Measurements of the branching fraction and time-dependent \(CP \) asymmetries of \(B^0 \to J/\psi \pi^0 \) decays

PHYSICAL REVIEW D 74, 011101(R) (2006)

Measurements of the branching fraction and time-dependent \(CP \) asymmetries of \(B^0 \to J/\psi \pi^0 \) decays
MEASUREMENTS OF THE BRANCHING FRACTION AND . . .

PHYSICAL REVIEW D 74, 011101(R) (2006)
Charge conjugation-parity (CP) violation in the B meson system has been established by the BABAR [1] and Belle [2] collaborations. The standard model (SM) of electroweak interactions describes CP violation as a consequence of a complex phase in the three-generation Cabibbo-Kobayashi-Maskawa (CKM) quark-mixing matrix [3]. Measurements of CP asymmetries in the proper-time distribution of neutral B decays to CP eigenstates containing a charmonium and K⁰ meson provide a precise measurement of sin2β [4], where β is arg[−VcbV∗cβ/VubV∗ub] and the V_{ij} are CKM matrix elements.

The decay B⁰ → J/ψπ⁰ is a CP-even Cabibbo-suppressed b → c̄d transition whose tree amplitude has the same weak phase as the b → c̄s modes e.g. the CP-odd decay B⁰ → J/ψK_S⁰. The b → c̄d penguin amplitude has a different weak phase than the tree amplitude. The tree and penguin amplitudes expected to dominate this decay are shown in Fig. 1.

If there is a significant penguin amplitude in B⁰ → J/ψπ⁰, then one will measure values of the CP asymmetry coefficients S and C that are different from − sin2β and 0, respectively [5]. The coefficient S denoting the interference between mixing and decay, and the direct CP asymmetry coefficient C are defined as

\[
S = \frac{2Im \lambda}{1 + |\lambda|^2} \quad \text{and} \quad C = \frac{1 - |\lambda|^2}{1 + |\lambda|^2},
\]

where λ is a complex parameter that depends on both the B⁰ → B̄⁰ oscillation amplitude and the amplitudes describing B⁰ and B̄⁰ decays to the J/ψπ⁰ final state. An additional motivation for measuring S and C from B⁰ → J/ψπ⁰ is that they can provide a model-independent constraint on the penguin dilution within B⁰ → J/ψK_S⁰ [6].

In this publication, we present an update of previous BABAR branching fraction and time-dependent CP violating asymmetry measurements of the decay B⁰ → J/ψπ⁰ [7,8], which had been performed using 20.7 fb⁻¹ and 81.1 fb⁻¹ of integrated luminosity, respectively. Belle has also studied this mode and has published a branching fraction and later a time-dependent CP-violating asymmetry result using 29.4 fb⁻¹ and 140.0 fb⁻¹ of integrated luminosity, respectively [9,10].

The data used in this analysis were collected with the BABAR detector at the PEP-II asymmetric e⁺e⁻ storage ring. This represents a total integrated luminosity of 210.6 fb⁻¹ collected on or just below the Y(4S) resonance (on-peak), corresponding to a sample of 231.8 ± 2.6 million BB̄ pairs. An additional 21.6 fb⁻¹ of data, collected at approximately 40 MeV below the Y(4S) resonance, is used to study background from e⁺e⁻ → q̄q′(q = u, d, s, c) continuum events.

The BABAR detector is described in detail elsewhere [11]. Surrounding the interaction point is a 5 layer doublesided silicon vertex tracker (SVT) which measures the impact parameters of charged particle tracks in both the plane transverse to, and along the beam direction. A 40 layer drift chamber (DCH) surrounds the SVT and provides measurements of the transverse momenta for charged particles. Both the SVT and the DCH operate in the magnetic field of a 1.5 T solenoid. Charged hadron identification is achieved through measurements of particle energy loss (dE/dx) in the tracking system and the Čerenkov angle obtained from a detector of internally reflected Čerenkov light (DIRC). This is surrounded by a segmented CsI(Tl) electromagnetic calorimeter (EMC) which is used to pro-

FIG. 1. Feynman diagrams of the color suppressed tree (top) and gluonic penguin (bottom) amplitudes contributing to the B⁰ → J/ψπ⁰ decay.
vide photon detection and electron identification, and is used to reconstruct neutral hadrons. Finally, the instrumented flux return (IFR) of the magnet allows discrimination of muons from pions.

