A common biological basis of obesity and nicotine addiction

INTRODUCTION
Smoking influences body weight such that smokers weigh less than non-smokers and smoking cessation often leads to weight increase. The relationship between body weight and smoking is partly explained by the effect of nicotine on appetite and metabolism. However, the brain reward system is involved in the control of the intake of both food and tobacco. We evaluated the effect of single-nucleotide polymorphisms (SNPs) affecting body mass index (BMI) on smoking behavior, and tested the 32 SNPs identified in a meta-analysis for association with two smoking phenotypes, smoking initiation (SI) and the number of cigarettes smoked per day (CPD) in an Icelandic sample (N = 34,216 smokers). Combined according to their effect on BMI, the SNPs correlate with both SI (r = 0.019, P = 0.00054) and CPD (r = 0.032, P = 8.0 x 10^-7). These findings replicate in a second large data set (N = 127,274, thereof 76,242 smokers) for both SI (P = 1.2 x 10^-5) and CPD (P = 9.3 x 10^-5). Notably, the variant most strongly associated with BMI (rs1558902-A in FTO) did not associate with smoking behavior. The association with smoking behavior is not due to the effect of the SNPs on BMI. Our results strongly point to a common biological basis of the regulation of our appetite for tobacco and food, and thus the vulnerability to nicotine addiction and obesity.

Keywords: addiction; body mass index; nicotine dependence; obesity; smoking
consistent with the notion that smoking influences body weight through nicotine’s effects on body and brain, the increase of metabolic rate and suppression of appetite. Here we report how variants correlating with BMI influence smoking behavior.

MATERIALS AND METHODS

Study subjects

Written informed consent was obtained from all subjects. Inclusion in the study required the availability of genotypes from ongoing SNP array typing in Iceland or previous GWAS.15–17 The study populations have all been described previously.15–17 The GWAS of smoking initiation (SI) involved comparison of ever smokers and never smokers, and the studies of smoking quantity probed CPD as a quantitative trait among smokers only. The definitions of smokers and never smokers varied somewhat between studies,15–17 as questions addressing smoking behavior varied with most studies probing for regular smoking over a certain period of time. Questions probing for smoking quantity also varied between studies, and for analysis of smoking quantity we used CPD data for smokers in categories with each category representing 10 CPD (effect size of 0.1 = 1 CPD).15–17 CPD at the time of smoking was used for past smokers, and never smokers were excluded from analysis of CPD. All subjects were of European descent. The total sample sizes were N = 100,860 and N = 161,490 for CPD and SI, respectively.

Icelandic study design

A generalized form of linear regression was used to test the correlation between quantitative traits (BMI and height) and smoking phenotypes (CPD and SI) in Iceland. The generalized form assumes that the smoking behavior of related individuals is correlated proportional to the kinship between them rather than assuming that the smoking phenotypes of all individuals are independent. Let y be the vector of smoking behavior measurements, and let x be the vector of BMI or height measurements. We assume that the expectation of the smoking behavior depends linearly on BMI or height, \(E[y] = \beta + x^T \beta \), and that the variance–covariance matrix of the smoking behavior depends only on the pairwise kinship between the study participants, \(\text{Var}(y) = \sigma^2 \Phi \), where

\[
\Phi = \begin{pmatrix}
\varphi_{ij} = \frac{1}{2} k_{ij} & \text{if } i = j \\
n & \text{otherwise}
\end{pmatrix}
\]

is based on the kinship between individuals as estimated from the Icelandic genealogical database \((k_{ij}) \) and an estimate of the heritability of the trait. Assuming normally distributed errors, the maximum likelihood method gives estimates for \(\beta \), which will asymptotically follow a normal distribution and can be used to estimate the correlation between height and BMI on the one side and CPD and SI on the other.

