A common biological basis of obesity and nicotine addiction

INTRODUCTION
Smoking and obesity are major risk factors for many serious diseases. Eating and smoking are behavioral traits that are at least in part controlled by the same reward mechanisms. Genome-wide association studies (GWAS) have yielded single-nucleotide polymorphisms (SNPs) associated with body mass index (BMI). Smoking and SNPs associated with increased smoking quantity have been shown to correlate with lower BMI.

According to the World Health Organization (WHO), more than one billion people smoke and over 400 million people are obese (BMI > 30 kg m⁻²), with both prevalences rising (see url section). Eating can become compulsive, and the neurobiological processes relating to overindulgence in food overlap with those involved in substance abuse and addiction. All drugs of abuse have been shown to increase dopamine in the mesolimbic reward system, and studies of both human brain images and animal brains have revealed that similar neurocircuits are involved in the regulation of rewarding and reinforcement in drug addiction and compulsive eating. Based on the many similarities between hyperphagia and excessive drug use, the involvement of the hypothalamus. The POMC neurons project to secondary neurons influencing appetite, and nicotine activation leads to the release of melanocortin-4 agonists activating MC4 receptors in the paraventricular nucleus producing appetite suppression, an effect that is absent from POMC KO mice.

However, the relationship between smoking phenotypes and obesity is more complicated than can be accounted for by the known effects of nicotine on appetite and metabolism. This is evident from the fact that the number of cigarettes smoked per day (CPD) correlates with elevated BMI. Thus, although smokers weigh less than non-smokers, heavy smokers indeed weigh more than light smokers. BMI and smoking data are widely available from various studies and large sample sizes have been obtained for GWAS of BMI and some smoking phenotypes, and these studies have uncovered a number of variants associating with obesity (BMI) and with smoking behavior. The variant most strongly correlated with CPD, rs1051730-A/rs16969968-A, correlates with reduced BMI both in current and former smokers, but does not have an impact on the BMI of never smokers. This observation is mechanism, as food intake is increased to make up for the lack of nicotine, the absence of nicotine has also been shown to increase the reward value of certain foods.

At the molecular level, these effects are most likely achieved through activation of the nicotinic acetylcholine receptors. The melanocortin (MC) system has a key role in regulating body weight, and nicotine was recently shown to interact directly with the MC system in the brain through activation of \(\alpha_3\beta_4 \) nicotinic acetylcholine receptors on pro-opiomelanocortin (POMC) neurons in the arcuate nucleus of the hypothalamus. The POMC neurons project to secondary neurons influencing appetite, and nicotine activation leads to the release of melanocortin-4 agonists activating MC4 receptors in the paraventricular nucleus producing appetite suppression, an effect that is absent from POMC KO mice.

Keywords: addiction; body mass index; nicotine dependence; obesity; smoking

Original Article

A common biological basis of obesity and nicotine addiction

TE Thorgeirsson¹, DF Gudbjartsson¹, P Sulem¹, S Besenbacher¹,², U Styrkarsdottir¹, G Thorleifsson¹, GB Walters¹, TAG Consortium⁹, Oxford-GSK Consortium⁶, ENGAGE consortium⁹, H Furberg³, PF Sullivan⁴, J Marchini⁵,⁶, MI McCarthy⁵,⁷, V Steinthorsdottir¹, U Thorsteinsdottir¹,⁸ and K Stefansson¹,⁸

E-mail: kstefans@decode.is or thorgeir@decode.is
consistent with the notion that smoking influences body weight through nicotine’s effects on body and brain, the increase of metabolic rate and suppression of appetite. Here we report how variants correlating with BMI influence smoking behavior.

MATERIALS AND METHODS

Study subjects

Written informed consent was obtained from all subjects. Inclusion in the study required the availability of genotypes from ongoing SNP array typing in Iceland or previous GWAS,15–17 and the study populations have all been described previously.15–17 The GWAS of smoking initiation (SI) involved comparison of ever smokers and never smokers, and the studies of smoking quantity probed CPD as a quantitative trait among smokers only. The definitions of smokers and never smokers varied somewhat between studies,15–17 as questions addressing smoking behavior varied with most studies probing for regular smoking over a certain period of time. Questions probing for smoking quantity also varied between studies, and for analysis of smoking quantity we used CPD data for smokers in categories with each category representing 10 CPD (effect size of 0.1).

