PDF hosted at the Radboud Repository of the Radboud University Nijmegen

The following full text is a publisher's version.

For additional information about this publication click this link.
http://repository.ubn.ru.nl/handle/2066/128248

Please be advised that this information was generated on 2019-02-26 and may be subject to change.
Observation of $\Omega(4S)$ Decays to $\pi^+\pi^- \Omega(1S)$ and $\pi^+\pi^- \Omega(2S)$

PRL 96, 232001 (2006)
BABAR Collaboration

1Laboratoire de Physique des Particules, F-74941 Annecy-le-Vieux, France
2Facultat de Fisica, Departament ECM, Universitat de Barcelona, E-08028 Barcelona, Spain
3Dipartimento di Fisica and INFN, Universita` di Bari, I-70126 Bari, Italy
4Institute of High Energy Physics, Beijing 100039, China
5Institute of Physics, University of Bergen, N-5007 Bergen, Norway
6Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA, and University of California at Berkeley, Berkeley, California 94720, USA
7University of Birmingham, Birmingham B15 2TT, United Kingdom
8Institut für Experimentalphysik 1, Ruhr Universität Bochum, D-44780 Bochum, Germany
9University of Bristol, Bristol BS8 1TL, United Kingdom
10University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z1
11Brannel University, Usbridge, Middlesex UB8 3PH, United Kingdom
12Budker Institute of Nuclear Physics, Novosibirsk 630090, Russia
13University of California at Irvine, Irvine, California 92697, USA
14University of California at Los Angeles, Los Angeles, California 90024, USA
15University of California at Riverside, Riverside, California 92521, USA
16University of California at San Diego, La Jolla, California 92093, USA
17University of California at Santa Barbara, Santa Barbara, California 93106, USA
18Institute for Particle Physics, University of California at Santa Cruz, Santa Cruz, California 95064, USA
19California Institute of Technology, Pasadena, California 91125, USA
20University of Cincinnati, Cincinnati, Ohio 45221, USA
21University of Colorado, Boulder, Colorado 80309, USA
22Colorado State University, Fort Collins, Colorado 80523, USA

PRL 96, 232001 (2006) PHYSICAL REVIEW LETTERS week ending 16 JUNE 2006

(232001-2)
We present the first measurement of $Y(4S)$ decays to $\pi^+\pi^-Y(1S)$ and $\pi^+\pi^-Y(2S)$ based on a sample of $230 \times 10^6 Y(4S)$ mesons collected with the BABAR detector. We measure the product branching fractions $\mathcal{B}(Y(4S) \to \pi^+\pi^-Y(1S)) \times \mathcal{B}(Y(1S) \to \mu^+\mu^-) = (2.23 \pm 0.25^{\text{stat}} \pm 0.27^{\text{syst}}) \times 10^{-6}$ and $\mathcal{B}(Y(4S) \to \pi^+\pi^-Y(2S)) \times \mathcal{B}(Y(2S) \to \mu^+\mu^-) = (1.69 \pm 0.26^{\text{stat}} \pm 0.20^{\text{syst}}) \times 10^{-6}$, from which we derive the partial widths $\Gamma(Y(4S) \to \pi^+\pi^-Y(1S)) = (1.8 \pm 0.4) \text{keV}$ and $\Gamma(Y(4S) \to \pi^+\pi^-Y(2S)) = (2.7 \pm 0.8) \text{keV}$.

DOI: 10.1103/PhysRevLett.96.232001

PACS numbers: 13.25.Gv, 14.40.Gx

The $Y(4S)$ meson is known to decay predominantly to $B\bar{B}$, with small, but as of yet unobserved, decays to other bottomonium states or to light hadrons. Partial widths for hadronic transitions in heavy quarkonia have been extensively studied both experimentally and theoretically over the past decades [1]. In particular, the values of the partial widths for dipion transitions between vector states $\psi(2S) \to \pi^+\pi^-J/\psi$ and $Y(mS) \to \pi^+\pi^-Y(nS)$, where the principal quantum number $m > n$, can be related to the radial wave function within the framework of the QCD multipole expansion [2]. This picture may be significantly altered by mixing and coupled channel effects [3] when states are close to the threshold for open charm or bottom production. Hence these states are the ideal laboratory to investigate these effects. Exclusive non-$(D\bar{D})$ decays of the $\psi(3770)$ (believed to be predominantly $3D_1$) have recently been observed [4–6], but only upper limits have been published for exclusive non-$B\bar{B}$ decays of the $Y(4S)$ [7].

