PDF hosted at the Radboud Repository of the Radboud University Nijmegen

The following full text is a publisher's version.

For additional information about this publication click this link. http://repository.ubn.ru.nl/handle/2066/128225

Please be advised that this information was generated on 2019-08-29 and may be subject to change.
Measurement of branching fractions in radiative B decays to $\eta K\gamma$ and search for B decays to $\eta' K\gamma$

MEASUREMENT OF BRANCHING FRACTIONS IN... PHYSICAL REVIEW D 74, 031102(R) (2006)

24 Technische Universität Dresden, Institut für Kern- und Teilchenphysik, D-01062 Dresden, Germany
25 Ecole Polytechnique, LLR, F-91128 Palaiseau, France
26 University of Edinburgh, Edinburgh EH9 3JZ, United Kingdom
27 Università di Ferrara, Dipartimento di Fisica and INFN, I-44100 Ferrara, Italy
28 Laboratori Nazionali di Frascati dell’INFN, I-00044 Frascati, Italy
29 Università di Genova, Dipartimento di Fisica and INFN, I-16146 Genova, Italy
30 Harvard University, Cambridge, Massachusetts 02138, USA
31 Universität Heidelberg, Physikalisches Institut, Philosophenweg 12, D-69120 Heidelberg, Germany
32 Imperial College London, London, SW7 2AZ, United Kingdom
33 University of Iowa, Iowa City, Iowa 52242, USA
34 Iowa State University, Ames, Iowa 50011-3160, USA
35 Dept. of Physics and Astronomy, Johns Hopkins University 3400 N. Charles Street Baltimore, Maryland 21218, USA
36 Universität Karlsruhe, Institut für Experimentelle Kernphysik, D-76021 Karlsruhe, Germany
37 Laboratoire de l’Accélérateur Linéaire, IN2P3-CNRS et Université Paris-Sud 11, Centre Scientifique d’Orsay, B.P. 34, F-91898 ORSAY Cedex, France
38 Lawrence Livermore National Laboratory, Livermore, California 94550, USA
39 University of Liverpool, Liverpool L69 7ZE, United Kingdom
40 Queen Mary, University of London, E1 4NS, United Kingdom
41 University of London, Royal Holloway and Bedford New College, Egham, Surrey TW20 0EX, United Kingdom
42 University of Louisville, Louisville, Kentucky 40292, USA
43 University of Manchester, Manchester M13 9PL, United Kingdom
44 University of Maryland, College Park, Maryland 20742, USA
45 University of Massachusetts, Amherst, Massachusetts 01003, USA
46 Massachusetts Institute of Technology, Laboratory for Nuclear Science, Cambridge, Massachusetts 02139, USA
47 McGill University, Montréal, Québec, Canada H3A 2T8
48 Università di Milano, Dipartimento di Fisica and INFN, I-20133 Milano, Italy
49 University of Mississippi, University, Mississippi 38677, USA
50 Université de Montréal, Physique des Particules, Montréal, Québec, Canada H3C 3J7
51 Mount Holyoke College, South Hadley, Massachusetts 01075, USA
52 Università di Napoli Federico II, Dipartimento di Scienze Fisiche and INFN, I-80126, Napoli, Italy
53 NIKHEF, National Institute for Nuclear Physics and High Energy Physics, NL-1009 DB Amsterdam, The Netherlands
54 University of Notre Dame, Notre Dame, Indiana 46556, USA
55 Ohio State University, Columbus, Ohio 43210, USA
56 University of Oregon, Eugene, Oregon 97403, USA
57 Università di Padova, Dipartimento di Fisica and INFN, I-35131 Padova, Italy
58 Universités Paris VI et VII, Laboratoire de Physique Nucléaire et de Hautes Energies, F-75252 Paris, France
59 University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
60 Università di Perugia, Dipartimento di Fisica and INFN, I-06100 Perugia, Italy
61 Università di Pisa, Dipartimento di Fisica, Scuola Normale Superiore and INFN, I-56127 Pisa, Italy
62 Prairie View A&M University, Prairie View, Texas 77446, USA
63 Princeton University, Princeton, New Jersey 08544, USA
64 Università di Roma La Sapienza, Dipartimento di Fisica and INFN, I-00185 Roma, Italy
65 Universität Rostock, D-18051 Rostock, Germany
66 Rutherford Appleton Laboratory, Chilton, Didcot, Oxon, OX11 0QX, United Kingdom
67 DSM/Dapnia, CEA/Saclay, F-91191 Gif-sur-Yvette, France
68 University of South Carolina, Columbia, South Carolina 29208, USA
69 Stanford Linear Accelerator Center, Stanford, California 94309, USA
70 Stanford University, Stanford, California 94305-4060, USA
71 State University of New York, Albany, New York 12222, USA
72 University of Tennessee, Knoxville, Tennessee 37996, USA
73 University of Texas at Austin, Austin, Texas 78712, USA
74 University of Texas at Dallas, Richardson, Texas 75083, USA
75 Università di Torino, Dipartimento di Fisica Sperimentale and INFN, I-10125 Torino, Italy
76 Università di Trieste, Dipartimento di Fisica and INFN, I-34127 Trieste, Italy
77 IFIC, Universitat de Valencia-CSIC, E-46071 Valencia, Spain
78 University of Victoria, Victoria, British Columbia, Canada V8W 3P6

