Modular Reduction without Precomputational Phase

Miroslav Knežević, Lejla Batina and Ingrid Verbauwhede
Katholieke Universiteit Leuven
ESAT/SCD-COSIC and IBBT
Kasteelpark Arenberg 10, B-3001 Leuven-Heverlee, Belgium

Abstract—In this paper we show how modular reduction for integers with Barrett and Montgomery algorithms can be implemented efficiently without using a precomputational phase. We propose four distinct sets of moduli for which this method is applicable. The proposed modifications of existing algorithms are very suitable for fast software and hardware implementations of some public-key cryptosystems and in particular of Elliptic Curve Cryptography. Additionally, our results show substantial improvement when a small number of reductions with a single modulus is performed.

Index Terms—Modular reduction, modular multiplication, Barrett reduction, Montgomery reduction, public-key cryptography (ECC).

I. INTRODUCTION

As embedded systems evolve from isolated devices to always-on networked devices, security becomes a paramount issue. After more than two decades of extensive research on both, theoretical and practical aspects it is evident that Elliptic curve cryptography (ECC) [1], [2] offers equivalent security as RSA for much smaller key sizes. This results in hardware of smaller footprint and lower power consumption. These features are very important for applications with very firm constraints on area, power, energy etc. i.e. for embedded security.

At the same time, a distributed computing starts to play very important role in the embedded systems field and we need more and more powerful servers that will take over the computationally expensive tasks from the constrained devices. In contrast to most of the research work that is focused on computational expensive tasks from the constrained devices.

Moreover, most of the NIST recommended moduli for ECC are also included in the proposed sets (curves P-192, P-224, P-384, P-521) [3].

Our previous work [4] showed that the reduction algorithms of Barrett and Montgomery over binary fields can be performed without using a precomputational step. The set of moduli was accordingly extended by defining two distinct sets for which either reduction method is applicable. Due to the similarity between the two algorithms, a hardware architecture for the fast modular multiplier handling both types of moduli was also proposed. In this work, we extend the approach to the ring of integers.

Algorithm 1 Barrett reduction for integers.

\begin{algorithm}
\caption{Barrett reduction for integers.}
\begin{algorithmic}
\STATE \textbf{INPUT:} positive integers $a = (a_{2n-1} \ldots a_0)_b$ and $m = (m_{n-1} \ldots m_0)_b$, where $m_{n-1} \neq 0$, $b \geq 3$ and $m = \hat{b}^{2n}/m$.
\STATE \textbf{PRECOMPUTED} $\mu = [\hat{b}^{2n}/m]$.
\STATE \textbf{OUTPUT:} $r = a \bmod m$.
\STATE $\hat{q} \leftarrow \left\lfloor \frac{a}{\hat{b}^n} \right\rfloor \mu$.
\STATE $r \leftarrow a \bmod \hat{b}^n + 1 - m\hat{q} \bmod \hat{b}^{n+1}$.
\IF{$r < 0$}
\STATE $r \leftarrow r + \hat{b}^{n+1}$.
\ENDIF
\WHILE{$r \geq m$}
\STATE $r \leftarrow r - m$.
\ENDWHILE
\STATE \textbf{RETURN:} r.
\end{algorithmic}
\end{algorithm}

Based on this algorithm, a modular multiplication can be performed at a very high throughput by providing $2n$-digit product and performing the modular reduction afterwards.

Montgomery algorithm [6] is one of the most commonly used reduction algorithms. The result of reduction has a form $aR \bmod m$. Similar to Barrett reduction, this algorithm uses a precomputed value $m' = -m^{-1} \bmod R$. For the sake of efficient implementation one usually uses $R = b^n$ where b

II. RELATED WORK

Barrett reduction algorithm was introduced by P. D. Barrett in 1986 [5]. This algorithm computes $r = a \bmod m$ for an input a and a modulus m, and is given in Alg. 1. The algorithm uses μ, a precomputed reciprocal of m, to avoid computationally expensive divisions that are necessary to compute the quotient q such that $a = qm + r$.