We search for the decays $Y(4S) \to \pi^+\pi^-Y(nS)$, where $n = 1, 2$ [the $Y(4S) \to \pi\pi Y(3S)$ transition is kinematically not allowed], using a sample of $230 \times 10^6 Y(4S)$ events corresponding to an integrated luminosity of 211fb^{-1} acquired near the peak of the $Y(4S)$ resonance with the PEP-II asymmetric-energy e^+e^- storage rings at SLAC. An additional 22fb^{-1} sample collected approximately 40MeV below the resonance is used as a control sample.

The BABAR detector is described in detail elsewhere [8]; here we summarize only the features relevant to this analysis: charged-particle momenta are measured in a tracking system consisting of a five-layer double-sided silicon vertex tracker (SVT) and a 40-layer central drift chamber (DCH), both situated in a 1.5-T axial magnetic field. Charged-particle identification is based on the dE/dx measured in the SVT and DCH, and on a measurement of the photons produced in the synthetic fused-silica bars of the ring-imaging Cherenkov detector (DIRC). A CsI(Tl) electromagnetic calorimeter (EMC) is used to detect and identify photons and electrons, while muons are identified in the instrumented flux return of the magnet (IFR).

An $Y(nS) \to \pi^+\pi^-Y(nS)$ transition, denoted by $mS \to nS$, is detected by reconstructing the $Y(nS)$ meson via its leptonic decay to $\mu^+\mu^-$. The sensitivity to $4S \to nS$ transitions is much smaller in the $\pi^+\pi^-e^+e^-$ final state due to the presence of larger backgrounds, and to a trigger-level inefficiency introduced by the prescaling of Bhabha scattering events. Data collected at a nominal center-of-mass energy \sqrt{s} near 10.58 GeV include $3S \to nS$ ($n = 1, 2$) and $2S \to 1S$ events from initial state radiation (ISR) production that are used as control samples. The signature for $mS \to nS$ transition events, where the nS decays to muons, is a $\mu^+\mu^-$ invariant mass, $M_{\mu\mu}$, that is compatible with the known mass [9] of the $Y(nS)$ resonance, $M(nS)$, and an invariant mass difference $\Delta M = M_{\pi\pi\mu\mu} - M_{\mu\mu}$ that is compatible with $M(mS) - M(nS)$. The rms values of the reconstructed ΔM and $M_{\mu\mu}$ distributions are, respectively, $\sigma = 7 \text{MeV}/c^2$ and $\sigma = 75 \text{MeV}/c^2$. The center-of-mass momentum p_{cand}^cand should be compatible with 0 for $4S \to nS$ candidates, or within $[s - M^2(mS)]/(2\sqrt{s})$ for $mS \to nS$ candidates from ISR.

Simulated Monte Carlo (MC) events are generated using the EVTGEN package [10]. The angular distribution of generated dilepton decays incorporates the $Y(nS)$ polarization, while dipion transitions are generated according to phase space. These events are passed through a detector simulation based on GEANT4 [11], and analyzed in the same manner as data. The events in the data sample whose values of ΔM and $M_{\mu\mu}$ are within $60 \text{MeV}/c^2$ and $300 \text{MeV}/c^2$, respectively, of the values expected for any known $mS \to nS$ transition were not examined until the event selection criteria were finalized. Events outside these regions were used to understand the background.

We select events having at least 4 charged tracks with a polar angle θ within the fiducial volume of the tracking system ($0.41 < \theta < 2.54 \text{ rad}$). Each muon candidate is required to have a center-of-mass momentum greater than $4 \text{ GeV}/c$, and to be compatible with the muon hypothesis based on the energy deposited in the EMC and the hit pattern in the IFR along the track trajectory. A dipion candidate is formed from a pair of oppositely charged tracks. The two pion candidates are each required to have a transverse momentum greater than $100 \text{ MeV}/c$. The dimuon and the dipion are constrained to a common vertex, and the vertex fit is required to have a χ^2 probability larger than 10^{-3}.

A large fraction of the background is due to $\mu^+\mu^-\gamma$ events where a photon converts in the detector material. To reduce this background we apply an “electron veto,” rejecting events where any of the following is true: either of the two pion candidates is positively identified as an electron; the e^+e^- invariant mass of the two charged tracks associated with the pion candidates satisfies $M_{e\bar{e}} < 100 \text{ MeV}/c^2$; or the dipion opening angle satisfies $\Delta \theta < 0.15 \text{ rad}$.

232001-4
The distribution of ΔM vs $M_{\mu\mu}$ for the final sample is shown in Fig. 1. The clusters of events in the boxes centered at $(\Delta M, M_{\mu\mu}) = (1.120, 9.460)$ GeV/c2 and $(0.558, 10.023)$ GeV/c2 constitute, respectively, the first observation of $4S \to 1S$ and of $4S \to 2S$ transitions.