* Also at Laboratoire de Physique Corpusculaire, Clermont-Ferrand, France
† Also with Università di Perugia, Dipartimento di Fisica, Perugia, Italy
‡ Also with Università della Basilicata, Potenza, Italy
Radiative B meson decays have long been recognized as a sensitive probe to test the standard model (SM) and to look for new physics (NP) [1,2]. In the SM, flavor-changing neutral current processes such as $b \to s \gamma$ proceed via radiative loop (penguin) diagrams. The loop diagrams may also contain new heavy particles, and therefore are sensitive to NP. Measurements of the branching fractions of a few of the exclusive decay modes exist: $K^*(892)\gamma$ [3,4], $K_1(1270)\gamma$ [5], $K^*_2(1430)\gamma$ [3,6], $\phi K\gamma$ [7] and $K\eta\gamma$ [8]. The measured branching fraction of inclusive $b \to s \gamma$ and exclusive radiative B decays are in agreement with SM predictions [2,9,10]. Direct [11] and mixing-induced [12] CP asymmetries in exclusive radiative decays are expected to be very small in the SM. Measurement of direct CP asymmetries in exclusive radiative decays, and also mixing-induced CP asymmetries in the decays $B^0 \to \eta K^{0}\gamma$ and $B^0 \to \eta' K^{0}\gamma$ could provide a clear sign of NP [13]. We search for direct CP asymmetry in charged B decays, measuring the charge asymmetry $A_{ch} = (\Gamma^- - \Gamma^+) / (\Gamma^- + \Gamma^+)$, where Γ is the partial decay width of the B meson. The superscript on Γ corresponds to the sign of the B^\pm meson.

The branching fraction of $B \to \eta' K$ is enhanced with respect to that of $B \to \eta K$ [14]. This behavior may be explained by a destructive interference between two penguin amplitudes [15]. It is important to verify whether this mechanism is also valid in radiative $B \to \eta K\gamma$ and $B \to \eta' K\gamma$ decays.

We present analyses of the exclusive decay modes $B^+ \to \eta K^+\gamma$ and $B^0 \to \eta K^0\gamma$ [16], which have previously been measured by the Belle Collaboration [8], and $B^+ \to \eta' K^+\gamma$ and $B^0 \to \eta' K^0\gamma$ which are studied for the first time. The results presented here are based on data collected with the BABAR detector [17] at the PEP-II asymmetric-energy e^+e^- collider [18] located at the Stanford Linear Accelerator Center. The analyses use an integrated luminosity of 211 fb$^{-1}$, corresponding to $232 \times 10^6 B\bar{B}$ pairs, recorded at the $Y(4S)$ resonance (at a center-of-mass energy of $\sqrt{s} = 10.58$ GeV).

