Search for Quantum Black Hole Production in High-Invariant-Mass Lepton+Jet Final States Using pp Collisions at $\sqrt{s} = 8\text{ TeV}$ and the ATLAS Detector

The ATLAS Collaboration

Abstract

This Letter presents a search for quantum black-hole production using 20.3 fb$^{-1}$ of data collected with the ATLAS detector in pp collisions at the LHC at $\sqrt{s} = 8\text{ TeV}$. The quantum black holes are assumed to decay into a final state characterized by a lepton (electron or muon) and a jet. In either channel, no event with a lepton–jet invariant mass of 3.5 TeV or more is observed, consistent with the expected background. Limits are set on the product of cross sections and branching fractions for the lepton+jet final states of quantum black holes produced in a search region for invariant masses above 1 TeV. The combined 95% confidence level upper limit on this product for quantum black holes with threshold mass above 3.5 TeV is 0.18 fb. This limit constrains the threshold quantum black-hole mass to be above 5.3 TeV in the model considered.
Quantum black holes (QBHs) [1, 2] are predicted in low-scale quantum gravity theories that offer solutions to the mass hierarchy problem of the Standard Model (SM) by lowering the scale of quantum gravity (M_D) from the Planck scale ($\sim 10^{16}$ TeV) to a value of about 1 TeV. In models with large extra dimensions such as the Arkani-Hamed–Dimopoulos–Dvali (ADD) model [3, 5], only the gravitational field is allowed to penetrate the n extra dimensions, while all SM fields are localized in the usual four-dimensional space-time. QBHs with masses near M_D, postulated to conserve total angular momentum, color and electric charge, may decay to two particles [2, 6]. The behavior of QBHs is distinct from semi-classical black holes that decay via Hawking radiation to a large number of objects [7]. Searches for semi-classical black holes typically require three or more objects [8, 9].

The quantum approximations used in the modeling of black hole production are valid when black-hole masses are above a minimal threshold mass, M_{th}, which is taken to be equivalent to the QBH inverse gravitational radius. If the QBHs investigated in this Letter are accessible at the Large Hadron Collider (LHC) [10], they can produce lepton+jet final states [2, 6] motivating this first dedicated search for high-invariant-mass final states with a single electron (e) or a single muon (μ), and at least one jet. Two-particle QBH decays to a final state consisting of a lepton and a quark-jet violate lepton and baryon number conservation, producing a distinctive signal for physics beyond the SM. Previous searches for QBHs relied on signatures such as dijet mass distributions [11, 12], generic multijet configurations [9] and photon+jet final states [13].

The largest QBH cross section for the final states considered is predicted for the collision of two u-quarks (σ_{uu}), which produces charge $+4/3$ objects with equal branching fractions (BFs) of $BF_{uu} = 11\%$ to each lepton+jet final state. The next largest cross sections are for charge $+1/3$ (ud) and $-2/3$ (dd) QBHs with lepton+jet BFs of $BF_{ud} = 5.7\%$ and $BF_{dd} = 6.7\%$ [6]. Processes with initial states having antiquarks and heavier sea-quarks are suppressed by at least a factor of 100 and can be neglected. The QBH cross section is a steeply declining function of M_{th}, and has $\Sigma \sigma_{qq} \times BF_{qq} \approx 8.6 \times 10^5$ fb, 8.9×10^5 fb and 0.75 fb for M_{th} of 1 TeV, 3 TeV and 5 TeV, respectively [14].

The ATLAS detector [15] includes an inner tracker, covering a pseudorapidity [16] range $|\eta| < 2.5$, surrounded by a superconducting solenoid providing a 2 T central field. A liquid-argon (LAr) electromagnetic (EM) sampling calorimeter ($|\eta| < 3.2$), a scintillator-tile hadronic calorimeter ($|\eta| < 1.7$), a LAr hadronic calorimeter ($1.4 < |\eta| < 3.2$), and a LAr forward calorimeter ($3.1 < |\eta| < 4.9$) provide the energy measurements. The muon spectrometer consists of tracking chambers covering $|\eta| < 2.7$, and trigger chambers covering $|\eta| < 2.4$, in a magnetic field produced by a system of air-core toroids. Events considered in this analysis are required to have one high-transverse-momentum (high-p_T) lepton (e/μ) that passes requirements of the three-level trigger system [17]. The thresholds applied at the third trigger level are 60 GeV and 36 GeV for electrons and muons, respectively. The analysis is based on the complete 2012 data set of pp collisions taken at a center-of-mass energy of $\sqrt{s} = 8$ TeV by the ATLAS detector at the LHC, corresponding to an integrated luminosity of 20.3 ± 0.6 fb$^{-1}$ [18] after data-quality requirements.

