Search for the charmed pentaquark candidate $\Theta_c(3100)^0$ in e^+e^- annihilations at $\sqrt{s} = 10.58$ GeV
B. Aubert et al.

University of California at Santa Cruz, Institute for Particle Physics, Santa Cruz, California 95064, USA

Lawrence Berkeley National Laboratory and University of California, Berkeley, California 94720, USA

Ruhr Universitat Bochum, Institut fu¨r Experimentalphysik 1, D-44780 Bochum, Germany

Department of Physics, University College London, Gower Street, London, WC1E 6BT, United Kingdom

IN2P3-CNRS, Universite de Lyon, 69622 Villeurbanne, France

University of Cambridge, Institute of Cell and Developmental Biology, Cambridge, CB2 1QR, United Kingdom

University of Oxford, Zeeman Lab, South Parks Road, Oxford, OX1 3PU, United Kingdom

University of Washington, Department of Physics, Seattle, Washington 98195, USA

University of Arizona, Tucson, Arizona 85721, USA

University of Texas at Austin, Austin, Texas 78712, USA

University of Oklahoma, Norman, Oklahoma 73019, USA

University of Wisconsin, Madison, Wisconsin 53706, USA

University of California at Santa Barbara, Santa Barbara, California 93106, USA

University of Utah, Salt Lake City, Utah 84112, USA

University of Hawaii, Honolulu, Hawaii 96822, USA

University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z1

Budker Institute of Nuclear Physics, Novosibirsk 630090, Russia

Colorado State University, Fort Collins, Colorado 80523, USA

University of California, San Diego, La Jolla, California 92093, USA

University of Kansas, Lawrence, Kansas 66045, USA

University of Massachusetts, Amherst, Massachusetts 01003, USA

University of Minnesota, Minneapolis, Minnesota 55455, USA

University of Missouri-Columbia, Columbia, Missouri 65211, USA

University of Wisconsin, Madison, Wisconsin 53706, USA

University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA

University of California at Los Angeles, Los Angeles, California 90095, USA

University of Texas, Austin, Texas 78712, USA

University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA

University of Wisconsin, Madison, Wisconsin 53706, USA

University of California at Riverside, Riverside, California 92521, USA

University of California at San Diego, La Jolla, California 92093, USA

University of California at Santa Barbara, Santa Barbara, California 93106, USA

University of California at Riverside, Riverside, California 92521, USA

University of California at Santa Cruz, Institute for Particle Physics, Santa Cruz, California 95064, USA

University of California Institute of Technology, Pasadena, California 91125, USA

University of Cincinnati, Cincinnati, Ohio 45221, USA

University of Colorado, Boulder, Colorado 80309, USA

Colorado State University, Fort Collins, Colorado 80523, USA

Universitat Dortmund, Institut fu¨r Physik, D-44221 Dortmund, Germany

RAPID COMMUNICATIONS

University of Barcelona Fac. Fisica. Dept. ECM Avda Diagonal 647, 6a planta E-08028 Barcelona, Spain

Universita` di Bari, Dipartimento di Fisica and INFN, I-70126 Bari, Italy

Lawrence Berkeley National Laboratory and University of California, Berkeley, California 94720, USA

University of Birmingham, Birmingham, B15 2TT, United Kingdom

Velez Institute, University of New Mexico, Albuquerque, New Mexico 87131, USA

University of California at Los Angeles, Los Angeles, California 90024, USA

University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z1

University of California at San Diego, La Jolla, California 92093, USA

University of California at Santa Barbara, Santa Barbara, California 93106, USA

University of California at Riverside, Riverside, California 92521, USA

University of California at Santa Cruz, Institute for Particle Physics, Santa Cruz, California 95064, USA

University of California Institute of Technology, Pasadena, California 91125, USA

