Measurement of the absolute branching fractions $B \to D\pi, D^+\pi, D^{*+}\pi$
with a missing mass method

MEASUREMENT OF THE ABSOLUTE BRANCHING ...

PHYSICAL REVIEW D 74, 111102(R) (2006)

Laboratoire Leprince-Ringuet, CNRS/IN2P3, Ecole Polytechnique, F-91128 Palaiseau, France
University of Edinburgh, Edinburgh EH9 3JZ, United Kingdom
Università di Ferrara, Dipartimento di Fisica e INFN, I-44100 Ferrara, Italy
Laboratori Nazionali di Frascati dell’INFN, I-00044 Frascati, Italy
Università di Genova, Dipartimento di Fisica e INFN, I-16146 Genova, Italy
Harvard University, Cambridge, Massachusetts 02138, USA
Universität Heidelberg, Physikalisches Institut, Philosophenweg 12, D-69120 Heidelberg, Germany
Imperial College London, London, SW7 2AZ, United Kingdom
University of Iowa, Iowa City, Iowa 52242, USA
Iowa State University, Ames, Iowa 50011-3160, USA
Johns Hopkins University, Baltimore, Maryland 21218, USA
Universität Karlsruhe, Institut für Experimentelle Kernphysik, D-76021 Karlsruhe, Germany
Laboratoire de l’Accélérateur Linéaire, IN2P3 et Université Paris-Sud 11, Centre Scientifique d’Orsay, B.P. 34, F-91898 ORSAY Cedex, France
Lawrence Livermore National Laboratory, Livermore, California 94550, USA
University of Liverpool, Liverpool L69 7ZE, United Kingdom
Queen Mary, University of London, E1 4NS, United Kingdom
University of London, Royal Holloway and Bedford New College, Egham, Surrey TW20 0EX, United Kingdom
University ofLouisville, Louisville, Kentucky 40292, USA
University of Manchester, Manchester M13 9PL, United Kingdom
University of Maryland, College Park, Maryland 20742, USA
University ofMassachusetts, Amherst, Massachusetts 01003, USA
Massachusetts Institute of Technology, Laboratory for Nuclear Science, Cambridge, Massachusetts 02139, USA
McGill University, Montréal, Québec, Canada H3A 2T8
Università di Milano, Dipartimento di Fisica e INFN, I-20133 Milano, Italy
University of Mississippi, University, Mississippi 38677, USA
Université de Montréal, Physique des Particules, Montréal, Québec, Canada H3C 3J7
Mount Holyoke College, South Hadley, Massachusetts 01075, USA
Università di Napoli Federico II, Dipartimento di Scienze Fisiche e INFN, I-80126, Napoli, Italy
NIKHEF, National Institute for Nuclear Physics and High Energy Physics, NL-1009 DB Amsterdam, The Netherlands
University of Notre Dame, Notre Dame, Indiana 46556, USA
Ohio State University, Columbus, Ohio 43210, USA
University of Oregon, Eugene, Oregon 97403, USA
Università di Padova, Dipartimento di Fisica e INFN, I-35131 Padova, Italy
Laboratoire de Physique Nucléaire et de Hautes Energies, IN2P3/CNRS, Université Pierre et Marie Curie-Paris6, Université Denis Diderot-Paris7, F-75252 Paris, France
University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
Università di Perugia, Dipartimento di Fisica e INFN, I-06100 Perugia, Italy
Università di Pisa, Dipartimento di Fisica, Scuola Normale Superiore and INFN, I-56127 Pisa, Italy
Prairie View A&M University, Prairie View, Texas 77446, USA
Princeton University, Princeton, New Jersey 08544, USA
Università di Roma La Sapienza, Dipartimento di Fisica e INFN, I-00185 Roma, Italy
Universität Rostock, D-18051 Rostock, Germany
Rutherford Appleton Laboratory, Chilton, Didcot, Oxon, OX11 0QX, United Kingdom
DSM/Dapnia, CEA/ Saclay, F-91191 Gif-sur-Yvette, France
University of South Carolina, Columbia, South Carolina 29208, USA
Stanford Linear Accelerator Center, Stanford, California 94309, USA
Stanford University, Stanford, California 94305-4060, USA
State University of New York, Albany, New York 12222, USA
University of Tennessee, Knoxville, Tennessee 37996, USA
University of Texas at Austin, Austin, Texas 78712, USA
University of Texas at Dallas, Richardson, Texas 75083, USA
Università di Torino, Dipartimento di Fisica Sperimentale and INFN, I-10125 Torino, Italy
Università di Trieste, Dipartimento di Fisica and INFN, I-34127 Trieste, Italy
IFIC, Universitat de Valencia-CSIC, E-46071 Valencia, Spain
University of Victoria, Victoria, British Columbia, Canada V8W 3P6
Department of Physics, University of Warwick, Coventry CV4 7AL, United Kingdom