The event selection is designed to be efficient for generic lepton+jet final states and is based on leading-order simulated-signal QBH events obtained from the QBH1.04 generator [13], followed by parton showering and hadronization using PYTHIA8.165 [19]. The signal generator uses the MSTW2008LO [20] set of leading-order parton distribution functions (PDFs) with the AU2 underlying-event tune [21]. This Letter assumes the ADD model with $M_{th} = M_{D^2}$, $n = 6$, and the QCD factorization scale for the PDFs set to the inverse gravitational radius [14]. Samples with M_{th} from 1 TeV to 6 TeV, in steps of 0.5 TeV, are generated for both channels.

Events with a high-p_T lepton and one or more jets can also arise from electroweak (EW) processes includ-
ing vector-boson production with additional jets; diboson (WW, WZ, ZZ), top-quark pair (tt) and single top-quark (t or \bar{t}) production; and multijet processes including
non-prompt leptons from semileptonic hadron decays and jets
misidentified as leptons.

The EW background in the signal region (SR) is esti-
mated using Monte Carlo (MC) samples normalized
to data in control regions. All MC simulated sam-
ple are produced using the ATLAS detector simula-
tion \cite{22} based on GEANT4 \cite{23}. The simulated events
are reconstructed in the same manner as the data. The tt and single-top-quark events are simulated with
MC@NLO4.06 \cite{24} and AcerMC3.8 \cite{25}, respectively; the production of W+jets and Z+jets is simulated using
ALPGEN2.14 \cite{26}; and diboson production is simulated
with SHERPA1.4.1 \cite{27}. The leading-order CTEQ6L1
PDFs \cite{28} are used for ALPGEN and AcerMC samples
while the next-to-leading-order CT10 PDFs \cite{29} are used for the
SHERPA and MC@NLO samples. The generators for all samples except dibosons are interfaced to HER-
WIG6.520 \cite{30,31} for parton showering and hadroniza-
tion and to JIMMY4.31 \cite{32} for the underlying-event model. The results of higher-order calculations are used to
adjust the relative fractions of the simulated events as
in Refs. \cite{33}. Additional inelastic pp interactions,
termed pileup, are included in the event simulation so as
to match the distribution in the data (on average 21
interactions per bunch crossing).

Electron candidates are identified as localized depo-
sitions of energy in the EM calorimeter with \(p_{T_e} > 130 \) GeV and \(|\eta| < 2.47 \), excluding the barrel–endcap transition region, \(1.37 < |\eta| < 1.52 \), and matched to
a track reconstructed in the tracking detectors. Back-
ground from jets is reduced by requiring that the shower
profiles are consistent with those of electrons \cite{33}. Isolated
electrons are selected by requiring the transverse
energy deposited in a cone of radius \(\Delta R = \sqrt{\Delta \eta^2 + (\Delta \phi)^2} = 0.3 \) centered on the electron cluster,
excluding the energy of the electron cluster itself, to be
less than \(0.0055 \times p_{T_e} + 3.5 \) GeV after corrections for en-
dergy due to pileup and energy leakage from the electron
cluster into the cone. This criterion provides nearly con-
stant selection efficiency for signal events over the entire
\(p_{T_e} \) range explored and for all the pileup conditions.

Muon candidates are required to be detected in at
least three layers of the muon spectrometer and to have
\(p_{T_\mu} > 130 \) GeV and \(|\eta| < 2.4 \). Possible background from
cosmic rays is reduced by requiring the transverse and
longitudinal distances of closest approach to the interac-
tion point to be smaller than 0.2 mm and 1.0 mm, respec-
tively. Signal muons are required to be isolated such that
\(\sum p_T < 0.05 \times p_{T_\mu} \), where \(\sum p_T \) is the sum of the \(p_T \)
of the other tracks in a cone of radius \(\Delta R = 0.3 \) around the
direction of the muon.

Jets are constructed from three-dimensional noise-
suppressed clusters of calorimeter cells using the anti-\(k_t \)
algorithm with a radius parameter of 0.4 \cite{35,37}. Jet
energies are corrected for losses in material in front of the
active calorimeter layers, detector inhomogeneities,
the non-compensating nature of the calorimeter, and
pileup. Jet energies are calibrated using MC simula-
tion and the combination of several in-situ techniques
applied to data \cite{38}. All jets are required to have
\(p_{T_j} > 50 \) GeV and \(|\eta| < 2.5 \). In addition, the most ener-
getic jet is required to have \(p_{T_j} > 130 \) GeV.

The missing transverse momentum (with magnitude \(E_{T}^{\text{miss}} \)), used only in the background estimation, is calcu-
lated as the negative of the vectorial sum of calibrated clustered energy deposits in the calorimeters, and is cor-
rected for the momenta of any reconstructed muons \cite{41}.

