Measurement of $\bar{B}^0 \to D^{(*)0} \bar{K}^{(*)0}$ branching fractions

1550-7998/2006/74(3)/031101(8)

PHYSICAL REVIEW D 74, 031101(R) (2006)

© 2006 The American Physical Society
MEASUREMENT OF $B^0 \rightarrow D^{(*)0} \bar{K}^{(*)0}$ BRANCHING FRACTIONS

Rapid Communications

031101-2
We present a study of the decays $B^0 \rightarrow D^{(*)0} \bar{K}^{(*)0}$ using a sample of $226 \times 10^6 \ Y(4S) \rightarrow \BB$ decays collected with the BABAR detector at the PEP-II asymmetric-energy $e^+ e^-$ collider at SLAC. We report evidence for the decay of B^0 and \bar{B}^0 mesons to the $D^{(*)} K^0_S$ final state with an average branching fraction $B(B^0 \rightarrow D^{(*)} K^0_S) = (B(B^0 \rightarrow D^{(*)} K^0_S) + B(\bar{B}^0 \rightarrow D^{(*)} K^0_S))/2 = (3.6 \pm 1.2 \pm 0.3) \times 10^{-5}$. Similarly, we measure $B(B\bar{B} \rightarrow D^{(*)} K^0_S) = (B(B \rightarrow D^{(*)} K^0_S) + B(\bar{B} \rightarrow D^{(*)} K^0_S))/2 = (5.3 \pm 0.7 \pm 0.3) \times 10^{-5}$ for the $D^{(*)} K^0_S$ final state. We measure $B(B^0 \rightarrow D^{(*)} K^0_S) = (4.0 \pm 0.7 \pm 0.3) \times 10^{-5}$ and set a 90% confidence level upper limit $B(B^0 \rightarrow D^{(*)} K^0_S) < 1.1 \times 10^{-5}$. We determine the upper limit for the decay amplitude ratio $\left| \mathcal{A}(B^0 \rightarrow D^{(*)} K^0_S)/\mathcal{A}(\bar{B}^0 \rightarrow D^{(*)} K^0_S) \right|$ to be less than 0.4 at the 90% confidence level.

With the discovery of CP violation in the decays of neutral B mesons [1] and the precise measurement [2] of the angle β of the Cabibbo-Kobayashi-Maskawa (CKM) Unitarity Triangle [3], the experimental focus has shifted towards over-constraining the unitarity triangle through precise measurements of $|V_{ub}|$ and the angles α and γ. The angle γ is arg$(V_{us}^* V_{ud}/V_{cb} V_{cd})$ and V_{ij} are CKM matrix elements. Several methods have been suggested and explored to measure γ with small uncertainties [4], but they all require large samples of B mesons not yet available. The decay modes $B^0 \rightarrow D^{(*)0} \bar{K}^0_S$ offer a new approach for the determination of $\sin(2\beta + \gamma) \pm \delta$ from the measurement of time-dependent CP asymmetries in these decays [5]. The CP asymmetry appears as a result of the interference between two diagrams leading to the same final state $D^{(*)0} K^0_S$ (Fig. 1). A B^0 meson can either decay via a $b \rightarrow c$ quark transition to the $D^{(*)0} K^0_S$ ($K^0 \rightarrow K^0_S$) final state, or oscillate into a B^0 which then decays via a $b \rightarrow u$ transition to the $D^{(*)0} K^0_S$ ($K^0 \rightarrow K^0_L$) final state [6]. The $B^0 \bar{B}^0$ oscillation provides the weak phase 2β and the relative weak phase between the two decay diagrams is γ.