*Also with Università di Perugia, Dipartimento di Fisica, Perugia, Italy.
†Also with Università della Basilicata, Potenza, Italy.
We present branching fraction measurements of charged and neutral \(B\) decays to \(D\pi^\pm\), \(D^\ast\pi^\pm\), and \("D^{**}\pi^\pm\) with a missing mass method, based on a sample of \(231 \times 10^6\) \(Y(4S) \rightarrow B\bar{B}\) pairs collected by the \(BABAR\) detector at the PEP-II \(e^+e^-\) collider. One of the \(B\) mesons is fully reconstructed and the other one decays to a reconstructed charged \(\pi\) and a companion charmed meson identified by its recoil mass, inferred by kinematics. Here \("D^{**}\) refers to the sum of all the nonstrange charmed meson states with masses in the range 2.2–2.8 GeV/\(c^2\). We measure the branching fractions: \(B(B^- \rightarrow D^0\pi^-) = (4.49 \pm 0.21 \pm 0.23) \times 10^{-3}\), \(B(B^- \rightarrow D^{0*}\pi^-) = (5.13 \pm 0.22 \pm 0.28) \times 10^{-3}\), \(B(B^- \rightarrow "D^{**}\pi^-) = (5.50 \pm 0.52 \pm 1.04) \times 10^{-3}\), \(B(B^0 \rightarrow D^{+}\pi^-) = (3.03 \pm 0.23 \pm 0.23) \times 10^{-3}\), \(B(B^0 \rightarrow D^{+*}\pi^-) = (2.99 \pm 0.23 \pm 0.24) \times 10^{-3}\), \(B(B^0 \rightarrow "D^{**}\pi^-) = (2.34 \pm 0.65 \pm 0.88) \times 10^{-3}\), and their ratios.

DOI: 10.1103/PhysRevD.74.111102

PACS numbers: 13.25.Hw, 11.30.Er, 12.15.Hh

Our understanding of hadronic \(B\)-meson decays has improved considerably during the past few years with the development of models based on the heavy quark effective theory (HQET), where collinear [1,2] or \(k_T\) [3,4] factorization theorems are considered. Models such as the QCD-improved factorization (QCDF) [5,6] and the soft collinear effective theory (SCET) [1,7] use the collinear factorization, while the perturbative QCD (pQCD) approach [8,9] uses the \(k_T\) factorization. In these models the amplitude of the \(B \rightarrow D(\pi)\) two-body decay carries information about the difference \(\delta\) between the strong-interaction phases of the two isospin amplitudes \(A_{1/2}\) and \(A_{3/2}\) that contribute [10,11]. A nonzero value of \(\delta\) provides a measure of the departure from the heavy-quark limit and the importance of the final-state interactions in the \(D(\pi)\) system. With the measurements by the \(BABAR\) [12] and BELLE [13] experiments of the color-suppressed \(B\) decay \(B^0 \rightarrow D(\pi)\) providing evidence for a sizeable value of \(\delta\), an improved measurement of the color-favored decay amplitudes \(B^- \rightarrow D(\pi)\) and \(B^0 \rightarrow D(\pi)\) is of renewed interest. In addition, the study of \(B\) decays into \(D, D^\ast\), and \(D^{**}\) mesons will allow tests of the spin symmetry [14–17] imbedded in HQET and of nonfactorizable corrections [18] that have been assumed to be negligible in the case of the excited states \(D^{**}\) [19].