\begin{algorithm}
\caption{Montgomery reduction for integers.}
\begin{algorithmic}
\STATE \textbf{INPUT:} positive integers $a = (a_{2n-1} \ldots a_0)_b$ and $m = (m_{n-1} \ldots m_0)_b$, where $m_{n-1} \neq 0$, $b \geq 3$ and $m = \hat{b}^{2n}/m$.
\STATE \textbf{PRECOMPUTED} $\mu = [\hat{b}^{2n}/m]$.
\STATE \textbf{OUTPUT:} $r = a \bmod m$.
\STATE $r \leftarrow (0.a_{2n} \ldots a_0 \mu b^n)$.
\STATE $r \leftarrow r + \hat{b}^{n+1}$.
\IF{$r < 0$}
\STATE $r \leftarrow r + \hat{b}^{n+1}$.
\ENDIF
\STATE \textbf{RETURN:} r.
\end{algorithmic}
\end{algorithm}
Algorithm 2 Montgomery reduction for integers.

INPUT: positive integers \(a = (a_{2n-1} \ldots a_0) \), \(m = (m_{n-1} \ldots m_0) \), \(R = b^n \), where \(\gcd(b, m) = 1 \) and \(\text{PRECOMPUTED} m' = -m^{-1} \mod R \).

OUTPUT: \(t = aR^{-1} \mod m \).

\[
\begin{align*}
& s \leftarrow (a \mod R)m' \mod R, \\
& t \leftarrow (a + ms)/R, \\
& \text{if } t \geq m \text{ then} \\
& \quad t \leftarrow t - m \\
& \text{end if} \\
& \text{RETURN: } t.
\end{align*}
\]

Both described, Barrett and Montgomery algorithms have one property in common. In order to perform modular reduction, they need a precomputed value of the reciprocal/inverse of modulus. This reduces flexibility of the system forcing one to use fixed modulus and its precomputed reciprocal/inverse. From the implementation point of view, this requires extra computational time and memory space to calculate the precomputed value. Hence, both algorithms are suitable only for the case when many reductions are performed with a single modulus. In the next section we show how these shortcomings can be overcome using the special sets of moduli.

III. THE PROPOSED MODULAR REDUCTION METHODS

Here, we first provide two special sets of moduli for which the precomputational step in Barrett reduction can be efficiently avoided. Second, we propose a modular reduction algorithm that is based on Barrett reduction and show how using a modulus from the defined sets can be beneficial for skipping the precomputational step. Finally, we show how Montgomery reduction, with using complementary sets of moduli, can also be performed very efficiently without precomputation. A modular multiplication based on these algorithms can be implemented at a very high throughput in hardware. Due to the big integers used in cryptographic applications, the algorithms are not suitable for embedded devices as they require the use of big multipliers (e.g. 163 × 163-bit multiplier)^1. On the other hand, they are very suitable for powerful servers where the fast modular multiplication is necessary.

Before describing the actual algorithms, we give some mathematical background to make the following explanations easier. Starting with the basic idea of the proposed modular reduction based on Barrett algorithm we give next two Lemmata as follows:

Lemma 1: Let \(m = b^{n-1} + \Delta \) be \(n \)-word positive integer in radix \(b \) representation, such that \(0 \leq \Delta < \lfloor b^{(n-1)/2} \rfloor \) and \(\mu = \lfloor b^{2n-2}/m \rfloor \). Then it holds:

\[
\mu = b^{n-1} - \Delta . \tag{1}
\]

Proof of Lemma 1: Rewrite \(b^{2n-2} \) as

\[
b^{2n-2} = (b^{n-1} - \Delta m + \Delta^2) .
\]

Since it is given that \(0 \leq \Delta < \lfloor b^{(n-1)/2} \rfloor \), we conclude that \(0 \leq \Delta^2 < m \). By definition of Euclidean division, this shows that \(\mu = b^{n-1} - \Delta \).