Charged particles from e^+e^- interactions are detected, and their momenta measured, by a combination of a vertex tracker (SVT) consisting of five layers of double-sided silicon microstrip detectors, and a 40-layer central drift chamber (DCH), both operating in the 1.5 Tesla field of a superconducting solenoid. We identify photons and electrons using a CsI(Tl) electromagnetic calorimeter (EMC). Further charged-particle identification is provided by the average energy loss (dE/dx) in the tracking devices and by an internally reflecting ring-imaging Cherenkov detector (DIRC) covering the central region. A K/π separation of better than 4 standard deviations is achieved for momenta below 3 GeV/c, decreasing to 2.5σ at the highest momenta in the B decay final states. A more detailed description of the reconstruction of charged tracks in BABAR can be found elsewhere [19].

We reconstruct the primary photon, originating from the B decay candidate, using an EMC shower not associated with a track. We require that the photon candidate fall within the fiducial region of the EMC, has the expected lateral shower shape, and is well-separated from other tracks and showers in the EMC. The primary photon energy, calculated in the $Y(4S)$ frame, is required to be in the range 1.6–2.7 GeV. We veto photons from $\pi^0(\eta)$ decays by requiring that the invariant mass of the primary photon candidates combined with any other photon candidate of laboratory energy greater than 50 (250) MeV not be within the range 115–155 (507–587) MeV/c2. Charged K candidates are selected from tracks, by using particle identification from the DIRC and the dE/dx measured in the SVT and DCH.

The B decay daughter candidates are reconstructed through their decays $\pi^0 \to \gamma\gamma$, $\eta \to \gamma\gamma$, $\eta \to \pi^+\pi^-\pi^0$, $\eta' \to \eta_{\gamma\gamma} \pi^+\pi^-\eta_{\pi\pi}$, and $\gamma^0 \gamma(\eta'_{\gamma\gamma})$, where $\gamma^0 \to \pi^+\pi^-\pi^0$. Here we require the laboratory energy of the photons to be greater than 50 MeV (200 MeV for $\eta'_{\gamma\gamma}$). We impose the following requirements on the invariant mass in MeV/c2 of these particles’ final states: $120 < m(\gamma\gamma) < 150$ for π^0, $490 < m(\gamma\gamma) < 600$ for $\eta_{\gamma\gamma}$, $520 < m(\pi^+\pi^-\pi^0) < 570$ for $\eta_{\pi\pi}$, $930 < m(\pi^+\pi^-\eta) < 990$ for $\eta'_{\eta\pi\pi}$, $910 < m(\pi^+\pi^-\gamma) < 1000$ for $\eta'_{\gamma\gamma}$, and $510 < m(\pi^+\pi^-) < 1000$ for ρ^0. For the η' and η these requirements are sufficiently loose as to include sidebands, since these observables are used in the
maximum-likelihood (ML) fit described below. Secondary
pions in η' and η candidates are rejected if their DIRC and
de/dx signatures satisfy tight requirements for being con-
sistent with protons, kaons, or electrons.

Neutral K candidates are formed from pairs of
 oppositely-charged tracks with a vertex χ^2 probability
larger than 0.001, 486 $< m(\pi^+ \pi^-) < 510$ MeV/c2 and a
reconstructed decay length greater than 3 times its un-
certainty. We require the momentum of the η or η' in the
$Y(4S)$ frame to be greater than 0.9 GeV/c (0.6 GeV/c in
modes with $\eta'\eta\pi\pi$). The invariant mass of ηK and $\eta' K$
systems is required to be less than 3.25 GeV/c2. In $\eta' K\gamma$
final states, we suppress background from the decay $J/\psi K$,
with $J/\psi \rightarrow \eta' \gamma$ by applying a veto on the reconstructed
$\eta' \gamma$ invariant mass. Defining the helicity frame for a meson
as its rest frame with polar axis along the direction of the
boost from the parent rest frame, and the decay angle θ_{dec}
as the polar angle of a daughter momentum in this helicity
frame, we require for the $\eta'\eta\gamma$ decays $|\cos \theta'_{\text{dec}}| < 0.9$, and
for $\eta\gamma$ decays $|\cos \theta_{\text{dec}}| < 0.9$, to suppress combinatorial
background.