In order to test the correlation between the set of 32 BMI SNPs and CPD, assuming conditional independence, and Var(SI) and CPD on the individual level as was done in Iceland. In order to test the correlation between the 32 BMI SNPs and CPD, assuming conditional independence, and Var(SI) and CPD, the correlation between BMI and CPD. Denoting the estimator for the correlation between the 32 BMI SNPs and BMI with \(r_{BMI,CPD} \), and similarly for the correlation between BMI and CPD. Then, \(r_{BMI,CPD} \) is an estimator of the correlation between the 32 BMI SNPs and CPD, assuming conditional independence, and Var(BMI)Var(CPD) gives an estimate of the variance of the estimator. A standard test for the mean of two samples can now be applied to test the difference between the observed correlation between the 32 BMI SNPs and CPD and the correlation predicted based on the 32 BMI SNPs and CPD being independent conditional on BMI.

Replication outside of Iceland

The non-Icelandic studies shared only summary results from the genome-wide smoking behavior association scans in the form of effect sizes, P-values and allele frequencies. The –2.5 million SNPs from the HapMap dataset were imputed and tested for association within each study population.15–17 The significance levels of each study population were adjusted individually using the method of genomic control.18 We used standard fixed-effects additive meta-analysis to combine the results for each SNP. After combining the results from all the populations, we again applied the method of genomic control and adjusted both smoking phenotypes accordingly \(\hat{\omega}_{GC} = 1.0 \) and \(\hat{\omega}_{GC} = 1.06 \) for SI and CPD, respectively.

As data were not available on the individual level, we could not predict SI and CPD on the individual level as was done in Iceland. In order to test for the association of the 32 SNPs associating with BMI and the 180 SNPs associating with height, we weighted the combined significance over all the populations of each SNP by the expected z-score associated with the SNP, assuming that the effect on smoking behavior was proportional to the effect on BMI or height as follows. Again let us take BMI as an example. For each of the 32 SNPs reported to associate with BMI, let \(p_i \) be its minor allele frequency and \(\gamma_i \) be its published effect on BMI. We denote the unknown effect of each SNP on smoking behavior with \(\beta_i \), and our assumption about the SNP’s effect on smoking behavior being proportional to the SNP’s effect on BMI can be stated as \(\beta_i = k \gamma_i \) for some constant \(k \). Quantifying the significance of the association of each SNP with smoking behavior by its z-score \(z_i \), maximal power is achieved by weighing the SNPs according to the expected z-score. The expected z-score for the \(i \)th SNP is proportional to \(\beta_i \sqrt{\left(1 - f_i \right)} \), which we assume is proportional to \(\gamma_i \sqrt{\left(1 - f_i \right)} \), which we will refer to as \(w_i \) and use to weight the smoking behavior z-scores of the 32 BMI SNPs together: \(z = \sum_{i=1}^{32} w_i z_i \).

RESULTS AND DISCUSSION

To study the correlation between obesity variants and smoking phenotypes, we focused on the 32 SNPs associating with BMI

<table>
<thead>
<tr>
<th>Table 1. Association of BMI, height and SNPs associating with BMI and height with smoking phenotypes in Iceland</th>
</tr>
</thead>
<tbody>
<tr>
<td>From</td>
</tr>
<tr>
<td>****</td>
</tr>
<tr>
<td>Bmi</td>
</tr>
<tr>
<td>32 Bmi SNPs</td>
</tr>
<tr>
<td>Height</td>
</tr>
<tr>
<td>180 Height SNPs</td>
</tr>
</tbody>
</table>

Abbreviations: BMI, body mass index; CI, confidence interval; SNP, single-nucleotide polymorphism.
described in a recent report of a study of 249,796 subjects. We weighted the 32 SNPs together based on their published effect on BMI and tested the correlation with both CPD and SI in 49,565 chip-typed Icelanders (Table 1). We also tested the correlation between the actual measured BMI and the smoking phenotypes in a slightly larger set of Icelanders. For comparison, we performed a corresponding study using Icelandic data on human height and 180 SNPs reported to influence human height in a recent study of 183,731 individuals15–17 (Table 1).

BMI associated with CPD (r = 0.095, P = 2.5 × 10−69) but not SI (r = −0.005, P = 0.29), whereas height did not associate with CPD (r = −0.004, P = 0.46) and showed only weak association with SI (r = 0.012, P = 0.013). The set of 32 BMI SNPs associated with both CPD (r = 0.032, P = 8.0 × 10−7) and SI (r = 0.019, P = 0.00054), whereas the set of 180 height SNPs associated with neither smoking behavior (P = 0.84 and 0.44 for CPD and SI, respectively).