Lemma 2: Let \(m = b^n - \Delta \) be \(n \)-word positive integer in radix \(b \) representation, such that \(0 < \Delta < \lfloor b^{n/2} \rfloor \) and \(\mu = \lfloor b^{2n}/m \rfloor \). Then it holds:

\[
\mu = b^n + \Delta . \tag{2}
\]

Proof of Lemma 2: Rewrite \(b^{2n} \) as

\[
b^{2n} = (b^n + \Delta)m + \Delta^2 .
\]

Since it is given that \(0 < \Delta < \lfloor b^{n/2} \rfloor \), we conclude that \(0 < \Delta^2 < m \). By definition of Euclidean division, this shows that \(\mu = b^n + \Delta \).

The Barrett modular reduction algorithm for integers is given in Sect. II. Now, according to Lemmata 1 and 2, we can define two sets of primes for which the Barrett reduction described in Alg. 1 can be performed without using a precomputational phase. These sets are of type:

\[
S_1 : m = b^{n-1} + \Delta_1 \quad \text{where} \quad 0 \leq \Delta_1 < \lfloor b^{(n-1)/2} \rfloor ;
\]

\[
S_2 : m = b^n - \Delta_2 \quad \text{where} \quad 0 < \Delta_2 < \lfloor b^{n/2} \rfloor . \tag{3}
\]

To further illustrate the properties of the two proposed sets, we give Fig. 1 where the moduli from each set are represented in radix 2 representation. Note that here \(k = \left\lfloor \frac{n-1}{2} \right\rfloor \), \(m_i \in \{0, 1\} \) and, additionally, Eq. (3) has to be satisfied.

- \(n \)-bit inputs can also be done based on Alg. 2.

1 We consider only the case where the multiplication is performed at the first place, followed by the reduction afterwards. Implemented in this way, the algorithm is performed faster than the bit/digit serial multiplication interleaved with reduction.
Algorithm 3 Modular reduction without precomputation based on Barrett algorithm.

INPUT: positive integers \(a = (a_{2n-1} \ldots a_0)_b, m \in S_1 \cup S_2, \mu, b \geq 3 \).

OUTPUT: \(r = a \mod m \).

\[q \hat{=} \left\lfloor \frac{a}{b^{n+1}} \right\rfloor \mu^{b^{n+1}} \mod b^{n+1} \]

\[\hat{q} \leftarrow q \mod b^{n+1} - n\hat{q} \mod b^{n+1}, \]

Correction step:

\[\text{if } r < 0 \text{ then } \]
\[r \leftarrow r + b^{n+1}. \]
\[\text{end if} \]

\[\text{while } r \geq m \text{ do} \]
\[r \leftarrow r - m. \]
\[\text{end while} \]

RETURN: \(r \).

completely analogous. Let \(q = \lfloor a/m \rfloor \) and \(r = a \mod m = a - qm \). In the algorithm above, \(\hat{q} \) is an estimate of \(q \) since

\[\frac{a}{m} = \frac{a}{b^{n+1}} \cdot \frac{b^{2n-2}}{m} \cdot \frac{1}{b^{n+1}}. \]

We now show that \(q - 3 \leq \hat{q} \leq q \). The right part of the inequality is straightforward to prove as it is

\[\hat{q} = \left\lfloor \frac{a}{b^{n+1}} \right\rfloor \mu^{b^{n+1}} \leq \left\lfloor \frac{a}{b^{n+1}} \right\rfloor \cdot \frac{b^{2n-2}}{m} \cdot \frac{1}{b^{n+1}} = \frac{a}{m} = q . \]

Next, we prove the left part of the inequality. Since \(\frac{A}{B} \geq \frac{A}{B} - 1 \) for any \(A, B \in \mathbb{N} \), we can write the following inequality

\[q = \left\lfloor \frac{a}{b^{n+1}} \right\rfloor \mu^{b^{n+1}} \]
\[\leq \left(\left\lfloor \frac{a}{b^{n+1}} \right\rfloor + 1 \right) \left\lfloor \frac{b^{2n-2}}{m} \right\rfloor + 1 \]
\[= \left\lfloor \frac{a}{b^{n+1}} \right\rfloor + \left\lfloor \frac{b^{2n-2}}{m} \right\rfloor + 1 . \]

