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Introduction  

1.Aspergillus fumigatus and aspergillosis 

In humans, Aspergillus fumigatus is the most common and life-threatening aerial fungal 

pathogen, especially among immunocompromised hosts, followed by many other species. 

A.fumigatus was described by Fresenius in 1863 from the bronchi and alveoli of a great 

bustard (Otis tarda). It has been recognized for most of this century as a pathogen, capable of 

invading human lungs, eyes, pharynx, skin and open wounds (1-5). The potential of aspergillus 

to cause severe disease in humans was recognized by Young and colleagues in 1966 when a 

series of 98 patients was described with invasive aspergillosis (6). Aspergillosis is an umbrella 

term coined by Hinson, Moon, and Plummer in 1952, covering a range from localized 

conditions to fatal disseminated infections in humans and various animals, caused by fungi 

belonging to the genus Aspergillus (7-10).  

Inhalation of A.fumigatus spores (conidia) into the lungs can cause multiple diseases in 

humans, depending on the immunological status of the host, including invasive pulmonary 

aspergillosis, aspergilloma, and different forms of hypersensitivity diseases such as allergic 

asthma, hypersensitivity pneumonitis, and allergic bronchopulmonary aspergillosis (7, 11). In 

addition, A.fumigatus can also cause acute community-acquired pneumonia in 

immunocompetent hosts. This is a rare and much less common infection that carries a 

uniformly fatal prognosis (12). Underlying lung disease and systemic illness are factors 

predisposing to this entity. Generally, high concentrations of spores are necessary for 

infection. Healthy hosts are able to ward off infections, so that severe illness usually results 

only from massive or long-term exposure (9, 13).  

Notably, the population at risk for invasive aspergillosis (IA) is expanding due to recent 

advances in human medicine and myelo-ablative therapies, such as: patients on steroids and 

chemotherapy treatment resulting in severe neutropenia, stem cell and solid organ 

transplantation for end organ disease, advances in the development of immunosuppressive 

and myeloablative therapies for autoimmune and neoplastic disease, later stages of AIDS, and 

a hereditary diseases such as chronic granulomatous disease (14, 15).  

Approximately 300,000 people are estimated to develop invasive aspergillosis annually, 

1.5%–10% of the millions of highly immunocompromised patients at risk worldwide (14). The 

global burden of chronic pulmonary aspergillosis (CPA) has recently been estimated at 3 

million patients (14, 16). 
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In animals, aspergillosis is primarily a respiratory infection that may become generalized; 

however, tissue predilection varies among species. The most common forms are pulmonary 

infections in poultry and other birds, (9) mycotic abortion and mammary gland infections in 

cattle (17-27), guttural pouch (auditory tube diverticulum) mycosis in horses (28-36), 

infections of the nasal and paranasal tissues, intervertebral sites, and kidneys of dogs (37-47), 

pulmonary and intestinal infections in domestic cats (10, 48-54), and pneumonia associated 

with disseminated infections in marine mammals (55-57).  

 

2.Phylogeny and subgeneric taxonomy of 

Aspergillus spp. 

Aspergillus spp. are ubiquitous fungi, usually found almost everywhere on earth, notably 

more common in the tropics. The great majority of species are saprophytes, commonly or 

occasionally found in soil, decaying vegetation, seeds and grains. Only a few well-known 

species are considered as important pathogens of humans or animals (13, 58). The taxonomy 

of genus Aspergillus has been recently reclassified (59, 60), as shown in figure1. 

Polyphasic taxonomy has had a major impact on the species concept of the genus 

Aspergillus, which has classified the genus Aspergillus into 8 distinct subgenera, including  

Aspergillus, Fumigati, Circumdati, Terrei, Nidulantes, Ornati, Warcupi, and Candidi (59). These 

subgenera are further divided into 22 sections, each of which includes  a number of related 

species (59). Although there are more than 200 known species in the genus, only a small 

percentage is associated with infection. Among them, A. fumigatus (subgenus Fumigati, 

section Fumigati), A. flavus (subgenus Circumdati, section Flavi), and A. niger (subgenus 

Circumdati, section Nigri) are the most frequently encountered species (11, 59, 61). Others, 

such as A. terreus (subgenus Terrei, section Terrei), A. versicolor (subgenus Nidulantes, section 

versicolor), A. nidulans (subgenus Nidulantes, section Nidulantes) are occasionally isolated 

from clinical specimens (62). 
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Figure 1. The phylogenetic relationships of 10 gene regions of Aspergillus species. (Adapted 

from Aspergillus in genomic era. Varga and Samson. Wageningen Academic  Publishers, The 

Netherlands, 2008.  
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3.Antifungal drugs  

Antifungals can be grouped into three classes based on their site of action in pathogenic fungi 

(Fig.2). Depending on the strategy chosen, different drugs can be used (63, 64).  

The triazole agents exert their antifungal activity by blocking the demethylation of 

lanosterol, thereby inhibiting ergosterol synthesis. They have an expanded-spectrum with 

fungicidal activity against a wide spectrum of moulds as well as enhanced activity against 

Candida spp. and other yeasts.  

The polyenes exert their antifungal activity via binding to ergosterol in the fungal cell 

membrane. This disrupts cell permeability and results in rapid cell death. The echinocandins 

represent the newest class of antifungals.  

The mechanism of activity of the echinocandins is inhibition of the production of (1,3)-β-d-

glucan, an essential component in the fungal cell wall. The spectrum of activity is therefore 

limited to pathogens that rely on these glucan polymers and is less broad than the spectrums 

of polyenes or azole agents. The echinocandins exhibit fungicidal activity against many 

Candida spp., making this drug class a desirable alternative to the azole agents, which exhibit 

only static activity against yeasts. Because mammalian cells have no cell wall, the 

echinocandins have very few toxic adverse effects in humans [7]. 
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Figure 2. Targets of systemic antifungal agents. Adapted from Mukherjee et al. Clinical 

Microbiology Reviews. 2005; 18(1):163-94. Echinocandins destroy cell wall, allowing other 

antifungals (polyenes, azoles, and 5-FC) to enter. Azoles and polyenes can inhibit or bind to 

ergosterol in cell membrane in cell membrane, cause cell lysis and allowing 5FC to enter the 

cell and inhibit nucleic acid synthesis. 
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4.Treatment of Aspergillus diseases in humans 
Triazole antifungals play an important role in the management of Aspergillus diseases (64, 

65). Three triazole compounds (itraconazole, voriconazole, and posaconazole) have been 

clinically licensed and are currently in wide use for the prevention and treatment of invasive 

aspergillosis (66, 67). A fourth triazole, isavuconazole, is expected to be licensed in the near 

future. Itraconazole, voriconazole, posaconazole and isavuconazole have been shown to be 

fungicidal against Aspergillus spp. (68-70). 

Itraconazole is commonly used for the treatment of chronic and allergic conditions (66, 

67). Voriconazole is recommended first choice treatment of invasive aspergillosis with a label 

indication in adults and children aged 2 and above (67). In addition, voriconazole is the drug 

of choice for treatment of central nervous system aspergillosis (71). Posaconazole is licensed 

for patients aged 18 years or older (66); for prophylaxis in patients receiving remission-

induction chemotherapy for acute myelogenous leukemia (AML) or myelodysplastic 

syndromes (MDS) expected to result in prolonged neutropenia and who are at high risk of 

developing invasive fungal infections; for prophylaxis of invasive fungal infections in 

hematopoietic stem cell transplant (HSCT) recipients who are undergoing high-dose 

immunosuppressive therapy for graft versus host disease and who are at high risk of 

developing invasive fungal infections; and for salvage therapy of invasive aspergillosis in 

patients with disease that is refractory to amphotericin B or itraconazole or in patients who 

are intolerant of these medicinal products (64, 65, 72, 73).   

Besides to azoles, only liposomal amphotericin B and the echinocandins (caspofungin, 

micafungin, anidulafungin) have been shown better evidence supporting useful clinical 

activity against aspergillus diseases and therefore considered as alternative primary therapy 

of invasive aspergillosis (64). 

 

5.Problem of azole resistance in Aspergillus spp 

(Intrinsic vs. Acquired) 

Although Aspergillus spp. are generally susceptible to the above mentioned compounds, 

intrinsic and acquired resistance has been documented. In general there are two types of 

resistance; microbiological versus clinical. Microbiological resistance relates to an in vitro 

susceptibility test, which indicates that the activity of a certain drug against the pathogen is 

low or absent and corresponds with a high probability of treatment failure. In vitro resistance 

can be primary (intrinsic) or secondary (acquired).  
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Primary resistance occurs naturally, without prior exposure to the drug. Secondary 

resistance is generated following exposure to an antifungal and may be associated with an 

altered gene expression (74, 75). Clinical resistance, however, is when a patient fails to 

respond to antimicrobial therapy despite the administration of an adequate antifungal, which 

might be due to microbiological resistance of the pathogen but could also be attributed to 

other factors related to the host or the drug (74).  

Notably, recent changes in the taxonomy of Aspergillus spp. have had major implications 

on our understanding of drug susceptibility profiles (76). New sibling species of A. fumigatus 

exhibit in vitro susceptibility profiles that differ significantly from that of A.fumigatus. While 

acquired azole-resistance is an emerging problem in A.fumigatus, (77, 78) other Aspergillus 

spp may be intrinsically resistant to specific classes of antifungal agents (Table 1). Minimum 

inhibitory concentrations (MICs) of amphotericin B and azoles for some of the non-fumigatus 

Aspergillus spp. are elevated compared to A.fumigatus (76). The MICs of A. flavus clinical 

isolates to amphotericin B are consistently two-fold dilution steps higher than those of A. 

fumigatus (79). Using Clinical Laboratory Standards Institute methodology (CLSI) (80), A. 

nidulans was shown to have MIC values of 1 to 2 mg/L of amphotericin B, which is higher than 

commonly observed with A. fumigatus (81). In the section Usti, the azoles are not active 

against A. calidoustus with MICs of ≥8 mg/L, and the other classes of antifungal drugs also 

appear less active compared with their activity against A. fumigatus. For instance, the MICs of 

amphotericin B were shown to be 1 to 2 mg/L, which is relatively high (82). Resistance of A. 

terreus to amphotericin B is well recognized (83). Based on susceptibility to the azoles three 

different susceptibility patterns were distinguished in the black aspergilli; Aspergillus section 

Nigri. Some isolates show low azole MICs, others high MICs, and a third group showed an 

uncommon paradoxical effect. However, these groups did not coincide with species 

boundaries, making it difficult to interpret as an intrinsic or acquired property of these molds 

in invertebrates (84). 

In A.fumigatus two routes of resistance selection have been reported; Azole resistance 

has been reported in patients with chronic cavitating Aspergillus diseases, such as 

aspergilloma, that receive long-term azole therapy (85). In these patients the initial infection 

is caused by an azole-susceptible isolate, but through therapy azole-resistant isolates may be 

cultured. A second route of resistance selection is believed to occur through exposure of A. 

fumigatus to azole 14α-demethylase inhibitors (DMIs) in the environment (75, 86-88), 

although still controversial (89). Azole fungicides inhibit fungal Cyp51A activity and are 

abundantly used for crop protection and material preservation. A. fumigatus, which is a 

saprophytic fungus, is believed to become resistant in the environment through exposure to 

azole fungicides that exhibit activity against this species (75).  
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Five DMIs, from the triazoles fungicides were identified with a molecule structure that is 

highly similar to that of the medical triazoles (75, 88) A. fumigatus may develop resistance 

mechanisms against these azole fungicides and, due to the molecule similarity; the medical 

triazoles are inactive as well. 

A wide range of mutations in A. fumigatus have been described conferring azole 

resistance commonly involving modifications in the cyp51A-gene, the target of antifungal 

azoles. Specific mutations correspond with various phenotypes characterized by complete 

loss of activity of a specific azole, and with decreased activity of others (78). Cyp51A 

mutations in A. fumigatus commonly affect the activity of all mold-active antifungal azoles.  

Notably, case series have been published including both patients with azole resistant 

chronic Aspergillus diseases and azole-resistant invasive aspergillosis that show the recovery 

of an azole-resistant isolate is associated with a high probability of azole treatment failure 

(85, 86, 90-96). In addition, a number of single cases have been described, in which patients 

with infection due to an azole-resistant isolate failed to azole therapy (85, 86, 90-97).  

  

6.Azole resistance phenotypes in A. fumigatus 

Antifungal drug resistance is normally quantified using the MIC. Both the CLSI and European 

Committee on Antimicrobial susceptibility Testing-subcommittee on Antifungal Susceptibility 

Testing (EUCAST-AFST) have developed and standardized phenotypic methods that enable the 

reliable and reproducible determination of the MIC for conidia-forming molds or Aspergillus 

spp  (80, 98).  

The MIC is a central component of the PK/PD of antifungals indicating an appropriate 

antifungal treatment, which represents the lowest drug concentration resulting a notably 

reduction or complete lack of fungal growth (99). Particularly, in long-term treatment with 

antifungal agents, it is very important to prevent the evolution and development of resistance 

by the same strain or replacement by a new strain (96).  

There are currently three sets of breakpoints and epidemiological cut-off values available. 

The first was published in 2009 by Verweij et al. based on clinical experience and the available 

knowledge at that time (77). Since then breakpoints have been published by the CLSI (100) 

and the EUCAST-AFT (101, 102), in which <2 mg/L is considered susceptible for itraconazole 

and voriconazole and >2 mg/L resistant; and for posaconazole; ≤ 0.25 and >0.5 mg/L,  

respectively. 
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Table 1. Examples of intrinsic resistance against antifungals in fumigatus and non-fumigatus 

Aspergillus species.  

AmB: Amphotericin B, ITC: Itraconazole, VRC: Voriconazole, POS: Posaconazole, Ecan: 

Echinocandins. Green: Sensitive, Yellow: Intermediate susceptibility, Red: No sensitivity. 

 

 

 

7.Azole resistance genotypes in Aspergillus spp 

Several mechanisms of resistance have been described in Aspergillus spp. Azole resistance has 

most commonly been associated with alterations in cyp51A, which represents the target 

enzyme of the azoles (78). The corresponding phenotype depends on the particular base 

substitution and often the activity of more than one triazole is affected.  
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Azole-resistant A.fumigatus isolates have been reported as multidrug resistant (93), multi-

azole resistant (103), azole cross-resistant (104) and multiple-triazole resistant (78,  86) 

isolates. The most frequently characterized hot spots are at codons 54, 98, 138, 220 and 448, 

although several other single nucleotide polymorphisms (SNPs) have been reported (78, 86, 

103, 105-107).  In addition to SNPs, a combination of genetic changes has been described in 

azole-resistant A. fumigatus isolates which increases cyp51A expression (78, 86, 105, 106).  

Up until now, three mechanisms have been described: a 34 base pair tandem repeat 

combined with a L98H substitution in the Cyp51A-gene (TR34/L98H) (105), a 53 bp tandem 

repeat without substitutions in the Cyp51A-gene (TR53)(108), and recently a 46 bp tandem 

repeat with two substitutions in the cyp51A-gene (TR46/Y121F/T289A)(81).  