We reconstruct $B^0 \rightarrow J/\psi \pi^0$ decays in $B\bar{B}$ candidate events from combinations of $J/\psi \rightarrow \ell^+ \ell^-$ ($\ell = e, \mu$) and $\pi^0 \rightarrow \gamma \gamma$ candidates. A detailed description of the charged particle reconstruction and identification can be found elsewhere [7]. For the $J/\psi \rightarrow e^+ e^-$ ($J/\psi \rightarrow \mu^+ \mu^-$) channel, the invariant mass of the lepton pair is required to be between 3.06 and 3.12 GeV/c2 (3.07 and 3.13 GeV/c2). Each lepton candidate must also be consistent with the electron (muon) hypothesis. We form $\pi^0 \rightarrow \gamma \gamma$ candidates from clusters in the EMC with an invariant mass, $m_{\gamma\gamma}$, satisfying 100 < $m_{\gamma\gamma}$ < 160 MeV/c2. These clusters are required to be isolated from any charged tracks, carry a minimum energy of 30 MeV, and have a lateral energy distribution consistent with that of a photon. Each π^0 candidate is required to have a minimum energy of 200 MeV and is constrained to the nominal mass [12]. Finally the $B^0 \rightarrow J/\psi \pi^0$ candidates (B_{rec}) are constrained to originate from the $e^+ e^-$ interaction point using a geometric fit.

We use two kinematic variables, m_{ES} and ΔE, in order to isolate the signal: $m_{ES} = \sqrt{(E_{beam})^2 - (p_{B}^\prime)^2}$ is the beam-energy substituted mass and $\Delta E = E_{B} - E_{beam}$ is the difference between the B-candidate energy and the beam energy. E_{beam} and p_{B}^\prime (E_{B}^\prime) are the beam energy and B-candidate momentum (energy) in the center-of-mass (CM) frame. We require $m_{ES} > 5.2$ GeV/c2 and $|\Delta E| < 0.3$ GeV.

A significant source of background is due to $e^+ e^- \rightarrow q\bar{q}(q = u, d, s, c)$ continuum events. We combine several kinematic and topological variables into a Fisher discriminant (F) [13] to provide additional separation between signal and continuum. The three variables L_0, L_2 and $\cos(\theta_H)$ are inputs to F. L_0 and L_2 are the zeroth- and second-order Legendre polynomial moments; $L_0 = \sum_i |p_i^2|$ and $L_2 = \sum_i |p_i^2|/2(3\cos^2\theta_i - 1)$, where p_i^2 are the CM momenta of the tracks and neutral calorimeter clusters that are not associated with the signal candidate. The θ_i are the angles between p_i^\prime and the thrust axis of the signal candidate and θ_H is the angle between the positively charged lepton and the B candidate in the J/ψ rest frame.

We use multivariate algorithms to identify signatures of B decays that determine (tag) the flavor of the decay of the other B in the event (B_{tag}) to be either a B^0 or \bar{B}^0. The flavor tagging algorithm used is described in more detail elsewhere [14]. In brief, we define seven mutually exclusive tagging categories. These are (in order of decreasing signal purity) Lepton, KaonI, KaonII, Kaon-Pion, Pion, Other, and No-Tag. The total effective tagging efficiency of this algorithm is (30.5 ± 0.4)\%.

The decay rate $f_+ (f_-)$ of neutral decays to a CP eigenstate, when B_{tag} is a B^0 (\bar{B}^0), is $f_+(\Delta t) = \frac{e^{-|\Delta t|/\tau_{B^0}}}{4\tau_{B^0}} \left[1 \pm \sin(\Delta m_d \Delta t) \mp \cos(\Delta m_d \Delta t) \right]$, where Δt is the difference between the proper decay times of the B_{rec} and B_{tag} mesons, $\tau_{B^0} = 1.536 \pm 0.014$ ps is the B^0 lifetime and $\Delta m_{d} = 0.502 \pm 0.007$ ps$^{-1}$ is the $B^0 - \bar{B}^0$ oscillation frequency [12]. The decay width difference between the B^0 mass eigenstates is assumed to be zero.

