The following full text is a preprint version which may differ from the publisher's version.

For additional information about this publication click this link.
http://repository.ubn.ru.nl/handle/2066/127832

Please be advised that this information was generated on 2019-10-20 and may be subject to change.
Search for dark matter in events with a hadronically decaying W or Z boson and missing transverse momentum in pp collisions at $\sqrt{s} = 8$ TeV with the ATLAS detector

The ATLAS Collaboration

Abstract

A search is presented for dark matter pair production in association with a W or Z boson in pp collisions representing 20.3 fb$^{-1}$ of integrated luminosity at $\sqrt{s} = 8$ TeV using data recorded with the ATLAS detector at the Large Hadron Collider. Events with a hadronic jet with the jet mass consistent with a W or Z boson, and with large missing transverse momentum are analyzed. The data are consistent with the standard model expectations. Limits are set on the mass scale in effective field theories that describe the interaction of dark matter and standard model particles, and on the cross section of Higgs production and decay to invisible particles. In addition, cross section limits on the anomalous production of W or Z bosons with large missing transverse momentum are set in two fiducial regions.
Search for Dark Matter in Events with a Hadronically Decaying W or Z Boson and Missing Transverse Momentum in \(pp \) Collisions at \(\sqrt{s} = 8 \) TeV with the ATLAS Detector

ATLAS Collaboration

A search is presented for dark matter pair production in association with a \(W \) or \(Z \) boson in \(pp \) collisions representing 20.3 fb\(^{-1}\) of integrated luminosity at \(\sqrt{s} = 8 \) TeV using data recorded with the ATLAS detector at the Large Hadron Collider. Events with a hadronic jet with the jet mass consistent with a \(W \) or \(Z \) boson, and with large missing transverse momentum are analyzed. The data are consistent with the standard model expectations. Limits are set on the mass scale in effective field theories that describe the interaction of dark matter and standard model particles, and on the cross section of \(Higgs \) production and decay to invisible particles. In addition, cross section limits on the anomalous production of \(W \) or \(Z \) bosons with large missing transverse momentum are set in two fiducial regions.

Although the presence of dark matter in the Universe is well established, little is known of its particle nature or its nongravitational interactions. A suite of experiments is searching for a weakly interacting massive particle (WIMP), denoted by \(\chi \), and for interactions between \(\chi \) and standard model (SM) particles [1].

One critical component of this program is the search for pair production of WIMPs at particle colliders, specifically \(pp \to \chi\bar{\chi} \) at the Large Hadron Collider (LHC) via some unknown intermediate state. These searches have greatest sensitivity at low WIMP mass \(m_\chi \), where direct detection experiments are less powerful. At the LHC, the final-state WIMPs are invisible to the detectors, but the events can be detected if there is associated initial-state radiation of a SM particle [2]; an example is shown in Fig. [1].

The Tevatron and LHC collaborations have reported limits on the cross section of \(pp \to \chi\bar{\chi} + X \) where \(X \) is a hadronic jet [2] [4] or a photon [5] [6]. Other LHC data have been reinterpreted to constrain models where \(X \) is a leptonically decaying \(W \) [7] or \(Z \) boson [8] [9]. In each case, limits are reported in terms of the mass scale \(M_\text{\ell} \) of the unknown interaction expressed in an effective field theory as a four-point contact interaction [10] [13]. In the models considered until now, the strongest limits come from monojet analyses, due to the large rate of gluon or quark initial-state radiation relative to photon, \(W \) or \(Z \) boson radiation. The operators studied in these monojet and monophoton searches assume equal couplings of the dark matter particles to up-type and down-type quarks \([C(u) = C(d)] \). For \(W \) boson radiation there is interference between the diagrams in which the \(W \) boson is radiated from the \(u \) quark or the \(d \) quark. In the case of equal coupling, the interference is destructive and gives a small \(W \) boson emission rate. If, however, the up-type and down-type couplings have opposite signs \([C(u) = -C(d)] \) to give constructive interference, the relative rates of gluon, photon, \(W \) or \(Z \) boson emission can change dramatically [7], such that mono-\(W \)-boson production is the dominant process.