Since \(a < m^2 \) and \(m = b^{n+1} + \Delta_1 \geq b^{n-1} \), where \(0 \leq \Delta_1 < b^{(n-1)/2} \), it follows that

\[\frac{a}{b^{n+1}} + \left\lfloor \frac{b^{2n-2}}{m} \right\rfloor + 1 \leq \left\lfloor \frac{m^2}{b^{n+1}} \right\rfloor + b^{n-1} + 1 \]
\[= b^{n-1} + 2\Delta_1 + \left\lfloor \frac{\Delta_1^2}{b^{n+1}} \right\rfloor + b^{n-1} + 1 \]
\[\leq 2b^{n-1} + 2\Delta_1 + 2 . \]

Finally, we have

\[q \leq \left\lfloor \frac{a}{b^{n+1}} \right\rfloor + 2b^{n-1} + 2\Delta_1 + 2 \]
\[= \left\lfloor \frac{a}{b^{n+1}} \right\rfloor + 2 + 2\Delta_1 + \frac{2}{b^{n-1}} \]
\[\leq \hat{q} + 3 . \]

Similarly, for the case when \(m \in S_2 \) we have

\[q = \left\lfloor \frac{a}{b^{n+1}} \right\rfloor \mu^{b^{n+1}} \]
\[\leq \left(\left\lfloor \frac{a}{b^{n+1}} \right\rfloor + 1 \right) \left\lfloor \frac{b^{2n-2}}{m} \right\rfloor + 1 \]
\[= \left\lfloor \frac{a}{b^{n+1}} \right\rfloor + 2 + 2\Delta_2b + 2 \]
\[\leq \hat{q} + 3 . \]

Hence, \(\hat{q} \) is indeed a good estimate of \(q \) and at most 3 subtractions at the correction step are required to obtain \(r = a \mod m \). This concludes the proof.

In contrast to the original Barrett algorithm for integers (see Alg. 1), our proposed algorithm differs not only in the lack of the precomputational phase, but also in the number of the correction steps (see Alg. 3). While in the original Barrett reduction algorithm, the number of correction steps is at most 2, in our modified reduction algorithm this number can be at most 3. One can further reduce the number of redundant subtractions by increasing a precision of \(\mu \) for two or more digits. The same approach was applied to the original Barrett algorithm, resulting in the improved Barrett reduction where at most one subtraction needs to be performed at the correction step [7].

Similar to Lemmata 1 and 2 we also give Lemmata 3 and 4 that are the base points for the proposed modular reduction based on Montgomery algorithm.

Lemma 3: Let \(m = \Delta b^k + 1 \) be \(n \)-word positive integer in radix \(b \) representation where \(b^{n-k-1} \leq \Delta < b^{n-k} \), \(k = \left\lfloor \frac{n-1}{2} \right\rfloor \) and let \(m' = -m^{-1} \mod b^{n-1} \). Then it holds:

\[m' = \Delta b^k - 1 . \]

Proof of Lemma 3:** In order to prove Eq. (4) we need to show that

\[mm' \equiv -1 \mod b^{n-1} . \]

Indeed, if we express product \(mm' \) as

\[mm' = (\Delta b^k + 1)(\Delta b^k - 1) \]
\[= \Delta^2 b^{2k} - 1 , \]

it becomes obvious that \(mm' \equiv -1 \mod b^{n-1} . \)

2Due to the space limitation, we skip a few steps of the following computation. These steps are equivalent to the steps from the case when \(m \in S_1 . \)
Lemma 4: Let \(m = \Delta b^k - 1 \) be \(n \)-word positive integer in radix \(b \) representation where \(b^{n-k-1} < \Delta \leq b^{n-k} \), \(k = \left\lfloor \frac{n-1}{2} \right\rfloor \) and let \(m' = -m^{-1} \mod b^{n-1} \). Then it holds:
\[
m' = \Delta b^k + 1.
\]

Proof of Lemma 4: Analogous to the proof of Lemma 3, we write
\[
mm' = (\Delta b^k - 1)(\Delta b^k + 1)
= \Delta^2 b^{2k} - 1
\equiv -1 \mod b^{n-1}.
\]
This concludes the proof.