University of Cincinnati, Cincinnati, Ohio 45221, USA

University of Colorado, Boulder, Colorado 80309, USA

Colorado State University, Fort Collins, Colorado 80523, USA

Universitat Dortmund, Institut fu¨r Physik, D-44221 Dortmund, Germany

(BABAR Collaboration)
We search for the charmed pentaquark candidate reported by the H1 collaboration, the \(\Theta_c(3100)^0 \), in \(e^+ e^- \) interactions at a center-of-mass (c.m.) energy of 10.58 GeV, using 124 fb\(^{-1}\) of data recorded with the BABAR detector at the PEP-II \(e^+ e^- \) facility at SLAC. We find no evidence for such a state in the same \(pD^{--} \) decay mode reported by H1, and we set limits on its production cross section times branching fraction into \(pD^{--} \) as a function of c.m. momentum. The corresponding limit on its total rate per \(e^+ e^- \to q\bar{q} \) event, times branching fraction, is about 3 orders of magnitude lower than rates measured for the charmed \(\Lambda_c \) and \(\Sigma_c \) baryons in such events.

We report the results of a inclusive search for the charmed pentaquark candidate \(\Theta_c(3100)^0 \) in \(e^+ e^- \) interactions at a center-of-mass (c.m.) energy of 10.58 GeV, using 124 fb\(^{-1}\) of data recorded with the BABAR detector at the PEP-II \(e^+ e^- \) facility at SLAC. We find no evidence for such a state in the same \(pD^{--} \) decay mode reported by H1, and we set limits on its production cross section times branching fraction into \(pD^{--} \) as a function of c.m. momentum. The corresponding limit on its total rate per \(e^+ e^- \to q\bar{q} \) event, times branching fraction, is about 3 orders of magnitude lower than rates measured for the charmed \(\Lambda_c \) and \(\Sigma_c \) baryons in such events.
duction mechanism. We use charged tracks reconstructed with at least 12 coordinates measured in the DCH, and select identified pions, kaons and protons. The identification criteria for pions and kaons are fairly loose, having efficiencies better than 99% and misidentification rates below 1% for momenta below 0.5 GeV/c where energy loss in the SVT and DCH provide good separation, and efficiencies of roughly 80% and misidentification rates below 10% for momenta above 0.8 GeV/c where the Cherenkov angles are measured well in the DIRC. The criteria for identified protons are tighter. For momenta below 1 GeV/c and above 1.5 GeV/c the efficiencies are better than 95% and 75%, and the misidentification rates are below 1% and 3%, respectively.

In each event we consider every combination of identified \(pK^+\pi^-\pi^-\) and \(pK^+\pi^-\pi^+\pi^-\) and perform a topological fit to each combination with the hypothesized decay chain \(X \rightarrow pD^{*-} \rightarrow p\bar{D}^0\pi^- \rightarrow pK^+\pi^-\pi^-\)\(\pi^-\)\(\pi^-\). No mass constraints are used in the fit, but the decay products at each stage are required to originate at a single space point. The \(\bar{D}^0\) has a finite flight distance, and we require the confidence level of the \(\chi^2\) for its decay vertex to exceed \(10^{-4}\).

We select candidates in which both the reconstructed \(\bar{D}^0\) and \(D^{*-}\) masses are within 20 MeV/\(c^2\) of the peak value, namely \(1843.8 < m_{K^+\pi^-\pi^-} < 1883.8\) MeV/\(c^2\) and \(1989 < m_{K^+\pi^-\pi^-\pi^-} < 2029\) MeV/\(c^2\). In Fig. 1(a) we show the distributions of the differences in reconstructed invariant mass \(\Delta m = m_{K^+\pi^-\pi^-} - m_{K^+\pi^-\pi^-\pi^-}\) and \(m_{K^+\pi^-\pi^-\pi^-}\) for these \(X \rightarrow pK^+\pi^-\pi^-\) and \(pK^+\pi^-\pi^+\pi^-\) candidates, respectively. Clear signals for \(D^{*-}\) are visible in both cases, with peak positions and widths (\(\sim 0.6\) MeV/\(c^2\)) consistent with expectations from our simulation. The widths (\(\sim 6\) MeV/\(c^2\)) of the corresponding \(\bar{D}^0\) and \(D^{*-}\) peaks (not shown) are underestimated by about 10% in the simulation. We require a mass difference within 2 MeV/\(c^2\) of the peak value, \(143.48 < \Delta m < 147.48\) MeV/\(c^2\).