The time interval Δt is calculated from the measured separation Δz between the decay vertices of B_{rec} and B_{tag} along the collision axis (z). The vertex of B_{rec} is reconstructed from the lepton tracks that come from the J/ψ; the vertex of B_{tag} is constructed from the remaining tracks in the event that do not belong to B_{rec}, with constraints from the beam spot location and the B_{rec} momentum. We accept events with $|\Delta t| < 20$ ps whose uncertainty are less than 2.5 ps.

After all of the selection criteria mentioned above have been applied, the average number of candidates per event is approximately 1.1, indicating some events still have multiple candidates. In these events, we randomly choose one candidate to be used in the fit. This selection is unbiased. Overall, the true signal candidate is correctly identified 91.7% of the time. After this step, the signal efficiency is 22.0% and a total of 1318 on-peak events are selected.

In addition to signal and continuum background events, there are also $B\bar{B}$-associated backgrounds present in the data. We divide the B backgrounds into the following types: (i) $B^0 \rightarrow J/\psi K_S^0$, where $K_S^0 \rightarrow \pi^0 \pi^0$ (ii) inclusive neutral B meson decays, and (iii) inclusive charged B meson decays. When normalized to the integrated luminosity, Monte Carlo (MC) studies predict 153 ± 9, 68 ± 14 and 314 ± 63 events of these background types, respectively. The inclusive neutral B meson decays exclude signal and $B^0 \rightarrow J/\psi K_S^0$ events. The inclusive B decay backgrounds are dominated by contributions from $B \rightarrow J/\psi X$ (inclusive charmonium final states). In particular the inclusive charged B meson decay backgrounds are dominated by $B^+ \rightarrow J/\psi \rho^+$ decays. The $B^0 \rightarrow J/\psi K_S^0$ background was studied separately since it contributes a significant amount of neutral B background, has a large asymmetry, and has the almost same tagging efficiency and resolution as the signal.

The signal yield, S and C are simultaneously extracted from an unbinned maximum-likelihood (ML) fit to the B candidate sample, where the discriminating variables used in the fit are m_{ES}, ΔE, F, and Δt. The signal yield is fitted using known tagging efficiencies [14]. The continuum yield for the seven mutually-exclusive tagging categories, is also allowed to vary in the ML fit.

The probability density function (PDF) for signal m_{ES} distribution takes the form of a Gaussian with a low side exponential tail [15]. We parameterize the m_{ES} distribution

$\frac{f_+(\Delta t)}{4\tau_{B^0}} \left[1 \pm \sin(\Delta m_d \Delta t) \mp \cos(\Delta m_d \Delta t) \right]$.
for continuum and neutral inclusive B background with an
Argus phase space distribution [16]. As there are signi-
fi cant correlations between m_{ES} and ΔE for the charged
inclusive B and the $B^0 \rightarrow J/\psi K^0_S$ backgrounds, we pa-
rameterize these variables with two-dimensional nonpara-
metric PDFs as described in Ref. [17]. The ΔE distribution
for signal events is modeled by a Gaussian with an ex-
ponential tail on the negative side to account for energy
leakage in the EMC, plus a polynomial contribution. The
ΔE distributions for the continuum and the neutral inclu-
sive B background are described by second and third-order
polynomials, respectively. The F distributions for the
signal and the backgrounds are described by bifurcated
Gaussians with different widths above and below the peak
value.

The signal decay rate distribution of Eq. (2) is modified
to account for dilution coming from incorrectly assigning
the flavor of B_{tag} and is convolved with a triple Gaussian
resolution function, whose core width is about 1.1 ps [18].
The decay rate distribution for B backgrounds is similar to
that for signal. The inclusive B backgrounds are assigned
an effective lifetime instead of their respective B lifetimes
to account for their misreconstruction. This effective life-
time is determined from MC simulated data. The potential
CP asymmetry of the inclusive B background is evaluated
by allowing the parameters of S and C for this background
to vary. The decay rate distribution for $B^0 \rightarrow J/\psi K^0_S$ is the
same as that for signal and reflects the known level of CP
violation in that decay. The continuum background is
modulated with a prompt lifetime component convolved
with a triple Gaussian resolution function. The core
Gaussian parameters and fractions are allowed to vary in
the ML fit. The other two Gaussians have means fixed to
zero, and widths of 0.85 ps and 8.0 ps, respectively.