We also observe signals for $2S \to 1S$, $3S \to 2S$, and $3S \to 1S$ from ISR at $(\Delta M, M_{\mu\mu}) = (0.563, 9.460)$ GeV/c2, $(0.332, 10.023)$ GeV/c2, and $(0.895, 9.460)$ GeV/c2, respectively. The diagonal band is predominantly due to $\mu\mu\gamma$ events, while the cluster at $(\Delta M, M_{\mu\mu}) = (0.332, 9.460)$ GeV/c2 is due to $Y(3S) \to \pi^+\pi^-Y(2S)$ decays, where $Y(2S) \to Y(1S)X$.

The number of signal events N_{sig} is extracted by an unbinned extended maximum likelihood fit to the ΔM distribution for events with $p_T^{\text{sel}} < 200$ MeV/c and $|M_{\mu\mu} - M(1S)| < 200$ MeV/c2 for the $4S \to 1S$ mode or $|M_{\mu\mu} - M(2S)| < 150$ MeV/c2 for the $4S \to 2S$ mode (Fig. 2). In each case, the background is parametrized as a linear function, and the signal as the convolution of a Gaussian with standard deviation σ and a Cauchy function with width Γ, which is found to adequately describe the non-Gaussian tails of the ΔM distribution. The values for σ and Γ are, for each mode, fixed to the values determined from a fit to a MC signal sample subjected to the detector simulation and reconstruction algorithms. We verify that the experimental ΔM resolution is well described by the MC simulation for $2S \to 1S$ and $3S \to nS$ ($n = 1, 2$) ISR samples. The values of ΔM returned by the fit, 1.1185 ± 0.0009 GeV/c2 and 0.5571 ± 0.0010 GeV/c2, where the errors are statistical only, are in excellent agreement with the world averages $M(4S) - M(1S) = 1.1197 \pm 0.0035$ GeV/c2 and $M(4S) - M(2S) = 0.5567 \pm 0.0035$ GeV/c2 [9]. These values cannot be interpreted as a new measurement of the $Y(4S)$ mass: the data were collected at \sqrt{s} equal to the world average value of $M(4S)$. Since the $Y(4S)$ width is larger than the spread in \sqrt{s} of the e^+e^- collisions, a scan of the $Y(4S)$ line shape would be needed to measure the mass.

The cuts described above are also applied to $\pi^+\pi^-e^+e^-$ candidates, with the additional requirement on the polar angle of the electron, $\theta(e^-) > 0.75$ radians, to reject Bhabha events. The fits to the electron samples are also shown in Fig. 2, and give yields and ΔM values consistent with expectations based on the fits to the muon samples.

The significance, estimated from the likelihood ratio

$$n\sigma \simeq \sqrt{2\log \left[\frac{\mathcal{L}(N_{\text{sig}})}{\mathcal{L}(0)} \right]}$$

between a fit that includes a signal function and a fit with only a background hypothesis, is 10.0σ for $4S \to 1S$ and 7.3σ for $4S \to 2S$ in the $\pi^+\pi^-\mu^+\mu^-$ final states. The significance of the signals in the $\pi^+\pi^-e^+e^-$ final states is 3.6σ and 2.5σ for $4S \to 1S$ and $4S \to 2S$, respectively.

The event selection efficiency ϵ_{sel} is determined using the MC samples. The largest source of systematic uncertainty (10%) is due to the unknown distribution of the dipion invariant mass in the $4S \to \pi^+\pi^-Y(nS)$ transition, and is estimated by comparing the acceptance for a phase space distribution to that obtained using the QCD multipole model [2]. The second largest source of systematic uncertainty is due to uncertainty in the track reconstruction efficiency, which is 1.3% per track, resulting in a 5.2% uncertainty in ϵ_{sel}. The systematic uncertainties as-
TABLE I. Number of signal events, significance, efficiency, and measured values of the products of branching ratios for the $4S \rightarrow nS$ transitions. The error on the efficiency is obtained adding in quadrature the systematic uncertainties. The errors on the product branching fractions are statistical and systematic, respectively.

<table>
<thead>
<tr>
<th>Transition</th>
<th>N_{sig}</th>
<th>significance</th>
<th>e_{sel} (%)</th>
<th>$B_{4S \rightarrow nS} \times B_{nS \rightarrow \mu \mu} \times 10^{-6}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$4S \rightarrow 1S$</td>
<td>167 ± 19</td>
<td>10.0σ</td>
<td>32.5 ± 3.9</td>
<td>2.23 ± 0.25 ± 0.27</td>
</tr>
<tr>
<td>$4S \rightarrow 2S$</td>
<td>97 ± 15</td>
<td>7.3σ</td>
<td>24.9 ± 3.0</td>
<td>1.69 ± 0.26 ± 0.20</td>
</tr>
</tbody>
</table>

associated with the event selection (4.3%) and muon identification (1.4%) criteria are estimated by comparing the efficiency of each selection criterion determined from MC samples to the corresponding efficiency measured with the ISR control samples. We have also considered the systematic uncertainties due to the choice of signal and background parametrizations by using different functions or different parameters, and the systematic uncertainties due to the choice of the fit range. The contributions from these sources are negligible in comparison to the previously mentioned sources.