The sensitivity of this method [5] depends on the rates for these decays and the ratio of the decay amplitudes. The branching fractions $B(B^0 \rightarrow D^{(*)0} \bar{K}^{(*)0})$ can be estimated from the measured color-suppressed decays $B^0 \rightarrow D^{(*)0} \pi^0$ [7] to be approximately $B(B^0 \rightarrow D^{(*)0} \bar{K}^{(*)0}) = \sin^2 \theta_c B(B^0 \rightarrow D^{(*)0} \pi^0) \sim O(10^{-5})$, where θ_c is the Cabibbo angle and $\sin \theta_c = 0.22$. The Belle Collaboration has observed the $B^0 \rightarrow D^{(*)} \bar{K}^{(*)0}$ decays with branching fractions consistent with this naive expectation [8]. The time-dependent CP asymmetries in $B^0 \rightarrow D^{(*)0} \bar{K}^{(*)0}$ decays are proportional to $r^{(e)}_B \cdot \sin(2\beta + \gamma + \delta)/(1 + r^{(e^2)}_B)$, where $r^{(e)}_B = |\mathcal{A}(B^0 \rightarrow D^{(*)0} \bar{K}^{(*)0})/\mathcal{A}(\bar{B}^0 \rightarrow D^{(*)0} \bar{K}^{(*)0})|$ and δ is a relative strong phase which depends on the specific final state. Higher values of $r^{(e)}_B$ lead to larger interference between the $b \rightarrow c$ and $b \rightarrow u$ processes and thus increased sensitivity to the angle γ. In the standard model $r^{(e)}_B = f \cdot |V_{ub}/V_{cb}|$, where the factor f accounts for the difference in the strong interaction dynamics between the $b \rightarrow c$ and $b \rightarrow u$ processes. There are no theoretical calculations or experimental constraints on f.

In $B^0 \rightarrow D^{(*)0} \bar{K}^0_S$ ($K^0 \rightarrow K^0_L$) decays the strangeness content of the K^0 is hidden and one cannot distinguish between $B^0 \rightarrow D^{(*)0} \bar{K}^0_S$ and $B^0 \rightarrow D^{(*)0} K^0$. Therefore a direct determination of $r^{(e)}_B$ from the measured rates is not feasible. In the remainder of this paper we refer to these decays as $B^0 \rightarrow D^{(*)0} \bar{K}^0_S$. Insight into the CP decay dynamics affecting $r^{(e)}_B$ can be gained by measuring a similar amplitude ratio $\bar{r}_B = |\mathcal{A}(B^0 \rightarrow D^{(*)0} \bar{K}^{(*)0})/\mathcal{A}(\bar{B}^0 \rightarrow D^{(*)0} \bar{K}^{(*)0})|$ using the self-tagging decay $K^{(*)0} \rightarrow K^- \pi^+$. The $B^0 \rightarrow D^{(*)0} \bar{K}^0_S$ and $B^0 \rightarrow D^{(*)0} K^0$ decays are distinguished by the correlation between the charges of the kaons produced in the decays of the neutral D and the K^0. In the former decay the two kaons in the final state must have the same charge, while in the latter they are oppositely charged. This charge correlation in the final state is diluted by the presence of the doubly-Cabibbo-suppressed decays $D^0 \rightarrow K^+ \pi^-, K^+ \pi^- \pi^0$, and $K^+ \pi^- \pi^+ \pi^-$. The ratio \bar{r}_B is related to the experimental observables \mathcal{R}_i defined as

$$\mathcal{R}_i = \frac{\Gamma(B^0 \rightarrow (K^+ X_i^-) D^{(*)0})}{\Gamma(B^0 \rightarrow (K^- X_i^+) D^{(*)0})} = r^{(e)}_B + r^{2}\Delta_i + 2r_B r_{D}\cos(\gamma + \delta_i), \quad (1)$$

where

$$X_i^\pm = \pi^\pm, \pi^\pm \pi^0, \pi^\pm \pi^- \pi^+, \quad (2)$$

$$r_{D_i} = \frac{|\mathcal{A}(D^0 \rightarrow K^+ X_i^-)|}{|\mathcal{A}(D^0 \rightarrow K^- X_i^+)|}, \quad (3)$$

FIG. 1. The decay diagrams for the $b \rightarrow c$ transition $B^0 \rightarrow D^{(*)0} \bar{K}^{(*)0}$ and the $b \rightarrow u$ transition $B^0 \rightarrow D^{(*)0} K^{(*)0}$. DOI: 10.1103/PhysRevD.74.031101 PACS numbers: 13.25.Hw, 11.30.Er, 12.15.Hh
\[\delta_i = \delta_B + \delta_D, \]

(4)

and \(\delta_B \) and \(\delta_D \) are strong phase differences between the two B and D\(_i\) decay amplitudes, respectively. The values of \(r_{D_i} \) have been measured to be \(r_{D_i} = 0.060 \pm 0.002 \), \(r_{D_i-K \pi^0} = 0.066 \pm 0.010 \), and \(r_{D_i-K \pi^0 \pi} = 0.065 \pm 0.010 \) [9].