A B meson candidate is reconstructed by combining an
η or η' candidate, a charged or neutral kaon and a primary
photon candidate. It is characterized kinematically by the
energy-substituted mass $m_{\text{ES}} = \sqrt{(s/2 + p_B \cdot p_b)^2/E_B^2 - p_B^2}$
and energy difference $\Delta E = E_B - E_\text{res}$, where the sub-
scripts 0 and B refer to the initial $Y(4S)$ and to the B
candidate in the lab-frame, respectively, and the asterisk
denotes the $Y(4S)$ frame.

Background arises primarily from random track combi-
nations in $e^+e^- \rightarrow q\bar{q}$ events. We reduce this background
by using the angle θ_T between the thrust axis of the B
candidate in the $Y(4S)$ frame and the thrust axis of the rest
of the event. The distribution of $|\cos \theta_T|$ is sharply peaked
near 1 for combinations drawn from jetlike $q\bar{q}$ events, and
is nearly uniform for $B\bar{B}$ events. We require $|\cos \theta_T| < 0.9$.
Furthermore events should contain at least the number of
charged tracks in the candidate decay mode plus one. For
$\eta\gamma, K^+\gamma$ we require at least 3 charged tracks in the event.
The mean number of B candidates per event is in the range
1.09–1.25, depending on the decay mode. If an event has
multiple B candidates, we select the candidate with the
highest B vertex χ^2 probability, determined from a vertex
fit that includes both charged and neutral particles.

We estimate $B\bar{B}$ backgrounds using simulated samples
of B decays [20]. Signal and inclusive $b \rightarrow s\tau$ events are
simulated according to the Kagan-Neubert model [21]. The
$B\bar{B}$ background is completely dominated by radiative B
decays. Branching fractions in the simulation are based on
measured values, where available [9].

We obtain signal event yields separately for each decay
mode from unbinned extended maximum-likelihood fits.
The principal input observables are $\Delta E, m_{\text{ES}}$ and a Fisher
discriminant F. Where relevant, the invariant masses m_{res}
of the intermediate η and η' resonances and $|\cos \theta_{\text{dec}}|$ are
also used. The Fisher discriminant F combines four vari-
bles: the angles with respect to the beam axis of the B
momentum and the thrust axis of the B decay products (in
the $Y(4S)$ frame), and the zeroth and second angular
moments $L_{0,2}$ of the energy flow about the B thrust axis. The
moments are defined by $L_j = \sum p_j \times |\cos \theta_j|$, where θ_j
is the angle with respect to the B thrust axis of track or neutral
cluster i, p_j is its momentum, and the sum excludes the B
candidate daughters.

For each event i and hypothesis j (signal, continuum or
$B\bar{B}$ background), the likelihood function is

$$L = e^{-\left(\sum n_j\right)} \prod_{i=1}^{N} \left[\sum_{j=1}^{3} n_j \mathcal{P}_j(x_i) \right].$$