The results from the ML fit are 109 ± 12 (stat) signal
events, with $S = -0.68 \pm 0.30$ (stat) and $C = -0.21 \pm
0.26$ (stat). The fit yields the following numbers of contin-
uum events: $N_{Lepton} = 17 \pm 5$, $N_{K_{S}} = 38 \pm 8$, $N_{K_{0}n} =
101 \pm 12$, $N_{K_{0}nPion} = 102 \pm 12$, $N_{Pion} = 115 \pm 12,$
$N_{Other} = 94 \pm 11$, and $N_{NoTag} = 227 \pm 17$. Figure 2 shows
the distributions of m_{ES}, ΔE, and F for the data. In these
plots the signal has been enhanced by selecting $|\Delta E| <
0.1$ GeV for the m_{ES} plot, $m_{ES} > 5.275$ GeV/c^2 for the ΔE
plot and by applying both of these criteria for the F plot.
After applying these requirements to the signal (back-
ground) samples that are used in the fit, they are reduced
to a relative size of 83.1% (24.3%), 85.0% (21.1%) and
73.1% (2.8%) for the m_{ES}, ΔE, and F distributions,
respectively.

Figure 3 shows the Δt distribution for signal B^0 and \bar{B}^0
tagged events. The signal has been enhanced using the
same m_{ES} and ΔE cuts as for Fig. 2. The time-depen-
dent decay rate asymmetry $[N(\Delta t) - \bar{N}(\Delta t)]/[N(\Delta t) + \bar{N}(\Delta t)]$
is also shown, where $N (\bar{N})$ is the decay rate for $B^0 (\bar{B}^0)$
tagged events and the decay rate takes the form of Eq. (2).

Table I summarizes the systematic uncertainties on the
signal yield, S and C. These include the uncertainty due to
the PDF parameterization (including the resolution func-
tion), evaluated by varying the signal and the background
PDF parameters within uncertainties of their nominal val-
ues. the effect of SVT misalignment; the uncertainties
TABLE I. Contributions to the systematic errors on the signal yield, S and C, where the signal yield errors are given in numbers of events. The total systematic uncertainty is the quadratic sum of the individual contributions listed. Additional systematic uncertainties that are applied only to the branching fraction are discussed in the text.

<table>
<thead>
<tr>
<th>Contribution</th>
<th>Signal yield</th>
<th>S</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>PDF parameterization</td>
<td>+3.21 − 2.88</td>
<td>±0.013</td>
<td>±0.012</td>
</tr>
<tr>
<td>SVT misalignment</td>
<td>−</td>
<td>±0.002</td>
<td>±0.002</td>
</tr>
<tr>
<td>Boost and z-scale</td>
<td>+0.08 − 0.16</td>
<td>±0.004</td>
<td>±0.001</td>
</tr>
<tr>
<td>Beam spot position</td>
<td>−</td>
<td>±0.007</td>
<td>±0.002</td>
</tr>
<tr>
<td>Fit bias</td>
<td>±3.00</td>
<td>±0.026</td>
<td>±0.016</td>
</tr>
<tr>
<td>Inclusive B background yields</td>
<td>±3.52</td>
<td>±0.003</td>
<td>±0.020</td>
</tr>
<tr>
<td>mES − ΔE correlations</td>
<td>±2.92</td>
<td>±0.020</td>
<td>±0.002</td>
</tr>
<tr>
<td>CP content of B background</td>
<td>+0.13 − 0.11</td>
<td>±0.012</td>
<td>±0.049</td>
</tr>
<tr>
<td>CP background lifetime</td>
<td>±0.67</td>
<td>±0.010</td>
<td>±0.010</td>
</tr>
<tr>
<td>Tagging efficiency asymmetry</td>
<td>±0.02</td>
<td>±0.000</td>
<td>±0.020</td>
</tr>
<tr>
<td>Tag-side interference</td>
<td>−</td>
<td>±0.004</td>
<td>±0.014</td>
</tr>
<tr>
<td>Fisher data/MC comparison</td>
<td>±0.70</td>
<td>±0.004</td>
<td>±0.004</td>
</tr>
<tr>
<td>Total</td>
<td>+6.42 − 6.26</td>
<td>±0.040</td>
<td>±0.063</td>
</tr>
</tbody>
</table>