We present herein measurements of the branching fractions \(B(B^0 \rightarrow D^0 \overline{K}^0) \) and \(B(B^0 \rightarrow D^0 \overline{K}^0) \), evidence for the decay \(B^0 \rightarrow D^0 \overline{K}^0 \), a 90\% confidence level (C.L.) upper limit for the branching fraction of the \(b \rightarrow u \) transition \(B^0 \rightarrow D^0 \overline{K}^0 \), and a limit for the ratio \(r_B \).

These results are based on a sample of \(226 \times 10^6 \) \(Y(4S) \rightarrow B \overline{B} \) decays collected with the BABAR detector between 1999 and 2004 at the PEP-II asymmetric-energy \(e^+ e^- \) collider operating at the \(Y(4S) \) resonance. The properties of the continuum \(e^+ e^- \rightarrow \gamma \gamma (q = u, d, s, c) \) background events are studied with a data sample of 11.9 fb\(^{-1}\) recorded at an energy 40 MeV below the \(Y(4S) \) resonance. The BABAR detector has been described in detail elsewhere [10]. Detector components relevant for this analysis are summarized here. Trajectories of charged particles are measured in a spectrometer consisting of a five-layer silicon vertex tracker (SVT) and a 40-layer drift chamber (DCH) operating in a 1.5 T axial magnetic field. Charged particles are identified as pions or kaons using information from a detector of internally reflected Cherenkov light, as well as measurements of energy loss from ionization \((dE/dx) \) in the SVT and the DCH. Photons are detected using an electromagnetic calorimeter composed of 6580 thallium-doped CsI crystals. We use a Monte Carlo simulation of the BABAR detector based on GEANT4 [11] to validate the analysis procedure and to study the backgrounds. Simulated events are generated with the EvtGen [12] event generator.

We reconstruct the decays \(B^0 \rightarrow D^0 \overline{K}^0, D^0 \overline{K}^0, D^0 \overline{K}^0, \) and \(D^0 \overline{K}^0 \) in the decay chains: \(D_0 \rightarrow D_0 \pi^0; D_0 \rightarrow K^- \pi^+, K^- \pi^+ \pi^0, \) and \(K^- \pi^- \pi^- \pi^0; \) \(K_0 \rightarrow K_0 \rightarrow \pi^+ \pi^+ \); \(K_0 \rightarrow K_0 \rightarrow \pi^+ \pi^- \); \(K_0 \rightarrow K_0 \rightarrow \pi^0 \); and \(\pi^0 \rightarrow \gamma \gamma \). For each B decay channel the optimal selection criteria are determined by maximizing the ratio \(N_S/\sqrt{N_S + N_B} \), where \(N_S \) and \(N_B \) are, respectively, the expected signal and background yields estimated from samples of simulated events. A large sample of the more abundant \(B^- \rightarrow D^0 \pi^- \) decays, in which the \(D^0 \) decays to the \(K^- \pi^+, K^+ \pi^- \pi^0, \) or \(K^+ \pi^- \pi^+ \) final states, is used as a calibration sample to measure efficiencies and experimental resolutions for the selection variables.

Well reconstructed charged tracks are used to reconstruct \(D^0 \) and \(K^{*0} \) candidates. The \(K^{*0} \) candidates must satisfy a set of kaon identification criteria. These identification criteria have an average efficiency of about 90\%, while the probability of a pion to be misidentified as a kaon varies between a few percent and 15\%. Photons are reconstructed from energy deposition clusters in the electromagnetic calorimeter consistent with photon showers, and are required to have an energy greater than 30 MeV. We select \(\pi^0 \) candidates from pairs of photon candidates by requiring their invariant mass to be in the interval 115 MeV/c\(^2\) < \(m(\gamma \gamma) < 150 \) MeV/c\(^2\).