In the electron (muon) channel, events are required to
have exactly one electron (muon). Multijet background can be reduced, with minimal loss in signal efficiency, by
requiring the average value of \(\eta \) for the lepton and lead-
jet to satisfy \(|\langle \eta \rangle| < 1.25 \) and the difference between
the lepton and leading jet \(\eta \) to satisfy \(|\Delta \eta| < 1.5 \). The
signal lepton and jet are mostly back-to-back in \(\phi \) and are required to satisfy \(|\Delta \phi| > \pi/2 \).

The invariant mass (\(m_{\text{inv}} \)) is calculated from the lepton
and highest-\(p_T \) jet. The SR is defined by a lower bound
on \(m_{\text{inv}} \), \(m_{\text{min}} \), that accounts for experimental resolu-
tion. In the electron channel \(m_{\text{min}} = 0.9 M_{\text{th}} \) is used. In
the muon channel, the requirement is loosened at high
invariant mass, as muon resolution has a term quadratic
in \(p_{T_\mu} \), resulting in \(m_{\text{min}} = [0.95 - 0.05 M_{\text{th}}/1 \text{TeV}] M_{\text{th}} \).
A low-invariant-mass control region (LIMCR) is defined
with \(m_{\text{min}} \) between 400 GeV and 900 GeV, which has a
negligible contamination from a potential signal (< 2%) for
the lowest \(M_{\text{th}} \) considered.

The acceptance of the event selection is about 65%,
based on generator-level quantities and calculated by
imposing selection criteria that apply directly to phase
space (lepton/jet \(\eta \), lepton/jet \(p_T \), \(\Delta \eta \), \(\Delta \phi \), \(\langle \eta \rangle \), and
\(m_{\text{inv}} \)). All other selection criteria, which in general cor-
respond to event and object quality requirements, are
used to calculate the experimental efficiency based on the
events included in the acceptance. The experimental
efficiency falls from 89(59)% to 81(50)% for masses from
1 TeV to 6 TeV in the electron (muon) channel. The ex-
perimental efficiency in the muon channel is lower than
that in the electron channel because more stringent re-
quirements are applied to ensure the best possible reso-
novation on \(m_{\text{inv}} \). The cumulative signal efficiency is the
product of the acceptance and experimental efficiency.

In the electron channel, the multijet background is
characterized by small values of \(E_{T}^{\text{miss}} \), while EW back-
ground events can have large \(E_{T}^{\text{miss}} \) due to the production
of high-momentum neutrinos. The discriminating power
of \(E_{T}^{\text{miss}} \) is used to determine the normalization of the
two backgrounds to the data in the LIMCR. The multijet
template is taken from data in which electron candidates
pass relaxed identification criteria but fail the normal
identification selection, and the EW template is taken from MC simulation where electron candidates pass the normal selection. The templates are fit to the E_T^{miss} distribution in the interval $[0,150]$ GeV in five separate detector-motivated regions of η, to determine normalization factors for both the multijet and EW backgrounds.

To extrapolate both the multijet and EW background to the SR, functions of the form $p_1 x^{p_2} + p_3 \ln(x) (1 - x)^{p_4}$ (with $x = m_{\text{inv}}/\sqrt{s}$ and fit parameters $p_1 - p_4$) [12] are used and the contributions are scaled by the corresponding normalization factor derived in the LIMCR. A simple power-law fit, with p_3 and p_4 fixed to zero, adequately describes both data and simulation. This is used as the baseline, while p_3 and p_4 are allowed to vary as part of the evaluation of the systematic uncertainty.

In the muon channel, the multijet and EW backgrounds can be discriminated on the basis of the transverse impact parameter (d_0) distribution of the muon since multijet background is dominated by jets containing charm and bottom hadrons decaying to muons while EW backgrounds are dominated by prompt muons. The template for the EW background is selected using Z-boson decays to two muons while the template for multijet background is taken from muons that fail the isolation requirement. Both templates are taken from data. The templates are fit to the d_0 distribution in the interval $[-0.1, +0.1]$ mm to determine the normalization factors. The fraction of multijet background, 0.046 ± 0.005, is neglected when extrapolating the background in SR. The procedure for extrapolating the EW background to the SR is the same as for the electron channel.

The background estimate in the SR, shown in Fig. 1, was not compared to data until the final fit method and parameters were fixed. The hatched area in Fig. 1 shows the total uncertainty in the background estimate, which is dominated by the systematic uncertainties. In extracting the limits, the fits described above are used to extrapolate the background into the high invariant-mass region.