The correlation between the set of 32 BMI SNPs and BMI and the correlation between BMI and CPD predict a correlation between the 32 BMI SNPs and CPD of 0.013, which is significantly lower than the observed correlation of 0.032 between the set of 32 BMI SNPs and CPD (P = 0.0033). The correlation between BMI and SI is negative so that the predicted correlation between the 32 BMI SNPs and SI is also negative and even more significantly different from the observed correlation of 0.019 than from 0. Hence, the observed associations between the BMI variants and the smoking phenotypes are not explained by the direct phenotypic correlations between BMI and smoking behavior.

To investigate the contributions of individual SNPs and to replicate our observations in other populations, we looked up the correlations of each of the 32 SNPs with CPD and SI, using data from our previous studies outside of Iceland15–17 (N = 76,242 for CPD, and N = 127,274 for SI). For these studies, we utilized the fixed-effect additive meta-analysis results for ~2,500,000 SNPs obtained using the inverse-variance method for each of the two smoking phenotypes. Before conducting the meta-analysis, we performed a genomic control correction of each study. The combined χ²-test statistics were still somewhat inflated by a factor of £GC = 1.10 (SI) and £GC = 1.06 (CPD). The correlations between the set of 32 BMI SNPs and the two smoking variables were significant in this replication sample with P = 1.2 × 10−5 and 9.3 × 10−5, for SI and CPD, respectively. Combined with Iceland, the association between the 32 BMI SNPs and SI and CPD reached a significance of P = 1.2 × 10−7 and P = 1.6 × 10−9, respectively.

As expected, based on the correlations observed between the combined set of the 32 BMI SNPs (Table 1), we observe congruence in the effects that these SNPs have on BMI and smoking behavior. For most of the SNPs, the allele that associates with increased BMI also associates with both increased probability of SI and higher CPD (Figure 1). We note that the effect sizes are small and although the markers as a group clearly associate with the smoking behaviors, further studies are required to determine unequivocally which of the markers have an impact on smoking behavior. The SNP by far most strongly associated with BMI (rs1558902-A in FTO) represents a notable exception from the trend observed and shows no evidence for association with either CPD or SI.

Considering the 11 BMI SNPs most strongly associated with smoking (P < 0.05), 9 SNPs associate with smoking initiation and 4 with CPD (Supplementary Table 1 and Figure 1). For smoking initiation the most significant associations were to rs10767664-A (effect = 0.050495, P = 1.14 × 10−4) in the Brain Neurotrophin Factor gene (BDNF) and rs2867125-C (effect = 0.0397, P = 0.00021) 45 kb upstream of the Transmembrane protein 18 gene (TMEM18), and for CPD the most significant associations were with rs2867125-C (effect = 0.286, P = 0.000346) (TMEM18) and rs4771122-G (effect = 0.0193, P = 0.00048) in the mitochondrial translational initiation factor 3 gene (MTF3). In addition to rs286125-C (TMEM18), rs2815752-A (NEGR1) is among the top markers (P < 0.05) for both SI (effect = 0.186, P = 0.0244) and CPD (effect = 0.0097, P = 0.0305). A SNP within the BDNF gene has previously been shown to associate with smoking initiation (rs6265-C).16 This SNP is in linkage disequilibrium with the BMI-associated rs10767664 (r² = 0.85 in Iceland). The association with SI remains significant after removing rs10767664 (P = 1.3 × 10−5).

In summary, we have demonstrated that as a group, the 32 common variants identified in GWAS of BMI also have an impact on the smoking behavior. A variant within the nAChR gene cluster
at chr1 15q25 (rs1051730-A) was discovered in GWAS of smoking behavior,20,21 and subsequently shown to correlate with reduced BMI in smokers without an effect on the BMI of never smokers,6 thus most likely influencing BMI mainly through its effect on smoking behavior. The variants studied here represent a different class of SNPs affecting both BMI and smoking: They were found in GWAS of BMI and influence BMI in both smokers and never smokers, and the alleles correlating with elevated BMI tend to increase the propensity to smoke and/or associate with increased cigarette intake. We note that, in Iceland, the correlation between the predicted BMI and observed BMI is similar for smokers (0.15, P = 3.0 \times 10^{-97}, N = 20,462) and never smokers (0.13, P = 7.2 \times 10^{-33}, N = 7910). The direction of this trend is opposite to what would be expected based on the known effects of nicotine on BMI, and inconsistent with an effect rooted in nicotine-mediated increase of metabolic rate and suppression of appetite. That the majority of variants known to associate with elevation of BMI correlate with smoking behaviors in this manner points to a common biological basis to regulation of the intake of food and tobacco.