where N is the number of input events, n_j is the number of
events for hypothesis j and $\mathcal{P}_j(x_i)$ is the corresponding
probability density function (PDF), evaluated with the observables x_i of
the ith event. Since correlations among the observables are small (2–5%),
we take each \mathcal{P} as the product of the PDFs for the separate variables. We
determine the PDF parameters from Monte Carlo simulation for
the signal and $B\bar{B}$ background, while using sideband data
($5.25 < m_{\text{ES}} < 5.27$ GeV/c2; 0.1 < $|\Delta E| < 0.2$ GeV) to
model the PDFs of continuum background. We parameterize
each of the functions $\mathcal{P}_{\text{sig}}(m_{\text{ES}}), \mathcal{P}_{\text{sig}}(|\Delta E|), \mathcal{P}_{\text{res}}(F)$, and
the components of $\mathcal{P}_{\text{res}}(m_{\text{ES}})$ that peak in m_{ES} with either a
Gaussian, the sum of two Gaussian distributions, or an
asymmetric Gaussian function, as required, to describe
the distribution. Distributions of ΔE for $B\bar{B}$ and
continuum background and $|\cos \theta_{\text{dec}}|$ are represented by
linear or quadratic functions. The $B\bar{B}$ and continuum
background in m_{ES} is described by the ARGUS function
$x\sqrt{1-x^2} \exp[\xi(1-x^2)]$, with $x=m_{\text{ES}}/\sqrt{s}$ and a pa-
rameter ξ [22]. We allow continuum background PDF
parameters to vary in the fit.

Large control samples of B decays to charmed final
states of similar topology and a smearing procedure ap-
plied to photons during the event reconstruction are used
to verify the simulated resolutions in m_{ES} and ΔE. Where
the control data samples reveal differences from the
Monte Carlo (MC) in mass resolution, we shift or scale
the resolution used in the likelihood fits. The largest shift
in m_{ES} is 0.8 MeV/c2. Any bias in the fit, which arises
mainly from neglecting the small correlations among the
discriminating variables, is determined from a large set of
simulated experiments in which the $q\bar{q}$ background is
generated from the PDFs, and into which we have em-
bedded the expected number of $B\bar{B}$ background and signal
events chosen randomly from fully simulated Monte Carlo
candidates.

In Table I we show the number of events in the sample,
the fitted signal yield and measured bias, the efficiency, and
the product of daughter branching fractions for each decay

\begin{table}
\caption{Number of events and other parameters in the signal and
continuum background.
\end{table}
TABLE I. Number of events N in the sample, fitted signal yield and measured fit bias in events, detection efficiency ϵ, daughter branching fraction product $\prod B_i$, significance $S(\sigma)$ (including systematic uncertainties), measured branching fraction B with statistical error for each decay mode. For the combined measurements we give the significance (with systematic uncertainties included) and the branching fraction with statistical and systematic uncertainty (in parentheses the 90% CL upper limit). For the $\eta K^+ \gamma$ mode we also list the measured signal charge asymmetry A_{ch}.