The systematic uncertainties on the background are evaluated as a function of m_{inv}, and are dominated by uncertainties on the fits used to extrapolate the background to the highest m_{inv}, uncertainties on PDFs, and the choice of MC generator. Systematic uncertainties due to the choice of fitting functions are evaluated by fitting the m_{inv} spectrum with parameters p_3 and p_4 free and taking the difference between these fits and the fits with p_3 and p_4 fixed to zero. Additionally, SHERPA samples are used instead of ALPGEN and the fits are repeated. The uncertainty in the PDFs is estimated using a set of 44 PDF eigenvectors for CTEQ6.6 [13]. For each of the 44 sets, the background fits are repeated and the extrapolated backgrounds are estimated. To estimate the uncertainty in the multijet background in the electron channel, an alternative selection of background-enriched data events, based on photons, is used. The systematic uncertainties from the simulation of the detector response are associated with the jet and electron energy scales and resolutions, the muon momentum scale and resolution, and the trigger requirement. The combined uncertainty in the background prediction ranges from 16% (1 TeV) to 100% (6 TeV) for the electron channel and from 50% (1 TeV) to 170% (6 TeV) for the muon channel. Background systematic uncertainties for $M_{\text{th}} = 5$ TeV are given in Table 1.

Uncertainties on the signal efficiency in each of the mass bins are associated with the requirements on Δy, $\Delta \phi$, p_T, m_{inv}, and isolation. In addition, uncertainties on the detector simulation, mentioned above for the background, as well as the uncertainty in luminosity are taken into account. The combined uncertainty in the signal efficiency from these sources ranges from 3.5% at 1 TeV to
TABLE I. Breakdown of relative systematic uncertainties on the SM background for the threshold mass $M_{\text{th}} = 5$ TeV. The uncertainties are added in quadrature to obtain the total uncertainty.

<table>
<thead>
<tr>
<th>Source</th>
<th>Electron+jet</th>
<th>Muon+jet</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>%</td>
<td>%</td>
</tr>
<tr>
<td>Lepton reconstruction,scale and resolution</td>
<td>+2</td>
<td>-1</td>
</tr>
<tr>
<td></td>
<td>+30</td>
<td>-7</td>
</tr>
<tr>
<td>Jet reconstruction, scale and resolution</td>
<td>+31</td>
<td>-15</td>
</tr>
<tr>
<td></td>
<td>+5</td>
<td>-5</td>
</tr>
<tr>
<td>Multijet modeling</td>
<td>+27</td>
<td>-27</td>
</tr>
<tr>
<td></td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>PDF</td>
<td>+52</td>
<td>-33</td>
</tr>
<tr>
<td></td>
<td>+100</td>
<td>-69</td>
</tr>
<tr>
<td>Fit</td>
<td>+77</td>
<td>-77</td>
</tr>
<tr>
<td></td>
<td>+130</td>
<td>-71</td>
</tr>
<tr>
<td>Total</td>
<td>+100</td>
<td>-89</td>
</tr>
<tr>
<td></td>
<td>+170</td>
<td>-100</td>
</tr>
</tbody>
</table>

TABLE II. Numbers of expected background (Exp.) and observed (Obs.) events, along with the cumulative signal efficiencies (Eff.), with uncertainties including both the statistical and systematic components for various values of M_{th}. Numbers of events are integrated above m_{inv} requirement for the given M_{th}.

<table>
<thead>
<tr>
<th>M_{th}</th>
<th>Electron+jet</th>
<th>Muon+jet</th>
</tr>
</thead>
<tbody>
<tr>
<td>TeV</td>
<td>%</td>
<td>%</td>
</tr>
<tr>
<td>1.0</td>
<td>1200</td>
<td>1210</td>
</tr>
<tr>
<td>1.5</td>
<td>100</td>
<td>110</td>
</tr>
<tr>
<td>2.0</td>
<td>12</td>
<td>19</td>
</tr>
<tr>
<td>2.5</td>
<td>0</td>
<td>5.3</td>
</tr>
<tr>
<td>3.0</td>
<td>0</td>
<td>1.8</td>
</tr>
<tr>
<td>3.5</td>
<td>0</td>
<td>0.6</td>
</tr>
<tr>
<td>4.0</td>
<td>0</td>
<td>0.35</td>
</tr>
<tr>
<td>5.0</td>
<td>0</td>
<td>0.09</td>
</tr>
<tr>
<td>6.0</td>
<td>0</td>
<td>0.03</td>
</tr>
</tbody>
</table>

3.9% at 6 TeV for the electron channel and from 3.6% at 1 TeV to 5.6% at 6 TeV for the muon channel. The cumulative efficiency, shown in Table I is taken from the signal MC simulation for charge +4/3 QBHs. The differences in the efficiency between the charge +4/3 state and the other charged states are much smaller than the uncertainties mentioned above and are neglected. The effect of the 0.65% uncertainty in the LHC beam energy [44] is to change the QBH production cross section. Since the QBH cross section is nearly constant in M_{th}/\sqrt{s} this is effectively an uncertainty in M_{th} and has a negligible effect on the limits.

