massachusetts, USA. 103Department of Biostatistics, University of North Carolina, Chapel Hill, North Carolina, USA. 104Department of Biostatistics, University of North Carolina, Chapel Hill, North Carolina, USA.