In this paper we present new measurements of the branching fractions for the decays \(B^- \rightarrow D^0\pi^-\), \(D^{0*}\pi^-\), \(D^{**}\pi^-\), \(D^{**}\pi^-\), and \(B^0 \rightarrow D^+\pi^-\), \(D^+\pi^++\), \(D^{**}\pi^-\) [20], based on a missing mass method previously used by \(BABAR\) [21]. Here \("D^{**}\) refers to the sum of all the nonstrange charm meson states with masses in the range 2.2–2.8 GeV/\(c^2\). This analysis uses \(Y(4S) \rightarrow B\bar{B}\) events in which a \(B^+\) or a \(B^0\) meson, denoted \(B_{\text{rec}}\), decays into a hadronic final state and is fully reconstructed. The decays of the recoiling \(\bar{B}\) into a charged pion and a charmed meson, i.e. \(\bar{B} \rightarrow \pi^- X\), are studied. The charged pion is reconstructed and the mass of the \(X = D, D^\ast\), \("D^{**}\) is inferred from the kinematics of the two-body \(B\) decay. This method, unlike the previous exclusive measurements [22,23], does not assume that the \(Y(4S)\) decays into \(B^+\) and \(B^0\) with equal rates, nor does it rely on the \(D, D^\ast\), or \("D^{**}\) decay branching fractions.

The measurements presented here are based on a sample of \(231 \times 10^6\) \(B\bar{B}\) pairs (210 fb\(^{-1}\)) recorded at the \(Y(4S)\) resonance with the \(BABAR\) detector at the PEP-II asymmetric-energy \(B\) factory at SLAC. The \(BABAR\) detector is described in detail elsewhere [24]. Charged-particle trajectories are measured by a 5-layer double-sided silicon vertex tracker (SVT) and a 40-layer drift chamber (DCH), both operating in a 1.5-T solenoidal magnetic field. Charged-particle identification is provided by the average energy loss (\(dE/dx\)) in the tracking devices and by an internally reflecting ring-imaging Cherenkov detector. Photons are detected by a CsI(Tl) electromagnetic calorimeter. Muons are identified by the instrumented magnetic-flux return (IFR). We use Monte Carlo (MC) simulations of the \(BABAR\) detector based on GEANT4 [25] to optimize selection criteria and determine selection efficiencies.

We reconstruct \(B^+\) and \(B^0\) decays (\(B_{\text{rec}}\)) in the modes \(B^+ \rightarrow D(\pi)^+\), \(D(\pi)^0\), \(D(\pi)^-\), and \(B^0 \rightarrow D^-\pi^-\), \(D^-\pi^0\), \(D^-\pi^+\), \(D^{**}\). \(B_{\text{rec}}\) candidates are reconstructed in the \(K^+\pi^-, K^+\pi^-\pi^-\), \(K^+\pi^-\pi^+\pi^-\), and \(K^{0\ast}\pi^+\pi^-\) decay channels, while \(D^-\) candidates are reconstructed in the \(K^+\pi^-\pi^-\) and \(K^{0\ast}\pi^-\pi^-\) modes, and \(K^0\) mesons are reconstructed to \(\pi^+\pi^-\). \(D^\ast\) candidates are reconstructed in the \(D^\ast\rightarrow D^0\pi^-\) and \(D^0\rightarrow D^\ast\pi^-\) decay modes. A 3\(\sigma\) cut is applied to the \(D^0\) mass \(m_D\) (and to the \(D^\ast\rightarrow D^0\) mass difference \(m_{D^0\pi^-}\) where \(\sigma = \sigma_{m_D}(\sigma_{m_{D^0\pi^-}})\) is the resolution on \(m_D\) (\(m_{D^0\pi^-}\)) and is determined from data. A vertex fit is performed on \(D\) (\(D^\ast\)) with the mass constrained to the nominal value [26]. Two nearly independent variables are defined to identify the fully reconstructed \(B\) candidates kinematically. The first one is the beam–energy substituted mass, \(m_{ES} = \sqrt{(s/2 + p_B^2)^2 - E_i^2 - p_B^2}\), where \(p_B\) is the \(B_{\text{rec}}\) momentum and \((E_i, p_i)\) is the four-momentum of the initial \(e^+e^-\) system, both measured in the laboratory frame. The invariant mass of the initial \(e^+e^-\) system is
\sqrt{s}. The second variable is $\Delta E = E_B - \sqrt{s}/2$, where E_B is the B_{reco} candidate energy in the center-of-mass frame. To define the B_{reco} sample (Fig. 1), we require $|\Delta E| < n\sigma_{\Delta E}$, where the measured resolutions $\sigma_{\Delta E}$ range from 12 to 35 MeV and $n = 2$ or 3, both depending on the B_{reco} mode. The B_{reco} candidate multiplicity is 1.4 for data as well as for the MC simulation sample. For events with more than one candidate, we select the B_{reco} with the best χ^2 defined with the variables m_p, Δm_{ℓ^\prime}, and ΔE. The MC simulation shows that the recoil variables are reconstructed well within their experimental resolution when using this selection.