The observed numbers of events and the expected backgrounds, shown in Table II are in agreement within the total uncertainty. There is no evidence for any excess. Upper limits on $\Sigma\sigma_{qq} \times BF_{qq}$ for the production of QBHs above M_{th} are determined in the interval 1–6 TeV assuming lepton universality and using the CLs method [45] that is designed to give conservative limits in cases where the observed background fluctuates below the expected values. The statistical combination of the channels employs a likelihood function constructed as the product of Poisson probability terms describing the total number of events observed in each channel. Systematic uncertainties are incorporated as nuisance parameters into the likelihood through their effect on the mean of the Poisson functions and through convolution with their assumed Gaussian distributions. Correlations between channels are taken into account.

Figure 2 shows the 95% confidence level (C.L.) combined lepton+jet upper limit on the cross section times branching fraction for the production of QBHs as a function of M_{th}. Above 3.5 TeV, the limit is 0.18 fb. For the $n = 6$ QBH model assumed in this Letter, the 95% C.L. lower limit on M_{th} is 5.3 TeV. For $n = 2$, and all other model assumptions the same, the 95% C.L. lower limit on M_{th} is 4.7 TeV. Treating the channels separately, the 95% C.L. upper limit on the electron (muon)+jet $\Sigma\sigma_{qq} \times BF_{qq}$ above 3.5 TeV is 0.27 (0.49) fb, and the $n = 6$ lower limit on M_{th} is 5.2 (5.1) TeV.

In conclusion, a first search for two body lepton+jet final states with large invariant mass has been performed using 20.3 fb$^{-1}$ of pp collisions recorded at $\sqrt{s} = 8$ TeV with the ATLAS detector at the LHC. In the invariant-mass region above 1 TeV the observed events are consistent with data-driven extrapolated backgrounds from the low-invariant-mass control region. Above 3.5 TeV the ex-
pected background drops below one event and the 95% C.L. upper limit on the electron (μ+μ)+jet $\Sigma \sigma_{\text{eq}} \times \text{BF}_{\text{eq}}$ is 0.27 (0.49) fb. Assuming lepton universality, the 95% C.L. upper limit on the sum of the product of QBH lepton+jet production cross sections and branching fractions is 0.18 fb.

We thank CERN for the successful operation of the LHC, as well as the support staff from our institutions without whom ATLAS could not be operated efficiently.

We acknowledge the support of ANPCyT, Argentina; YerPhI, Armenia; ARC, Australia; BMWF and FWF, Austria; ANAS, Azerbaijan; SSTC, Belarus; CNPq and FAPESP, Brazil; NSERC, NRC and CFI, Canada; CERN; CONICYT, Chile; CAS, MOST and NSFC, China; COLCIENCIAS, Colombia; MSTD, Serbia; MNE/IFA, Romania; MES of Russia and RCN, Norway; MNiSW, Poland; GRICES and FCT, Portugal; MINEFD, Romania; MES of Russia and ROSATOM, Russian Federation; JINR; MSTD, Serbia; MSSR, Slovakia; ARRS and MIŽS, Slovenia; DST/NRF, South Africa; MINECO, Spain; SRC and Wallenberg Foundation, Sweden; SER, SNSF and Cantons of Bern and Geneva, Switzerland; NSC, Taiwan; TAEK, Turkey; STFC, the Royal Society and Leverhulme Trust, United Kingdom; DOE and NSF, United States of America.

The crucial computing support from all WLCG partners is acknowledged gratefully, in particular from CERN and the ATLAS Tier-1 facilities at TRIUMF (Canada), NDGF (Denmark, Norway, Sweden), CC-IN2P3 (France), KIT/GridKA (Germany), INFN-CNAF (Italy), NL-T1 (Netherlands), PIC (Spain), ASGC (Taiwan), RAL (UK) and BNL (USA) and in the Tier-2 facilities worldwide.

[16] ATLAS uses a right-handed coordinate system with its origin at the nominal interaction point (IP) in the center of the detector and the z-axis along the beam pipe. The x-axis points from the IP to the center of the LHC ring, and the y-axis points upward. The pseudorapidity is defined in terms of the polar angle θ as $\eta = \ln \tan(\theta/2)$. Cylindrical coordinates (r, ϕ) are used in the transverse plane, ϕ being the azimuthal angle around the beam pipe, referred to the x-axis.