In addition, Camps et al. recently reported a novel resistance mechanism, consisting of a 

mutation in the CCAAT binding transcription factor complex subunit HapE (109). The 

substitution was found in P88L within the exonic region of HapE gene causing the resistance 

phenotype. Unlike cyp51A-mediated resistance mechanisms, HapE was associated with a 

fitness cost (110) as is the case for A. fumigatus, azole resistance in other species of 

Aspergillus such as A.flavus (111), and A.terreus (112), may be also caused by alterations and 

over-expression of the azole target 14a-demethylase (113).  

Cyp51B overexpression is also considered a possible azole resistance mechanism in 

A. fumigatus (113). This indicates that acquired azole resistance is a clinical challenge that is 

not restricted to A. fumigatus, and evidence of non-target resistance is increasing. 

 

8.Clinical implications of azole resistance and impact 

of underlying diseases 
There are currently no randomized controlled trials that show azole resistance is associated 

with an increased probability of treatment failure compared to infection due to wild type 

isolates. However, case series have been published including both patients with azole-

resistant chronic Aspergillus diseases and azole resistant invasive aspergillosis that show the 

recovery of an azole resistant isolate is associated with a high probability of azole treatment 

failure (85, 86, 90-96).  

In  the study of Howard et al. a wide range of mutations was found in azole-resistant 

Aspergillus spp. isolates that were cultured from clinical samples in patients underlying non-

invasive A.fumigatus infections treated with azoles (85).  
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Two case series of patients with azole-resistant invasive aspergillosis were reported from 

the Netherlands (81, 114). In one study, eight patients with proven or probable, culture-

positive invasive aspergillosis due to A. fumigatus harboring the TR34/L98H resistance 

mechanism were described. Overall, seven of eight (88%) patients had died at 12 weeks.  

In a second study the emergence of a voriconazole highly resistance mechanism was 

described, associated with the TR46/Y121F/T289A resistance mechanism (81). At 12 weeks 

after recovery of the TR46/Y121F/T289A isolate, 4 of 8 patients with invasive aspergillosis had 

died and 2 patients had a persisting infection.  

In addition, a number of single cases have been described harboring TR34/L98H(85, 86, 90-

96) or TR46/Y121F/T289A resistance mechanisms (97). In all cases, patients with infection due 

to an azole-resistant isolate failed to azole therapy. Primary invasive infections due to 

resistant A.fumigatus isolates have been reported involving the lung (78, 85), bone (90) and 

brain (85, 91) as well from respiratory isolates in allergic bronchopulmonary aspergillosis 

(103). However, there is no apparent risk of spread of azole-resistant isolates to other 

patients. 

Notably, it should be considered that there are numerous factors that impact on 

treatment outcome. Patients with refractory underlying malignancy are prone to fail to azole 

therapy, even if the infection is caused by an azole-susceptible isolate. Azole exposure might 

have been insufficient in patients failing therapy and as most patients were culture-positive, 

treatment might have been initiated relatively late in the course of the infection. 

Furthermore, azole-resistant infection might occur predominantly in patients in poor clinical 

condition, compared to wild type isolates. In the absence of robust clinical evidence, 

experimental models of Aspergillus infection can help us to understand the implications of 

MIC elevation on treatment efficacy. 

The clinical observations are also supported by animal models of IA, where the MIC was 

shown to have major implications for the efficacy of voriconazole and posaconazole (115, 

116). Recently the efficacy of voriconazole and posaconazole was evaluated in a murine 

model of aspergillosis against three A. fumigatus isolates with different cyp51A substitutions, 

conferring different in vitro susceptibilities to the drug (115, 117). There was a clear 

association between the MIC and efficacy in the animal model, with increasing MIC 

corresponding with decreasing efficacy (115, 117).  
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9.Epidemiology of azole resistance in A. fumigatus 

Acquired azole resistance among Aspergillus spp. to triazoles is considered to be an emerging 

phenomenon (104, 118, 119), reported in different continents (85, 86, 95, 96, 114, 120-123). 

The number of studies that report azole-resistance in A. fumigatus has increased in recent 

years, for which both intrinsic and acquired resistance has been documented depending on 

the geography and the patient group. Therefore, knowledge of the local epidemiology of 

azole-resistant Aspergillus diseases is important with respect to the development of 

management strategies.   

Notably, the prevalence and local epidemiology of azole-resistance varies depending on 

the geography and the patient group. Reports from the Netherlands and Manchester display 

an alarming increase of azole-resistance in A. fumigatus since 1998 (Figure 3) (77). In  

Manchester, the first published case of itraconazole resistance in A. fumigatus appeared in 

1997 (the isolate originated from the late 1980) (124), then in 2000, epidemiological surveys 

showed a 2% prevalence of itraconazole-resistance (125), and in 2007 the percentage of 

patients with an azole-resistant A. fumigatus increased up to 15% (78, 104).  

In the Netherlands azole resistance increased dramatically from 2.5% in 2000, to 4.9% in 

2002, to 6.6% in 2004 and 10% in 2009 (114). In most azole-resistant isolates a specific 

Cyp51A gene–mediated resistance mechanism was reported (TR34/ L98H) both in clinical and 

environmental isolates (86). TR34/L98H first emerged in clinical A. fumigatus isolates from 

Netherlands in 1998 and this resistance mechanism is now endemic in Dutch hospitals (126). 

Aspergillus-related diseases due to TR34/L98H included non-invasive infections and invasive 

aspergillosis, and infections were found to occur both in azole-treated as well as in azole-

naive patients (86, 114).  

Importantly, the geographic area where TR34/L98H is reported coincides with the region 

with the most intensive use of fungicides, therefore, an environmental source is very likely 

(86, 87). Azole resistance, due to the TR34/L98H resistance mechanism, was also reported in 

clinical A. fumigatus isolates from other European countries, and more recently also in China 

and India (85, 86, 95, 96, 120-122, 127-131). From a global perspective, fungicide use is 

second highest in the Asia–Pacific regions (24%), preceded only by western Europe (37%) 

(132). By contrast, Howard et al. suggest that the widespread increase of azole-resistance in 

Manchester is related to long-term azole treatment in patients (85). 
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Figure 3: The percentage of patients with azole-resistant A. fumigatus strains in Manchester 

(United Kingdom), and Nijmegen (the Netherlands) between 1998 to 2007. Adapted from 

Verweij et al. Drug Resist Updat. 2009;12(6):141-7. 
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Outline of this thesis 

Azole resistance is an emerging problem in hospitals and it remains unclear how patients with 

azole-resistant aspergillus diseases are best managed. This thesis uses in vitro and in vivo 

studies to explore alternative approaches aimed at optimizing the treatment of azole-

resistant aspergillus diseases in humans. 

Chapter 1 encompasses the introduction.  

Chapter 2 discusses the development and standardization of experimental models evaluating 

pharmacodynamic and pharmacokinetics of antifungals. 

Chapter 3 describes the pharmacokinetic(PK)-pharmacodynamic(PD) properties of 

anidulafungin monotherapy in a non-neutropenic murine model of invasive aspergillosis.  

Chapter 4.1 investigates the in vitro antifungal activity of voriconazole either alone or in 

combination with anidulafungin against a collection of clinical A. fumigatus isolates, including 

voriconazole-resistant isolates with various substitutions in the cyp51A gene and 

voriconazole-susceptible isolates, to determine the interaction between these two agents. 

Chapter 4.2 determines the in vivo efficacy of voriconazole and anidulafungin in a non-

neutropenic murine model of invasive aspergillosis using a voriconazole-susceptible and a 

voriconazole-resistant A. fumigatus clinical isolate. 

Chapter 5 focuses on the pharmacodynamics and dose-response relationships of liposomal-

amphotericin B against wild-type and three clinical azole-resistant A. fumigatus isolates 

harboring different resistance mechanisms in an immunocompetent murine model of 

disseminated aspergillosis. 

Chapter 6.1 provides an overview of our current understanding of azole resistance and the 

potential role of voriconazole and posaconazole in treatment of patients with azole-resistant 

aspergillus diseases.  

Chapter 6.2 focuses particularly on target concentrations of voriconazole and posaconazole, 

and the utility of therapeutic drug monitoring as an approach to ensure adequate drug 

exposure.  

Chapter 7 encompasses the general discussion and future prospectives. 
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Abstract 

Experimental models of invasive aspergillosis (IA) have been used to explore pharmacokinetic 

and pharmacodynamic (PK/PD) properties of antifungal agents. Survival is still considered the 

golden standard effect measure but has the disadvantage that a large number of animals are 

needed to determine the dose–response relationships and PK/PD of antifungals. The 

feasibility of using fungal load by real-time quantitative PCR (qPCR) as an effect measure has 

been explored recently. The majority of studies reported convincingly demonstrate a larger 

dynamic range for qPCR compared to conventional assays. However interpretation and 

translating the results to guidance in clinical decision making need further study. It is 

expected that the use of qPCR will become the primary outcome measure for assessment of 

PK/PD relationships of antifungals in experimental models of IA. 
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Introduction 

Whereas invasive aspergillosis (IA) remains an infection with  significant  mortality  and  

morbidity ranging  from 30 to 80%, the use of clinically licensed  azoles such as voriconazole  

and  posaconazole  has  improved  the  outcome of patients  [1]. However, optimizing 

antifungal therapy  in patients  still needs to be addressed.  Clinical trials in humans  provide 

valuable evidence  for the  use of antifungal  agents,  but  these  studies  are limited  due to  

ethics,  time  and  cost.   

Experimental  models  of IA have become a cornerstone  to explore pharmacokinetic and 

pharmacodynamic  (PK/PD) relationships of anti- fungal agents as well as the comparative 

utilities of diagnostic markers. In addition, animal models allow predicting the impact of 

resistance on outcome for IA [2, 3]. This is of particular importance, since resistance, in 

particular azole resistance in Aspergillus fumigatus is increasing [4]. 

In contrast to investigations evaluating the exposure–response relationships of 

antibacterials where colony forming units (CFU) have become the mainstay of effect 

measurements [5], the most commonly used efficacy measures   for antifungals are 

prolongation   of survival and various parameters of reduction in tissue burden [6]. 

However, measurements of tissue burden in IA suffer from a significant number of 

problems and non-culture based methods in particular qPCR, are rapidly becoming the new 

gold standard tool for the diagnosis, detection and evaluation of tissue burden of 

A. fumigatus. We here discuss applications  and limitations  of qPCR  for assess- ment of 

therapeutic efficacy of antifungal agents in experimental models of IA. 

 

Benefits and limitations of conventional parameters to monitor 

therapeutic efficacy in IA 

At present survival is considered the most reliable effect measure to assess therapeutic 

efficacy of antifungals in IA animal models infected by both azole susceptible and resistant A. 

fumigatus. For example, in the recent study of Mavridou et al. in an immunocompetent non-

neutropenic murine model of disseminated IA, increased MICs correspond with reduced in 

vivo efficacy [7]. Overall, there was a good relationship  between  the area under the 

concentration–time curve (AUC)/MIC ratio and survival (Figure  1).  

 

2 

 

2 
 



CHAPTER 2 |  

 

46 

AUC/MIC was a better predictor than dose/MIC because of the non-linear pharmacokinetics 

of voriconazole resulting in a disproportional increase in AUC by dose. Such PK/PD 

relationships can subsequently be used to help deducing dosing regimens and clinical break- 

points in humans. 

Although survival studies are still considered the gold standard method to assess the  

efficacy of antifungals  in IA, it has the disadvantage that a large number of animals is needed 

[8]. Tissue  burden  studies  can be  completed  more  rapidly than survival studies  and thus 

provide some impetus  to the development and indications of drugs and also enable 

significant reduction  in the  number  of animals required for experimental design [9,10]. 

However, measurements of tissue burden in IA suffer from a significant number of problems.  

Choosing the best quantification method has been the major problematic issue. The first 

parameter used was CFU quantitation in selected organs, mostly in the kidneys, liver, lungs, 

or brain. However,  due  to the filamentous  nature  of A. fumigatus, a large fungal  mass 

composed of hundreds  of cells may be recorded only as a single unit by the traditional CFU 

methodology and CFU counts do not accurately reflect the number of viable cells for 

filamentous fungi such as A. fumigatus [11]. 1-3, β-D- Glucan has shown promise as a 

diagnostic adjunct; however, this marker has a limited detection  range and more research is 

required  to define the utility of this assay, in particular in non-neutropenic models of IA [12]. 

The galactomannan (GM) assay has moderate accuracy for diagnosis of invasive aspergillosis 

[13].Recently several studies have shown the increased sensitivity and precision of A. 

fumigatus qPCR over CFU and biomarkers measurement that will be discussed in the next 

section. 
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Figure 1. (a) Voriconazole dose–survival and (b) AUC/MIC–survival relationships for four 

A.fumigatus isolates with different MICs. Increased voriconazole exposure was required to 

obtain maximum efficacy in mice infected by isolates with attenuated susceptibility. From 

reference [7]. 

 

 

Quantitative PCR as an outcome parameter for evaluating 

antifungal therapy 

A number of studies have indicated that a real-time quantitative PCR assay could be  used  to 

measure  the fungal burden in organs and thus monitor the progression of infection and 

efficacy of antifungal therapy (Table  1). To  that  purpose,  it is essential  that  the  load of 

fungal DNA in blood or tissue specimens  corresponds to tissue burden and/or survival 

[14,15,16] in various experimental situations, including acute and chronic infection models. 

The rationale is that PCR-based quantification of A. fumigatus tissue burden can detect every 

cell in a filamentous fungal mass, and therefore significantly better  than CFU   counts.  Apart  

from  homogenization   issues  (see below) the  dynamic  range of CFU  determination is too 

narrow for filamentous  fungi [11] and it may underestimate  the  absolute  fungal  burden  in 

an established  infection compared to qPCR and GM [17].  
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The majority of studies that have been performed to date indicate an increased  sensitivity  

and  precision  of  real-time  qPCR over CFU measurement and biomarker assays.  

For instance, in  a  mouse  model   of  invasive  aspergillosis treated  with amphotericin-B  

and caspofungin,  Bowman et al. observed  a 4 log10  decrease  in conidial equivalent (CE) 

counts, while in the same animals a 1 log10 decrease in the  number  of CFU  counts,  

substantiating the  problems stated above. Recovery of CFU did not reflect progression or 

increasing numbers  of A. fumigatus in the infected  tissues  [18].  Similar results  have  been  

shown using qPCR  for the assessment  of kidney  fungal burden in a guinea pig model IA [19].  

The  performance  of 2 quantitative polymerase chain reaction (PCR) assays was compared 

with quantitative cultures and GM antigen detection  in a rabbit model of invasive 

aspergillosis using blood,  serum,   lung,  and   brain  specimens   [20].  The authors  concluded  

that  specific real-time  PCR  assay is a reliable  technique to detect  A. fumigatus DNA  in vivo 

comparable to cultures and GM determination. These results are also in agreement  with the 

observation of Francesconi  et al, Osullivan  et al. and Petriatis  et al. [10,21,22].  

A similar study  was conducted  by Sheppard et al. [23]. They  demonstrated that the 

method  of tissue disruption  used  herein  resulted   in  consistently  higher CFU counts, 

highlighting another problem in tissue burden studies in IA. They also showed progressive 

increase in fungal load by qPCR in comparison with CFU during experimental infection and 

recommended the use of a qPCR assay, showing it to be less variable than the GM assay, a 

similar conclusion as found by Singh et al. [24].  