In this Letter, a search is reported for the production of \(W \) or \(Z \) bosons decaying hadronically (to \(q\bar{q} \) or \(q\bar{q}^\prime \), respectively) and reconstructed as a single massive jet in association with large missing transverse momentum from the undetected \(\chi\bar{\chi} \) particles. This search, the first of its kind, is sensitive to WIMP pair production, as well as to other dark-matter-related models, such as invisible Higgs boson decays (\(WH \) or \(ZH \) production with \(H \to \chi\bar{\chi} \)).

The ATLAS detector [19] at the LHC covers the pseudorapidity range \(|\eta| < 4.9 \) and the full azimuthal angle \(\phi \). It consists of an inner tracking detector surrounded by a thin superconducting solenoid, electromagnetic and hadronic calorimeters, and an external muon spectrometer incorporating large superconducting toroidal magnets. A three-level trigger system is used to select interesting events for recording and subsequent offline analysis. Only data for which beams were stable and all subsystems described above were operational are used. Applying these requirements to \(pp \) collision data, taken at a center-of-mass energy of \(\sqrt{s} = 8 \) TeV during the 2012
LHC run, results in a data sample with a time-integrated luminosity of 20.3 fb\(^{-1}\). The systematic uncertainty on the luminosity is derived, following the same methodology as that detailed in Ref. [21], from a preliminary calibration of the luminosity scale obtained from beam-separation scans performed in November 2012.

Jet candidates are reconstructed using the Cambridge–Aachen algorithm [22] with a radius parameter of 1.2, and selected using a mass-drop filtering procedure [23] [24], referred to as large-radius jets. These large-radius jets are supposed to capture the hadronic products of both quarks from W or Z boson decay. The internal structure of the large-radius jet is characterized in terms of the momentum balance of the two leading subjets, as $\sqrt{y} = \min(p_{T1}, p_{T2})\Delta R/m_{\text{jet}}$ where $\Delta R = \sqrt{(\Delta \phi_{1,2})^2 + (\Delta \eta_{1,2})^2}$ and m_{jet} is the calculated mass of the jet. Jet candidates are also reconstructed using the anti-k_t clustering algorithm [25] with a radius parameter of 0.4, referred to as narrow jets. The inputs to both algorithms are clusters of energy deposits in calorimeter cells seeded by those with energies significantly above the measured noise and calibrated at the hadronic energy scale [26]. Jet momenta are calculated by performing a four-vector sum over these clusters, treating each topological cluster [26] as an (E, \vec{p}) four vector with zero mass. The direction of \vec{p} is given by the line joining the reconstructed interaction point with the energy cluster. Missing transverse momentum E_{T}^{miss} is measured using all clusters of energy deposits in the calorimeter with $|\eta| < 4.5$. Electrons, muons, jets, and E_{T}^{miss} are reconstructed as in Refs [26,29], respectively. The reconstruction of hadronic W boson decays with large-radius jets is validated in a $t\bar{t}$-dominated control region with one muon, one large-radius jet ($p_T > 250$ GeV, $|\eta| < 1.2$), two additional narrow jets ($p_T > 40$ GeV, $|\eta| < 4.5$) separated from the leading large-radius jet, at least one b tag, and $E_{T}^{\text{miss}} > 250$ GeV (Fig. 2).