In order to test the correlation between the set of 32 BMI SNPs or the set of 180 height SNPs and smoking behavior, the same type of analysis was performed replacing the observed BMI and height with the BMI and height predicted based on the sets of 32 and 180 SNPs. We shall describe how this was achieved for BMI, the analysis for height being conceptually identical. For each of the 32 SNPs reported to associate with BMI, let \(f_i \) be its minor allele frequency and \(\gamma_i \) be its published effect on BMI. For an individual with \(g_i \) minor alleles at SNP \(i \), the set of 32 BMI SNPs predict a BMI of

\[
\sum_{i=1}^{32} (g_i - \bar{g}) \gamma_i
\]

RESULTS AND DISCUSSION

To study the correlation between obesity variants and smoking phenotypes, we focused on the 32 BMI SNPs associating with BMI

<table>
<thead>
<tr>
<th>CPD</th>
<th>Smoking</th>
</tr>
</thead>
<tbody>
<tr>
<td>From</td>
<td></td>
</tr>
<tr>
<td>BMI</td>
<td></td>
</tr>
<tr>
<td>32 BMI SNPs</td>
<td></td>
</tr>
<tr>
<td>Height</td>
<td></td>
</tr>
<tr>
<td>180 Height SNPs</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th></th>
<th>N</th>
<th>Correlation (95% CI)</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>BMI</td>
<td></td>
<td>49,565</td>
<td>-0.005 (-0.014, 0.004)</td>
<td>0.29</td>
</tr>
<tr>
<td>32 BMI SNPs</td>
<td></td>
<td>34,216</td>
<td>0.019 (0.008, 0.030)</td>
<td>0.00054</td>
</tr>
<tr>
<td>Height</td>
<td></td>
<td>49,931</td>
<td>-0.012 (-0.021, -0.002)</td>
<td>0.013</td>
</tr>
<tr>
<td>180 Height SNPs</td>
<td></td>
<td>43,243</td>
<td>0.004 (-0.007, 0.015)</td>
<td>0.44</td>
</tr>
</tbody>
</table>

Abbreviations: BMI, body mass index; CI, confidence interval; SNP, single-nucleotide polymorphism.
described in a recent report of a study of 249,796 subjects. We weighted the 32 SNPs together based on their published effect on BMI and tested the correlation with both CPD and SI in 49,565 chip-typed Icelanders (Table 1). We also tested the correlation between the actual measured BMI and the smoking phenotypes in a slightly larger set of Icelanders. For comparison, we performed a corresponding study using Icelandic data on human height and 180 SNPs reported to influence human height in a recent study of 183,731 individuals15–17 (Table 1).

BMI associated with CPD (r = 0.095, P = 2.5 × 10⁻⁶⁸) but not SI (r = −0.005, P = 0.29), whereas height did not associate with CPD (r = −0.004, P = 0.46) and showed only weak association with SI (r = 0.012, P = 0.013). The set of 32 BMI SNPs associated with both CPD (r = 0.032, P = 8.0 × 10⁻⁶⁷) and SI (r = 0.019, P = 0.00054), whereas the set of 180 height SNPs associated with neither smoking behavior (P = 0.84 and 0.44 for CPD and SI, respectively).

The correlation between the set of 32 BMI SNPs and BMI and the correlation between BMI and CPD predict a correlation between the 32 BMI SNPs and CPD of 0.013, which is significantly lower than the observed correlation of 0.032 between the set of 32 BMI SNPs and CPD (P = 0.0033). The correlation between BMI and SI is negative so that the predicted correlation between the 32 BMI SNPs and SI is also negative and even more significantly different from the observed correlation of 0.019 than from 0. Hence, the observed associations between the BMI variants and the smoking phenotypes are not explained by the direct phenotypic correlations between BMI and smoking behavior.

To investigate the contributions of individual SNPs and to replicate our observations in other populations, we looked up the correlations of each of the 32 SNPs with CPD and SI, using data from our previous studies outside of Iceland15–17 (N = 76,242 for CPD, and N = 127,274 for SI). For these studies, we utilized the fixed-effect additive meta-analysis results for ~2,500,000 SNPs obtained using the inverse-variance method for each of the two smoking phenotypes. Before conducting the meta-analysis, we performed a genomic control correction of each study. The combined χ²-test statistics were still somewhat inflated by a factor of λGC = 1.10 (SI) and λGC = 1.06 (CPD). The correlations between the set of 32 BMI SNPs and the two smoking variables were significant in this replication sample with P = 1.2 × 10⁻⁵ and 9.3 × 10⁻⁵ for SI and CPD, respectively. Combined with Iceland, the association between the 32 BMI SNPs and SI and CPD reached a significance of P = 1.2 × 10⁻⁷ and P = 1.6 × 10⁻⁹, respectively.