The \(K_{S3}^0 \) candidates are selected from pairs of oppositely charged tracks with invariant mass within 7 MeV/c\(^2\) (~ 2\(\sigma \)) of the nominal \(K_{S3}^0 \) mass. The displacement of the \(K_{S3}^0 \) decay vertex from the interaction point, in the plane perpendicular to the beam axis, divided by its estimated uncertainty must be greater than 2. The \(K^{*0} \) candidates are selected from pairs of oppositely charged \(K^+ \) and \(\pi^- \) tracks, with invariant mass within 50 MeV/c\(^2\) of the nominal \(K_{S3}^0 \) mass. The polarization of the \(K^{*0} \) in the \(B^0 \) decay is used to reject backgrounds by requiring \(|\cos \theta_h| > 0.4 \), where the helicity angle \(\theta_h \) is defined as the angle between the direction of the \(K^0 \) in the \(B^0 \) meson rest frame and the direction of its daughter \(K^+ \) in the \(K^{*0} \) rest frame. For \(B^0 \rightarrow D^0 \overline{K}^{*0} \) and \(B^0 \rightarrow D^0 \overline{K}^{*0} \) signal candidates, \(\theta_h \) follows a \(\cos \theta_h \) distribution, while the combinatorial background is distributed uniformly.

We reconstruct \(D^0 \) candidates in the \(K^- \pi^+ \) and \(K^- \pi^+ \pi^- \pi^+ \) decay modes by combining charged tracks, retaining combinations with an invariant mass within 2\(\sigma \) of the nominal \(D^0 \) mass \(m_{D^0} \). In the \(D^0 \rightarrow K^- \pi^+ \pi^0 \) selection, the \(\pi^0 \) candidates are required to have a center-of-mass (CM) momentum \(p^0 < 400 \) MeV/c. For each \(K^- \pi^+ \pi^0 \) combination, we use the kinematics of the decay products and the known properties of the Dalitz plot for this decay [13] to compute the square of the decay amplitude \(\mathcal{A}^2 \). We select combinations with \(\mathcal{A}^2 \) greater than 5\% of its maximum value. This requirement selects mostly the \(K^0 \rho^+ \) region of the Dalitz plot. It rejects 62\% of the combinatorial background, while keeping 76\% of the \(D^0 \rightarrow K^- \pi^+ \pi^0 \) signal, as measured with the \(B^- \rightarrow D^0 \pi^- \) sample. Combinations with invariant mass within 25 MeV/c\(^2\) (2.5\(\sigma \)) of \(m_{D^0} \) are retained.

The \(D^{*0} \) candidates are selected from combinations of a \(D^0 \) and a \(\pi^0 \) with \(p^0 > 70 \) MeV/c. After kinematically constraining \(D^0 \) and \(\pi^0 \) candidates to their nominal masses, we select the candidates with a mass difference \(\Delta m = |m(D^{*0}) - m(D^0)| - 142.2 \) MeV/c\(^2\) < 3.3 MeV/c\(^2\) (3\(\sigma \)).

Two standard kinematic variables are used to select \(B^0 \) candidates: the energy-substituted mass \(m_{ES} = \sqrt{(s/2 - c^2 p_Y \cdot p_B)^2/E_Y - c^2 p_B^2} \) and the energy difference \(\Delta E = E_B - \frac{1}{2} s \), where the asterisk denotes the CM frame, \(s \) is the square of the total energy in the CM frame, \(p \) and \(E \) are, respectively, three-momentum and energy, and the subscripts Y and B refer to \(Y(4S) \) and \(B^0 \). In calculating \(p_B \) and \(E_B \) we constrain the mass of the \(D^{*0} \) and \(K_{S3}^0 \) candidates to their respective nominal values. For signal events, \(m_{ES} \) is centered around the \(B^0 \) mass with a resolution of about 2.6 MeV/c\(^2\), dominated by knowledge of the \(e^+ \) and \(e^- \) beam energies. In simulated events the
\(\Delta E \) resolution is found to be \(\approx 13 \) MeV for all \(B^0 \) decay modes considered in this analysis. The \(B^0 \) candidates are required to have \(m_{ES} > 5.2 \) GeV/c\(^2 \) and \(|\Delta E| < 100 \) MeV.