Candidate signal events are accepted by an inclusive E_{T}^{miss} trigger that is more than 99% efficient for events with $E_{T}^{\text{miss}} > 150$ GeV. Events with significant detector noise and noncollision backgrounds are rejected as described in Ref. [3]. In addition, events are required to have at least one large-radius jet with $p_T > 250$ GeV, $|\eta| < 1.2$, m_{jet} between 50 GeV and 120 GeV, and $\sqrt{y} > 0.4$ to suppress background without hadronic W or Z boson decays. Two signal regions are defined by two thresholds in E_{T}^{miss}: 350 and 500 GeV. To suppress the $t\bar{t}$ background and multijet background, events are rejected if they contain more than one narrow jet with $p_T > 40$ GeV and $|\eta| < 4.5$ which is not completely overlapping with the leading large-radius jet by a separation of $\Delta R > 0.9$, or if any narrow jet has $\Delta \phi(E_{T}^{\text{miss}}, \text{jet}) < 0.4$. Finally, to suppress contributions from $W \rightarrow \ell\nu$ production, events are rejected if they have any electron, photon, or muon candidates with $p_T > 10$ GeV and $|\eta| < 2.47, 2.37,$ or 2.5, respectively.

The dominant source of background events is $Z \rightarrow \nu\bar{\nu}$ production in association with jets from initial-state radiation. A secondary contribution comes from production of jets in association with W or Z bosons with leptonic decays in which the charged leptons fail identification requirements or the τ leptons decay hadronically. These three backgrounds are estimated by extrapolation from a common data control region in which the selection is identical to that of the signal regions except that the muon veto is inverted and W/Z+jets with muon decays are the dominant processes. In this muon control region dominated by W/Z+jets with muon decays, the combined W and Z boson contribution is measured after subtracting other sources of background that are estimated using MC simulation [30] based on GEANT4 [31]. Two extrapolation factors from the contribution of W/Z+jets in the muon control region to the contributions of $Z \rightarrow \nu\nu$+jets and W/Z+jets with leptonic decays in the muon-veto signal region, respectively, are derived as a function of m_{jet} from simulated samples of W and Z boson production in association with jets that are generated using SHERPA1.4.1 [32] and the CT10 [33] parton distribution function (PDF) set. A second control region is defined with two muons and $E_{T}^{\text{miss}} > 350$ GeV, which has limited statistics and is used only for the validation of the Z boson contribution. The W boson contribution is validated in a low-E_{T}^{miss} control region with the same selection as the signal region but $250 \text{ GeV} < E_{T}^{\text{miss}} < 350 \text{ GeV}$.

![FIG. 2: Distribution of $m_{\ell\ell}$ in the data and for the predicted background in the top control region (CR) with one muon, one large-radius jet, two narrow jets, at least one b tag, and $E_{T}^{\text{miss}} > 250$ GeV, which includes a W peak and a tail due to the inclusion of (part of) the b jet from top decay. Uncertainties include statistical and systematic sources.](image)

Other sources of background are diboson production, top quark pair production, and single-top production, which are estimated using simulated events. The MC@NLO4.03 generator [34] using the CT10 PDF with the AUET2 [35] tune, interfaced to HERWIG6.520 [36] and JIMMY4.31 [37] for the simulation of underlying events, is used for the productions of $t\bar{t}$ and single-top processes,
both s-channel and Wt production. The single-top, t-channel process is generated with ACERMC3.8 [38] interfaced to PYTHIA8.1 [39], using the CTEQ6L1 [40] PDF with the AUET2B [35] tune. The diboson (ZZ, WZ, and WW) samples are produced using HERWIG6.520 and JIMMY4.31 with the CTEQ6L1 PDF and AUET2 tune.

Background contributions from multijet production in which large E_T^{miss} is due to mismeasured jet energies are estimated by extrapolating from a sample of events with two jets and are found to be negligible [3].