In the study of Vallor et al., fungal burden and therapeutic efficacy of voriconazole were 

assessed using survival, quantitative culture, GM quantification, and quantitative PCR in a 

guinea pig model of IPA using an aerosol challenge of A. fumigatus spores [25]. Quantitative 

PCR, when used for tissue burden measurement, was positive earlier, correlated with the 

fungal aerosol delivery, and the burden continued to increase throughout the course of the 

study as was expected on the basis of histopathological examination and the rise in levels 

determined by GM. The tissue fungal burden assessed by qPCR consistently increased 

throughout infection, even after the other two diagnostic markers (CFU counts and GM 

results) appeared to have reached a plateau by day 5. 

Similar to previous studies GM assessment of lung tissue burdens showed increased 

burdens after day 5, which correlated with the extent of infection similar to the results of 

previously described [20,21,25,26]. Administration of the drug produced statistically 

significant decreases in pulmonary fungal burden, as detected by CFU counting, qPCR, and 

GM. In daily assessment of the progression of fungal infection in serum, GM detection 

demonstrated a statistically significant reduction in the fungal load on days 6 and 7 

postchallenge in voriconazole treated animals, compared to time matched controls.  
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Similar findings were reported in an inhalational rat model of invasive pulmonary 

aspergillosis, using a real-time nucleic acid sequence-based amplification (NASBA) method 

[27]. Fungal load in bronchoalveolar lavage (BAL) fluid, lung tissues, and whole blood was 

compared by CFU, quantitative PCR (18S rDNA) and real-time NASBA (28S rRNA). As expected, 

both NASBA and qPCR showed a progressive increase in lung tissue bur-dens, while the CFU 

counts were stable over time. The fungal burdens in BAL fluid were more variable and not 

indicative of a progressive infection. The data of this study are in line with results of van 

Vianen and van de Sande [28,29] in a model of aerogenic A.fumigatus infection in neutropenic 

rats.  

Recently, Arendrup et al. evaluated therapeutic efficacy of posaconazole and 

anidulafungin singly or in combination in an immunosuppressed haematogenous IA mouse 

model of infection and compared survival, fungal CFU, and detection of DNA load in kidney by 

quantitative PCR was used for determination of fungal burden in kidney [30]. Anidulafungin 

alone or in combination with posaconazole significantly improved survival, significantly 

reduced kidney CFU by days 4 and 8 and copy number by days 4, 8 and 11 (Figure 2).  

Surprisingly, in contrast to the studies reported above, in experimental IA in the p47 phox 

- /- mouse model of chronic granulomatous disease (CGD), lung fungal burden assessed by 

qPCR did not differ among treatment groups despite significant differences in survival 

between treatment groups [31]. A treatment effect  was demon- strated in a high-inoculum  

hyper acute model of pulmon- ary aspergillosis in which survival and fungal burden were 

assessed 4 days after fungal challenge [32,33]. It was concluded  that, the lack of utility of 

qPCR  in modeling a treatment effect may reflect factors specific to the CGD mouse model as 

well as variables related to the inoculum and the route of fungal challenge. 
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Figure2. Relationships between qPCR and effect of various antifungal therapeutic regimens 

during therapy in a murine model of infection. From Ref. [30]. 
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Issues related to performance of quantitative PCR 

Whereas the performance of qPCR is promising there are a number of issues, primarily 

technical that still need careful attention  as well as standardization  and this may have a 

significant impact on the qPCR results and interpretation thereof. Although specific primers 

are available  and  there   is  sufficient  genomic  information for developing  A. fumigatus PCR  

assays (e.g. end  point vs. quantitative) [34], DNA extraction  techniques, specific primer 

design and tissue extraction can be further optimized,  as well as the choice and volume of 

animal specimens  (e.g. blood, kidney  or respiratory secretions), with fraction of blood; 

serum vs. whole blood or homogenization  of tissues [35,36,37]. 

The  majority of PCR  assays target  multicopy  genes,  in particular the ribosomal DNA 

(rDNA) genes (18S, 28S, and 5.8S) and internal transcribed  spacer (ITS) regions (ITS1 and ITS2) 

particularly for A. fumigatus, in order to maximize sensitivity and specificity (Table 1). This 

complex contains both conserved and variable sequences and there is a large volume of data 

deposited  in public databases  for a wide range of genera and species. The  mitochondrial 

genes encoding some of the tRNA genes and cytochrome b have also been  used as primer 

targets [38,39,40]. On the other hand, PCR-based  assays have been reported  for use in 

quantifying  A. fumigatus in experimental infection  using FKS1, which is a single-copy gene 

[25]. Whereas multicopy genes are good targets for improving sensitivity of the assay, it may 

not be ideal for standardization of a qPCR, and a balance needs to be found between a higher 

sensitivity, specificity and dynamic range. 

When using tissues, utilizing the multicopy rRNA operon for PCR amplification significantly 

improves the available target. The  targeting of the rRNA operon is common practice  and  

designing  primers  to be  pan-fungal  allows the assay to be modified for additional fungi by 

using specific probes. However, cross reactivity with non-target fungi or animal host DNA may 

arise and this is a significant problem  in evaluating  treatment outcome  [41]. 

In comparison, 28S region is multicopy (>100 copies in the fungal genome),  universal  

fungal primers  are available, and it contains  highly variable regions for species identification.  

Also DNA  sequence  analysis is available for species identification [42]. With a focus on this 

target, quantitative PCR assays can detect  DNA from a fraction of a single organism and 

minimize the probability of false negatives,  which  is an  important  aspect  to  define  the 

lower limit  of quantification  in exposure-response studies. 

To facilitate and maximize fungal DNA extraction and subsequent qPCR, primary tissue 

homogenates should be subjected to a secondary homogenization  step  to aid in the  release  

and extraction  of cell nuclei  from all of the conidial   and   hyphal   forms  present [18].   This   

will decrease inter-experimental error.  

2 

 

2 
 



CHAPTER 2 |  

 

54 

Conventional techniques used to homogenize tissues may not completely disperse the 

fungus, leading to inconsistent results. Discrepancies can be circumvented by employing 

standardized procedures for homogenizing organs, as with a mechanical homogenizer  for 

fixed times [37]. 

Numerous strategies have been adopted for DNA extraction   from  different   sources  

including   whole   blood, serum, BAL, biopsy tissues and cerebrospinal fluids after 

homogenization. DNA extraction process is critical to the success of most PCR amplification 

systems, since efficiency of the A. fumigatus PCR is limited by the extraction procedure [37]. 

Considerable  differences  in DNA extraction protocols and performance are one aspect of 

molecular assays that hinders the comparison of studies. A standardized  protocol for DNA 

extraction  of A. fumigatus from  whole  blood  specimens  has  been  recently published  by 

the EAPCRI  (The  European  A. fumigatus PCR  initiative),  to  improve  the  analytical  

sensitivity. They  recommend  the  use of EDTA  blood specimens, a red and white cell lysis 

step, and bead-beating to lyse the  fungal  element and  elution  volumes  of less  than 100 µl 

[36,37]. 

 

Timepoints of measurement: dynamics of the assays 

In the study of Bowman et al, both GM and DNA are present  as viable as well as nonviable 

fungal masses that have not yet been cleared by the host. This strong correlation exists 

because both methods  allow the detection of an increasing fungal burden  during the course 

of infection [21].  

Similarly, other investigators demonstrated that fungal burdens assessed by qPCR and GM 

increased significantly during the progression of infection so that those  assessed  by  semi  

quantitative  culture,  after  an initial drop, remained relatively stable. The tissue fungal 

burden assessed by qPCR consistently increased throughout infection, even after the other 

two diagnostic markers (CFU counts and GM results) appeared to reach a plateau by day 5 

[23,25,26]. 

In addition, qPCR and GM quantification appeared to correlate most closely with the rise 

in the fungal burden and the extent of infection. The  relatively high GM concentration  and 

CE counts at day 21 in the treatment groups indicate that a substantial fungal burden  is still 

present in the infected lung tissue in animals that are clinically cured. Whether this fungal 

burden represents viable A. fumigatus organisms is not known [28]. 

From the above, it is clear that the dynamics of the various markers is different  and 

conclusions with respect  to efficacy of drugs therefore  also depend  on the  time points used  
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to  determine the  effects  of the  drugs.  This  will directly reflect on the interpretation of the 

qPCR results in the different  models of IA, such as inhalation  models and systemic models of 

infection. 

 

Conclusive remarks 

Real-time  qPCR  assay is a reliable  and promising technique to detect A. fumigatus DNA in 

vivo when performed after an infection is firmly established and the organisms have 

germinated. The best correlations were observed between  survival and non-culture qPCR  

methods,  at all time-points  of infection. 

This technique is also promising to differentiate susceptible and azole-resistant  A. fumigatus 

isolates with known polymorphisms in their CYP 51 gene to distinguish the differential  effect 

of treatment for parent strains and resistant  daughter  strains. 

Conserved multi copy region 28SrDNA of Aspergillus spp. seems  to be the  best  choice for 

PCR  amplification  that contains highly variable regions for species identification. 

Although technical consensus on DNA extraction is currently achieved by EAPCRI, a major 

problematic issue is that the use of quantitative PCR in animal models or human IA is still 

lacking in standardization, and results of investigators are difficult to compare with each 

other.  

Further studies are still required  to integrate  this technique as primary outcome in efficacy 

and PK/PD studies of antifungals  in experimental models of IA. 
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Abstract 

Azole resistance is an emerging increasing problem in Aspergillus fumigatus that results in 

treatment failure. Alternative treatments may improve the therapeutic outcome in patients 

with azole-resistant invasive aspergillosis (IA). Little is known about the in vivo efficacy of the 

echinocandin anidulafungin (AFG) in IA. The in vivo efficacy of 2.5, 5, 10, and 20 mg/kg of 

body weight AFG was assessed against two clinical Aspergillus fumigatus isolates with 

identical AFG minimum effective concentrations (MECs; 0.03 mg/liter) in a murine model of 

IA: a wild-type voriconazole (VCZ)-susceptible (VCZs) A. fumigatus isolate (AZN8196) and a 

VCZ-resistant (VCZr) A. fumigatus isolate (V52-35) harboring the TR34/L98H resistance 

mechanism (substitution at codon L98 in combination with a 34-bp tandem repeat in the 

promoter region of the CYP51A gene). The pharmacokinetics of AFG were also assessed for 

each dose. Increasing doses increased survival for both isolates in a manner dependent on the 

AFG dose level (R2 = 0.99 and 0.95, respectively) up to a maximum of 72.7% and 45.45% for 

the VCZs and VCZr isolates, respectively. The area under the concentration-time curve (AUC) 

correlated significantly with the dose in a linear fashion over the entire dosing range (R2 = 

0.86). The Hill equation with a variable slope fitted the relationship between the 24-h 

AUC/MEC ratio and 14-day survival well (R2 = 0.87; P < 0.05). The 50% effective AUC/MEC for 

total AFG was 126.5 (95% confidence interval, 79.09 to202.03). AFG treatment improved the 

survival of mice in a dose-dependent manner; however, a maximal response was not achieved 

with either isolate even in those treated with the highest AFG dose. 
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Introduction 

Aspergillus fumigatus may cause life-threatening infections in both immunocompetent and 

immunocompromised patients (1–3). Voriconazole (VCZ) is considered the first choice of 

therapy for invasive aspergillosis (IA) (4, 5). However, the rate of azole resistance is increasing 

in A. fumigatus, which significantly complicates the management of IA, as azole resistance is 

associated with therapeutic failure and a mortality rate of up to 88% (6–13). Primary invasive 

infections due to resistant isolates involving the lung (13, 14), bone (15) and brain (14, 16) 

have been reported, as have respiratory isolates in patients with allergic bronchopulmonary 

aspergillosis (7).  

Seventy-nine percent of isolates with the TR34/L98H mutation are VCZ resistant (VCZr), 

and this mutation is the most prevalent resistance mechanism in clinical isolates (11). All 

patients with pulmonary aspergillosis due to TR34/L98H mutant isolates who received VCZ 

monotherapy died by the 12th week of therapy (11). Therefore, it is important to explore 

alternative treatment regimens, as alternative treatments may improve the therapeutic 

outcome in patients with azole-resistant IA. 

Anidulafungin (AFG) belongs to the echinocandins but has a unique site of action different 

from that of azoles and polyenes, as it targets cell wall synthesis, and has fungistatic activity 

against Aspergillus spp., in addition to an excellent safety profile (17 - 19). Little is known about 

the in vivo efficacy of the echinocandin AFG in IA. 

Here we investigated the pharmacokinetic(PK)-pharmacodynamic(PD) properties of AFG in 

a nonneutropenic murine model of IA. For this purpose, we used two clinical isolates with 

different profiles of susceptibility to voriconazole: a VCZ-susceptible (VCZs) A. fumigatus 

isolate and a VCZr A. fumigatus isolate harboring a TR34/L98H mutation in the cyp51A gene. 

 

Materials and Methods 

Fungal isolates 

Two clinical A. fumigatus isolates obtained from patients with proven IA were used in the 

experiments: a VCZs isolate without mutations in the cyp51A gene (AZN 8196) and a VCZr 

isolate (V52-35) harboring the TR34/L98H resistance mechanism. Strain identifications and 

the cyp51A gene substitutions were confirmed by sequence-based analysis as described 

previously (9). The isolates had been stored in 10% glycerol broth at -80°C and were revived 

by subculturing on Sabouraud dextrose agar (SDA) supplemented with 0.02% 
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chloramphenicol for 5 to 7 days at 35 to 37°C. The in vitro antifungal susceptibility test was 

per- formed on the basis of EUCAST guidelines, using a broth microdilution format (20). 

 

 

Table 1. Origin, in vitro susceptibilities, and underlying azole resistance mechanisms of VCZs 

and VCZr A. fumigatus isolates  

a The A. fumigatus isolates were from patients with proven invasive aspergillosis. 

b Susceptible. 

c Resistant. 

 

 

Infection model 

A total of 170 outbred female CD-1 mice (age, 4 to 5 weeks; weight, 20 to 25 g; Charles River, 

the Netherlands) were randomized into groups of 17 mice for AFG monotherapy. Animals 

were infected using the procedure described before (21, 22). Before performing the 

experiment, the isolates were cultured once on SDA for 7 days at 35 to 37°C and 

subcultured twice on 15-cm Takashio slants for 5 days at 35 to 37°C. The conidia were 

harvested in 20 ml of sterile phosphate-buffered saline (PBS) plus 0.1% Tween 80 (Boom B.V. 

Meppel, the Netherlands). The conidial suspension was filtered through sterile gauze 

folded fourtimes to remove any hyphae, and the number of conidia was counted in a 

hemocytometer. After the inoculum was adjusted to the required concentration, the conidial 

suspension was stored overnight at 4°C.  

 
A. fumigatus 

isolatea 

 
Cyp51A 

substitution 

 
MIC 

(mg/liter) 

 
MEC 

(mg/liter) 

  

 

Amphothericin B 

 

 

 

Posaconazole 

 

Voriconazole 

 

Anidulafungin 

 
 

AZN 8196 
 

None 
 

0.5 
 

0.031 
 

0.25b 
 

0.031 

 
V 52-35 

 
TR34/L98H 

 
0.5 

 
0.5 

 
4c 

 
0.031 
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The 90% lethal dose (LD90) was separately determined for each isolate. Mice were 

infected via injection into the lateral tail vein of an inoculum corresponding to the LD90 of 

each isolate. The LD90s of VCZs and VCZr (TR34/L98H mutant) A. fumigatus isolates used in 

the current study were 2.4x107 and 2.5x107 conidia, respectively. Postinfection viability 

counts of the injected inocula were determined to ensure that the correct inoculum had 

been injected.  