CONFLICT OF INTEREST
Authors whose affiliations are listed as Decode genetics/AMGEN are employees of Decode genetics/AMGEN.

ACKNOWLEDGMENTS
We thank the participants in the genetic studies whose contributions made this work possible. This work was supported in part by NIH (R01-DA017932 and R01-DA022522) and the European Commission’s Sixth Framework Programme, Integrated Project GENADDICT (LSHTM-CT-2004-005166). The ENGAGE smoking consortium was formed through a component of the Integrated Project ENGAGE, supported by the European Commission’s Seventh Framework Program, grant agreement HEALTH-F4-2007–201413. SB was funded by the FP7-PEOPLE-2009-IAPP 251592 grant (NextGene).

AUTHOR CONTRIBUTIONS
TET, DFG, and KS wrote the manuscript. The study was designed by and the results interpreted by TET, DFG, PS, SB, UT and KS. The meta-analyses of smoking GWAS data were performed by DFG. TET, DFG, PS, SB, UJ, GT, BW and VS worked on data management and analysis. Smoking GWAS consortia were coordinated by HF (TAG), PFS (TAG) JM (OX-GSK) and MIM (ENGAGE). All authors contributed to the final version of the paper.

REFERENCES

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Unported License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-nd/3.0/

Supplementary Information accompanies the paper on the Translational Psychiatry website (http://www.nature.com/tp)

CONSORTIA
The data utilized came from three large GWAS done by the ENGAGE, TAG, and OX-GSK consortia (references 15–17). The additional collaborators from these three consortia are listed by ENGAGE Consortium—Ida Surakka8,9, Jacqueline M Vink10, Najaf Amin11, Frank Geller12, Thorunn Rafnar13, Tóni Esko13,14, Stefan Walter15, Christian Gieger15, Rajesh Rawal15, Massimo Mangino16, Inga Prokopenko5,6, Reiddik Mägi5,6,13, Kaisa Keskiwalto19, Iris H. Gudjonsdottir17, Solveig Grettarsdottir17, Heirinn Stefansson1, Yuri S Aulchenko1, Mari Nelles12,14, Katja K Aben17,22, Martin den Heijer17,22,23, Nicole Soranzo16,24, Ana M Valdes16, Claire Steves16, André G Uitterlinden13,15, Albert Hofman6, Anke Tönjes26,27, Peter Kovacs28, Jouke Jan Hottenga19, Gonneke Willemsen19, Nicole Vogelzangs29, Angela Döring29, Norbert Dahlen29, Barbara Nitz29, Samuli Ripatti30, Markus Perola9,11, Johannes Kettunen14, Anna-Lisa Hartikainen30, Anneli Poult31, Jaana Laitinen2, Matti Isohanni32, Shen Huei-Yi6,9, Maxine Allen5, Maria Krestyaninova33, Alistair S Hall14, John R Thompson15, Hogni Oskarsson36, Thorarin Tyrfingsson37, Lambertus A Kiemeney21,22,38, Marjo-Riitta Järvelin21,39,40,41, Veikko Salomaa2, Michael Stumvoll26, Tim D Spector16, Hi-Erich Wichmann15,42,43, Andres Metspalu13,14, Niles J Samani34, Brenda W Penninx29, Ben A Oostra35, Dorret I Boomsma17, Henning Tiemeier19, Cornelia M van Duijn11, Jaakko Kaprio6,9,14, Jeffrey R Golicher1
1 Decode genetics/AMGEN, Luruglatta 8, Reykjavík, Iceland.
2 Wellcome Trust Center of Human Genetics, Oxford, UK. 3 Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxford, UK. 4 Institute for Molecular Genetics Finland, FiMM, University of Helsinki, Finland. 5 National Institute for Health and Welfare, Helsinki, Finland. 6 Department of Biological
Common biological basis of obesity and nicotine addiction

TE Thorpe, et al.