The number of B_{reco} is extracted from the m_{ES} spectra (Fig. 1) in the 5.27–5.29 GeV/c^2 signal region. The m_{ES} distribution is fitted to the sum of a broad combinatorial background and a narrow signal in the mass interval 5.21–5.29 GeV/c^2. The combinatorial background is described by an empirical phase-space threshold function [27] and the signal with a Crystal Ball function [28] which is a Gaussian function centered at the B meson mass modified to account for photon radiation energy loss. All of the parameters specifying the functions describing the B_{reco} signal and background distributions are determined from data. The measured yields of reconstructed B^+ and B^0 candidates, N_B^+ = 189 474 \pm 7487 and N_{B^0} = 103 169 \pm 3303, are obtained by subtracting the fitted and the peaking (described below) backgrounds from the total number of events found in the signal region. These B_{reco} numbers serve as the normalization of all branching fraction measurements reported in this paper.

In the decay $Y(4S) \rightarrow B_{\text{reco}}\bar{B}_X\pi$ where $\bar{B}_X\pi$ is the recoiling B which decays into π^-X, the invariant mass of the X system is derived from the missing 4-momentum p_X applying energy-momentum conservation:

$$p_X = p_{Y(4S)} - p_{B_{\text{reco}}} - p_{\pi^-}.$$

The 4-momentum of the $Y(4S)$, $p_{Y(4S)}$ is computed from the beam energies and p_{π^-} and $p_{B_{\text{reco}}}$ are the measured 4-momenta of the pion and of the reconstructed B_{reco}, respectively. The B_{reco} energy is constrained by the beam energies. The $\bar{B} \rightarrow D\pi^-$, $\bar{B} \rightarrow D^+\pi^-$, or $\bar{B} \rightarrow D^{*+}\pi^-$ signal yields peak at the D, D^*, and D^{*+} masses in the missing mass spectrum, respectively.

The charged pion candidates, chosen among the tracks that do not belong to the B_{reco}, are required to have produced at least 12 DCH hits and to have transverse momentum larger than 0.1 GeV/c^2. For the charged B_{reco}, the pion candidate has the opposite sign to the B_{reco}. For neutral B_{reco}, because of the $B^0 - B^0$ mixing, the corresponding requirement is not applied. Muon tracks are rejected using the IFR information, electrons tracks using the energy loss in the SVT and the DCH, or the ratio of the candidate’s EMC energy deposition to its momentum E/p. Protons and kaons are rejected based on information from the DIRC and energy loss in the SVT and the DCH. The rejection efficiency is 97% and there is no peaking trend.

![Graphs](image-url)
in the missing mass distribution from remaining kaons, protons, muons, or electrons. The multiplicity of the pion candidates which give a missing mass smaller than 4.15 GeV/c² is 1.05 in both data and MC simulation. For events with more than one candidate the simulation shows that the contribution of the wrong candidates to the signal yields is less than 0.2%, thus negligible compared to the statistical uncertainties. The pion reconstruction efficiency is determined from the MC simulation and reported in Table I.