The animals were housed under standard conditions, with drink and feed supplied ad 

libitum. The animal studies were conducted in accordance with the recommendations of the 

European Community (Directive 86/609/EEC, 24 November 1986), and all animal 

procedures were approved  by  the  Animal  Welfare  Committee  of  Radboud  University 

(RU-DEC 2010-187). The infected mice were examined at least three times daily. These 

clinical inspections were carried out in order to ensure that there were no cases of 

desiccation, torticollis, staggering, high weight loss (a decrease of 15% within 48 h or 20% 

within 24 h), or body temperature drop to below 33°C. Mice demonstrating these signs of 

disease were humanely terminated. 

On day 15 postinfection, all remaining surviving mice were humanely euthanized under 

isoflurane anesthesia, and blood and internal organs were collected. The survival (in 

number of days postinfection) was recorded for each mouse in each group and was the 

outcome effect measure used to assess the therapeutic efficacy of AFG monotherapy (23). 

 

Antifungal compound and treatment regimens 

Treatment groups consisted of AFG (Pfizer, Capelle a/d IJssel, the Netherlands) mono 

therapy at 2.5, 5, 10, 20, and 40 mg/kg of body weight/day. Intraperitoneal therapy was begun 

at 24 h postinfection for 7 consecutive days and was given once daily with standard daily 

dosing, in addition to a single loading dose of AFG. The control group received single doses of 

saline. 

 

Pharmacokinetic analysis of AFG in mice 

A total of 144 outbred female CD-1 mice (age, 4 to 5 weeks; weight, 20 to 22 g; Charles River, 

the Netherlands) were used for separate PK experiments. On day 0, mice were infected with the 

wild-type A. fumigatus isolate through the lateral tail vein, and after 24 h, treatment was 

initiated, as described above, at dosages of 5, 10, 20, and 40 mg/kg AFG. At day 2 of treatment 

(day 3 after infection), blood samples were drawn through  
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an orbital vein or by heart puncture and placed into lithium-heparin-containing tubes at 12 

predefined time points: immediately before administration of drugs and subsequently at 0, 0.5, 

1, 2, 4, 8, 12, 16, 20, 24, 48, and 72 h post-dose. Blood samples were cooled and centrifuged 

for approximately 10 min at 1,000 x g within 30 min of collection. Plasma was aspirated, 

transferred into two 2-ml plastic tubes, and stored at -80 oC. 

 

Analytical assay of anidulafungin 

 Anidulafungin samples were measured by ultraperformance liquid chromatography (UPLC) 

with fluorescence detection. Samples were pretreated using a protein precipitation 

procedure (acetonitrile-methanol [50/50] and formic acid [0.1%]). A seven point calibration 

curve with three quality control samples was used. All measurements were done in duplicate. 

The dynamic range of the assay was 0.008 to 8.4 mg/liter, and the accuracy range (n = 15), 

which was dependent on the concentration, was 94.2% to 103.5%. The intraday precision 

varied between 0.9% and 1.8%, and the interday precision was between 0.5% and 1.6%. 

Validation in mouse plasma was over the dynamic range of 0.008 mg/liter to 5.9 mg/liter. The 

intraday precision varied between 101.0% and 104.8%. Three freeze-thaw cycles did not 

impact the stability of anidulafungin. Geometric mean concentrations of AFG in plasma from 

three mice were separately calculated per time point. Maximum concentrations in plasma 

(Cmax) were directly observed from the data. Pharmacokinetic parameters were derived 

using non-compartmental analysis with WinNonLin, version 5.2, software (Pharsight, Inc.). 

The area under the plasma concentration-time curve (AUC) from time zero to 24 h post 

infusion (AUC0-24) was determined by use of the log-linear trapezoidal rule. The elimination 

rate constant was determined by linear regression of the terminal points of the log-linear 

plasma concentration-time curve. The terminal half-life was defined as ln 2 divided by the 

elimination rate constant. Clearance (CL) was calculated as dose/AUC0-24.  

 

Statistical analysis 

All data analyses were performed by using GraphPad Prism, version 5.0, software for Windows 

(GraphPad Software, San Diego, CA). A regression analysis was conducted to determine the 

linearity between dose and AUC. Mortality data were analyzed by the log rank test. The 

survival data were plotted against the dose/minimum effective concentration (MEC), and the 

Hill equation with a variable slope was fitted to the data both for each individual isolate and 

for pooled survival data. The goodness of fit was checked by use of the R2 value and visual 

inspection. Statistical significance was defined as a P value of <0.05 (two- tailed). Dose/MEC 
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and AUC0 –24/MEC ratios were calculated by dividing the dose (in milligrams per kilogram of 

body weight) or AUC by the MEC. Dose/MEC and AUC0 –24/MEC ratio data were log10 

transformed to approximate a normal distribution prior to statistical analysis. 

 

Results 

In vitro susceptibility 

The characteristics and in vitro susceptibility of the two selected A. fumigatus isolates are 

shown in Table 1. Both isolates grew well after 48 h of incubation at 35°C to 37°C. VCZ showed 

reduced in vitro activity against the TR34/L98H mutant isolate, with a VCZ MIC of 4 mg/liter 

for the TR34/L98H mutant isolate compared to one of 0.25 mg/liter for the wild-type isolate. 

There was no difference in AFG activity, and both isolates had identical MECs. 

 

 

Pharmacokinetics of AFG 

A total of 144 mice (3 mice per time point, 12 time points, 4 different dosages) were 

analyzed. All 144 mice were alive at the time of sample collection. The observed plasma 

concentration-versus-time profiles of AFG are shown in Fig. 1. The corresponding 

pharmacokinetic parameters are tabulated in Table 2. The AUC normalized to a dose of 

2.5 mg/kg resulted in ratios of 18.06, 18.6, 14.1, 16.3, and 20.1 for dosages of 2.5, 5, 10, 20, 

and 40 mg/kg, respectively. The AUC correlated significantly with the dose in a linear fashion 

over the entire dosing range (R2= 0.86). 
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Figure 1. Plasma concentrations of anidulafungin following intraperitoneal administration 

of 5, 10, 20, and 40 mg/kg to immunocompetent infected mice. Each symbol corresponds 

to the geometric mean and standard error of the mean plasma levels for three mice. 
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Table 2. Pharmacokinetic parameters of anidulafungin after intraperitoneal administration 

of various doses of AFGa  

a AFG doses of 2.5 to 40 mg/kg were used. Intraperitoneal therapy was begun at 24 h 

postinfection with standard daily dosing of AFG, in addition to a single loading dose of AFG. 

b Simulated analysis of pharmacokinetic assay with concentrations ranging from 5 to 40 

mg/kg. 

Tmax,  time to Cmax 

Cmin,  minimum concentration in plasma 

CLss/F, apparent steady-state clearance 

t1/2, half-life. 

 

 

 

Dose 

(mg/kg) 

AUC0–24 

(mg · h/liter) 

Dose-normalized AUC 

[(mg · h)/(liter · kg)] 

Tmax  

 (h) 

Cmax 

(mg/liter) 

Cmin 

(mg/liter) 

CLss/F  

[liter/ (h · kg)] 

t1/2   

(h) 

2.5 46.5b 18.6b - - - - - 

5 93 18.6 8 7.9 0.82 0.05 17.34 

10 141.4 14.1 2 10.7 3.3 0.07 17.38 

20 326.3 16.3 0.5 22.2 6.4 0.06 22.78 

40 802.7 20.1 4 49.5 20.7 0.05 15.33 
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Efficacy of AFG monotherapy 

(i) Survival curves 

The survival curves for all control groups receiving saline intraperitoneally showed a mortality 

of 90 or 100% and a median survival time of 3.5 to 4 days (Fig. 2). For both isolates, a dose-

response relationship with increasing survival with increasing dose was observed. The 

maximum dose of AFG resulted in 72.7% survival in mice infected with the VCZs isolate, 

whereas it resulted in 45.45% survival in mice infected with the VCZr isolate. Of note, the 

response was lower in those infected with the VCZr isolate than the VCZs isolate for each dose 

(Fig. 2). 

 

(ii) Dose-response analysis 

The dose-response curves for the dosing regimen and control groups of AFG monotherapy are 

shown in Fig. 3. AFG treatment improved the survival of the mice in a dose-dependent manner. 

The dose-response curve for mice infected with the VCZr isolate was shifted to the right 

compared to that for mice infected with the VCZs isolate, indicating that higher doses of AFG 

were required to achieve similar efficacy. In mice receiving AFG monotherapy, a maximal 

response could not be achieved with either isolate, even in those treated with the highest AFG 

dose. 

 

(iii) Exposure-response analysis 

The AUC for each dose, determined from PK experiments (Table 2), was used to calculate the 

AUC0–24/MEC ratio for each isolate, as shown in Fig. 4. The exposure-response relationship 

had a sigmoidal shape. Increased AFG exposure was required to obtain maximum efficacy in 

mice infected with the VCZr isolate compared to those infected with the VCZs isolate. The Hill 

equation with a variable slope fitted the relationship between the 24-h AUC/MEC ratio and 

14-day survival well (r2 = 0.87), as statistically significant pharmacodynamic indices (PDIs) for 

single-agent regimens (P < 0.05). The 50% effective AUC for AFG was 126.5 (95% confidence 

interval, 79.09 to 202.03). We also determined the relationship between the in vivo efficacy 

and other PDIs, such as the cumulative percentage of a 24-h period that the drug 

concentration exceeded the MIC un- der steady-state PK conditions and the peak level 

(Cmax)/MEC (data not shown). However, AUC0-24/MEC appeared to be the most important 

pharmacodynamic index correlating with efficacy. 
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Figure 2. Efficacy of anidulafungin monotherapy against voriconazole-susceptible (MIC, 0.25 

mg/liter) and voriconazole-resistant (MIC, 4 mg/liter) A. fumigatus isolates. Both isolates had 

the same AFG MEC (0.03 mg/liter). Control groups received saline. For all groups, n = 11. 
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Figure 3. Anidulafungin dose-survival relationships for voriconazole-susceptible and 

voriconazole-resistant A. fumigatus isolates. The curves indicate fits with the Hill equation for 

each isolate. 

 

Figure 4. Percent of survival as a function of the anidulafungin AUC0 –24/MEC ratio for 

voriconazole-susceptible and voriconazole-resistant A. fumigatus isolates. Increased 

voriconazole and anidulafungin exposure was required to obtain maximum efficacy in mice 

infected by the voriconazole-resistant isolate. The curve is the model fit with the Hill equation 

for each datum. 
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Discussion 

Our animal model indicated that AFG monotherapy is moderately effective against isolates 

with a VCZ MIC within the susceptible range and in groups of mice infected with the resistant 

TR34/ L98H mutant isolate, which had a VCZ MIC of 4 mg/liter. Although increasing doses 

increased survival in a dose-dependent manner, a maximal response was not achieved with 

either isolate, even in those treated with the highest AFG dose (20 mg/kg of body weight). 

Apparently, this explains why AFG is not effective as single-drug therapy against Aspergillus 

infections, whereas VCZ is (24), confirming that AFG is a less potent drug for the treatment of 

IA (21, 22). A higher dose (40 mg/kg) of AFG was also studied for some groups in order to 

achieve higher efficacy; however, a dose limiting toxicity was defined, and thus, we were not 

able to explore the effect of higher doses. 

Of note, AFG appeared to be slightly less effective against the VCZr isolate than the VCZs 

isolate, despite identical MECs, which raises a possible concern regarding the efficacy of 

anidulafungin monotherapy for azole-resistant IA. Although this difference could be due to 

differences in the virulence of the two isolates, we have no indications that this is the case, as 

we have used this isolate in our previous animal models, and the LD90 inocula were almost 

identical (2.4 X 107 versus 2.5 X 107 conidia). We also investigated the fitness of both isolates 

using a growth kinetic system (25) but found no differences in germination times or growth 

rates (results not shown). An alternative possibility might be that changes in ergosterol 

biosynthesis through mutations in the cyp51A gene might have indirect effects on fungal cell 

wall synthesis. These changes might not be reflected in in vitro susceptibility, as the MEC may 

not be sufficiently sensitive to detect subtle differences in echinocandin drug activity. Further 

research into this phenomenon is needed through, for instance, determination of the levels 

of the glucan synthase target enzyme in azole-resistant A. fumigatus isolates. A range of 

resistance mechanisms should be investigated, as the effect on the cell wall might differ 

depending on the underlying mutations. 

The exposure-response relationship of AFG indicated that improvement of survival for 

both VCZs and VCZr isolates was dependent on the dose, and since the dose-AUC 

relationship was linear for the doses studies, this was also the case for the AUC0-24/  MEC 

ratio. The latter has relevance for predicting therapeutic efficacy (26). 

In the present study, the AUC of total AFG was relatively high (326 mg · h/liter for the 20-

mg/kg dose) and the MECs were quiet low (0.03 mg/liter), so that AFG treatment alone does not 

result in 100% survival. The major factor here is that AFG is highly protein bound, with protein 

binding estimated to be 99% (27) or possibly more. The AUC for the free, unbound fraction of 

AFG (fAUC)/ MEC is therefore about 100 or even lower. 
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The exact amount of free drug is not well-known, however, since protein binding at these 

high values is difficult to measure (27). 

For echinocandins such as AFG, the 24-h fAUC/MIC ratio is considered the PK/PD index 

determining therapeutic efficacy, as indicated previously (26, 28). In humans, the AUC after a 

standard dose is slightly over 100 mg · h/liter (28, 29). Andes et al. found that a fAUC0-

24/MEC value of 100 was required to result in a static effect in a Candida infection model 

(27). This value is somewhat higher than the value found for other echinocandins, indicating 

that 99% protein binding may be an underestimation. van de Sande et al. reported only 18% 

survival of rats with IA after administration of AFG at human-equivalent doses. In this study, 

the steady-state fAUC0-24 for AFG was calculated to be 120.3 µg·h/ml (29). Our results for AFG 

monotherapy at those values are in line with those reports. We also used higher doses, however, 

which resulted in increased survival of mice, although it did not reach 100%.  

A possible limitation of the model used to explore the PK/PD relationships is that the 

effects were observed in nonneutropenic animals and the route of infection was 

dissemination rather than inhalation. However, IA in the nonneutropenic host is observed 

with increasing frequency, although other host factors might be impaired in such patients, in 

particular, those in an intensive care unit (3). The effects observed could therefore be an 

underestimation of the exposure required. On the other hand, studies with posaconazole and 

voriconazole in neutropenic (30) and nonneutropenic (21, 22) models have shown that the 

exposure-response relationships are of the same order of magnitude; in fact, slightly lower 

exposures were required in the neutropenic model. 

With respect to the discussion presented above, the AUC0-24/ MEC appeared to be the 

most important pharmacodynamic index, which can be used to predict the outcome of 

AFG mono- therapy. However, compared to the results of our previous study describing the 

pharmacodynamics of voriconazole monotherapy (24), the results of the present study 

indicate that AFG is less potent for the treatment of IA. Therefore, instead of using AFG 

monotherapy for IA, other treatment modalities including this agent in combination 

therapy can be useful approaches in the clinical setting to improve the therapeutic 

outcomes of patients with underlying IA.  