states which dominate the inclusive B background, are precisely known from previous measurements. Their yields are then fixed in the fit. As a crosscheck, the yields for inclusive B backgrounds that are not well known are allowed to vary. The deviation from the nominal result is taken as a systematic uncertainty. We include an additional systematic uncertainty to account for neglecting the small correlation between mES and ΔE in signal and neutral inclusive B background events.

In order to evaluate the uncertainty coming from CP violation in the B background, we have allowed the S and C parameters to vary in a fit for the neutral inclusive B background, and have separately allowed the C parameter to vary in a fit for the charged inclusive B background. The deviations of the fitted values of the signal S and C from the nominal fit results are assigned as systematic errors. The uncertainty from CP violation in B0 → J/ψK0S is determined by varying S and C within current experimental limits [14].

The inclusive B background uses an effective lifetime in the nominal fit and we replace this with the world-average B lifetime [12] to evaluate the systematic error due to the CP background lifetime. There is also a small asymmetry in the tagging efficiency between B0 and B0 tagged events, for which a systematic uncertainty is evaluated. We study the possible interference between the suppressed b → ucd amplitude with the favored b → cūd amplitude for some tagside B decays [20]. The difference in the distribution of J between data and MC is evaluated with a large sample of B → D*ρ decays. There are additional systematic uncertainties that contribute only to the branching fraction. These come from uncertainties for charged particle identification (5.2%), π0 meson reconstruction efficiency (3%), the J/ψ → ℓ+ ℓ− branching fractions (2.4%), the tracking efficiency (1.2%) and the number of B meson pairs (1.1%). The systematic error contribution from MC statistics is negligible. The 109 ± 12 signal events correspond to a branching fraction of

\[\mathcal{B}(B^0 \to J/\psi \pi^0) = (1.94 \pm 0.22^{\text{stat}} \pm 0.17^{\text{syst}}) \times 10^{-5}. \]

We determine the CP asymmetry parameters to be

\[C = -0.21 \pm 0.26^{\text{stat}} \pm 0.06^{\text{syst}}, \]
\[S = -0.68 \pm 0.30^{\text{stat}} \pm 0.04^{\text{syst}}, \]

where the correlation between S and C is 83%. The value of S is consistent with SM expectations for a tree-dominated b → cūd transition of S = −sin2β and C = 0. All results presented here are consistent with previous measurements from the B factories [7–10].

We are grateful for the extraordinary contributions of our PEP-II colleagues in achieving the excellent luminosity and machine conditions that have made this work
The success of this project also relies critically on the expertise and dedication of the computing organizations that support BABAR. The collaborating institutions wish to thank SLAC for its support and the kind hospitality extended to them. This work is supported by the US Department of Energy and National Science Foundation, the Natural Sciences and Engineering Research Council (Canada), Institute of High Energy Physics (China), the Commissariat à l’Énergie Atomique and Institut National de Physique Nucléaire et de Physique des Particules (France), the Bundesministerium für Bildung und Forschung and Deutsche Forschungsgemeinschaft (Germany), the Istituto Nazionale di Fisica Nucleare (Italy), the Foundation for Fundamental Research on Matter (The Netherlands), the Research Council of Norway, the Ministry of Science and Technology of the Russian Federation, and the Particle Physics and Astronomy Research Council (United Kingdom). Individuals have received support from CONACyT (Mexico), the Marie-Curie Intra European Fellowship program (European Union), the A.P. Sloan Foundation, the Research Corporation, and the Alexander von Humboldt Foundation.