We use two variables to reject most of the remaining background, which is dominated by continuum events: a Fisher discriminant \([14]\) based on the energy flow in the event and the polar angle \(\theta_B^* \) of the \(B^0 \) candidate in the CM frame. For correctly reconstructed \(B \) candidates \(\cos \theta_B^* \) follows a \(1 - \cos^2 \theta_B^* \) distribution, whereas it is uniformly distributed for continuum events and combinatorial background. We require \(|\cos \theta_B^*| < 0.75 \) for \(B^0 \to D^0 K^{*0} \), and \(|\cos \theta_B^*| < 0.85 \) for all other decay modes. The Fisher discriminant \(F \) is defined as a linear combination of \(|\cos \theta_B^*| \) and two energy-flow moments \(L_0 \) and \(L_2 \). The variable \(\theta_{TB}^* \) is the angle in the CM frame between the thrust axis \([15]\) of the decay products of the \(B^0 \) and the thrust axis of all charged and neutral particles in the event excluding the ones that form the \(B^0 \). The energy-flow moments \(L_0 \) and \(L_2 \) are defined as \(L_i = \sum_j p_j^i / \cos \theta_j \) where \(p_j^i \) is the CM momentum and \(\theta_j \) is the angle between the direction of particle \(j \) with respect to the thrust axis of the \(B^0 \) candidate, and the sum is over all particles in the event (excluding those that form the \(B^0 \)). The requirement \(F \) varies for each decay channel because of different levels of expected background. In the \(D^{(*)0} K_S^{(*)0} \) and \(D^0 K^{*0} \) final states our requirement has an efficiency of about 80% for the signal while rejecting approximately 85% of the background; in the \(B^0 \to D^0 K^{*0} \) mode a tighter requirement rejects 95% of the background and has a signal efficiency of 55%.

In the \(D^{(*)0} K_S^{(*)0} \) final state, approximately 5% of the events that satisfy all selection criteria contain more than one \(B^0 \) candidate. We retain the candidate with the smallest \(\chi^2 \) computed from the measured value of \(m(D^0) \) and \(m(D^{(*)0}) - m(D^0) \), their nominal values, and their resolutions in data. In the \(D^0 K^{*0} \) and \(D^0 K^{*0} \) final states we retain all selected \(B^0 \) candidates since the fraction of events with two or more candidates is negligible (\(< 1\% \)).

The selected \(B^0 \to D^{(*)0} K^{(*)0} \) candidates include small contributions from numbers of \(B \) decays to similar final states which are misreconstructed as signal candidates. We have studied these backgrounds with large samples of simulated events, corresponding to between 100 and 1000 times the size of our data sample, for the following categories of decays: (1) \(B^0 \to D^0 \rho^0, \rho^0 \to \pi^+ \pi^- \) decays, where one of the two pions is misidentified as a charged kaon; (2) \(B^0 \to D^+ \pi^- \) decays followed by Cabibbo-suppressed decays \(D^+ \to \bar{K}^{(*)0} K^+ \), \(\bar{K}^{(*)0} K^+ \), and \(\bar{K}^{(*)0} K^+ \) reconstructed, respectively, in the \(D^0(K^- \pi^+) K^{(*)0}, D^0(K^- \pi^- K^+) K^{(*)0}, \) and \(D^0(K^+ \pi^- \pi^+) K^{(*)0} \) final states; (3) charmless \(B^0 \to K^- \pi^+ K_S^{(*)0} \) where the \(K^- \) and \(\pi^+ \) are wrongly combined to form a \(D^0 \to K^- \pi^+ \) candidate; (4) \(B^0 \to D^{(*)0} K^{(*)0}, D^{(*)0} \to D^0 \gamma \) candidates, where a low-energy photon is not reconstructed; (5) the decays \(B^- \to D^{(*)0} K^-, D^{(*)0} \to D^0 \pi^- / \gamma, B^- \to D^0 K^-, K^- \to K^- \pi^0, K_S^{(*)0} \pi^-, \) and \(B^0 \to D^- K^+, D^- \to \bar{D}^0 K^+ \), where a low-energy \(\pi^0, \pi^- \), or photon is replaced by a random low-momentum charged particle. The contribution of category (1) is found to be less than 0.01 events and hence is neglected. The contribution of category (2) is also negligible in all modes, except for \(B \to D^0 K^0, D^0 \to K^- \pi^+ \). We eliminate 87% of these background events by requiring the invariant masses \(m(K_S^{(*)0} K^+) \) and \(m(K_S^{(*)0} \pi^+) \) to be more than 20 MeV/c\(^2 \) away from the nominal \(D^+ \) mass. The \(m_{ES} \) spectrum of the remaining background events in this category, and in categories (3)–(5), show a broad enhancement near the \(B \) mass. However, due to the \(D^0 \) mass constraint, \(B^0 \) candidates with a misreconstructed \(D^0 \) do not peak, unlike the signal, in the \(\Delta E \) distribution at zero. In the decay \(B^0 \to D^0 K^{*0} \), the charge correlation used in the selection removes all contributions from known \(B \) decays included in simulated events.