AFG belongs to the echinocandins, has a unique site of action, as it targets cell wall 

synthesis, and has fungistatic activity against Aspergillus spp. (18). The echinocandin AFG 

offers a particularly interesting option for combination antifungal therapy because of its 

mechanism of action, which is completely different from that of azoles and polyenes, and such 

combinations should be explored (17, 19).  
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In addition, clinical studies have suggested that combinations of echinocandins with other 

antifungals are safe and may improve the response in patients with IA (17). However, 

preclinical studies and the results of a multi-center trial investigating such combinations will 

provide more data to judge this strategy. 
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Abstract 

Voriconazole is the recommended drug of first choice to treat infections caused by 

Aspergillus fumigatus. The efficacy of voriconazole might be hampered by the emergence of 

azole resistance. However, the combination of voriconazole with anidulafungin could 

improve therapeutic outcomes in azole-resistant invasive aspergillosis (IA). The in vitro 

interaction between voriconazole and anidulafungin was determined against voriconazole-

susceptible and voriconazole-resistant (substitutions in the cyp51A gene, including single 

point [M220I and G54W] and tandem repeat [34-bp tandem repeat in the promoter region of 

the cyp51A gene in combination with substitutions at codon L98 and 46-bp tandem repeat in 

the promoter region of the cyp51A gene in combination with mutation at codons Y121 and 

T289] mutations) clinical A. fumigatus isolates using a checkerboard microdilution method 

with spectrophotometric analysis and a viability-based XTT {2,3-bis(2-methoxy-4-nitro-5-

sulfophenyl)-5-[(phenyl-amino)carbonyl]-2H-tetrazolium hydroxide} assay within2h of 

exposure after 24 and 48 h of incubation at 35°C to 37°C. Fractional inhibitory concentration 

(FIC) indexes (FICis) were determined using different MIC endpoints and Bliss independence 

analysis performed based on the response surface calculation of the no-drug interaction. 

Significant synergistic interactions obtained based on measuring the FIC index were 

dependent on the MIC endpoint, in which FICs were inversely related to voriconazole and 

anidulafungin MICs and were influenced by the CYP51A genotype. A statistically significant 

difference was observed between FIC indexes of isolates harboring tandem repeat mutations 

and wild-type controls (P = 0.006 by one-way analysis of variance [ANOVA]), indicating that 

synergy is decreased in azole-resistant strains. Our results indicated that a combination of 

voriconazole and anidulafungin might be effective against infections caused by both azole-

susceptible and azole- resistant A. fumigatus isolates, but the combination could possibly be 

less effective in voriconazole-resistant strains with high MICs. Studies in vivo and in vitro-in 

vivo correlation investigations are required to validate the potential synergy of voriconazole 

and anidulafungin. 
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In vitro interaction, Voriconazole, Anidulafungin, Azole-resistant, Aspergillus fumigatus, XTT 
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Introduction 

Voriconazole (VCZ) is an extended-spectrum triazole which affects the integrity of the fungal 

cell membrane by inhibiting ergosterol biosynthesis. Voriconazole is the recommended first- 

choice therapy for infections caused by Aspergillus species (1, 2). However, acquired 

resistance to azoles was recently described for Aspergillus fumigatus, which may hamper the 

efficacy of voriconazole (3). 

To date, a wide range of mutations in A. fumigatus have been described to confer azole 

resistance (3), which commonly involves changes in the cyp51A gene, the target for azole 

antifungals (4, 5). The emergence of azole resistance has been documented with increasing 

reports of azole-resistant clinical A. fumigatus isolates in multiple European countries, Asia, 

and the United States (5–11). There is increasing evidence that azole resistance is associated 

with treatment failure (4, 11, 12), and in a recent Dutch survey, azole-resistant invasive 

aspergillosis (IA) carried a mortality rate of 88% (11).  These clinical observations are 

supported by preclinical studies in animal models of IA (5, 11, 13–19), where the MIC was 

shown to have a major impact on the efficacy of voriconazole and posaconazole (15, 20). 

Evidence is accumulating that azole resistance may develop in our environment with the 

consequence that in up to two-thirds of patients with azole-resistant Aspergillus disease, there 

was no history of previous azole exposure (11). Therefore, there is an urgent need for new 

approaches to manage azole-resistant Aspergillus diseases. 

Although combination therapy is presently not recommended for the primary therapy of 

IA, it may be an effective alternative approach for treatment of patients with azole-resistant 

Aspergillus disease (21, 22). Several studies have shown the potential of combining an 

echinocandin with voriconazole to improve outcomes in IA (23–33), but in a recent 

prospective randomized study, the combination of voriconazole and anidulafungin (AFG) was 

found not to be more effective than voriconazole monotherapy (34). 

Anidulafungin is a cyclic lipopeptide antifungal agent of the echinocandins with in vitro 

and in vivo activity against Aspergillus spp. (35), which acts via inhibition of 1, 3-β-D - glucan 

synthesis present only in fungal cell walls (36). However, the drug is not clinically licensed for 

the treatment of IA. Despite the failure to show a benefit of voriconazole and anidulafungin 

therapy in IA, this combination might be an option for patients with azole-resistant IA disease. 

In this study, we investigated the in vitro antifungal activity of voriconazole either alone or 

in combination with anidulafunginagainst a collection of 25 clinical A. fumigatus isolates, 

including voriconazole-resistant isolates with various substitutions in the cyp51A gene and 

voriconazole-susceptible isolates, to determine the interaction between these two agents. 
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Materials and Methods 

Fungal isolates 

A collection of 25 clinical A. fumigatus isolates was used in this study. Clinical isolates 

harbored various substitutions in the cyp51A gene, including isolates with single point (M220I 

and G54W) and tandem repeat (TR34/L98H and TR46/Y121F/T289A) mutations, and 

voriconazole-susceptible clinical isolates without mutations in the cyp51A gene were used as 

wild-type controls (Table 1.). All isolates were obtained from the fungus culture collection of the 

Department of Medical Microbiology, Radboud University Nijmegen Medical Centre, 

Nijmegen, the Netherlands. The cyp51A gene substitutions and morphological strain 

identification were confirmed by sequence-based analysis, as described previously (5). The 

isolates had been stored in 10% glycerol broth at -80°C and were revived by subculturing on 

Sabouraud dextrose agar (SDA) supplemented with 0.02% chloramphenicol for 5 to 7 days at 

35°C to 37°C. All isolates were subcultured again on SDA for 5 to 7 days at 35°C to 37°C 

before preparation of the inoculum. Candida parapsilosis (ATCC 22019) and Candida krusei 

(ATCC 6258) were used for quality control in all experiments. 

 

Preparation of inoculum 

Conidial suspensions were harvested after isolates were subcultured on SDA at 35°C to 37°C 2X 

5 to 7 days and were suspended in normal saline containing 0.025% Tween 20. Aspergillus 

inocula were then prepared spectrophotometrically and further diluted in normal saline in 

order to obtain a final inoculum concentration of 2X105 to 5X105 CFU/ml (37) 

 

Antifungal agents 

Voriconazole and anidulafungin (Pfizer, Capelle aan den Ijssel, the Netherlands) were obtained 

as standard pure powders, and serial dilutions were prepared according to European 

Committee on Antimicrobial Susceptibility Testing (EUCAST) guidelines (37). 
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Susceptibility and drug interaction testing 

Antifungal susceptibility MICs and minimum effective concentrations [MECs]) and drug inter- 

action testing were performed by using the EUCAST broth microdilution checkerboard (two 

dimensional, 8 by 12) method (37), utilizing XTT dye {2, 3-bis (2-  methoxy-4-nitro-5-

sulfophenyl)-5-[(phenylamino)carbonyl]-2H-tetrazolium  hydroxide}  (38–40).  XTT (Sigma-

Aldrich, St.  Louis, MO) was dissolved in normal saline at concentrations of 0.5 mg/ml. 

Menadione (Sigma-Aldrich, St. Louis, MO) was initially dissolved in absolute ethanol at a 

concentration of 10 mg/ml and subsequently added to the above-mentioned XTT solutions at 

concentrations of 6.25 ILM for each solution. The final concentrations of the antifungal 

agents ranged from 0.016 to 16 mg/liter for voriconazole and 0.008 to 0.5 mg/liter for 

anidulafungin. Aliquots of 50 µl of each drug at a concentration four times the targeted 

final concentration were dispensed into the wells of flat-bottom 96-well microtiter plates 

(Costar; Corning, NY). Trays were maintained for a period of less than 1 month at -70°C until 

the day of testing. After the microtitration trays were defrosted, 100 µl of the inoculum was 

added to each well, corresponding to a final concentration of 2 X 105 to 5 X 105 CFU/ml 

from each isolate. The microtiter plates were incubated at 35°C to 37°C for 48 h. 

Subsequently, 50 µl of the above-mentioned XTT-menadione solutions was added to each 

well, as previously described (40, 41). The microtitration plates were further incubated at 35°C 

to 37°C for 2 h in order to allow conversion of XTT to its formazan derivative. XTT conversion was 

measured as optical density (OD) with a microtitration plate spectrophotometric reader 

(Anthos htIII; Anthos Labtec Instruments, Salzburg, Austria) at 450 nm/630 nm. For each well, 

XTT conversion was calculated after subtraction of the background OD, which was the OD of 

a simultaneously incubated well with 200 µl  of medium and 50µl of XTT-menadione 

solution but no inoculum. Percentages of fungal growth were calculated for each well by 

dividing the XTT conversion of each well by the XTT conversion of the drug-free growth 

control well. All experiments were performed in three independent replicates, and the 

breakpoints reported previously by Verweij et al. were used for classifying voriconazole-

susceptible and voriconazole-resistant isolates (3). 

 

MIC and MEC determination 

The MIC of voriconazole was defined as the lowest concentration that completely inhibited 

growth compared with that of the drug-free well, as assessed by visual inspection. The MEC of 

anidulafungin was defined as the lowest concentration in which abnormal, short, and 

branched hyphal clusters were observed, in contrast to the long, unbranched hyphal elements 

that were seen in the growth control well (37). Because the voriconazole MIC corresponds to 

the lowest drug concentration corresponding to <10% growth and the MEC corresponds to 
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the lowest concentration corresponding to <50% growth with the XTT assays, for the 

voriconazole-anidulafungin combination, both 10% and 50%  growth endpoints in addition to 

the 25%  growth endpoint were considered MIC endpoints. 

 

Definitions for drug interaction modeling 

In order to assess the nature of in vitro interactions between voriconazole and 

anidulafungin, the data obtained as described above were analyzed using two different 

models. These models were nonparametric approaches of the following two no (zero)-

interaction theories: the Loewe additivity (LA) and the Bliss independence (BI) theories (42–

45). The fractional inhibitory concentration (FIC) index is defined as ∑FIC = FICA + FICB= 

CA
comb/MICA

alone + CB
comb/MICB

alone  , where MICA
alone and MICB

alone are the MICs of the drugs A 

and B when acting alone and CA
comb and CB

comb are concentrations of the drugs A and B at the 

iso-effective combinations, respectively (42).  

To determine synergistic and antagonistic interactions among all ∑FICs calculated for each 

isolate and replicate, the FIC index was determined as the ∑FICmin  (the lowest ∑FIC) or the 

∑FICmax (the highest ∑FIC) (42). The 10%, 25%, and 50% endpoints of fungal growth were 

used to assess pharmacodynamic interactions at different concentrations. In order to 

determine the nature of the interaction between voriconazole and anidulafungin, previously 

described cutoff values were used (46), in which an interaction was defined as synergistic if 

the FIC index was <1, additive if the FIC index was >1 to <1.25, and antagonistic if the FIC 

index was >1.25. These cutoff values were derived from experiments that investigated the 

voriconazole-echinocandin interaction (46). Furthermore, we compared our analysis with the 

commonly used FICi range of 0.5 to 4 that is generally recommended to define drug-drug 

interactions in combination studies of antifungal agents (21, 47, 48). 

The BI was described by the equation Iind = IA+IB - IAxIB, where Iind  is the predicted 

percentage of inhibition of an non-interactive theoretical combination, calculated based on 

the experimental percentages of inhibition (IA  and IB) of each drug acting alone, respectively 

(43). In the three-dimensional plots, peaks above and below the zero plane indicate 

synergistic and antagonistic combinations, respectively, whereas the zero plane itself indicates 

no statistically significant interactions. The average sum of the three replicates of all Bliss 

interactions was used as a measure of the pharmacodynamic interactions for each strain. 
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Data analysis 

All data analyses were performed by using the software package GraphPad Prism, version 5.0, 

for Windows (GraphPad Software, San Diego, CA). The FICs among the different genotype 

groups were compared by analysis of variance (ANOVA) followed by a posttest for linear 

trends. The correlation between the mean FIC indexes and voriconazole and anidulafungin 

MIC endpoints was determined by Spearman’s correlation coefficient (r); a P value of 0.05 

was considered significant (two tailed). 

 

Results 

The MIC and MEC characteristics of the 25 clinical A. fumigatus isolates used for the current 

study are shown in Table 1. The mean MICs of voriconazole (and ranges) based on 10% and 25% 

growth endpoints were 0.58 (0.25 to 2) mg/liter and 0.40 (0.25 to 1) mg/liter, respectively, 

for the voriconazole-susceptible (VCZ-S) isolates, whereas higher MICs were observed for 

isolates harboring single point mutations, 1.49 (0.13 to 4) mg/liter and 1.16 mg/liter (0.13 to 

4), respectively, and tandem repeat mutations, 8.94 (2  to 32) mg/liter and 10.22 (2 to 32) 

mg/liter, respectively. Anidulafungin MIC endpoints based on the 50% growth endpoint were 

off scale for most of the isolates, and therefore, this growth end- point was excluded from the 

analysis. 

The mean values of FIC indexes based on 10% and 25% growth endpoints as well as BI response 

surface analysis results for different groups of A. fumigatus isolates with regard to substitutions 

in the cyp51A gene are also shown in Table 1, whereas Fig. 1 shows the distribution of FICs at 

each growth endpoint. None of the data sets analyzed had ∑FICmaxs higher than 1.25, 

indicating that antagonism was not observed. Therefore, the FIC index corresponded to the 

∑FICmin. The lowest FIC index values found for isolates without a mutation in the cyp51A 

gene ranged between 0.16 and 1.01 based on the 10% growth endpoint and between 0.02 

and 0.54 with the 25% growth endpoint, followed by isolates harboring single point and 

tandem repeat mutations, respectively. 

For isolates with the tandem repeat resistance mechanism (TR34/ L98H and 

TR46/Y121F/T289A), the FIC index values averaged 0.33 (range, 0.04 to 1.01) based on the 10% 

growth endpoint and 0.19 (range, 0.01 to 1.03) with the 25% growth endpoint. When 

analyzing interactions, considering the 10% and 25% growth endpoints, significant synergy (P < 

0.05) was found for all isolates, with mean FICimins of 0.42 and 0.12, respectively (Fig. 1).  
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However, the wide distribution observed for mean FIC values of each growth endpoint 

indicated that for some strains, there appeared to be no synergism. 