Samples of simulated $pp \to W\chi\bar{\chi}$ and $pp \to Z\chi\bar{\chi}$ events are generated using MADGRAPH5 [41] with showering and hadronization modeled by PYTHIA8.1 using the AU2 [35] tune and CT10 PDF, including b quarks in the initial state. Four operators are used as a representative set based on the definitions in Ref. [14]: $C1$ scalar, $D1$ scalar, $D5$ vector (both the constructive and destructive interference cases), and $D9$ tensor. In each case, $m_\chi = 1, 50, 100, 200, 400, 700, 1000, and 1300$ GeV are used. The dominant sources of systematic uncertainty are due to the limited number of events in the control region, theoretical uncertainties in the simulated samples used for extrapolation, uncertainties in the large-radius jet energy calibration and momentum resolution [23], and uncertainties in the E_T^{miss}. Additional minor uncertainties are due to the levels of initial-state and final-state radiation, parton distribution functions, lepton reconstruction and identification efficiencies, and momentum resolution.

The data and predicted backgrounds in the two signal regions are shown in Table 1 for the total number of events and in Fig. 3 for the m_{jet} distribution. The data agree well with the background estimate for each E_T^{miss} threshold. Exclusion limits are set on the dark matter signals using the predicted shape of the m_{jet} distribution and the CL_s method [32], calculated with toy simulated experiments in which the systematic uncertainties have been marginalized. Figure 4 shows the exclusion regions at 90% confidence level ($C.L.$) in the M_s vs m_χ plane for various operators, where M_s need not be the same for the different operators.

TABLE I: Data and estimated background yields in the two signal regions. Uncertainties include statistical and systematic contributions.

<table>
<thead>
<tr>
<th>Process</th>
<th>$E_T^{\text{miss}} > 350$ GeV</th>
<th>$E_T^{\text{miss}} > 500$ GeV</th>
</tr>
</thead>
<tbody>
<tr>
<td>$Z \rightarrow \nu\bar{\nu}$</td>
<td>402$^{+19}_{-17}$</td>
<td>51$^{+19}_{-20}$</td>
</tr>
<tr>
<td>$W \rightarrow \ell^\pm \nu$</td>
<td>210$^{+20}_{-18}$</td>
<td>22$^{+14}_{-5}$</td>
</tr>
<tr>
<td>WW, WZ, ZZ</td>
<td>57$^{+11}_{-8}$</td>
<td>9.1$^{+1.3}_{-1.2}$</td>
</tr>
<tr>
<td>Top, single t</td>
<td>39$^{+16}_{-4}$</td>
<td>3.7$^{+1.3}_{-1.3}$</td>
</tr>
<tr>
<td>Total</td>
<td>707$^{+29}_{-38}$</td>
<td>89$^{+3}_{-2}$</td>
</tr>
<tr>
<td>Data</td>
<td>705</td>
<td>89</td>
</tr>
</tbody>
</table>

Limits on the dark matter–nucleon scattering cross sections are reported using the method of Ref. [14] in Fig. 5 for both the spin-independent ($C1, D1, D5$) and the spin-dependent interaction model ($D9$). References [14, 50] discuss the valid region of the effective field theory, which becomes a poor approximation if the mass of the intermediate state is below the momentum transferred in the interaction. The results are compared with measurements from direct detection experiments [43–49].