<table>
<thead>
<tr>
<th>Mode</th>
<th>N</th>
<th>Yield</th>
<th>Bias ϵ (%)</th>
<th>$\prod B_i$ (%)</th>
<th>$S(\sigma)$</th>
<th>$B(10^{-6})$</th>
<th>$A_{ch}(10^{-2})$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\eta_{3\pi}K^0\gamma$</td>
<td>786</td>
<td>40$^{+13}_{-12}$</td>
<td>+4</td>
<td>10.2</td>
<td>13.6</td>
<td>4.6</td>
<td>11.2$^{+4.0}_{-3.7}$</td>
</tr>
<tr>
<td>$\eta_{3\pi}K^0\gamma$</td>
<td>310</td>
<td>15$^{+7}_{-5}$</td>
<td>+1</td>
<td>7.0</td>
<td>7.8</td>
<td>2.9</td>
<td>11.5$^{+5.1}_{-5.3}$</td>
</tr>
<tr>
<td>$\eta K^+\gamma$</td>
<td>2391</td>
<td>119$^{+27}_{-21}$</td>
<td>+9</td>
<td>12.9</td>
<td>39.4</td>
<td>8.0</td>
<td>$9.4^{+1.8}_{-1.3}$</td>
</tr>
<tr>
<td>$\eta_{\gamma\gamma}K^+\gamma$</td>
<td>1108</td>
<td>55$^{+13}_{-15}$</td>
<td>+2</td>
<td>8.8</td>
<td>22.6</td>
<td>6.6</td>
<td>$11.4^{+3.0}_{-2.8}$</td>
</tr>
<tr>
<td>$\eta K^+\gamma$</td>
<td>119</td>
<td>-5^{+2}_{-2}</td>
<td>-6</td>
<td>6.2</td>
<td>6.0</td>
<td>0.4</td>
<td>$0.6^{+2.8}_{-2.0}$</td>
</tr>
<tr>
<td>$\eta K^+\gamma$</td>
<td>2464</td>
<td>19$^{+16}_{-14}$</td>
<td>+5</td>
<td>5.3</td>
<td>10.2</td>
<td>10.2</td>
<td>$11.2^{+12.8}_{-11.0}$</td>
</tr>
<tr>
<td>$\eta K^+\gamma$</td>
<td>401</td>
<td>7$^{+6}_{-5}$</td>
<td>+1</td>
<td>8.2</td>
<td>17.5</td>
<td>1.6</td>
<td>$1.9^{+1.4}_{-1.3}$</td>
</tr>
<tr>
<td>$\eta_{\gamma\gamma}K^+\gamma$</td>
<td>8792</td>
<td>17$^{+27}_{-24}$</td>
<td>+7</td>
<td>9.9</td>
<td>29.5</td>
<td>0.5</td>
<td>$1.5^{+3.6}_{-3.1}$</td>
</tr>
<tr>
<td>$\eta K^+\gamma$</td>
<td>1.7</td>
<td>$1.9^{+15}_{-12}0.1$ (9.6)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

mode. The efficiency is calculated as the ratio of the number of signal MC events entering into the ML fit to the total generated. We compute the branching fractions from the corrected signal yields, reconstruction efficiencies, daughter branching fractions, and the number of produced B mesons, assuming equal production rates of charged and neutral B pairs. The corrected signal yield is the fitted yield minus the fit bias. We combine results from different channels by combining their likelihood functions, taking into account the correlated and uncorrelated systematic errors. We report the statistical significance and branching fraction for the individual decay channel; for combined measurements having a significance smaller than 5σ, we also report the 90% confidence level (CL) upper limit.

The statistical error on the signal yield is taken as the change in the central value when the quantity $-2 \ln L$ increases by one unit from its minimum value. The significance is the square root of the difference between the value of $-2 \ln L$ (with systematic uncertainties included) for zero signal and the value at its minimum. The 90% CL upper limit is taken to be the branching fraction below which lies 90% of the total likelihood integral in the positive branching fraction region.

The measured charge asymmetry in the decay $B^+ \rightarrow \eta K^+\gamma$ is corrected for an estimated bias of -0.005, determined from studies of signal Monte Carlo events and data control samples and from calculation of the asymmetry due to particles interacting in the detector. The result is $A_{ch} = -0.09 \pm 0.12 \pm 0.01$ with an asymmetry interval $[-0.282, 0.113]$ at 90% CL.

Figure 1 shows, as representative fits, the projections onto m_{ES} and ΔE for the decays $\eta K^+\gamma$, $\eta K^0\gamma$, $\eta K^+\gamma$ and $\eta K^0\gamma$ for a subset of the data for which the signal likelihood (computed without using the variable plotted) exceeds a mode-dependent threshold that optimizes the sensitivity.

Figure 2 shows the distribution of the ηK invariant mass for signal events obtained by the event-weighting technique (sPlot) described in Ref. [23]. We use the covariance matrix and PDFs from the ML fit to determine a probability for each signal event. The resulting distributions (points with errors) are normalized to the signal yield. This mass

FIG. 1. The B candidate m_{ES} and ΔE projections for $\eta K^+\gamma$ (a), (b), $\eta K^0\gamma$ (c), (d), $\eta K^+\gamma$ (e), (f) and $\eta K^0\gamma$ (g), (h). Points with error bars (statistical only) represent the data, the solid line the full fit function, and the dashed line its background component.
distribution is useful to compare with theoretical predictions for radiative decays.