<table>
<thead>
<tr>
<th>Institution</th>
<th>Country</th>
</tr>
</thead>
<tbody>
<tr>
<td>School of Physics and Astronomy, University of Birmingham, Birmingham, United Kingdom</td>
<td>United Kingdom</td>
</tr>
<tr>
<td>(a) Department of Physics, Bogazici University, Istanbul; (b) Department of Physics, Dogus University, Istanbul; (c) Department of Physics Engineering, Gaziantep University, Gaziantep, Turkey</td>
<td>Turkey</td>
</tr>
<tr>
<td>INFN Sezione di Bologna; (b) Dipartimento di Fisica e Astronomia, Università di Bologna, Bologna, Italy</td>
<td>Italy</td>
</tr>
<tr>
<td>Department of Physics, Boston University, Boston MA, United States of America</td>
<td>United States</td>
</tr>
<tr>
<td>Department of Physics, Brandeis University, Waltham MA, United States of America</td>
<td>United States</td>
</tr>
<tr>
<td>(a) Universidade Federal do Rio De Janeiro COPPE/EE/IF, Rio de Janeiro; (b) Federal University of Juiz de Fora (UFJF), Juiz de Fora; (c) Federal University of Sao Joao del Rei (UFSJ), Sao Joao del Rei; (d) Instituto de Fisica, Universidade de Sao Paulo, Sao Paulo, Brazil</td>
<td>Brazil</td>
</tr>
<tr>
<td>Physics Department, Brookhaven National Laboratory, Upton NY, United States of America</td>
<td>United States</td>
</tr>
<tr>
<td>(a) National Institute of Physics and Nuclear Engineering, Bucharest; (b) National Institute for Research and Development of Isotopic and Molecular Technologies, Physics Department, Cluj Napoca; (c) University Politehnica Bucharest, Bucharest; (d) West University in Timisoara, Timisoara, Romania</td>
<td>Romania</td>
</tr>
<tr>
<td>Departamento de Física, Universidad de Buenos Aires, Buenos Aires, Argentina</td>
<td>Argentina</td>
</tr>
<tr>
<td>Cavendish Laboratory, University of Cambridge, Cambridge, United Kingdom</td>
<td>United Kingdom</td>
</tr>
<tr>
<td>Department of Physics, Carleton University, Ottawa ON, Canada</td>
<td>Canada</td>
</tr>
<tr>
<td>CERN, Geneva, Switzerland</td>
<td>Switzerland</td>
</tr>
<tr>
<td>Enrico Fermi Institute, University of Chicago, Chicago IL, United States of America</td>
<td>United States</td>
</tr>
<tr>
<td>(a) Departamento de Física, Pontificia Universidad Católica de Chile, Santiago; (b) Departamento de Física, Universidad Técnica Federico Santa Maria, Valparaíso, Chile</td>
<td>Chile</td>
</tr>
<tr>
<td>(a) Institute of High Energy Physics, Chinese Academy of Sciences, Beijing; (b) Department of Modern Physics, University of Science and Technology of China, Anhui; (c) Department of Physics, Nanjing University, Jiangsu; (d) School of Physics, Shandong University, Shandong; (e) Physics Department, Shanghai Jiao Tong University, Shanghai, China</td>
<td>China</td>
</tr>
<tr>
<td>Laboratoire de Physique Corpusculaire, Clermont Université and Université Blaise Pascal and CNRS/IN2P3, Clermont-Ferrand, France</td>
<td>France</td>
</tr>
<tr>
<td>Nevis Laboratory, Columbia University, Irvington NY, United States of America</td>
<td>United States</td>
</tr>
<tr>
<td>Niels Bohr Institute, University of Copenhagen, Kobenhavn, Denmark</td>
<td>Denmark</td>
</tr>
<tr>
<td>(a) INFN Gruppo Collegato di Cosenza; (b) Dipartimento di Fisica, Università della Calabria, Rende, Italy</td>
<td>Italy</td>
</tr>
<tr>
<td>(a) AGH University of Science and Technology, Faculty of Physics and Applied Computer Science, Krakow; (b) Marian Smoluchowski Institute of Physics, Jagiellonian University, Krakow, Poland</td>
<td>Poland</td>
</tr>
<tr>
<td>The Henryk Niewodniczanski Institute of Nuclear Physics, Polish Academy of Sciences, Krakow, Poland</td>
<td>Poland</td>
</tr>
<tr>
<td>Physics Department, Southern Methodist University, Dallas TX, United States of America</td>
<td>United States</td>
</tr>
<tr>
<td>Physics Department, University of Texas at Dallas, Richardson TX, United States of America</td>
<td>United States</td>
</tr>
<tr>
<td>DESY, Hamburg and Zeuthen, Germany</td>
<td>Germany</td>
</tr>
<tr>
<td>Institut für Experimentelle Physik IV, Technische Universität Dortmund, Dortmund, Germany</td>
<td>Germany</td>
</tr>
<tr>
<td>Institut für Kern- und Teilchephysik, Technische Universität Dresden, Dresden, Germany</td>