This search for dark matter pair production in association with a W or Z boson extends the limits on the dark matter–nucleon scattering cross section in the low
mass region $m_\chi < 10$ GeV where the direct detection experiments have less sensitivity. The new limits are also compared to the limits set by ATLAS in the 7 TeV monojet analysis [3]. For the spin-independent case with the opposite-sign up-type and down-type couplings, the limits are improved by about 3 orders of magnitude, as the constructive interference leads to a very large increase in the W-boson-associated production cross section. For other cases, the limits are similar. To complement the effective field theory models, limits are calculated for a simple dark matter production theory with a light mediator, the Higgs boson. The upper limit on the cross section of WH and ZH modes and decay to invisible particles is 1.3 pb at 95% C.L. for $m_H = 125$ GeV. Figure 6 shows the upper limit of the total cross section of WH and ZH processes with $H \rightarrow \chi \bar{\chi}$, normalized to the SM next-to-leading order prediction for the W and ZH production cross section (0.8 pb for $m_H = 125$ GeV) [51], which is 1.6 at 95% C.L. for $m_H = 125$ GeV. In addition, limits are calculated on dark matter $W\chi\bar{\chi}$ or $Z\chi\bar{\chi}$ production within two fiducial regions defined at parton level: $p_T^{W/Z} > 250$ GeV, $|\eta|^{W/Z} < 1.2$; two quarks from W or Z boson decay with $\sqrt{s} > 0.4$; at most one additional narrow jet $|p_T > 40$ GeV, $|\eta| < 4.5$, ΔR (narrow jet, W or Z) > 0.9; no electron, photon, or muon with $p_T > 10$ GeV and $|\eta| < 2.47$, 2.37, or 2.5, respectively; $p_T^{\chi\chi} > 350$ or 500 GeV. The fiducial efficiencies are similar for various dark matter signals, and the smallest value is $(63 \pm 1)%$ in both fiducial regions. The observed upper limit on the fiducial cross section is 4.4 fb (2.2 fb) at 95% C.L. for $p_T^{\chi\chi} > 350$ GeV (500 GeV) and the expected limit is 5.1 fb (1.6 fb) with negligible dependence on the dark matter production model.

In conclusion, this Letter reports the first LHC limits on dark matter production in events with a hadronically decaying W or Z boson and large missing transverse momentum. In the case of constructive interference between up-type and down-type contributions, the results set the strongest limits on the mass scale of M_χ of the unknown mediating interaction, surpassing those from the monojet signature.

We thank CERN for the very successful operation of the LHC, as well as the support staff from our institutions without whom ATLAS could not be operated efficiently. We acknowledge the support of ANPCyT, Argentina; YerPhI, Armenia; ARC, Australia; BMWF and FWF, Austria; ANAS, Azerbaijan; SSTC, Belarus; CNPq and FAPESP, Brazil; NSERC, NRC, and CFI, Canada; CERN; CONICYT, Chile; CAS, MOST, and NSFC, China; COLCIENCIAS, Colombia; MSMT CR, MPO CR, and VSC CR, Czech Republic; DNRF, DNSRC, and Lundbeck Foundation, Denmark; EPLANET, ERC, and NSRF, European Union; IN2P3-CNRS, CEA-DSM/IRFU, France; GNSF, Georgia; BMBF, DFG, HGF, MPG, and AvH Foundation, Germany; GRT and NSRF, Greece; ISF, MINERVA, GIF, DIP, and Benoziyo Center, Israel; INFN, Italy; MEXT and JSPS, Japan; CNRST, Morocco; FOM and NWO, Netherlands; BRF and RCN, Norway; MNiSW and NCN, Poland; GRICES and FCT, Portugal; MNE/IFA, Romania; MES of Russia and ROSATOM, Russian Federation; JINR; MSTD, Serbia; MSSR, Slovakia; ARRS and MIZˇS, Slovenia; DST/NRF, South Africa; MINECO, Spain; SRC and Wallenberg Foundation, Sweden; SER, SNSF, and Cantons of Bern and Geneva, Switzerland; NSC, Taiwan; TAEK, Turkey; STFC, the Royal Society, and Leverhulme Trust, United Kingdom; U.S. DOE and NSF, United States of America.

The crucial computing support from all WLCG partners is acknowledged gratefully, in particular from CERN and the ATLAS Tier-1 facilities at TRIUMF (Canada), NDGF (Denmark, Norway, Sweden), CC-IN2P3 (France), KIT/GridKA (Germany), INFN-CNAF (Italy), NL-T1 (Netherlands), PIC (Spain), ASGC (Tai-
wan), RAL (UK) and BNL (U.S.), and in the Tier-2 facilities worldwide.