<table>
<thead>
<tr>
<th>Decay mode</th>
<th>Yield</th>
<th>Efficiency</th>
<th>B(10⁻³)</th>
</tr>
</thead>
<tbody>
<tr>
<td>B⁻ → D⁰π⁻</td>
<td>677 ± 32</td>
<td>4.49 ± 0.21 ± 0.23</td>
<td></td>
</tr>
<tr>
<td>B⁻ → D⁺⁺⁺π⁻</td>
<td>774 ± 33</td>
<td>0.796 ± 0.007</td>
<td>5.13 ± 0.22 ± 0.28</td>
</tr>
<tr>
<td>B⁻ → “D⁺⁺⁺π⁻”</td>
<td>829 ± 78</td>
<td>5.50 ± 0.52 ± 1.04</td>
<td></td>
</tr>
<tr>
<td>B⁺⁺⁻→ D⁺π⁻</td>
<td>248 ± 19</td>
<td>3.03 ± 0.23 ± 0.23</td>
<td></td>
</tr>
<tr>
<td>B⁺⁺⁻→ D⁺⁺⁺π⁻</td>
<td>245 ± 19</td>
<td>0.793 ± 0.007</td>
<td>2.99 ± 0.23 ± 0.24</td>
</tr>
<tr>
<td>B⁺⁺⁻→ “D⁺⁺⁺π⁻”</td>
<td>192 ± 54</td>
<td>2.34 ± 0.65 ± 0.88</td>
<td></td>
</tr>
</tbody>
</table>

The signal yields for the different decay modes are extracted from the missing mass spectra. The data distributions and the b̅b̅ and the q̅q̅ (q = c, u, d, s) background expectations are shown in Figs. 2(a) and 2(b). The shape of the background is taken from MC and the normalization is scaled to match the data in the sideband region 2.8–3.2 GeV/c². The error on the background normalization is 2%. This is determined using the statistical errors of MC and data samples. The b̅b̅ background contribution is obtained from B̅B MC simulation excluding the Dπ, D⁺π, and D⁺⁺π signals using the MC truth information. The background-subtracted missing mass distributions are shown in Figs. 2(c) and 2(d).

The Dπ and D⁺π signal yields are extracted by a χ² fit to the background-subtracted missing mass distribution in the range 1.65–2.20 GeV/c². The Dπ and D⁺π components are each modeled by a sum of two Gaussian functions G₁,₂ to account for tails in the mass distributions. The resulting ten parameters (two yield fractions f(D⁺) = || G₁(D⁺) || / || G₁(D⁺⁺⁺) || , four central values m₁(D⁺⁺⁺), and four widths σ₁(D⁺⁺⁺)) are constrained in order to improve the convergence of the fit, using assumptions that have been tested with MC simulation: we fix the fractions f(D) = f(D⁺) and the mass differences m₁(D⁺⁺⁺) = m₁(D) = Δm, where Δm = 0.1421 GeV/c² (0.1046 GeV/c²) is the world average D⁺⁺⁺ – D⁰ – D⁺⁺++. Simultaneously, we apply
Gaussian constraints to the width ratios $\sigma_i(D^+)/\sigma_i(D) = 0.900 \pm 0.015$.

The D^{*+} yields are defined as the excess of candidates in the missing mass range 2.2–2.8 GeV/c^2, and the $B \rightarrow \pi D^{*+}$ branching fractions refer to the contributions of all nonstrange charm meson states in the same region. The range is chosen in order to maximize the acceptance to the four P-wave D^{*+} states predicted by the theory given the 34 MeV/c^2 mass resolution, determined from MC simulation, in the same region. The well-known narrow D_1^{*+} states [26] are fully contained in this range, and more than 90% of the broad D_0^* and D_1^*, are covered if measured masses and widths [29,30] are used. The event yields, the efficiencies, and the resulting branching fractions are reported in Table I.

The uncertainty related to π reconstruction efficiency is due to the MC sample statistics and the systematic uncertainty on track reconstruction and particle identification algorithms. The uncertainty due to the yield extraction is estimated by fitting the MC sample. The difference between the generated and the fitted yield is found to be consistent with zero for each signal component and the ratio of the generated and MC yield is taken as the uncertainty of the most recent measurements [26].