<td>Germany</td>
</tr>
<tr>
<td>Department of Physics, Duke University, Durham NC, United States of America</td>
<td>United States</td>
</tr>
<tr>
<td>SUPA - School of Physics and Astronomy, University of Edinburgh, Edinburgh, United Kingdom</td>
<td>United Kingdom</td>
</tr>
<tr>
<td>INFN Laboratori Nazionali di Frascati, Frascati, Italy</td>
<td>Italy</td>
</tr>
<tr>
<td>Fakultät für Mathematik und Physik, Albert-Ludwigs-Universität, Freiburg, Germany</td>
<td>Germany</td>
</tr>
<tr>
<td>Section de Physique, Université de Genève, Geneva, Switzerland</td>
<td>Switzerland</td>
</tr>
<tr>
<td>(a) INFN Sezione di Genova; (b) Dipartimento di Fisica, Università di Genova, Genova, Italy</td>
<td>Italy</td>
</tr>
<tr>
<td>(a) E. Andronikashvili Institute of Physics, Iv. Javakhishvili Tbilisi State University, Tbilisi; (b) High Energy Physics Institute, Tbilisi State University, Tbilisi; (c) High Energy Physics Institute, Tbilisi, Georgia</td>
<td>Georgia</td>
</tr>
<tr>
<td>II Physikalisches Institut, Justus-Liebig-Universität Giessen, Giessen, Germany</td>
<td>Germany</td>
</tr>
<tr>
<td>SUPA - School of Physics and Astronomy, University of Glasgow, Glasgow, United Kingdom</td>
<td>United Kingdom</td>
</tr>
<tr>
<td>II Physikalisches Institut, Georg-August-Universität, Göttingen, Germany</td>
<td>Germany</td>
</tr>
<tr>
<td>Laboratoire de Physique Subatomique et de Cosmologie, Université Joseph Fourier and CNRS/IN2P3 and Institut National Polytechnique de Grenoble, Grenoble, France</td>
<td>France</td>
</tr>
<tr>
<td>Department of Physics, Hampton University, Hampton VA, United States of America</td>
<td>United States</td>
</tr>
<tr>
<td>Laboratory for Particle Physics and Cosmology, Harvard University, Cambridge MA, United States of America</td>
<td>United States</td>
</tr>
<tr>
<td>(a) Kirchhoff-Institut für Physik, Ruprecht-Karls-Universität Heidelberg, Heidelberg; (b) Physikalisches Institut, Ruprecht-Karls-Universität Heidelberg, Heidelberg; (c) ZITI Institut für technische Informatik, Ruprecht-Karls-Universität Heidelberg, Mannheim, Germany</td>
<td>Germany</td>
</tr>
</tbody>
</table>
Department of Physics, Oklahoma State University, Stillwater OK, United States of America
Palacký University, RCPTM, Olomouc, Czech Republic
Center for High Energy Physics, University of Oregon, Eugene OR, United States of America
LAL, Université Paris-Sud and CNRS/IN2P3, Orsay, France
Graduate School of Science, Osaka University, Osaka, Japan
Department of Physics, University of Oslo, Oslo, Norway
Department of Physics, Oxford University, Oxford, United Kingdom
(a) INFN Sezione di Pavia; (b) Dipartimento di Fisica, Università di Pavia, Pavia, Italy
Department of Physics, University of Pennsylvania, Philadelphia PA, United States of America
Petersburg Nuclear Physics Institute, Gatchina, Russia
(a) INFN Sezione di Pisa; (b) Dipartimento di Fisica E. Fermi, Università di Pisa, Pisa, Italy
Department of Physics and Astronomy, University of Pittsburgh, Pittsburgh PA, United States of America
(a) Laboratorio de Instrumentacion e Fisica Experimental de Particulas - LIP, Lisboa, Portugal; (b) Departamento de Fisica Teorica y del Cosmos and CAFPE, Universidad de Granada, Granada, Spain
Institute of Physics, Academy of Sciences of the Czech Republic, Praha, Czech Republic
Czech Technical University in Prague, Praha, Czech Republic
Faculty of Mathematics and Physics, Charles University in Prague, Praha, Czech Republic
State Research Center Institute for High Energy Physics, Protvino, Russia
Particle Physics Department, Rutherford Appleton Laboratory, Didcot, United Kingdom
Physics Department, University of Regina, Regina SK, Canada
Ritsumeikan University, Kusatsu, Shiga, Japan
(a) INFN Sezione di Roma I; (b) Dipartimento di Fisica, Università La Sapienza, Roma, Italy
(a) INFN Sezione di Roma Tor Vergata; (b) Dipartimento di Fisica, Università di Roma Tor Vergata, Roma, Italy
(a) INFN Sezione di Roma Tre; (b) Dipartimento di Matematica e Fisica, Università Roma Tre, Roma, Italy