[20] ATLAS uses a right-handed coordinate system with its origin at the nominal interaction point (IP) in the center of the detector and the z-axis along the beam pipe. The x-axis points from the IP to the center of the LHC ring, and the y-axis points upward. Polar coordinates (r, φ) are used in the transverse (x, y)-plane, φ being the azimuthal angle around the beam pipe. The pseudorapidity is defined in terms of the polar angle θ as η = −ln tan(θ/2).
Department of Physics, Humboldt University, Berlin, Germany
17 Albert Einstein Center for Fundamental Physics and Laboratory for High Energy Physics, University of Bern, Bern, Switzerland
18 School of Physics and Astronomy, University of Birmingham, Birmingham, United Kingdom
19 (a) Department of Physics, Bogazici University, Istanbul; (b) Department of Physics, Dogus University, Istanbul;
(c) Department of Physics Engineering, Gaziantep University, Gaziantep, Turkey
20 (a) INFN Sezione di Bologna; (b) Dipartimento di Fisica e Astronomia, Università di Bologna, Bologna, Italy
21 Physikalisches Institut, University of Bonn, Bonn, Germany
22 Department of Physics, Boston University, Boston MA, United States of America
23 Department of Physics, Brandeis University, Waltham MA, United States of America
24 (a) Universidade Federal do Rio De Janeiro COPPE/EE/IF, Rio de Janeiro; (b) Federal University of Juiz de Fora (UFJF), Juiz de Fora; (c) Federal University of Sao Joao del Rei (UFSJ), Sao Joao del Rei; (d) Instituto de Física, Universidade de Sao Paulo, Sao Paulo, Brazil
25 Physics Department, Brookhaven National Laboratory, Upton NY, United States of America
26 (a) National Institute of Physics and Nuclear Engineering, Bucharest; (b) National Institute for Research and Development of Isotopic and Molecular Technologies, Physics Department, Cluj Napoca; (c) University Politehnica Bucharest, Bucharest; (d) West University in Timisoara, Timisoara, Romania
27 Departamento de Física, Universidad de Buenos Aires, Buenos Aires, Argentina
28 Cavendish Laboratory, University of Cambridge, Cambridge, United Kingdom
29 Department of Physics, Carleton University, Ottawa ON, Canada
30 CERN, Geneva, Switzerland
31 Enrico Fermi Institute, University of Chicago, Chicago IL, United States of America
32 (a) Departamento de Física, Pontificia Universidad Católica de Chile, Santiago; (b) Departamento de Física, Universidad Técnica Federico Santa María, Valparaíso, Chile
33 (a) Institute of High Energy Physics, Chinese Academy of Sciences, Beijing; (b) Department of Modern Physics, University of Science and Technology of China, Anhui; (c) Department of Physics, Nanjing University, Jiangsu; (d) School of Physics, Shandong University, Shandong; (e) Physics Department, Shanghai Jiao Tong University, Shanghai, China
34 Laboratoire de Physique Corpusculaire, Clermont Université and Université Blaise Pascal and CNRS/IN2P3, Clermont-Ferrand, France
35 Nevis Laboratory, Columbia University, Irvington NY, United States of America
36 Niels Bohr Institute, University of Copenhagen, Kobenhavn, Denmark
37 (a) INFN Gruppo Collegato di Cosenza; (b) Dipartimento di Fisica, Università della Calabria, Rende, Italy
38 (a) AGH University of Science and Technology, Faculty of Physics and Applied Computer Science, Krakow; (b) Marian Smoluchowski Institute of Physics, Jagiellonian University, Krakow, Poland
39 The Henryk Niewodniczanski Institute of Nuclear Physics, Polish Academy of Sciences, Krakow, Poland
40 Physics Department, Southern Methodist University, Dallas TX, United States of America
41 Physics Department, University of Texas at Dallas, Richardson TX, United States of America
42 DESY, Hamburg and Zeuthen, Germany
43 Institut für Experimentelle Physik IV, Technische Universität Dortmund, Dortmund, Germany