Psychology, VU University Amsterdam, Amsterdam, The Netherlands. 11Department of Epidemiology, Erasmus University Medical Center, Rotterdam, The Netherlands. 12Department of Epidemiology Research, Stenstens Serum Institut, Copenhagen, Denmark. 13Estonian Genome Center, University of Tartu, Ria 23b, Tartu 51010, Estonia. 14McB of University of Tartu and Estonian Biocentre, Ria str 23, Tartu 51010, Estonia. 15Institute of Epidemiology, Helmholtz Zentrum München, Ingolstaedter Landstr. 1, 85764 Munich/Neuherberg, Germany. 16Department of Twin Research and Genetic Epidemiology, King’s College London, St Thomas’ Hospital Campus, London SE17EH, UK. 17Department of Public Health, University of Helsinki, Helsinki, Finland. 18Klinikum Grosshadern, Munich, Germany. 19Department of Family Medicine, University of Washington, Seattle, Washington, USA. 20Department of Epidemiology, Erasmus University Medical Center, Rotterdam, The Netherlands. 22Department of Internal Medicine, University of Leipzig, Liebigstr. 18, 04103, Leipzig, Germany. 23Coordination Centre for Clinical Trials, University of Leipzig, Härtestr. 16–18, 04103, Leipzig, Germany. 24Interdisciplinary Centre for Clinical Research, University of Leipzig, Inselstr. 22, 04103, Leipzig, Germany. 25Department of Biostatistics, School of Public Health, University of Michigan, Ann Arbor, Michigan, USA. 26Hjelte Institute, Department of Public Health, University of Helsinki, Helsinki, Finland. 27Diabetes Prevention Unit, National Institute of Public Health, Helsinki, Helsinki, Finland. 28Wake Forest University Health Sciences, Winston-Salem, North Carolina, USA. 29Boston University School of Medicine, Boston, Massachusetts, USA. 30Department of Epidemiology, Section for Preventive Medicine and Cardiology, Boston University School of Medicine, Boston, Massachusetts, USA. 31Center for Psychiatric Genetics, NorthShore University HealthSystem
Common biological basis of obesity and nicotine addiction