The main sources of systematic error include uncertainties in the PDF parameterization and ML fit bias. For the signal, the uncertainties in PDF parameters are estimated by comparing MC and data in control samples. Varying the signal PDF parameters within these errors, we estimate yield uncertainties of 1−2 events, depending on the mode. The uncertainty from fit bias is taken as half the correction itself (1−3 events). Systematic uncertainties due to lack of knowledge of the primary photon spectrum are estimated to be in the range 2−6% depending on the decay mode. Uncertainties in our knowledge of the efficiency, found from auxiliary studies [19], include 0.8% × N_{l} and 1.5% × N_{p}, where N_{l} and N_{p} are the numbers of tracks and photons, respectively, in the B candidate. There is a systematic error of 2.1% in the efficiency of K^{0}_{S} reconstruction. The uncertainty in the total number of BB pairs in the data sample is 1.1%. Published data [9] provide the uncertainties in the B daughter product branching fractions (0.7−3.4%). The uncertainty of 0.010 on the estimated bias correction is assigned as a systematic uncertainty to \(\mathcal{A}_{ch} \).

In conclusion, we have measured the central values and 90% CL upper limits in units of \(10^{-6} \) for the branching fractions:

\[\mathcal{B}(B^{0} \rightarrow \eta K^{0} \gamma) = 11.3^{+2.6}_{-2.6} \pm 0.6, \quad \mathcal{B}(B^{+} \rightarrow \eta K^{+} \gamma) = 10.0 \pm 1.3 \pm 0.5, \quad \mathcal{B}(B^{0} \rightarrow \eta' K^{0} \gamma) = 1.1^{+0.8}_{-0.7} \pm 0.1(<6.6), \quad \mathcal{B}(B^{0} \rightarrow \eta' K^{+} \gamma) = 1.9^{+1.2}_{-1.5} \pm 0.1(<4.2). \]

The measured branching fractions of the decay modes \(B^{+} \rightarrow \eta K^{+} \gamma \) and \(B^{0} \rightarrow \eta K^{0} \gamma \) are in good agreement with the values reported by the Belle Collaboration [8]. The decay mode \(B^{0} \rightarrow \eta' K^{0} \gamma \) is observed for the first time with greater than 5σ significance. We do not find evidence of the decays \(B^{0} \rightarrow \eta' K^{0} \gamma \) and \(B^{+} \rightarrow \eta' K^{+} \gamma \). We conclude that no mixing-induced CP study is feasible in these radiative B decays with the currently available data sample. The \(B \rightarrow \eta' K \gamma \) decays may be suppressed with respect to \(B \rightarrow \eta K \gamma \) decays due to destructive interference between two penguin amplitudes. This effect has been observed in B decays to \(\eta' K \) and \(\eta K \), for which the branching fraction of the former is enhanced with respect to that of the latter [15]. We have also measured the charge asymmetry in the decay \(B^{+} \rightarrow \eta K^{+} \gamma \) to be \(\mathcal{A}_{ch} = -0.09 \pm 0.12 \pm 0.01 \), consistent with zero. The \(\mathcal{A}_{ch} \) interval at 90% CL is \([-0.28, 0.11]\).

We are grateful for the excellent luminosity and machine conditions provided by our PEP-II colleagues, and for the substantial dedicated effort from the computing organizations that support BABAR. The collaborating institutions wish to thank SLAC for its support and kind hospitality. This work is supported by DOE and NSF (USA), NSERC (Canada), IHEP (China), CEA and CNRS-IN2P3 (France), BMBF and DFG (Germany), INFN (Italy), FOM (The Netherlands), NFR (Norway), MIST (Russia), and PPARC (United Kingdom). Individuals have received support from CONACyT (Mexico), Marie Curie EIF (European Union), the A.P. Sloan Foundation, the Research Corporation, and the Alexander von Humboldt Foundation.
[16] Charge-conjugate modes are implied throughout.