(a) Faculté des Sciences Ain Chock, Réseau Universitaire de Physique des Hautes Energies - Université Hassan II, Casablanca; (b) Centre National de l’Energie des Sciences Techniques Nucléaires, Rabat; (c) Faculté des Sciences Semlalia, Université Cadi Ayyad, LPHEA-Marrakech; (d) Faculté des Sciences, Université Mohamed Premier and LPTPM, Oujda; (e) Faculté des sciences, Université Mohammed V-Agdal, Rabat, Morocco
DSM/IRFU (Institut de Recherches sur les Lois Fondamentales de l’Univers), CEA Saclay (Commissariat à l’Energie Atomique et aux Energies Alternatives), Gif-sur-Yvette, France
Santa Cruz Institute for Particle Physics, University of California Santa Cruz, Santa Cruz CA, United States of America
Department of Physics, University of Washington, Seattle WA, United States of America
Department of Physics and Astronomy, University of Sheffield, Sheffield, United Kingdom
Department of Physics, Shinshu University, Nagano, Japan
Fachbereich Physik, Universität Siegen, Siegen, Germany
Department of Physics, Simon Fraser University, Burnaby BC, Canada
SLAC National Accelerator Laboratory, Stanford CA, United States of America
(a) Faculty of Mathematics, Physics & Informatics, Comenius University, Bratislava; (b) Department of Subnuclear Physics, Institute of Experimental Physics of the Slovak Academy of Sciences, Kosice, Slovak Republic
(a) Department of Physics, University of Cape Town, Cape Town; (b) Department of Physics, University of Johannesburg, Johannesburg; (c) School of Physics, University of the Witwatersrand, Johannesburg, South Africa
(a) Department of Physics, Stockholm University; (b) The Oskar Klein Centre, Stockholm, Sweden
Physics Department, Royal Institute of Technology, Stockholm, Sweden
Departments of Physics & Astronomy and Chemistry, Stony Brook University, Stony Brook NY, United States of America
Department of Physics and Astronomy, University of Sussex, Brighton, United Kingdom
School of Physics, University of Sydney, Sydney, Australia
Institute of Physics, Academia Sinica, Taipei, Taiwan
Department of Physics, Technion: Israel Institute of Technology, Haifa, Israel
Raymond and Beverly Sackler School of Physics and Astronomy, Tel Aviv University, Tel Aviv, Israel
Department of Physics, Aristotle University of Thessaloniki, Thessaloniki, Greece
International Center for Elementary Particle Physics and Department of Physics, The University of Tokyo, Tokyo, Japan
Graduate School of Science and Technology, Tokyo Metropolitan University, Tokyo, Japan
\[\text{(a)} \text{ Also at Dipartimento di Fisica, Università La Sapienza, Roma, Italy} \\
\text{(ac)} \text{ Also at Moscow Institute of Physics and Technology State University, Dolgoprudny, Russia} \\
\text{(ad)} \text{ Also at Section de Physique, Université de Genève, Geneva, Switzerland} \\
\text{(ae)} \text{ Also at Departamento de Física, Universidade de Minho, Braga, Portugal} \\
\text{(af)} \text{ Also at Department of Physics, The University of Texas at Austin, Austin TX, United States of America} \\
\text{(ag)} \text{ Also at Institute for Particle and Nuclear Physics, Wigner Research Centre for Physics, Budapest, Hungary} \\
\text{(ah)} \text{ Also at DESY, Hamburg and Zeuthen, Germany} \\
\text{(ai)} \text{ Also at International School for Advanced Studies (SISSA), Trieste, Italy} \\
\text{(aj)} \text{ Also at Department of Physics and Astronomy, University of South Carolina, Columbia SC, United States of America} \\
\text{(ak)} \text{ Also at Faculty of Physics, M.V.Lomonosov Moscow State University, Moscow, Russia} \\
\text{(al)} \text{ Also at Physics Department, Brookhaven National Laboratory, Upton NY, United States of America} \\
\text{(am)} \text{ Also at Moscow Engineering and Physics Institute (MEPhI), Moscow, Russia} \\
\text{(an)} \text{ Also at Department of Physics, Oxford University, Oxford, United Kingdom} \\
\text{(ao)} \text{ Also at Institut für Experimentalphysik, Universität Hamburg, Hamburg, Germany} \\
\text{(ap)} \text{ Also at Department of Physics, The University of Michigan, Ann Arbor MI, United States of America} \\
\text{(aq)} \text{ Also at Discipline of Physics, University of KwaZulu-Natal, Durban, South Africa} \\
\text{* Deceased} \]