 

 

 

 

Figure 1. Graphical distribution of mean and standard error of the mean of FIC indexes 

determined at 10% and 25% growth endpoints for 25 A. fumigatus isolates. None of the data 

sets analyzed had ∑FICmaxs higher than 1.25, indicating that antagonism was not observed. 
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As shown in Fig. 2, the mean FICi based on the 25% growth endpoint did not differ 

significantly among voriconazole-susceptible isolates and those with single point mutations 

(M220I and G54W). However, a statistically significant difference was observed between 

isolates harboring tandem repeat mutations (TR34/L98H and  TR46/Y121F/T289A)  and  wild-

type  controls (P = 0.006 by one-way analysis of variance [ANOVA]). Therefore, the 

dependence of the FIC index on resistance mechanisms indicates that synergistic interactions 

may be lost for the isolates with higher MICs of voriconazole. The consequence of this 

observation is that in isolates where voriconazole has no in vitro activity (MIC>8 

mg/liter), the efficacy of the combination relies solely on anidulafungin. 

 

Figure 2. Mean and standard errors of the mean of FICs with respect to cyp51 substitutions 

for 25 A. fumigatus isolates, indicating that the FIC indexes are dependent on the type of 

mutation. The vertical bars indicate that the mean FIC indexes did not differ significantly 

among VCZ-S isolates and those with M220I and G54W mutations; a statistically significant 

difference was observed between isolates harboring TR34/L98H and TR46/Y121F/T289A 

mutations and wild-type controls (P < 0.05). 
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Figure 3. Interaction surfaces obtained from response surface analysis of the Bliss 

independence no-interaction model for the in vitro combination of VCZ plus AFG against a 

VCZ-susceptible A. fumigatus isolate (MIC of VCZ, 0.25 mg/liter; MEC of AFG, 0.03 mg/liter) 

and a VCZ-resistant A. fumigatus isolate (MIC of VCZ, 4 mg/liter; MEC of AFG, 0.03 mg/liter). 

The x and y axes represent the efficacies of VCZ and AFG, respectively. The z axis is the 

percent dE. The zero plane represents Bliss-independent interactions, whereas the volumes 

above the zero plane represent statistically significantly synergistic (positive dE) interactions. 

The magnitude of interactions is directly related to dE. The different tones in three-

dimensional plots represent different percentile bands of synergy. (a) Synergistic interaction. 

The mean dE ± standard error of the mean and sum dE were 3.23% ± 1.09% and 271%, 

respectively, after 48 h. (b) Antagonistic interaction. The mean dE ± standard error of the 
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mean and sum dE were -2.47% ± 0.40% and -208%, respectively, after 48 h. 

Furthermore, the results of FICi analysis are supported by response surface analysis using the 

BI no-interaction model for all isolates where the synergistic interactions in wild-type 

isolates were higher than those in the other two groups harboring CYP51A gene mutations for 

which some antagonistic interactions were observed. Bliss antagonism reflects 

additive/indifferent interactions by Loewe additivity. Thus, the presence of antagonistic 

interactions correlates with the reduction of Loewe synergistic interactions at the 25% 

growth endpoint. The selected interaction surface plots indicating synergy and antagonism 

for a voriconazole-susceptible A. fumigatus isolate (MIC of voriconazole, 0.25 mg/liter; MEC 

of anidulafungin, 0.03 mg/liter) and a voriconazole-resistant A. fumigatus isolate (MIC of 

voriconazole, 4 mg/ liter; MEC of anidulafungin, 0.03 mg/liter) are shown in Fig. 3. 

In comparison, Fig. 4 shows the interpretation of FIC indices, using two different cutoff 

values, in which the commonly used FIC index range of 0.5 to 4 indicated synergism for 38.1% 

and indifference for 61.9% of isolates, while the use of recently reported cutoff values (46) 

indicated synergism for 75.0% and additivity for 25.0% of isolates. Antagonism was not 

observed with either definition of the interaction. 

 

Figure4. Interpretation of voriconazole and anidulafungin interactions for 25 A. fumigatus 

isolates utilizing two different definitions: the cutoff values proposed previously by Meletiadis 

et al. (46) (synergistic if the FIC index was <1, additive if the FIC index was >1 to <1.25, and 

antagonistic if the FIC index was >1.25) and the commonly used FIC index range of 0.5 to 4 

proposed previously by Greco et al. (47) and which is generally recommended to define drug 

interactions in most combination studies of antifungal agents (synergistic if the FIC index was 

<0.5, indifferent if the FIC index was >0.5 to <4, and antagonistic if the FIC index was >4). 
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Discussion 

A number of studies have reported data on the efficacy of combination therapy against A. 

fumigatus. Most studies investigating combinations of azoles and echinocandins have shown 

a synergistic or additive interaction against Aspergillus spp. (24, 27, 29, 30, 33). Antagonism 

was not reported. The combination of voriconazole and an echinocandin in advanced invasive 

pulmonary aspergillosis in transiently neutropenic rats improved the therapeutic outcome 

(49).  

Notably, synergy was documented by the majority of studies when susceptibility testing 

endpoints were defined as a substantial inhibition of growth. For example, in a previous study 

by Shalitet al., caspofungin and itraconazole were studied alone and in combination against 

31 clinical Aspergillus isolates (33). MICs and MECs were recorded, and synergy was 

calculated by using both endpoints. Synergy or synergy to additivity was found for 30 of 31 

isolates by using MIC endpoints. With MEC endpoints, no synergy was found, and 

indifference was detected for 26 of 31 strains. In a previous study by Philip et al., significant 

synergy was noticed with regard to combinations of voriconazole and anidulafungin for 

18/26 isolates, depending on the drug concentration and interaction definitions (32). 

Voriconazole in combination with anidulafungin has been shown to be efficient in treating 

infections caused by A. fumigatus in an immunosuppressed guinea pig model of IA (25, 49). 

We recently also found a synergistic interaction between voriconazole and anidulafungin in 

a model of disseminated IA when mice were infected with a voriconazole-susceptible isolate 

(50). 

Although retrospective clinical studies indicated a benefit of combining an echinocandin, 

i.e., caspofungin, with voriconazole (28), a recent randomized prospective trial of 

voriconazole and anidulafungin showed no superiority to voriconazole mono- therapy (34). 

This apparent discrepancy between this prospective clinical trial and retrospective trials and 

preclinical research may be due to methodological issues related to the prospective clinical 

trial (27). However, preclinical studies involved only wild-type isolates, and it can be assumed 

that the vast majority of patients enrolled in clinical studies would have suffered from 

invasive aspergillosis due to wild-type isolates. 

In azole-resistant disease, combination therapy has potential benefit, as the reduced 

efficacy of the azole might be overcome by the concomitant administration of an 

echinocandin. In our murine model, we found that the interaction between voriconazole and 

anidulafungin was indifferent in mice infected with an A. fumigatus isolate with a 

voriconazole MIC of 4 mg/liter (50), which indicated that the drug interaction varied 

according to the susceptibility of the isolate to voriconazole. As only one azole- resistant 

isolate was investigated in the animal model, we used an in vitro interaction model to 

investigate this relationship in more detail using a larger collection of isolates and a wide 
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range of voriconazole MICs. Furthermore, fitting an interaction model to the whole response 

surface and estimation have the additional advantage that confidence intervals of the 

interaction are obtained (44).  

We found that synergistic drug interactions obtained for the FIC indexes were dependent 

on the MIC endpoints. Significant variations were observed in the FIC  distributions using MIC 

end- points. However, for some strains, there appeared to be no synergism (FIC > 1), which was 

dependent on the MIC of voriconazole. This variation in FIC index results could be explained 

largely by the CYP51A gene mutation and the associated voriconazole phenotype of the strain. 

In addition to the analysis with the nonparametric fractional inhibitory concentration model 

(FIC index), similar results were found when the data were analyzed using the response 

surface approaches of the Bliss independence (BI) no- interaction theory. 

The statistically significant difference between isolates harboring tandem repeat mutations 

and wild-type controls (P = 0.006 by ANOVA) is in keeping with the observation in our in vivo 

model (50). FICs were inversely related to voriconazole and anidulafungin MICs and influences 

by CYP51A genotype. 

The interpretation of data from in vitro interaction studies de- pends on the definition used 

for FIC calculation (21, 22, 46–48, 51–55), which can vary depending on the cutoff values used 

(Fig.4). In our study, we used cutoff values to indicate that the interactions were synergistic if 

the FIC index was <1, additive if the FIC index was >1  to <1.25,  and antagonistic if the FIC 

index was >1.25 (46), since an additivity range of 0.5 to 2 is more symmetrical than a range of 

0.5 to 4. Furthermore, the cutoffs of 1 and 1.25 were previously investigated for drug 

interactions of voriconazole and anidulafungin against A. fumigatus and validated by an in vivo 

model (46). Interpreting our data by this definition indicated synergism for 75% of isolates and 

additivity for 25% of isolates. In comparison, the application of the generally used FIC index 

range of 0.5 to 4 (21, 47, 48) indicated synergism for 61.9% of isolates and indifference for 

38.1% of isolates. 

We used XTT for a more precise quantification of hyphal growth. It has been shown that 

the assessment of metabolic activity provides useful quantitative endpoints for in vitro 

studies of both azoles and echinocandins against Aspergillus spp. (38, 40, 41, 43). 

The significant relationship between FICi and CYP51A genotype raises concern regarding if 

the combination of voriconazole and anidulafungin can be used in the management of azole-

resistant disease. In the Netherlands, the TR34/L98H  mutation  is highly prevalent (5, 11), 

and more recently, a TR46/Y121F/T289A mutation was found in A. fumigatus isolates 

recovered from patients from multiple Dutch hospitals (56). This new resistance mechanism 

has characteristics similar to those of TR34/L98H, indicating that it may also originate from the 

environment. These two resistance mechanisms correspond to the highest voriconazole MICs 
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(8 and >16 mg/liter), and our results indicate that we can expect the least benefit from 

combination therapy with voriconazole and anidulafungin in patients infected by A. fumigatus 

strains harboring these resistance mechanisms. As the targets of azoles and echinocandins 

are unrelated, a lack of voriconazole activity may indicate that the efficacy of combination 

therapy relies solely on anidulafungin. 

Evidence to support treatment choices for azole-resistant Aspergillus disease is scarce at 

present. Although the in vitro activity of echinocandins and amphotericin B appears 

unaffected in azole-resistant isolates, in vivo efficacy studies are lacking. Clearly, more research 

is warranted to explore treatment options in azole- resistant disease. Our results indicate that 

azole and echinocandin combination therapy should be used with great caution in patients with 

azole-resistant Aspergillus diseases. 

 

 

 

4 

 

4 
 



CHAPTER 4.1 |  

 

100 

References 

1. Herbrecht R, Denning DW, Patterson TF, Bennett JE, Greene RE, Oestmann JW, Kern WV, 

Marr KA, Ribaud P, Lortholary O, Sylvester R, Rubin RH, Wingard JR, Stark P, Durand C, Caillot D, 

Thiel E, Chandrasekar PH, Hodges MR, Schlamm HT, Troke PF, de Pauw B. 2002. Voriconazole 

versus amphotericin B for primary therapy of invasive aspergillosis. N. Engl. J. Med. 347:408–

415. 

2. Walsh TJ, Anaissie EJ, Denning DW, Herbrecht R, Kontoyiannis DP, Marr KA, Morrison VA, 

Segal BH, Steinbach WJ, Stevens DA, van Burik JA, Wingard JR, Patterson TF. 2008. Treatment 

of aspergillosis: clinical practice guidelines of the Infectious Diseases Society of America. Clin. 

Infect. Dis. 46:327–360. 

3. Verweij PE, Howard SJ, Melchers WJ, Denning DW. 2009. Azole resistance in Aspergillus: 

proposed nomenclature and breakpoints. Drug Resist. Updat. 12:141–147. 

4. Howard SJ, Webster I, Moore CB, Gardiner RE, Park S, Perlin DS, Denning DW. 2006. Multi-

azole resistance in Aspergillus fumigatus. Int. J. Antimicrob. Agents 28:450–453. 

5. Snelders E, van der Lee HA, Kuijpers J, Rijs AJ, Varga J, Samson RA, Mellado E, Donders AR, 

Melchers WJ, Verweij PE. 2008. Emergence of azole resistance in Aspergillus fumigatus and 

spread of a single resistance mechanism. PLoS Med. 5:e219. 

doi:10.1371/journal.pmed.0050219. 

6. Alanio A, Cabaret O, Sitterle E, Costa JM, Brisse S, Cordonnier C, Bretagne S. 2012. Azole 

preexposure affects the Aspergillus fumigatus population in patients. Antimicrob. Agents 

Chemother. 56:4948–4950. 

7. Bueid A, Howard SJ, Moore CB, Richardson MD, Harrison E, Bowyer P, Denning DW. 2010. 

Azole antifungal resistance in Aspergillus fumigatus: 2008 and 2009. J. Antimicrob. Chemother. 

65:2116 –2118. 

8. Chowdhary A, Kathuria S, Randhawa HS, Gaur SN, Klaassen CH, Meis JF. 2012. Isolation of 

multiple-triazole-resistant Aspergillus fumigatus strains carrying the TR/L98H mutations in the 

cyp51A gene in India. J. Antimicrob. Chemother. 67:362–366. 

9. Lockhart SR, Frade JP, Etienne KA, Pfaller MA, Diekema DJ, Balajee SA. 2011. Azole resistance 

in Aspergillus fumigatus isolates from the ARTEMIS global surveillance study is primarily due to 

the TR/L98H mutation in the cyp51A gene. Antimicrob. Agents Chemother. 55:4465–4468. 

10. Tashiro M, Izumikawa K, Minematsu A, Hirano K, Iwanaga N, Ide S, Mihara T, Hosogaya N, 

Takazono T, Morinaga Y, Nakamura S, Kurihara S, Imamura Y, Miyazaki T, Nishino T, Tsukamoto 



 IN VITRO COMBINATION OF VORICONAZOLE AND ANIDULAFUNGIN 

101 

M, Kakeya H, Yamamoto Y, Yanagihara K, Yasuoka A, Tashiro T, Kohno S. 2012. Antifungal 

susceptibilities of Aspergillus fumigatus clinical isolates in Nagasaki, Japan. Antimicrob. Agents 

Chemother. 56:584 –587. 

11. van der Linden JW, Snelders E, Kampinga GA, Rijnders BJ, Mattsson E, Debets-Ossenkopp 

YJ, Kuijper EJ, Van Tiel FH, Melchers WJ, Verweij PE. 2011. Clinical implications of azole 

resistance in Aspergillus fumigatus, the Netherlands, 2007-2009. Emerg. Infect. Dis. 17:1846 –

1854. 

12. Verweij PE, Mellado E, Melchers WJ. 2007. Multiple-triazole-resistant aspergillosis. N. Engl. 

J. Med. 356:1481–1483. 

13. Hodiamont CJ, Dolman KM, Ten Berge IJ, Melchers WJ, Verweij PE, Pajkrt D. 2009. Multiple-

azole-resistant Aspergillus fumigatus osteomyelitis in a patient with chronic granulomatous 

disease successfully treated with long-term oral posaconazole and surgery. Med. Mycol. 

47:217–220. 