TE Thorgeirsson et al

Research Institute, Evanston, Illinois, USA. 3Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, California, USA. 38Biostatistics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Maryland, USA. 39International Agency for Research on Cancer (IARC), Lyon, France. 37Institut Català d’Oncologia, Barcelona, Spain. 36General Hospital, Pordenone, Italy. 39Institute of Hygiene and Epidemiology, First Faculty of Medicine, Charles University, Prague, Czech Republic. 30Institut National de la santé et de la Recherche Médicale (INSERM) U794, Paris, France. 31Institut Gustave Roussy, Villejuif, France. 32Department of Environmental Medicine and Public Health, University of Padua, Padua, Italy. 33University of Glasgow Medical Faculty Dental School, Glasgow, UK. 34Specialized Institute of Hygiene and Epidemiology, Banská Bystrica, Slovakia. 35Department of Cancer Epidemiology and Genetics, Masaryk Memorial Cancer Institute, Brno, Czech Republic. 36Palacky University, Olomouc, Czech Republic. 37Trinity College School of Dental Science, Dublin, Ireland. 38Cancer Registry of Carcinogenesis, Cancer Research Centre, Moscow, Russia. 39Cambridge, Massachusetts, USA. 40Department of Molecular Medicine and Genetics, Institut Municipal d’Investigacio Medica (INSERM) U794, Paris, France. 41Institut Gustave Roussy, Villejuif, France. 36University of Athens School of Medicine, Athens, Greece. 42Department of Cancer Epidemiology and Prevention, Maria Sklodowska-Curie Cancer Center and Institute of Oncology, Warsaw, Poland. 43University of Newcastle Dental School, Newcastle, UK. 44University of Aberdeen School of Medicine, Aberdeen, UK. 45Institute of Public Health, Bucharest, Romania. 46Center for Experimental Research and Medical Studies, University of Turin, Turin, Italy. 47National Institute of Environmental Health Sciences, National Institutes of Health, National Center for Human Genome Research, National Institute of Occupational Medicine, Institute of Occupational Medicine, Lodz, Poland. 48Institute of Carcinogenesis, Cancer Research Centre, Moscow, Russia. 49Croatian National Cancer Registry, Zagreb, Croatia. 50Centre National de Genotypage, Institut Genomique, Commissariat à l’énergie Atomique, Evry, France. 51Fondation Jean Dausset-Centre d’Etude du Polymorphisme Humain (CEPH), Paris, France. 52Genetics of Complex Traits, Peninsula Medical School, The University of Exeter, Exeter, UK. 53Laboratory of Epidemiology, Demography and Biometry, National Institute on Aging, Bethesda, Maryland, USA. 54Tuscany Health Regional Agency, Florence, Italy. 55Genetics of Complex Traits, Peninsula Medical School, The University of Exeter, Exeter, UK. 56Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, Massachusetts, USA. 57Department of Molecular Biology, Massachusetts General Hospital, Boston, Massachusetts, USA. 58Diabetes Unit, Massachusetts General Hospital, Boston, Massachusetts, USA. 59Center for Human Genetics Research, Massachusetts General Hospital, Boston, Massachusetts, USA. 60Department of Genetics, Harvard Medical School, Boston, Massachusetts, USA. 61Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA. 62Department of Public Health, Erasmus Medical Center, Rotterdam, The Netherlands. 63Laboratory of Epidemiology, Demography and Biometry, National Institute on Aging, Bethesda, Maryland, USA. 64Department of Clinical Sciences, Hypertension and Cardiovascular Diseases, University Hospital Malmö, Lund University, Malmö, Sweden. 65National Heart, Lung, and Blood Institute’s Framingham Heart Study, Framingham, Massachusetts, USA. 66National Institute for Health and Welfare (THL), Helsinki, Finland. 67Department of Medical Genetics, Institute of Pathology, Institute of Harvard and Massachusetts Institute of Technology, Cambridge, Massachusetts, USA. 68EMGO Institute, Vrije Universiteit (VU) Medical Center, Amsterdam, The Netherlands. 69Department of Psychiatry, VU University Medical Center, Amsterdam, The Netherlands. 70Biological Psychology, VU University Amsterdam, Amsterdam, The Netherlands. 71Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Maryland, USA. 72Program in Molecular and Genetic Epidemiology, Department of Epidemiology, Harvard University, Boston, Massachusetts, USA. 73Channing Laboratory, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, USA. 74Department of Epidemiology, Erasmus Medical Center, Member of the Netherlands Consortium on Healthy Aging, Rotterdam, The Netherlands. 75Department of Child and Adolescent Psychiatry, Erasmus Medical Center, Rotterdam, The Netherlands. 76Department of Internal Medicine, Erasmus Medical Center, Rotterdam, The Netherlands. 77Centre for Medical Systems Biology, Erasmus Medical Center, Rotterdam, The Netherlands. 78Department of Public Health, Erasmus Medical Center, Rotterdam, The Netherlands. 79Division of Preventive Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA. 80Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA. 81Division of Psychiatry and Neurobehavioural Sciences, University of Virginia, Charlottesville, Virginia, USA. 82Virginia Institute for Psychiatric and Behavioral Genetics, Virginia Commonwealth University, Richmond, Virginia, USA. 83Massy Cancer Center, Virginia Commonwealth University, Richmond, Virginia, USA. 84Department of Psychiatry, University of Pennsylvania, Philadelphia, Pennsylvania, USA. 85Department of Functional Genomics, VU Amsterdam, Amsterdam, The Netherlands. 86Department of Medical Genetics, VU University Medical Center Amsterdam, Amsterdam, The Netherlands. 87Department of Psychiatry, University of North Carolina, Chapel Hill, North Carolina, USA. 88Division of Preventive Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA. 89Department of Psychiatry and Neurobehavioural Sciences, University of Virginia, Charlottesville, Virginia, USA. 90University of Ioannina, Greece. 91Tufts Clinical and Translational Science Institute, Tufts University School of Medicine, Boston, Massachusetts, USA. 92Center for Genetic Epidemiology and Modeling, Institute for Clinical Research and Health Policy Studies, Tufts Medical Center, Boston, Massachusetts, USA. 93Department of Biostatistics, University of North Carolina, Chapel Hill, North Carolina, USA. 94Oxford-GSK Consortium—Jason S Liu1, Federica Tozzi2,3, Dawn M Waterworth5, Sreekumar G Pillai5, Pierandrea Muglia6, Lefkos Middleton7, Wade Berrettini8, Christopher W Knoff9, Xin Yuan9, Gérard Waelder10,11, Peter Vollenweider10,11, Martin Preisig10,11, Nicholas J Wareham12, Jing Hua Zhao13, Ruth JF Loos14, Inês Barroso15, W-Tee Khaw16, Scott Grundy16, Philip Barter17, Robert Mahley18,19, Antero Kesaniemi20, Ruth McPherson21,22, John Vincent23, John Strauss23, James Kennedy23, Anne Farmer24, Peter McGuffin25, Richard Dav25, Keith Matthews26, Per Bakke26, Amund Gulsvik26, Susanne Lucave27, Marcus Ising27, Tanja Brueckel27, Sonja Horstmann27, Joachim Heinrich28,29,30, Rajesh Rawal28, Norbert Dahmen31, Claudia Lammia32, Ozren Polasek33, Lina Zgaga34, Jennifer Huffman35, Susan Campbell35, Jaspal Kooner36, John C Wild37, Harry Campbell39, Veronique Vitart40, Muredach P Reilly41,42, Mingyao Li42,43, Robert Wilensky43, William Matthew44, Hakon H Hakonarson45, Daniel J Rader46, Andre Franke47, Michael Mahley48,49, Arne Schafer50, Maria Faccin51, Antonio Terracciano52, Xiangjun Xiao52, Fabio Busonero53, Paul Scheet54, John Vincent55, John Strauss55, James Kennedy55, Anne Farmer56, Peter McGuffin57, Richard Dav57, Keith Matthews58, Per Bakke58, Amund Gulsvik58, Susanne Lucave59, Marcus Ising60, Tanja Brueckel60, Sonja Horstmann60, Joachim Heinrich61,32, Rajesh Rawal62, Norbert Dahmen63, Claudia Lammia64, Ozren Polasek65, Lina Zgaga66, Jennifer Huffman67, Susan Campbell67, Jaspal Kooner68, John C Wild69, Harry Campbell70, Veronique Vitart71, Muredach P Reilly72,43, Mingyao Li72,43, Robert Wilensky73, William Matthew74, Hakon H Hakonarson75, Daniel J Rader76, Andre Franke77, Michael Mahley78,49, Arne Schafer79, Maria Faccin80, Antonio Terracciano81, Xiangjun Xiao81, Fabio Busonero82, Paul Scheet83, David Schlessinger84, David St Clair85, Dan Rujescu86, Gonçalo R Abecasis87, Hans Jörgen Grabe88, Alexander Teumer89, Henry Völkel90, Astrid Petersmann91, Ulrich John92, Igor Rudan93, Caroline Haylett94, Alan F Wright95, Ivana Kolic96, Benjamin J Wright96, John R Thompson96, Anthony J Balmforth97, Alistair S Eyre98,99, Anne Barton100,101, Vincent Mooser102, Clyde Franks102.