44 Institut für Kern- und Teilchenphysik, Technische Universität Dresden, Dresden, Germany
45 Department of Physics, Duke University, Durham NC, United States of America
46 SUPA - School of Physics and Astronomy, University of Edinburgh, Edinburgh, United Kingdom
47 INFN Laboratori Nazionali di Frascati, Frascati, Italy
48 Fakultät für Mathematik und Physik, Albert-Ludwigs-Universität, Freiburg, Germany
49 Section de Physique, Université de Genève, Geneva, Switzerland
50 (a) INFN Sezione di Genova; (b) Dipartimento di Fisica, Università di Genova, Genova, Italy
51 (a) E. Andronikashvili Institute of Physics, Iv. Javakhishvili Tbilisi State University, Tbilisi; (b) High Energy Physics Institute, Tbilisi State University, Tbilisi, Georgia
52 II Physikalisches Institut, Justus-Liebig-Universität Giessen, Giessen, Germany
53 SUPA - School of Physics and Astronomy, University of Glasgow, Glasgow, United Kingdom
54 II Physikalisches Institut, Georg-August-Universität, Göttingen, Germany
55 Laboratoire de Physique Subatomique et de Cosmologie, Université Joseph Fourier and CNRS/IN2P3 and Institut National Polytechnique de Grenoble, Grenoble, France
56 Department of Physics, Hampton University, Hampton VA, United States of America
57 Laboratory for Particle Physics and Cosmology, Harvard University, Cambridge MA, United States of America
Ohio State University, Columbus OH, United States of America
Faculty of Science, Okayama University, Okayama, Japan
Homer L. Dodge Department of Physics and Astronomy, University of Oklahoma, Norman OK, United States of America
Department of Physics, Oklahoma State University, Stillwater OK, United States of America
Palacký University, RCP TM, Olomouc, Czech Republic
Center for High Energy Physics, University of Oregon, Eugene OR, United States of America
LAL, Université Paris-Sud and CNRS/IN2P3, Orsay, France
Graduate School of Science, Osaka University, Osaka, Japan
Department of Physics, University of Oslo, Oslo, Norway
Department of Physics, Oxford University, Oxford, United Kingdom
(a) INFN Sezione di Pavia; (b) Dipartimento di Fisica, Università di Pavia, Pavia, Italy
Department of Physics, University of Pennsylvania, Philadelphia PA, United States of America
Petersburg Nuclear Physics Institute, Gatchina, Russia
(a) INFN Sezione di Pisa; (b) Dipartimento di Fisica E. Fermi, Università di Pisa, Pisa, Italy
Department of Physics and Astronomy, University of Pittsburgh, Pittsburgh PA, United States of America
(a) Laboratorio de Instrumentacao e Fisica Experimental de Particulas - LIP, Lisboa, Portugal; (b) Departamento de Fisica Teorica y del Cosmos and CAFPE, Universidad de Granada, Granada, Spain
Institute of Physics, Academy of Sciences of the Czech Republic, Praha, Czech Republic
Czech Technical University in Prague, Praha, Czech Republic
Faculty of Mathematics and Physics, Charles University in Prague, Praha, Czech Republic
State Research Center Institute for High Energy Physics, Protvino, Russia
Particle Physics Department, Rutherford Appleton Laboratory, Didcot, United Kingdom
Physics Department, University of Regina, Regina SK, Canada
Ritsumeikan University, Kusatsu, Shiga, Japan
(a) INFN Sezione di Roma I; (b) Dipartimento di Fisica, Università La Sapienza, Roma, Italy
(a) INFN Sezione di Roma Tor Vergata; (b) Dipartimento di Fisica, Università di Roma Tor Vergata, Roma, Italy
(a) INFN Sezione di Roma Tre; (b) Dipartimento di Matematica e Fisica, Università Roma Tre, Roma, Italy
(a) Faculté des Sciences Ain Chock, Réseau Universitaire de Physique des Hautes Energies - Université Hassan II, Casablanca; (b) Centre National de l’Energie des Sciences Techniques Nucleaires, Rabat; (c) Faculté des Sciences, Université Mohamed Premier and LPTPM, Oujda; (c) Faculté des sciences, Université Mohamed V-Agdal, Rabat, Morocco