About 55,000 \(D^{*-} \rightarrow K^+\pi^-\pi^-\) decays and 73,000 \(D^{*-} \rightarrow K^+\pi^-\pi^-\pi^-\pi^-\) decays are present in the selected data over respective backgrounds of 4000 and 62,000 random combinations. No event in either the data or simulation has more than one surviving \(pD^{*-}\) candidate. Without the proton requirement, over 750,000 \(D^{*-}\) are seen. Figure 1(b) shows the distribution of the \(D^{*-}\) momentum, \(p^*\), in the c.m. frame for the selected data. A characteristic two-peak structure is evident, in which the \(p^*\) peak at lower \(p^*\) values is due to \(D^{*-}\) decays of B hadrons from \(Y(4S)\) decays, and the peak at higher \(p^*\) values is due to \(e^+e^-\rightarrow c\bar{c}\) events. For purposes of illustration, we show the spectra measured [10] from these two sources on Fig. 1(b), scaled by our integrated luminosity, average efficiency and fraction of events with a proton. The shape is modified by the selection criteria; in particular, the proton requirement shifts the edge at the highest \(p^*\) values. The background is verified by sideband studies to be concentrated at lower \(p^*\) values; it is clear that we are sensitive to \(\Theta_s(3100)\) production from both of these sources.

We evaluate the \(\Theta_s(3100)\) reconstruction efficiency for each search mode from the simulation, as a function of \(p^*\). High-mass particles at low \(p^*\) are boosted forward in our laboratory frame, so that the probability of losing at least one track outside the acceptance is large, and the efficiencies are low, about 10% and 5% for the \(K^+\pi^-\) and \(K^+\pi^-\pi^-\pi^-\) modes, respectively. The efficiencies rise with increasing \(p^*\) to respective maximum values of 30% and 22% at the kinematic limit. The invariant mass requirements introduce negligible signal loss. The relative systematic uncertainties on the tracking and particle identification efficiencies total 6–8%; at low and high \(p^*\) values, there is a contribution of similar size from the statistics of the simulation.

We calculate the \(\Theta_s(3100)\) candidate invariant mass as \(m_{pD^0} = m_{pK^+\pi^-\pi^-} - m_{K^+\pi^-\pi^-\pi^-} + m_{D^*-}\), where \(m_{D^*-} = 2010\) MeV/\(c^2\) is the known \(D^{*-}\) mass [11]. We take the resolution on this quantity from the simulation, as it is insensitive to the simulated \(D^{(*)}\) mass resolution and previous studies involving protons combined with \(K_S^0\) [5] showed the proton contribution to be well simulated. We describe the resolution by a sum of two Gaussian functions with a common center. The width of the core (tail) Gaussian averages 2.5(20) MeV/\(c^2\), almost independent of \(p^*\), and the wider Gaussian contributes between 20% of the total at low \(p^*\) and 10% at high \(p^*\). The overall resolution, defined as the FWHM of the resolution function divided by 2.355, averages 2.8 and 3.0 MeV/\(c^2\) for the \(K^+\pi^-\) and \(K^+\pi^-\pi^-\pi^-\pi^-\) decay modes, respectively, with a small dependence on \(p^*\).

We show \(m_{pD^0}\) distributions for the \(\Theta_s(3100)\) candidates in the data in Fig. 2 for the two \(\bar{D}^0\) decay modes. They show no narrow structure; in particular, they are...

![Graph](image-url)
smooth in the region near 3100 MeV/c², shown in the inset, where the bin size is two-thirds of the resolution. Corresponding distributions for sidebands in the D^0 and D^{**} masses and the mass differences show overall structure similar to that in the signal region. We consider several variations of the selection criteria that might enhance a pentaquark signal, but in no case do we observe one. To enhance our sensitivity to any production mechanism that gives a p^* spectrum different from that of the background, we divide the data into nine p^* ranges of width 500 MeV/c covering values from 0 to 4.5 GeV/c. The background is lower at high p^*, so we are more sensitive to mechanisms that produce harder spectra. There is no evidence of a pentaquark signal in any p^* range.