The signal yield for each \(B^0 \) decay mode is determined with a two-dimensional extended unbinned maximum likelihood fit to the \(m_{ES} \) and \(\Delta E \) distributions, separately for each \(D^0 \) decay mode. The probability density function (PDF) is a sum of three components: a signal component \(G(m_{ES}) \times G(\Delta E) \), a background component \(G(m_{ES}) \times \mathcal{P}_1(\Delta E) \), accounting for other \(B \) decays misreconstructed as signal, and a combinatorial background component \(\mathcal{T}(m_{ES}) \times \mathcal{P}_3(\Delta E) \). Here, \(G(m_{ES}) \) is a Gaussian describing the \(m_{ES} \) distribution of signal and misreconstructed \(B \) decays; \(G(\Delta E) \) is a Gaussian describing the signal \(\Delta E \) distribution; \(\mathcal{P}_1(\Delta E) \) are first-order polynomials describing the \(\Delta E \) distributions of background events. The \(m_{ES} \) distribution of the combinatorial background is parameterized by a threshold function \(\mathcal{T}(m_{ES}) \) defined as \(\mathcal{T}(m_{ES}) \sim m_{ES} \sqrt{1-x^2} \exp(-\xi(1-x^2)) \) \([16]\), where \(x = 2m_{ES} / \sqrt{s} \) and \(\xi \) is a shape parameter. The mean and the resolution of \(G(m_{ES}) \) and \(G(\Delta E) \) are fixed to values measured in the \(B^+ \to D^0 \pi^+ \) calibration sample.

TABLE I. Signal yield \(N_S \), signal significance \(S \), effective signal efficiency \(\epsilon_{eff} \), and the measured branching fraction \(\mathcal{B} \) for the \(B^0 \to D^{(*)0} K^0, B^0 \to D^{(*)0} K^{*0}, \) and \(B^0 \to D^0 K^{*0} \) decays. The efficiency \(\epsilon_{eff} \) is defined as \(\Sigma_i \epsilon_i \times B_i \), where the sum is over the \(D^0 \) decay modes, \(\epsilon_i \) are the signal reconstruction efficiencies, and \(B_i \) are the corresponding intermediate branching fractions for \(D^{(*)0}, D^0, K^{*0}, \) and \(K^0 \) decays to final states reconstructed in this analysis.