DSM/IRFU (Institut de Recherches sur les Lois Fondamentales de l’Univers), CEA Saclay (Commissariat à l’Energie Atomique et aux Energies Alternatives), Gif-sur-Yvette, France
Santa Cruz Institute for Particle Physics, University of California Santa Cruz, Santa Cruz CA, United States of America
Department of Physics, University of Washington, Seattle WA, United States of America
Department of Physics and Astronomy, University of Sheffield, Sheffield, United Kingdom
Department of Physics, Shinshu University, Nagano, Japan
Fachbereich Physik, Universität Siegen, Siegen, Germany
Department of Physics, Simon Fraser University, Burnaby BC, Canada
SLAC National Accelerator Laboratory, Stanford CA, United States of America
(a) Faculty of Mathematics, Physics & Informatics, Comenius University, Bratislava; (b) Department of Subnuclear Physics, Institute of Experimental Physics of the Slovak Academy of Sciences, Kosice, Slovak Republic
(a) Department of Physics, University of Cape Town, Cape Town; (b) Department of Physics, University of Johannesburg, Johannesburg; (c) School of Physics, University of the Witwatersrand, Johannesburg, South Africa
(a) Department of Physics, Stockholm University; (b) The Oskar Klein Centre, Stockholm, Sweden
Physics Department, Royal Institute of Technology, Stockholm, Sweden
Departments of Physics & Astronomy and Chemistry, Stony Brook University, Stony Brook NY, United States of America
Department of Physics and Astronomy, University of Sussex, Brighton, United Kingdom
School of Physics, University of Sydney, Sydney, Australia
Institute of Physics, Academia Sinica, Taipei, Taiwan
Department of Physics, Technion: Israel Institute of Technology, Haifa, Israel
Raymond and Beverly Sackler School of Physics and Astronomy, Tel Aviv University, Tel Aviv, Israel
Department of Physics, Aristotle University of Thessaloniki, Thessaloniki, Greece
Also at Laboratoire de Physique Nucléaire et de Hautes Energies, UPMC and Université Paris-Diderot and CNRS/IN2P3, Paris, France
Also at School of Physical Sciences, National Institute of Science Education and Research, Bhubaneswar, India
Also at Dipartimento di Fisica, Università La Sapienza, Roma, Italy
Also at DSM/IRFU (Institut de Recherches sur les Lois Fondamentales de l’Univers), CEA Saclay (Commissariat à l’Energie Atomique et aux Energies Alternatives), Gif-sur-Yvette, France
Also at Moscow Institute of Physics and Technology State University, Dolgoprudny, Russia
Also at Section de Physique, Université de Genève, Geneva, Switzerland
Also at Departamento de Física, Universidade de Minho, Braga, Portugal
Also at Department of Physics, The University of Texas at Austin, Austin TX, United States of America
Also at Institute for Particle and Nuclear Physics, Wigner Research Centre for Physics, Budapest, Hungary
Also at DESY, Hamburg and Zeuthen, Germany
Also at International School for Advanced Studies (SISSA), Trieste, Italy
Also at Department of Physics and Astronomy, University of South Carolina, Columbia SC, United States of America
Also at Faculty of Physics, M.V.Lomonosov Moscow State University, Moscow, Russia
Also at Nevis Laboratory, Columbia University, Irvington NY, United States of America
Also at Department of Physics, Brookhaven National Laboratory, Upton NY, United States of America
Also at Moscow Engineering and Physics Institute (MEPhI), Moscow, Russia
Also at Department of Physics, Oxford University, Oxford, United Kingdom
Also at Institut für Experimentalphysik, Universität Hamburg, Hamburg, Germany
Also at Department of Physics, The University of Michigan, Ann Arbor MI, United States of America
Also at Discipline of Physics, University of KwaZulu-Natal, Durban, South Africa
* Deceased