The product branching fraction (Table I) is determined from the $\pi^+\pi^-\mu^+\mu^−$ sample using:

$$B(Y(4S)\rightarrow \pi^+\pi^- Y(nS))B(Y(nS)\rightarrow \mu^+\mu^-) = \frac{N_{\text{sig}}}{e_{\text{sel}}N(4S)},$$

(1)

where $N(4S) = (230.0 \pm 2.5) \times 10^6$ is the total number of $Y(4S)$ mesons produced.

The event yields observed for $3S \rightarrow nS$ and $2S \rightarrow 1S$ are compatible with Particle Data Group’s averaged values of the ISR cross section and branching fractions for those resonances. The number of signal events observed in the $\pi^+\pi^- e^+e^−$ final state is compatible with the branching fractions we measure in the $\pi^+\pi^- \mu^+\mu^-\mu^−$ sample. No $4S \rightarrow nS$ signal is observed for $\pi^+\pi^- \mu^+\mu^-\mu^−$ or $\pi^+\pi^- e^+e^−$ final states in the data collected at center-of-mass energies 40 MeV below the $Y(4S)$ resonance. In the off-resonance dimuon (dielectron) control samples we find 19 (50) $\pi^+\pi^- Y(1S)$ candidates with $|\sqrt{s} - M(1S)| < 20$ MeV, with an expected background from ΔM sidebands of 18.1 ± 2.8 (63.3 ± 5.2) events, and 14 (14) dimuon (dielectron) $\pi^+\pi^- Y(2S)$ candidates with $|\sqrt{s} - M(2S)| < 20$ MeV, with an expected background of 13.1 ± 2.4 (13.5 ± 2.4). The number of candidates in the off-resonance control samples are also compatible to better than 1 standard deviation with the background yields measured at the $Y(4S)$.

The dipion invariant mass distribution, $M_{\pi^+\pi^-}$ (Fig. 3), is determined by fitting the ΔM distribution in equal intervals of $M_{\pi^+\pi^-}$, and dividing the number of signal events in each interval by the corresponding selection efficiency. The measured distribution for the $4S \rightarrow 1S$ transition has a shape similar to the prediction of the Kuang-Yan model [2]. This model provides a good description of the observed distributions for $2S \rightarrow 1S$, $3S \rightarrow 2S$, and also $\psi(2S) \rightarrow \pi^+\pi^- \gamma/\psi$, but fails to describe the $3S \rightarrow 1S$ distribution. Our measured distribution for the $4S \rightarrow 2S$ transition has a marked enhancement at low $M_{\pi^+\pi^-}$ that is incompatible with this model.

The $4S \rightarrow nS$ branching ratios and partial widths can be derived using the world average values for $B(Y(nS) \rightarrow \mu^+\mu^-)$ [9] and a recent BABAR measurement of $\Gamma(Y(4S))$ [12]. We obtain

$$B(Y(4S) \rightarrow \pi^+\pi^- Y(1S)) = (0.90 \pm 0.15) \times 10^{-4},$$
$$B(Y(4S) \rightarrow \pi^+\pi^- Y(2S)) = (1.29 \pm 0.32) \times 10^{-4},$$
$$\Gamma(Y(4S) \rightarrow \pi^+\pi^- Y(1S)) = (1.8 \pm 0.4) \text{ keV},$$

and

$$\Gamma(Y(4S) \rightarrow \pi^+\pi^- Y(2S)) = (2.7 \pm 0.8) \text{ keV}.$$
the $b\bar{b}$ system \cite{9}: $\Gamma(Y(2S) \to \pi^+\pi^-Y(1S)) = (8.1 \pm 2.1)$ keV; $\Gamma(Y(3S) \to \pi^+\pi^-Y(1S)) = (1.2 \pm 0.2)$ keV; $\Gamma(Y(3S) \to \pi^+\pi^-Y(2S)) = (0.6 \pm 0.2)$ keV.

In conclusion, we measure

$$\mathcal{B}(Y(4S) \to \pi^+\pi^-Y(1S))$$
$$\times \mathcal{B}(Y(1S) \to \mu^+\mu^-) = (2.23 \pm 0.25 \pm 0.27) \times 10^{-6}$$

and

$$\mathcal{B}(Y(4S) \to \pi^+\pi^-Y(2S))$$
$$\times \mathcal{B}(Y(2S) \to \mu^+\mu^-) = (1.69 \pm 0.26 \pm 0.20) \times 10^{-6}.$$