According to Lemmata 3 and 4, we can easily find two sets of moduli for which the precomputational step in Montgomery reduction can be excluded. The proposed sets are of type
\[
S_3 : m = \Delta_3 b^k + 1 \quad \text{where} \quad b^{n-k-1} \leq \Delta_3 < b^{n-k},
\]
\[
S_4 : m = \Delta_4 b^k - 1 \quad \text{where} \quad b^{n-k-1} \leq \Delta_4 \leq b^{n-k},
\]
where \(k = \left\lfloor \frac{n-1}{2} \right\rfloor \). To further illustrate the properties of the two proposed sets, we give Fig. 2 where the moduli from each set are represented in radix 2 representation. Note that here \(k = \left\lfloor \frac{n-1}{2} \right\rfloor \) and \(m_i \in \{0, 1\} \).

The precomputed inverse needed for the Montgomery algorithm can be easily formed together with the modulus as:
\[
m' = \begin{cases}
\Delta_3 b^k - 1 & \text{if } m \in S_3; \\
\Delta_4 b^k + 1 & \text{if } m \in S_4.
\end{cases}
\]
In contrast to the modified Barrett algorithm, the Montgomery algorithm is easier to adopt to the special moduli, because it always computes \(aR^{-1} \mod m \), no matter what \(R \) is. The modified algorithm is shown in Alg.4.

Algorithm 4 Modular reduction without precomputation based on Montgomery algorithm.

Input: positive integers \(a = (a_{2n-1} \ldots a_0)_b \), \(m \in S_3 \cup S_4 \), \(m' = R^{-1} \mod b^n \).

Output: \(t = aR^{-1} \mod m \).

\(s \leftarrow (a \mod R) m' \mod R \)

\(t \leftarrow (a + ms)/R \).

Correction Step:

if \(t \geq m \) then

\(t \leftarrow t - m \)

end if

Return: \(t \).

IV. ON THE SECURITY OF THE PROPOSED SETS

As we can see from Figs. 1 and 2, one half of the modulus (either the most or the least significant half) is always filled with all 0’s or all 1’s. In the current state of the art, the security of ECC/HECC over prime fields \(\mathbb{GF}(p) \) does not depend at all on the precise structure of the prime \(p \). Hence, choosing a prime from the proposed sets has no influence on the security of ECC/HECC.

The security analysis for the RSA corresponds to attacks on RSA with partially known factorization. This problem has been analyzed extensively in the literature and the best attacks all rely on variants of Coppersmith’s algorithm [8]. The best results in this area are as follows: let \(N \) be an \(n \)-bit number, which is a product of two \(n/2 \)-bit primes \((p \text{ and } q)\). If half of the bits of either \(p \) or \(q \) (or both) are known, then \(N \) can be factored in polynomial time. Hence, it is important to stress here that, due to the Coppersmith’s method of factoring, this type of integer should not be used as a prime factor for the RSA modulus.

V. CONCLUSION

The four distinct sets of primes, for which the precomputation step in modular reduction algorithms can be excluded, are introduced in this work. Choosing the modulus from the proposed sets gives more flexibility when implementing a high-speed modular multiplication algorithms. The proposed modular reduction methods are very suitable for fast hardware implementations of some public-key cryptosystems and in particular of Elliptic Curve Cryptography.

ACKNOWLEDGMENT

This work is funded partially by IBBT, Katholieke Universiteit Leuven (OT/06/40) and FWO projects (G.0300.07 and G.0450.04). This work was supported in part by the IAP Programme P6/26 BCRYPT of the Belgian State (Belgian Science Policy), by the EU IST FP6 projects (ECRYPT) and by the IBBT-QoE project of the IBBT.

REFERENCES