<table>
<thead>
<tr>
<th>(B) Mode</th>
<th>(N_S)</th>
<th>(S)</th>
<th>(\epsilon_{eff}) [%]</th>
<th>(\mathcal{B}(10^{-5}))</th>
</tr>
</thead>
<tbody>
<tr>
<td>(B^0 \to D^0 K^0)</td>
<td>104 \pm 14</td>
<td>9.2\sigma</td>
<td>0.82</td>
<td>5.3 \pm 0.7 \pm 0.3</td>
</tr>
<tr>
<td>(B^0 \to D^{*0} K^0)</td>
<td>17.1 \pm 5.2</td>
<td>4.3\sigma</td>
<td>0.17</td>
<td>3.6 \pm 1.2 \pm 0.3</td>
</tr>
<tr>
<td>(B^0 \to D^0 K^{*0})</td>
<td>77 \pm 12</td>
<td>7.9\sigma</td>
<td>0.84</td>
<td>4.0 \pm 0.7 \pm 0.3</td>
</tr>
<tr>
<td>(B^0 \to D^0 K^{*0})</td>
<td>(-3.6^{+6.8}_{-5.5})</td>
<td>—</td>
<td>0.47</td>
<td>0.0 \pm 0.5 \pm 0.3</td>
</tr>
</tbody>
</table>
The measured signal yields are summarized in Table I. The ΔE distributions of candidates with $|m_{ES} - 5280| < 8$ MeV/c2 for the sums of the reconstructed D^0 decay modes are illustrated in Fig. 2. The signal significance S is computed as $S = \sqrt{2 \ln(N_S) - \ln(N_S = 0)}$, where $\mathcal{L}(N_S)$ is the likelihood of the nominal fit, and $\mathcal{L}(N_S = 0)$ is the value obtained after repeating the fit with the signal yield N_S constrained to be zero.

The branching fraction B for each B^0 decay mode is the weighted average of the branching fractions B_j in each D^0 channel $D_j = \{K^-\pi^+, K^-\pi^+\pi^-\pi^+, K^-\pi^+\pi^0\}$, computed as

$$B_j = \frac{N_j}{2 \times N_{BB} \times \mathcal{B}(Y(4S) \rightarrow B^0\bar{B}^0) \times B_{D_j} \times B_K \times e_j}$$

where N_j is the signal yield from the likelihood fit, N_{BB} is the total number of $Y(4S) \rightarrow B\bar{B}$ events, B_{D_j} is the branching fraction $\mathcal{B}(D^0 \rightarrow D^0)$ in $B^0 \rightarrow D^0 K^{(*)0}$ and $\mathcal{B}(D^{*0} \rightarrow D^0 \pi^0) \times \mathcal{B}(D^0 \rightarrow D_{j})$ in $B^0 \rightarrow D^0 K^{(*)0}$, B_K is the $K^0 \rightarrow \pi^+\pi^- (K^{(*)0} \rightarrow K^+\pi^-)$ branching fraction in $B^0 \rightarrow D^{(*)0}K^{(*)0}(B^0 \rightarrow D^0 K^{(*)0}, D^{*0} K^{(*)0})$, and e_j is the signal reconstruction efficiency. The weights are calculated from the statistical and uncorrelated systematic uncertainties in B_j.

We assume $\mathcal{B}(Y(4S) \rightarrow B^0\bar{B}^0) = 0.5$. The systematic uncertainties for the branching fractions include contributions from estimated reconstructed B background (1–13%) [17], variation of parameters kept fixed in the likelihood fit (2–8%), $D^{(*)0}$ branching fraction (2.4–6.9%), π^0 reconstruction efficiency (3%), photon reconstruction efficiency (1.8%), charged-track reconstruction efficiency (0.8% per track), simulation statistics (1–4%), efficiency correction factors (1–4%), kaon identification efficiency (2% per kaon), K^0_S reconstruction efficiency (1.6%), and the number of $B\bar{B}$ events (1.1%). The efficiency correction factors are obtained by comparing data with MC simulation in the $B^+ \rightarrow D^0\pi^+$ control sample. The largest contributions to the uncertainties in these factors are from selection requirements for the π^0 momentum p_{π^0} and the amplitude $|\mathcal{A}|^2$ in the $D^0 \rightarrow K^-\pi^+\pi^0$ decay and the Fisher discriminant f.