1Department of Statistics, University of Oxford, 2South Parks Road, Oxford OX1 3TG, UK. 2Clinical Sciences-Aptuit Medicines
Common biological basis of obesity and nicotine addiction
TE Thorgeirsson et al

Reasearch Center, Verona, Italy. 3Department of Psychiatry, School of Medicine, University of North Carolina, Chapel Hill, North Carolina, USA. 4Genetics Division, GlaxoSmithKline, Upper Merion, Pennsylvania, USA. 5Roche Pharmaceuticals, Nutley, New Jersey, USA. 6Neurosearch Denmark and Department of Psychiatry, University of Toronto, Toronto, Canada. 7Division of Neurosciences and Mental Health, Imperial College London, UK. 8Department of Psychiatry, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, USA. 9Genetics Division, GlaxoSmithKline, Research Triangle Park, North Carolina, USA. 10University Hospital Center, University of Lausanne, Lausanne, Switzerland. 11Department of Internal Medicine, University of Lausanne, Lausanne, Switzerland. 12Department of Psychiatry, University of Lausanne, Lausanne, Switzerland. 13MRC Epidemiology Unit, Institute of Metabolic Science, Cambridge, UK. 14Wellcome Trust Sanger Institute, Hinxton, UK. 15Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK. 16Center for Human Nutrition, University of Texas Southwestern Medical Center, Dallas, Texas, USA. 17The Heart Research Institute, Sydney, New South Wales, Australia. 18Gladstone Institute of Cardiovascular Disease, University of California, San Francisco, California, USA. 19American Hospital, Istanbul, Turkey. 20Department of Internal Medicine, University of Oulu, Oulu, Finland. 21Division of Cardiology, University of Ottawa Heart Institute, Ottawa, Ontario, Canada. 22Biocenter Oulu, University of Oulu, Oulu, Finland. 23Centre for Addiction and Mental Health, University of Toronto, ON, Canada. 24Medical Research Council Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, King’s College London, UK. 25Center for Neuroscience, Division of Medical Sciences, University of Dundee, Dundee, UK. 26Institute of Medicine, University of Bergen, Bergen, Norway. 27Max-Planck Institute of Psychiatristische Klinik und Poliklinik University of Mainz, Germany. 28Division of Genetic Epidemiology, Department of Medical Genetics, Molecular and Clinical Pharmacology, Innsbruck Medical University, Innsbruck, Austria. 29Medical School, University of Split, Split, Croatia. 30Centre for Population Health Sciences, University of Edinburgh, Edinburgh, UK. 31Institute of Genetics and Molecular Medicine, MRC Human Genetics Unit, Edinburgh, UK. 32National Heart and Lung Institute, Imperial College London, UK. 33Division of Epidemiology, Imperial College London, UK. 34Cardiovascular Research Institute, MedStar Health Research Institute, Washington Hospital Center, Washington, District of Columbia, USA. 35Centre for Population Health Sciences, University of Edinburgh, UK. 36The Cardiovascular Institute, University of Pennsylvania, Philadelphia, Pennsylvania, USA. 37The Institute for Translational Medicine and Therapeutics, School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA. 38Biostatistics and Epidemiology, University of Pennsylvania, Philadelphia, Pennsylvania, USA. 39The Center for Applied Genomics, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA. 40Institute of Clinical Molecular Biology, Christian-Albrechts-University, Kiel, Germany. 41Instituto di Neurogenetica e Neurofarmacologia, CNR, Monserrato, Cagliari, Italy. 42National Institute on Aging, Baltimore, Maryland, USA. 43Department of Epidemiology, University of Texas MD Anderson Cancer Center, Houston, Texas, USA. 44Department of Mental Health, University of Aberdeen, Aberdeen, UK. 45Department of Psychiatry, University of Halle, Halle, Germany. 46Center for Statistical Genetics, Department of Biostatistics, University of Michigan, Ann Arbor, Michigan, USA. 47Department of Psychiatry and Psychotherapy, University of Greifswald, Greifswald, Germany. 48Interfaculty Institute for Genetics and Functional Genomics, University of Greifswald, Greifswald, Germany. 49Institute for Community Medicine, University of Greifswald, Greifswald, Germany. 50Institute of Clinical Chemistry and Laboratory Medicine, University of Greifswald, Greifswald, Germany. 51Department of Social Medicine and Epidemiology, University of Greifswald, Greifswald, Germany. 52Department of Health Sciences, University of Leicester, Leicester, UK. 53Multidisciplinary Cardiovascular Research Centre (MCRC), Leeds University Institute of Genetics, Health and Therapeutics (LiGHT), University of Leeds, Leeds, UK. 54Department of Cardiovascular Sciences, University of Leicester, Glenfield Hospital, Leicester, UK. 55Peninsula College of Medicine and Dentistry, Exeter, UK. 56Department of Medical and Molecular Genetics, King’s College London School of Medicine, Guy’s Hospital, London, UK. 57Gastroenterology Research Unit, Addenbrooke’s Hospital, Cambridge, UK. 58Gastrointestinal Unit, Molecular Medicine Centre, University of Edinburgh, Western General Hospital, Edinburgh, UK. 59Clinical Pharmacology and Barts and the London Genome Centre, William Harvey Research Institute, Barts and the London School of Medicine, Queen Mary University of London, London, UK. 60Department of Cardiovascular Medicine, University of Oxford, Wellcome Trust Centre for Human Genetics, Oxford, UK. 61BHF Glasgow Cardiovascular Research Centre, Division of Cardiovascular and Medical Sciences, University of Glasgow, Western Infirmary, Glasgow, UK. 62Arthritis Research UK Epidemiology Unit, Musculoskeletal Research Group, University of Manchester, Manchester Academic Health Sciences Centre, Manchester, UK. 63NIHR Manchester Musculoskeletal Biomedical Research Unit, Central Manchester NHS Foundation Trust, Manchester, UK. 64Department of Pathology and Laboratory Medicine, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland. 65Max Planck Institute for Psycholinguistics.

URLS