14. Howard SJ, Cerar D, Anderson MJ, Albarrag A, Fisher MC, Pasqualotto AC, Laverdiere M, 

Arendrup MC, Perlin DS, Denning DW. 2009. Frequency and evolution of azole resistance in 

Aspergillus fumigatus associated with treatment failure. Emerg. Infect. Dis. 15:1068 –1076.  

15. Mavridou E, Bruggemann RJ, Melchers WJ, Mouton JW, Verweij PE. 2010. Efficacy of 

posaconazole against three clinical Aspergillus fumigatus isolates with mutations in the cyp51A 

gene. Antimicrob. Agents Chemother. 54:860–865. 

16. Mavridou E, Bruggemann RJ, Melchers WJ, Verweij PE, Mouton JW. 2010. Impact of cyp51A 

mutations on the pharmacokinetic and pharmacodynamic properties of voriconazole in a 

murine model of disseminated aspergillosis. Antimicrob. Agents Chemother. 54:4758–4764. 

17. van der Linden JW, Jansen RR, Bresters D, Visser CE, Geerlings SE, Kuijper EJ, Melchers WJ, 

Verweij PE. 2009. Azole-resistant central nervous system aspergillosis. Clin. Infect. Dis. 

48:1111–1113. 

18. van Leer-Buter C, Takes RP, Hebeda KM, Melchers WJ, Verweij PE. 2007. Aspergillosis-and a 

misleading sensitivity result. Lancet 370:102. doi:10.1016/S0140-6736(07)61055-1. 

19. Warris A, Weemaes CM, Verweij PE. 2002. Multidrug resistance in Aspergillus fumigatus. N. 

Engl. J. Med. 347:2173–2174. 

20. Howard SJ, Lestner JM, Sharp A, Gregson L, Goodwin J, Slater J, Majithiya JB, Warn PA, 

Hope WW. 2011. Pharmacokinetics and pharmacodynamics of posaconazole for invasive 

pulmonary aspergillosis: clinical implications for antifungal therapy. J. Infect. Dis. 203:1324 –

1332. 

4 

 

4 
 



CHAPTER 4.1 |  

 

102 

21. Johnson MD, MacDougall C, Ostrosky-Zeichner L, Perfect JR, Rex JH. 2004. Combination 

antifungal therapy. Antimicrob. Agents Chemother.48:693–715. 

22. Mukherjee PK, Sheehan DJ, Hitchcock CA, Ghannoum MA. 2005. Combination treatment of 

invasive fungal infections. Clin. Microbiol. Rev. 18:163–194. 

23. Arikan S, Lozano-Chiu M, Paetznick V, Rex JH. 2002. In vitro synergy of caspofungin and 

amphotericin B against Aspergillus and Fusarium spp. Antimicrob. Agents Chemother. 46:245–

247. 

24. Cuenca-Estrella M, Gomez-Lopez A, Garcia-Effron G, Alcazar-Fuoli L, Mellado E, Buitrago 

MJ, Rodriguez-Tudela JL. 2005. Combined activity in vitro of caspofungin, amphotericin B, and 

azole agents against itraconazole-resistant clinical isolates of Aspergillus fumigatus. 

Antimicrob. Agents Chemother. 49:1232–1235. 

25. Kirkpatrick WR, Perea S, Coco BJ, Patterson TF. 2002. Efficacy of caspofungin alone and in 

combination with voriconazole in a guinea pig model of invasive aspergillosis. Antimicrob. 

Agents Chemother. 46:2564–2568. 

26. Kontoyiannis DP, Lewis RE. 2003. Combination chemotherapy for invasive fungal infections: 

what laboratory and clinical studies tell us so far. Drug Resist. Updat. 6:257–269. 

27. Lewis RE, Kontoyiannis DP. 2005. Micafungin in combination with voriconazole in 

Aspergillus species: a pharmacodynamic approach for detection of combined antifungal activity 

in vitro. J. Antimicrob. Chemother. 56:887– 892.  

28. Marr KA, Boeckh M, Carter RA, Kim HW, Corey L. 2004. Combination antifungal therapy for 

invasive aspergillosis. Clin. Infect. Dis. 39:797– 802.  

29. Perea S, Gonzalez G, Fothergill AW, Kirkpatrick WR, Rinaldi MG, Patterson TF. 2002. In vitro 

interaction of caspofungin acetate with voriconazole against clinical isolates of Aspergillus spp. 

Antimicrob. Agents Chemother. 46:3039 –3041. 

30. Perkhofer S, Jost D, Dierich MP, Lass-Florl C. 2008. Susceptibility testing of anidulafungin 

and voriconazole alone and in combination against conidia and hyphae of Aspergillus spp. 

under hypoxic conditions. Antimicrob. Agents Chemother. 52:1873–1875. 

31. Petraitis V, Petraitiene R, Hope WW, Meletiadis J, Mickiene D, Hughes JE, Cotton MP, 

Stergiopoulou T, Kasai M, Francesconi A, Schaufele RL, Sein T, Avila NA, Bacher J, Walsh TJ. 

2009. Combination therapy in treatment of experimental pulmonary aspergillosis: in vitro and 

in vivo correlations of the concentration- and dose-dependent interactions between 

anidulafungin and voriconazole by Bliss independence drug interaction analysis. Antimicrob. 

Agents Chemother. 53:2382–2391. 



 IN VITRO COMBINATION OF VORICONAZOLE AND ANIDULAFUNGIN 

103 

32. Philip A, Odabasi Z, Rodriguez J, Paetznick VL, Chen E, Rex JH, Ostrosky-Zeichner L. 2005. In 

vitro synergy testing of anidulafungin with itraconazole, voriconazole, and amphotericin B 

against Aspergillus spp. and Fusarium spp. Antimicrob. Agents Chemother. 49:3572–3574. 

33. Shalit I, Shadkchan Y, Samra Z, Osherov N. 2003. In vitro synergy of caspofungin and 

itraconazole against Aspergillus spp.: MIC versus minimal effective concentration end points. 

Antimicrob. Agents Chemother. 47:1416 –1418. 

34. Marr KA, Schlamm H, Rottinghaus ST, Jagannatha S, Bow EJ, Wingard JR, Pappas P, 

Herbrecht P, Walsh TJ, Maertens J. 2012. A randomised, double-blind study of combination 

antifungal therapy with voriconazole and anidulafungin versus voriconazole monotherapy for 

primary treatment of invasive aspergillosis, abstr LB 2812. Abstr. 22nd Eur. Congr. Clin. 

Microbiol. Infect. Dis., London, United Kingdom. European Society of Clinical Microbiology and 

Infectious Diseases, Basel, Switzerland.  

35. Petraitis V, Petraitiene R, Groll AH, Bell A, Callender DP, Sein T, Schaufele RL, McMillian CL, 

Bacher J, Walsh TJ. 1998. Antifungal efficacy, safety, and single-dose pharmacokinetics of 

LY303366, a novel echinocandin B, in experimental pulmonary aspergillosis in persistently 

neutropenic rabbits. Antimicrob. Agents Chemother. 42:2898 –2905. 

36. Vazquez JA, Sobel JD. 2006. Anidulafungin: a novel echinocandin. Clin. Infect. Dis. 43:215–

222.  

37. Rodriguez-Tudela JL, Donnelly JP, Arendrup MC, Arikan S, Barchiesi F, Bille JCE, 

Chryssanthou E, Cuenca-Estrella EMM, Dannaoui EE, Denning DW, Fegeler W, Gaustad P, Lass-

Flörl C, Moore C, Richardson M, Schmalreck A, Velegraki AA, Verweij P. 2008. Subcommittee on 

Antifungal Susceptibility Testing of the ESCMID European Committee for Antimicrobial 

Susceptibility Testing. EUCAST Technical Note on the method for the determination of broth 

dilution minimum inhibitory concentrations of antifungal agents for conidia-forming moulds. 

Clin. Microbiol. Infect. 14:982–984. 

38. Antachopoulos C, Meletiadis J, Sein T, Roilides E, Walsh TJ. 2007. Concentration-dependent 

effects of caspofungin on the metabolic activity of Aspergillus species. Antimicrob. Agents 

Chemother. 51:881– 887. 

39. Antachopoulos C, Meletiadis J, Sein T, Roilides E, Walsh TJ. 2007. Use of high inoculum for 

early metabolic signalling and rapid susceptibility testing of Aspergillus species. J. Antimicrob. 

Chemother. 59:230 –237. 

40. Meletiadis J, Mouton JW, Meis JF, Bouman BA, Donnelly JP, Verweij PE. 2001. Colorimetric 

assay for antifungal susceptibility testing of Aspergillus species. J. Clin. Microbiol. 39:3402–

3408. 

4 

 

4 
 



CHAPTER 4.1 |  

 

104 

41. Meletiadis J, Mouton JW, Meis JF, Bouman BA, Donnelly PJ, Verweij PE. 2001. Comparison 

of spectrophotometric and visual readings of NCCLS method and evaluation of a colorimetric 

method based on reduction of a soluble tetrazolium salt, 2,3-bis{2-methoxy-4-nitro-5-

[(sulfenylamino) carbonyl]-2H-tetrazolium-hydroxide}, for antifungal susceptibility testing of 

Aspergillus species. J. Clin. Microbiol. 39:4256–4263. 

42. Hindler J. 1995. Antimicrobial susceptibility testing, p 5.18.11–15.18.20. In Isenberg HD 

(ed), Clinical microbiology procedures handbook. ASM Press, Washington, DC.  

43. Meletiadis J, Meis JFGM, Mouton JW, Verweij PE. 2002. Methodological issues related to 

antifungal drug interaction modelling for filamentous fungi. Rev. Med. Microbiol. 13:101–117. 

44. Meletiadis J, Verweij PE, TeDorsthorst DT, Meis JF, Mouton JW. 2005. Assessing in vitro 

combinations of antifungal drugs against yeasts and filamentous fungi: comparison of different 

drug interaction models. Med. Mycol. 43:133–152. 

45. Prichard MN, Prichard LE, Shipman C, Jr. 1993. Strategic design and three-dimensional 

analysis of antiviral drug combinations. Antimicrob. Agents Chemother. 37:540 –545. 

46. Meletiadis J, Pournaras S, Roilides E, Walsh TJ. 2010. Defining fractional inhibitory 

concentration index cutoffs for additive interactions based on self-drug additive combinations, 

Monte Carlo simulation analysis, and in vitro-in vivo correlation data for antifungal drug 

combinations against Aspergillus fumigatus. Antimicrob. Agents Chemother. 54: 602–609. 

47. Greco WR, Bravo G, Parsons JC. 1995. The search for synergy: a critical review from a 

response surface perspective. Pharmacol. Rev. 47:331–385. 

48. Odds FC. 2003. Synergy, antagonism, and what the chequerboard puts between them. J. 

Antimicrob. Chemother. 52:1. doi:10.1093/jac/dkg301. 

49. van de Sande WW, Mathot RA, ten Kate MT, van Vianen W, Tavakol M, Rijnders BJ, Bakker-

Woudenberg IA. 2009. Combination therapy of advanced invasive pulmonary aspergillosis in 

transiently neutropenic rats using human pharmacokinetic equivalent doses of voriconazole 

and anidulafungin. Antimicrob. Agents Chemother. 53:2005–2013. 

50. Seyedmousavi S, Bruggemann RJM, Melchers WJ, Rijs AJMM, Verweij PE, Mouton JW. 5 

November 2012, posting date. Efficacy and pharmacodynamics of voriconazole combined with 

anidulafungin in azole resistant invasive aspergillosis. J. Antimicrob. Chemother. [Epub ahead 

of print.]  

51. Berenbaum MC. 1978. A method for testing for synergy with any number of agents. J. 

Infect. Dis. 137:122–130. 

4 

 



 IN VITRO COMBINATION OF VORICONAZOLE AND ANIDULAFUNGIN 

105 

52. Eliopoulos GM, Moellering RC, Jr. 1991. Antimicrobial combinations, p 432–492. In Lorian V 

(ed), Antibiotics in laboratory medicine, 3rd ed. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4 
 



CHAPTER 4.1 |  

 

106 

Acknowledgements 

We thank Roxana G. Vitale for her contribution to sending analysis layout in the pilot version 

of this study for two isolates. 

This study was supported in part by an unrestricted research grant from Pfizer. 

Parts of these results were presented at 51st ICAAC [Interscience Conference on Antimicrobial 

Agents and Chemotherapy], Chicago, IL, 17 to 20 September 2011. 

 

 

 



 

 

 

 

 

 
 
4.2. Efficacy and pharmacodynamics  

of voriconazole combined with 
anidulafungin in azole-resistant  

invasive aspergillosis 

 
Seyedmojtaba Seyedmousavi1,2, Roger J.M. Brüggemann2, 3 , Willem J.G. Melchers1,2, Antonius 

J.M.M. Rijs1,2,  Paul E. Verweij 1,2 and Johan W. Mouton 1,2 

1 Department of Medical Microbiology, Radboud University Nijmegen Medical Centre, 

Nijmegen, Netherlands 
2 Nijmegen Institute for Infection, Inflammation and Immunity (N4i), Radboud University 

Nijmegen Medical Centre, Nijmegen, Netherlands 
3 Department of Pharmacy, Radboud University Nijmegen Medical Centre, Nijmegen, the 

Netherlands 

 

Published in J Antimicrob Chemother 2013; 68: 385 – 393 

 

Chapter 4 

 
 



CHAPTER 4.2 |  

 

108 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 IN VIVO COMBINATION OF VORICONAZOLE AND ANIDULAFUNGIN 

109 

Abstract 

Azole resistance is an emerging problem in the treatment of Aspergillus fumigatus infections. 

Combination therapy may be an alternative approach to improve therapeutic outcome in 

azole-resistant invasive aspergillosis (IA). The in vivo efficacy of voriconazole and 

anidulafungin was investigated in a non-neutropenic murine model of IA using voriconazole-

susceptible and voriconazole-resistant A. fumigatus clinical isolates. Treatment groups 

consisted of voriconazole monotherapy, anidulafungin monotherapy and voriconazole + 

anidulafungin at 2.5, 5, 10 and 20 mg/kg body weight/day for 7 consecutive days. In vitro 

and in vivo drug interactions were analysed by non-parametric Bliss independence and 

non-linear regression analysis. Synergistic interaction between voriconazole and 

anidulafungin against the voriconazole-susceptible isolate (AZN 8196) was observed in vitro 

and in vivo. However, among animals infected with the voriconazole-resistant isolate (V 

52-35), 100% survival was observed only in groups receiving the highest doses (20 mg/kg 

voriconazole + 20 mg/kg anidulafungin). For this isolate, additivity, but not synergy, was 

observed in vivo. Combination of voriconazole and anidulafungin was synergistic in 

voriconazole-susceptible IA, but additive in voriconazole-resistant IA. There is a clear benefit 

of combining voriconazole and anidulafungin, but the reduced effect of combination 

therapy in azole-resistant IA raises some concern. 
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Introduction 

Invasive aspergillosis (IA) is an increasingly common infection in immunocompromised   

patients (1-3). Voriconazole is considered the first-choice therapy for invasive infections 

caused by Aspergillus species, based on the results of randomized clinical trials (4-5). 

However, the emergence of acquired azole resistance has been reported in clinical Aspergillus 

fumigatus isolates, (6) in different continents (7-11).  