We quantify this null result by fitting a signal-plus-background function to the m_{pD^*} distribution in each p^* range. We use a p-wave Breit-Wigner lineshape convolved with the resolution function described above. The RMS width of the reported $\Theta_c(3100)^0$ signal is 12 MeV/c² and consistent with the H1 detector resolution [3]. Our mass resolution is considerably better, so we must consider a range of possible natural widths Γ of the $\Theta_c(3100)^0$. We quote results for two assumed widths, $\Gamma = 1$ MeV, corresponding to a very narrow state, and $\Gamma = 28$ MeV, corresponding to the width observed by H1, which we take as an upper limit. For the background we use the function $f(m) = 0$ for $m < m_0$ and $f(m) = \sqrt{1 - (m_0/m)^2} \exp(a(1 - (m_0/m)^2))/m$ for $m > m_0$, where $m_0 = m_p + m_{D^*}$ = 2948 MeV/c² is the threshold value and a is a free parameter. We fit over the range from threshold to 3300 MeV/c², except in the lowest p^* range for the $K^+\pi^-\pi^+\pi^-$ mode. Here the acceptance drops sharply near threshold and the fit range is restricted to the region above 3000 MeV/c².

We perform maximum likelihood fits at several fixed $\Theta_c(3100)^0$ mass values in the range 3087–3111 MeV/c². In every case we find good fit quality and a signal amplitude consistent with zero. We consider systematic effects in the fitting procedure by varying the signal and background functions and fit range; changes in the signal yield are negligible compared with the statistical uncertainties. The dependence on the assumed mass value is also small compared with the statistical error in each case. Fixing the mass to the reported value of 3099 MeV/c², we obtain the event yields shown in Fig. 3. There is no positive trend in the data, and the roughly symmetric scatter of the points about zero indicates little momentum-dependent bias in the background function.

In each p^* range we divide the sum of the two signal yields by the sum of the two products of reconstruction efficiency and $D^0 \to K^+\pi^-\pi^- or D^0 \to K^+\pi^-\pi^+\pi^-$ branching fraction, the $D^- \to D^0\pi^-$ branching fraction, the integrated luminosity, and the p^* range. This gives the product of the unknown $\Theta_c(3100)^0 \to pD^{**}$ branching fraction, \mathcal{B}, and the differential production cross section, $d\sigma/dp^*$. The resulting values of $\mathcal{B} \cdot d\sigma/dp^*$ for $\Gamma = 1$ MeV and $\Gamma = 28$ MeV are shown in Fig. 4. We derive an upper limit on the value in each p^* range under the assumption that it cannot be negative: a Gaussian function centered at the measured value with RMS equal to the total uncertainty is integrated from zero to infinity, and the point at which the integral reaches 95% of this total is taken as the limit. These 95% confidence level (CL) upper limits are also shown in Fig. 4.

We integrate $\mathcal{B} \cdot d\sigma/dp^*$ over the full p^* range from 0–4.5 GeV/c, taking into account the correlation in the systematic uncertainty, to derive a total production cross section times branching fraction, $\mathcal{B} \cdot \sigma$, for each of the two assumed Γ values, and calculate corresponding upper limits. These limits are model independent; any postulated production spectrum can be folded with the measured differential cross section to obtain a smaller limit. We calculate corresponding limits on the number of...
These central values and limits are given in Table I.

As functions of c.m. momentum.

\(\Theta_c(3100)^0 \) produced per \(q\bar{q} \) \((q = uds\bar{c})\) event and per \(c\bar{c} \) event by dividing by the respective cross sections for these types of events; we also calculate a limit per \(Y(4S) \) decay by integrating \(B \cdot \sigma / dp^* \) over the range \(p^* < 2 \text{ GeV/c} \) (the kinematic limit for \(B \) meson decays is \(1.8 \text{ GeV/c} \)) and dividing by our effective cross section for \(e^+ e^- \rightarrow Y(4S) \). These central values and limits are given in Table I.