The ratios

\[
\frac{\mathcal{B}(B \rightarrow D^{0}\pi^-)}{\mathcal{B}(B \rightarrow D^{0}\pi^0)} = 1.14 \pm 0.07 \pm 0.04, \\
\frac{\mathcal{B}(B \rightarrow D^{*+}\pi^-)}{\mathcal{B}(B \rightarrow D^{0}\pi^-)} = 1.22 \pm 0.13 \pm 0.23, \\
\frac{\mathcal{B}(\bar{B} \rightarrow D^{+}\pi^-)}{\mathcal{B}(\bar{B} \rightarrow D^{0}\pi^-)} = 0.99 \pm 0.11 \pm 0.08, \\
\frac{\mathcal{B}(\bar{B} \rightarrow D^{*+}\pi^-)}{\mathcal{B}(\bar{B} \rightarrow D^{+}\pi^-)} = 0.77 \pm 0.22 \pm 0.29.
\]

The first uncertainty is statistical and the second is systematic. In addition to the cancellation of many of the systematic errors, the ratios are insensitive to the absolute normalization scale.

In summary, we have measured the branching fractions for the decays $B \rightarrow D^{0}\pi^-$, $B \rightarrow D^{*0}\pi^-$, $B \rightarrow D^{*+}\pi^-$, $B \rightarrow D^{*0}\pi^-$, $B \rightarrow D^{*+}\pi^-$, and $B \rightarrow D^{*+}\pi^-$, using a missing mass method. This measurement does not assume that the $Y(4S)$ decays into B^{+} and B^{0} with equal rates, nor does it rely on the D, D^{*}, or D^{*+} intermediate branching fractions. The results for $B(B \rightarrow D^{0}\pi^-)$ and $B(B \rightarrow D^{0}\pi^-)$ are compatible with previous world averages [26]. We have extracted a new result for $B(B \rightarrow D^{*+}\pi^-)$ branching fractions where D^{*+} excited states correspond to the yield measured in the mass range 2.2–2.8 GeV/c^2. The isospin study [10,11] will become competitive with the exclusive measurements [23] if the statistical error is reduced by a factor of 2. With regard to spin symmetry, the values measured for the ratios $B(B \rightarrow D^{*0}\pi^-)/B(B \rightarrow D^{0}\pi^-)$ and $B(B \rightarrow D^{*+}\pi^-)/B(B \rightarrow D^{0}\pi^-)$ are close to 1, as predicted by different theoretical models [14–18], and their precision is comparable or better than the current world averages [26].

We are grateful for the extraordinary contributions of our PEP-II colleagues in achieving the excellent luminosity and machine conditions that have made this work possible. The success of this project also relies critically on the expertise and dedication of the computing organizations that support BABAR. The collaborating institutions

<table>
<thead>
<tr>
<th>TABLE II. Total relative systematic uncertainties for the branching fractions $\mathcal{B}(B \rightarrow D^{0}\pi^-$, $D^{0}\pi^-$, $D^{0}\pi^-$, $B \rightarrow D^{+}\pi^-$, $\bar{B} \rightarrow D^{+}\pi^-$, $\bar{B} \rightarrow D^{*+}\pi^-$).</th>
</tr>
</thead>
<tbody>
<tr>
<td>Syst. Source</td>
</tr>
<tr>
<td>N$_B$</td>
</tr>
<tr>
<td>Efficiency</td>
</tr>
<tr>
<td>Yield extraction</td>
</tr>
<tr>
<td>Missing mass resolution</td>
</tr>
<tr>
<td>Background subtraction</td>
</tr>
<tr>
<td>Total</td>
</tr>
</tbody>
</table>
wish to thank SLAC for its support and the kind hospitality extended to them. This work is supported by the U.S. Department of Energy and National Science Foundation, the Natural Sciences and Engineering Research Council (Canada), Institute of High Energy Physics (China), the Commissariat à l’Energie Atomique and Institut National de Physique Nucléaire et de Physique des Particules (France), the Bundesministerium für Bildung und Forschung and Deutsche Forschungsgemeinschaft (Germany), the Istituto Nazionale di Fisica Nucleare (Italy), the Foundation for Fundamental Research on Matter (The Netherlands), the Research Council of Norway, the Ministry of Science and Technology of the Russian Federation, Ministerio de Educación y Ciencia (Spain), and the Particle Physics and Astronomy Research Council (United Kingdom). Individuals have received support from the Marie-Curie IEF program (European Union) and the A. P. Sloan Foundation.

[20] Charge conjugate relations are assumed throughout this paper.