We measure

$$\mathcal{B}(B^0 \rightarrow D^0\bar{K}^0) = (5.3 \pm 0.7 \pm 0.3) \times 10^{-5}$$
$$\mathcal{B}(B^0 \rightarrow D^{*0}\bar{K}^0) = (3.6 \pm 1.2 \pm 0.3) \times 10^{-5}$$
$$\mathcal{B}(B^0 \rightarrow D^0\bar{K}^0) = (4.0 \pm 0.7 \pm 0.3) \times 10^{-5}$$
$$\mathcal{B}(B^0 \rightarrow D^0\bar{K}^0) = (0.0 \pm 0.5 \pm 0.3) \times 10^{-5}$$

where the uncertainties are, respectively, statistical and systematic. For the decay $B^0 \rightarrow D^0\bar{K}^0$ we use the Bayesian method to compute the upper limit N_{UL} on the observed number of events. The value of N_{UL} at 90% C.L. is defined as $f_{UL}^{NL} \int_0^{N_{UL}} \mathcal{L}(N)dN = 0.9$, where $\mathcal{L}(N)$ is the likelihood function from the fit to the m_{ES} and ΔE distributions. We assume a flat prior probability density function for $\mathcal{B} > 0$. We account for systematic uncertainties by numerically convolving $\mathcal{L}(N)$ with a Gaussian distribution with a width determined by the relative systematic uncertainty multiplied by the measured signal yield. We obtain $\mathcal{B}(B^0 \rightarrow D^0\bar{K}^0) < 1.1 \times 10^{-5}$ at 90% C.L.

We compute an upper limit on the ratio \tilde{r}_B by measuring the ratio R_i in each D^0 decay mode. We use the expression $R_i = (e_{D_i,k}/e_{D_{i,k}}) \cdot (N_{D_i,k}/N_{D_{i,k}})$ to obtain the PDF for R_i from the unbinned maximum likelihood fit described earlier. In this expression $e_{D_i,k}$ ($e_{D_{i,k}}$) and $N_{D_i,k}$ ($N_{D_{i,k}}$) are, respectively, the reconstruction efficiency and fitted yield of the $B^0 \rightarrow D^0\bar{K}^0$, $D^0 \rightarrow K^-X^+_i$ ($B^0 \rightarrow D^0\bar{K}^0$, $D^{*0} \rightarrow K^-X^+_i$) decay modes. The uncertainties on $e_{D_i,k}$, $e_{D_{i,k}}$, and $N_{D_i,k}$ are used to obtain the posterior PDF $\mathcal{L}(R_i)$ for each R_i. We assume a Gaussian PDF for r_{D_i}, we compute the PDF for \tilde{r}_B by convolving $\mathcal{L}(R_i)$ and r_{D_i} according to Eq. (1). We obtain the limit $\tilde{r}_B < 0.40$ at 90% C.L. with a Bayesian method using uniform priors for $R_i > 0$ and by taking into account the full range 0°–180° for γ and δ_i. The present signal yields combined with this limit on \tilde{r}_B suggest that a substantially larger data sample is needed for a competitive time-dependent measurement of $\sin(2\beta + \gamma)$ in $B^0 \rightarrow D^{(*)0}\bar{K}^0$ decays.

In summary, we have presented measurements of the branching fractions for the decays $B^0 \rightarrow D^0\bar{K}^0$ and $B^0 \rightarrow D^{*0}\bar{K}^0$, evidence for the decay $B^0 \rightarrow D^{*0}\bar{K}^0$, and an upper limit for the ratio \tilde{r}_B. Our results are in agreement with previous measurements of these modes [18].

We are grateful for the excellent luminosity and machine conditions provided by our PEP-II colleagues, and for the substantial dedicated effort from the computing organizations that support BABAR. The collaborating institutions...
wish to thank SLAC for its support and kind hospitality. This work is supported by DOE and NSF (USA), NSERC (Canada), IHEP (China), CEA and CNRS-IN2P3 (France), BMBF and DFG (Germany), INFN (Italy), FOM (The Netherlands), NFR (Norway), MIST (Russia), and PPARC (United Kingdom). Individuals have received support from CONACyT (Mexico), Marie Curie EIF (European Union), the A.P. Sloan Foundation, the Research Corporation, and the Alexander von Humboldt Foundation.

[6] Charge conjugation is implied throughout this paper, unless explicitly stated otherwise.
[17] The contribution of misreconstructed B background in the $\bar{B}^0 \rightarrow \bar{D}^0 K^0$ mode, where no signal is observed, is about two events.