In summary, we perform a search in \(e^+ e^- \) annihilations at \(\sqrt{s} = 10.58 \text{ GeV} \) for the pentaquark candidate state \(\Theta_c(3100)^0 \) reported by the H1 collaboration. We use the same decay mode as H1, \(\Theta_c(3100)^0 \rightarrow pD^{*-} \), and find no evidence for the production of this state in a sample of over \(125 \,000 \) \(pD^{*-} \) combinations. The components of this sample from \(c \)-quark fragmentation and \(B^0/\bar{B}^0 + B^\pm \) decays are both at least 100 times larger than the sample used by H1, implying that neither hard charm quarks nor \(B \) mesons produced in deep inelastic scattering can be the source of the H1 signal. We set upper limits on the product of the inclusive \(\Theta_c(3100)^0 \) production cross section times branching fraction to this mode for two assumptions as to its natural width, which are valid for any state in the vicinity of \(3100 \text{ MeV/c}^2 \). It would be interesting to compare these limits with the rate expected for an ordinary charmed baryon of mass \(\sim 3100 \text{ MeV/c}^2 \). However rates have been measured for only two charmed baryons, the \(\Lambda_c^+(2285) \) \([10,11]\) and \(\Sigma_c(2455) \) \[11]\, with precision that does not allow a meaningful estimate of the mass dependence. The mass dependence observed \[11]\, for non-charmed baryons in \(e^+ e^- \) annihilations would predict a rate for a charmed baryon about 1000 times smaller than that of the \(\Lambda_c^+(2285) \). Our limits for a narrow state in both \(e^+ e^- \rightarrow c\bar{c} \) and \(Y(4S) \) events are roughly 1000 and 500 times below the measured \(\Lambda_c^+(2285) \) and \(\Sigma_c(2455) \) rates, respectively. As a result the existence of an ordinary charmed baryon with this mass and decay mode cannot be excluded.

We are grateful for the excellent luminosity and machine conditions provided by our PEP-II colleagues, and for the substantial dedicated effort from the computing organizations that support BABAR. The collaborating institutions wish to thank SLAC for its support and kind hospitality. This work is supported by DOE and NSF (USA), NSERC (Canada), IHEP (China), CEA and CNRS-IN2P3 (France), BMBF and DFG (Germany), INFN (Italy), FOM (The Netherlands), NFR (Norway), MIST (Russia), and PPARC (United Kingdom). Individuals have received support from CONACyT (Mexico), Marie Curie EIF (European Union), the A.P. Sloan Foundation, the Research Corporation, and the Alexander von Humboldt Foundation.

Table I

<table>
<thead>
<tr>
<th>(B \cdot \sigma) (fb)</th>
<th>(p^*) (GeV/c)</th>
<th>(B \times \text{yield} \times 10^{-5}) per (e^+ e^- \rightarrow q\bar{q}) event</th>
<th>(e^+ e^- \rightarrow c\bar{c}) event</th>
<th>(Y(4S)) decay</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\Gamma = 1 \text{ MeV})</td>
<td>(\Gamma = 28 \text{ MeV})</td>
<td>(\Gamma = 1 \text{ MeV})</td>
<td>(\Gamma = 28 \text{ MeV})</td>
<td></td>
</tr>
<tr>
<td>(40 \pm 44)</td>
<td>(102 \pm 111)</td>
<td>(< 117)</td>
<td>(< 297)</td>
<td></td>
</tr>
<tr>
<td>(\frac{B \cdot \sigma}{\Gamma} / \text{per event})</td>
<td>(\frac{B \times \text{yield}}{\Gamma} / \text{per event})</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(e^+ e^- \rightarrow q\bar{q}) event</td>
<td>(e^+ e^- \rightarrow c\bar{c}) event</td>
<td>(Y(4S)) decay</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(< 3.4)</td>
<td>(< 8.5)</td>
<td>(< 12)</td>
<td>(< 37)</td>
<td></td>
</tr>
</tbody>
</table>