As expected, based on the correlations observed between the combined set of the 32 BMI SNPs (Table 1), we observe congruence in the effects that these SNPs have on BMI and smoking behavior. For most of the SNPs, the allele that associates with increased BMI also associates with both increased probability of SI and higher CPD (Figure 1). We note that the effect sizes are small and although the markers as a group clearly associate with the smoking behaviors, further studies are required to determine unequivocally which of the markers have an impact on smoking behavior. The SNP by far most strongly associated with BMI (rs1558902-A in FTO) represents a notable exception from the trend observed and shows no evidence for association with either CPD or SI.

Considering the 11 BMI SNPs most strongly associated with smoking (P < 0.05), 9 SNPs associate with smoking initiation and 4 with CPD (Supplementary Table 1 and Figure 1). For smoking initiation the most significant associations were to rs10767664-A (effect = 0.050495, P = 1.14 × 10⁻¹⁰) in the Brain Neurotrophin Factor gene (BDNF) and rs2867125-C (effect = 0.0397, P = 0.00021) 45 kb upstream of the Transmembrane protein 18 gene (MTF3), and for CPD the most significant associations were with rs2867125-C (effect = 0.286, P = 0.000346) (MTF3) and rs4771122-G (effect = 0.0193, P = 0.000486) in the mitochondrial translational initiation factor 3 gene (MTIF3). In addition to rs286123-C (TMEM18), rs2815752-A (NEGR1) is among the top markers (P < 0.05) for both SI (effect = 0.186, P = 0.0244) and CPD (effect = 0.0097, P = 0.0305). A SNP within the BDNF gene has previously been shown to associate with smoking initiation (rs6265-C). This SNP is in linkage disequilibrium with the BMI-associated rs10767664 (r² = 0.85 in Iceland). The association with SI remains significant after removing rs10767664 (P = 1.3 × 10⁻⁴).

In summary, we have demonstrated that as a group, the 32 common variants identified in GWAS of BMI also have an impact on the smoking behavior. A variant within the nAChR gene cluster
CONFLICT OF INTEREST

Authors whose affiliations are listed as Decode genetics/AMGEN are employees of Decode genetics/AMGEN.

ACKNOWLEDGMENTS

We thank the participants in the genetic studies whose contributions made this work possible. This work was supported in part by NIH (R01-DA017932 and R01-DA022522) and the European Commission's Sixth Framework Programme, Integrated Project GENADDICT (LSHM-CT-2004-005166). The ENGAGE smoking consortium was formed through a component of the Integrated Project ENGAGE, supported by the European Commission's Seventh Framework Program, grant agreement HEALTH-F4-2007–201413. SB was funded by the FP7-PEOPLE-2009-IAPP 251922 grant (NextGen).
Common biological basis of obesity and nicotine addiction

TE Thorgeirsson et al

Common biological basis of obesity and nicotine addiction

TE Thorgeirsson et al

Research Institute, Evanston, Illinois, USA. 3Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, California, USA. 38Biostatistics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Maryland, USA. 39International Agency for Research on Cancer (IARC), Lyon, France. 37Institut Català d’Oncologia, Barcelona, Spain. 38General Hospital, Pordenone, Italy. 39Institute of Hygiene and Epidemiology, First Faculty of Medicine, Charles University, Prague, Czech Republic. 40Institut National de la Santé et de la Recherche Médicale (INSERM) U794, Paris, France. 41Institut Gustave Roussy, Villejuif, France. 42Department of Environmental Medicine and Public Health, University of Padua, Padua, Italy. 43University of Glasgow Medical Faculty Dental School, Glasgow, UK. 44School of Biomedical Sciences, University of Edinburgh, Edinburgh, Scotland, UK. 45Department of Cancer Epidemiology and Genetics, Masaryk Memorial Cancer Institute, Brno, Czech Republic. 46Palacky University, Olomouc, Czech Republic. 47Trinity College School of Dental Science, Dublin, Ireland. 48Cancer Registry of Cambridge, Massachusetts, USA. 49Department of Molecular Medicine, Institute of Harvard and Massachusetts Institute of Technology, Cambridge, Massachusetts, USA. 50Department of Cancer Epidemiology and Prevention, Maria Sklodowska-Curie Cancer Center and Institute of Oncology, Warsaw, Poland. 51University of Newcastle Dental School, Newcastle, UK. 52University of Aberdeen School of Medicine, Aberdeen, UK. 53Institute of Public Health, Bucharest, Romania. 54Center for Experimental Research and Medical Studies, University of Turin, Turin, Italy. 55National Institute of Environmental Health Sciences, National Institutes of Health, Bethesda, Maryland, USA. 56Department of Translational Psychiatry (2013), 1 – 7