There is increasing evidence that azole resistance is associated with azole treatment  

failure (8,12,13), and in a recent Dutch survey azole-resistant IA was associated with a 12 

week mortality rate of 88% (8). These clinical observations are supported by animal models of 

IA, in which the MIC has been shown to have   major   implications   for   the efficacy of 

voriconazole and posaconazole (14, 15). Alternative treatment  regimens need to be explored 

in order to improve the outcome of patients with azole-resistant IA. 

Alternative options to treat infections caused by azole-resistant A. fumigatus include a 

lipid formulation of amphotericin B and combination therapy (5). Combination therapy can 

potentially increase the spectrum of efficacy, reduce toxicity, stabilize pharmacokinetic 

(PK)/pharmacodynamic (PD) characteristics and possibly prevent the emergence of resistance 

(16, 17).  

In one clinical study, the combination of voriconazole and caspofungin was shown to 

produce a  better response than  voriconazole monotherapy  in patients  with  IA, but in that 

study  a  historical  control  group was  used (16). However, these  patients  were  probably  

infected with  azole-susceptible Aspergillus isolates, although  in vitro susceptibility test 

results were not reported. 

As in vitro and in vivo interaction  studies suggest that the combination of an azole and an 

echinocandin may be synergistic (18, 21), this  combination  might  be  useful  as  a  strategy  

in patients  with  documented  azole-resistant  IA  or  as  primary therapy in those centres 

with a high prevalence of azole resistance. However, there are no in vivo data that confirm 

the observed synergistic interaction in azole-resistant IA. 

We report the efficacy of combination therapy with  voriconazole and anidulafungin in an 

established animal model of disseminated  IA. Although anidulafungin  is currently  not 

clinically licensed for the treatment  of IA, we investigated the voriconazole + anidulafungin 

combination as it is currently being evaluated in a large Phase III clinical trial (22, 23). The 

efficacy and interaction between voriconazole and anidulafungin were evaluated using 

voriconazole-susceptible and  voriconazole-resistant A. fumigatus isolates. 
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Methods 

Organisms 
Two clinical A. fumigatus isolates obtained from patients with proven IA were used in the 

experiments: a voriconazole-susceptible isolate without mutations in the cyp51A gene (AZN 

8196) and a voriconazole-resistant isolate (V 52-35) harbouring the  TR34/L98H  resistance  

mechanism. Strain identifications and cyp51A gene substitutions were confirmed by 

sequence-based analysis as described previously (7). The isolates  had been stored in 10% 

glycerol broth at -80oC and were revived by subculturing  on Sabouraud dextrose agar (SDA) 

supplemented  with  0.02% chloramphenicol for 5 – 7 days at 35-37oC. 

 

In vitro antifungal  susceptibility  testing 
The in vitro antifungal susceptibility test for voriconazole and anidulafungin (Pfizer, Capelle 

aan den IJssel, The Netherlands) was performed in triplicate based on EUCAST guidelines (24). 

The interaction testing of voriconazole and anidulafungin was performed by using a broth 

microdilution  chequerboard (two-dimensional  8×12) method,  utilizing XTT dye, as 

previously described (25, 26). 

 

Mouse infection model 
Outbred CD-1 (Charles River, The Netherlands) female mice, 4–5 weeks old and  weighing  20 

– 25 g,  were  used  in  all  experiments.  Animals were  infected  using the  procedure  

described previously by  injection of  an  inoculum  corresponding to  the  LD90   of  each 

isolate  into  the lateral  tail  vein (14, 27).   The LD90    of  the  voriconazole-susceptible  and 

voriconazole-resistant isolates used was 2.4×107  and 2.5×107  conidia, respectively. Post-

infection viability counts of the injected inocula were determined to ensure that the correct 

inoculum had been injected.  

The animals were housed under standard conditions with drink and feed supplied ad libitum 

and were examined at least three times daily. The animal studies were conducted in 

accordance with the recommendations of the European Community (Directive 86/609/EEC, 

24 November 1986), and all animal procedures were approved by the Animal Welfare 

Committee of Radboud University (RU-DEC 2010-187). 

For the efficacy study, 882 animals were randomized into groups of 11 mice. Treatment 

groups consisted of voriconazole monotherapy and anidulafungin monotherapy at 2.5, 5, 10 

and 20 mg/kg once daily and combinations of these regimens.  
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All data for efficacy of anidulafungin monotherapy   were from  a  previous  study (28). 

Briefly, intraperitoneal therapy was begun 24 h post-infection and comprised standard once- 

daily dosing of voriconazole and anidulafungin for 7 consecutive days. In addition, a single 

loading dose of the same amount of anidulafungin was injected in order to keep its PK 

parameters at a steady-state level. The control  groups received a single dose or multiple  

doses of saline as a control for monotherapy  or combination  therapy, respectively. On day 

15 post-infection, surviving mice were humanely euthanized under isoflurane anaesthesia, 

and blood and internal organs were collected. The survival time in days post-infection was 

recorded (29). 

A total of 144 mice were used for separate PK experiments of voriconazole monotherapy.  

Treatment was initiated with  intraperitoneal dosages of 5, 10, 20 and 40 mg/kg  

voriconazole 24 h after  infection with the voriconazole-susceptible isolate. On day 2 of 

treatment  (day 3 after infection), blood samples were drawn through the orbital vein or 

heart puncture into lithium – heparin-containing tubes at six predefined time points 

(immediately before administration of drugs and subsequently at 0.5, 1, 2, 4 and 8 h post-

dose), three mice per timepoint. Blood samples were  centrifuged  for  ×10 min  at 1000 g  

within  30 min  of  collection. Plasma was aspirated, transferred in two 2 mL plastic tubes 

and stored immediately at -80oC. 

 

Analytical assay of voriconazole and anidulafungin 

Voriconazole concentrations were measured by a validated (for human and mouse   matrices)   

HPLC   method   with   fluorescence  detection (Thermo Scientific, Breda, The Netherlands). 

The dynamic range of the assay was 0.05 to 10 mg/L and it had an accuracy range (n = 15), 

depending on the concentration, of 96.7% – 101.4%. Geometric mean concentrations of 

voriconazole in plasma from three mice were calculated separately for each timepoint. 

Plasma Cmax  values were directly observed from the data. PK parameters were derived using 

non-compartmental analysis with WinNonLin, version 5.2 (Pharsight, Inc., Mountain View, CA, 

USA).  The  AUC  from  time  0 to  24 h post-infusion (AUC0–24) was determined by use of the 

log-linear trapezoidal rule. The elimination rate constant was determined by linear regression 

of the terminal points of the log-linear plasma concentration – time curve. The terminal  half-

life  was  defined  as  ln2  divided  by  the  elimination   rate constant. CL was calculated as 

dose/AUC0– 24. The procedure and PK parameters for anidulafungin monotherapy are 

described in a previous study (28). 
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Exposure – response and statistical analysis 
All data analyses were performed by using GraphPad Prism, version 5.0, for Windows 

(GraphPad Software, San Diego, CA, USA).  

A regression analysis was conducted to determine linearity between dose and AUC. 

Mortality data were analysed by the log-  rank test. The survival data were plotted  against  

dose/MIC and the  Hill equation  with  a variable slope fitted to the data, both for each 

individual isolate and for pooled survival data. The curve was then fitted with minimum and 

maximum  survival constrained at ≥ 0% and ≤ 100%, respectively. The goodness of fit was 

checked by the R2  and visual inspection. Statistical significance was defined  as a  P  value of < 

0.05  (two-tailed). Dose/MIC and  AUC/MIC ratio data were transformed to log10  values to 

approximate a normal distribution prior to statistical analysis. 

In order to assess the nature of in vitro interactions between voriconazole and 

anidulafungin, the results of the chequerboard experiments were analysed using two non-

parametric no-interaction models: fractional inhibitory concentration indexes (FICIs) based on 

Loewe additivity theory, and a Bliss independence-based drug-interaction model based on the 

response surface approach developed by Prichard et al. (30).  

The  effects  of  combinations  of  voriconazole  and  anidulafungin in vivo were analysed 

by response surface analysis of the Bliss independence-based no-interaction  model  using 

survival as the  end- point (29).  The expected effect was determined using the model of 

Prichard et al. (30).  Observed versus expected percentage survival for various dosing 

regimens of combinations was also plotted for both isolates as described previously (31). 
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Results 

In vitro susceptibility 

The characteristics and in vitro susceptibilities of the two selected A. fumigatus isolates are 

shown in Table 1. Both isolates grew well after 48 h of incubation at 35 – 37oC. Voriconazole 

showed reduced in vitro activity against the TR34/L98H isolate, with an MIC of 4 mg/L (MIC of  

0.25 mg/L  for  the  wild-type  isolate). There was no difference in anidulafungin activity. 

 

In vitro drug interaction experiments 

The FICIs obtained  for  each  isolate  at  48 h  are  shown  in Table 1. Voriconazole and 

anidulafungin appeared to act synergistically against  both the voriconazole-susceptible 

isolate and the  voriconazole-resistant  isolate,  with  an  FICI of  0.35  and 0.43, respectively. 

Bliss independence-based response surface analysis showed statistically significant synergistic 

interactions  with  a sum  DE of 271.04% and a mean of DE 3.23%+SEM 1.10% for the 

voriconazole-susceptible isolate and a sum DE of 27.43% and a mean DE of 0.33%+SEM 

10.27% for the voriconazole-resistant isolate (Table 1). 

 

 
Table 1. Origin, in vitro susceptibilities, underlying azole resistance mechanisms and in vitro 

interaction of voriconazole + anidulafungin of voriconazole-susceptible and voriconazole-

resistant A. fumigatus isolates 

MEC, minimum  effective concentration. 
aDifference between observed versus expected percentage of fungal growth. 

ID number Origin 
Cyp51A 

substitution 
Voriconazole 
MIC  (mg/L) 

Anidulafungin 
MEC (mg/L) 

FICc 
index 

SUM 
ΔEa 

A.fumigatus 

AZN 8196 

Proven 
invasive 

aspergillosis 
None 

0.25 
(Susceptible) 

0.031 0.35 271.04 

A.fumigatus 

V 52-35 

Proven 
invasive 

aspergillosis 
TR34/L98H 4 (Resistant) 0.031 0.43 27.43 
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PK of voriconazole and anidulafungin 

The PK parameters of voriconazole and anidulafungin are shown in Table 2. In the case of 

voriconazole, the dose-normalized AUC increased and CL decreased with increasing dosages, 

confirming the non-linear PK of voriconazole. For anidulafungin, the AUC correlated 

significantly with  the dose in a linear fashion over the entire dosing range  (R2 = 0.86) (28). 

 

 

 

 
 
 
Table 2. PK parameters of voriconazole and anidulafungin following single- and multiple-dose 

intraperitoneal administration of 2.5–40 mg/kg AFG, anidulafungin; VRC, voriconazole. 

Intraperitoneal therapy was begun 24 h post-infection with standard daily dosing of 

voriconazole and anidulafungin in addition to a single loading dose of anidulafungin. All PK 

parameters for anidulafungin monotherapy are reproduced from a previous study (28). 
a Simulated analysis of PK assay ranging from 5 to 40 mg/kg. 

 

 
 
 

 

Dose (mg/kg) 

 

AUC 0-24 

(h.mg)/liter 

Dose-Normalized AUC 

(h.mg)/(liter.kg) 
T max (h) 

Cmax  

(mg/liter) 

Cmin 

(mg/liter) 

CLss/F 

liter/(h.kg) 

AFG VCZ AFG VCZ AFG VCZ AFG VCZ AFG VCZ AFG VCZ AFG VCZ 

2.5 2.5 46.5a 1.05a 18.6 a 0.42a  - - - - - - - - 

5 5 93 2.6 18.6 0.51 8 0.5 7.9 1.9 0.82 0.15 0.05 1.9 

10 10 141.4 12.9 14.1 1.3 2 0.5 10.7 5.0 3.3 0.07 0.07 0.77 

20 20 326.3 58.1 16.3 2.9 0.5 0.5 22.2 12.3 6.4 0.06 0.06 0.34 

40 40 802.7 192.8 20.1 4.8 4 0.5 49.5 40.1 20.7 0.24 0.05 0.21 
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Efficacy of voriconazole and anidulafungin monotherapy 
For the voriconazole-susceptible isolate as well as the voriconazole-resistant isolate, a dose–

response relationship was observed for both drugs. Voriconazole and anidulafungin  

treatment improved the survival of the mice in a dose-dependent manner  (Table 3), 

although,  for each dose, the  response was lower  in those  infected  with  the  voriconazole-

resistant isolate than in those infected with the voriconazole-susceptible isolate. The 

maximum  dose of voriconazole resulted in 100% survival in mice infected with the 

voriconazole-susceptible isolate compared with  72.2%  in  mice  infected  with  the  

voriconazole-resistant isolate, indicating that higher doses of voriconazole were required to 

achieve similar efficacy. In mice receiving anidulafungin mono- therapy, the survival rate was 

72.7% and 45.4% for 20 mg/kg, respectively, and a maximal  response could not be achieved 

in mice infected with either isolate, even in those treated with the highest anidulafungin dose 

(28). 

The AUC for each dose (Table 2) was used to  determine the AUC0–24/MIC ratio for each 

isolate. Increased voriconazole exposure was required to obtain maximum  efficacy in mice 

infected   with   the   voriconazole-resistant   isolate   compared with  those  infected  with  

the  voriconazole-susceptible isolate. The 50%  effective  AUC0–24/MIC for  voriconazole  was  

3.71 (95% CI = 1.19 – 11.59) compared with 126.5 (95% CI = 79.09 –202.03)  for  

anidulafungin.  The Hill  equation  with  a  variable slope fitted  well the relationship between 

24 h AUC/MIC ratio and 14 day survival (R2= 0.80 voriconazole and R2=0.70 anidulafungin), as 

statistically  significant PD indices for single-agent regimens (P≤0.05). 

 

Efficacy of voriconazole and anidulafungin combination 

therapy 

Figure 1 shows selected survival curves for mice infected with voriconazole-susceptible   and   

voriconazole-resistant   isolates and  treated  with  the  highest  dose regimens of  

voriconazole and anidulafungin monotherapy (10 and 20 mg/kg voriconazole) or with  

voriconazole + anidulafungin  combination  therapy. Survival of 100% was observed in the 

groups of mice infected by the voriconazole-susceptible isolate and treated with 20 mg/kg 

voriconazole or with 10 mg/kg  voriconazole when  combined with   anidulafungin   (10  and  

20 mg/kg).  In  contrast,  in  the groups infected by the voriconazole-resistant isolate, 100% 

survival was  not  achieved in  groups receiving monotherapy, but  only  in  one  treatment 

group,  that  receiving  20 mg/kg voriconazole + 20 mg/kg anidulafungin. 
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Figure 1. Efficacy of 10 and 20 mg/kg voriconazole and anidulafungin monotherapy versus 

voriconazole + anidulafungin combination therapy against (a) voriconazole-susceptible and 

(b) voriconazole-resistant A. fumigatus isolates. Survival is increased following combination 

therapy compared with single-drug therapy. AFG, anidulafungin; VRC, voriconazole. 
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Table 3 shows the survival rates of voriconazole and anidulafungin  monotherapy   versus  

voriconazole + anidulafungin combination  therapy incorporating the full range of dose 

regimens for each isolate.  

Interestingly, combination  therapy with voriconazole + anidulafungin was found to 

significantly improve the efficacy of antifungal therapy compared with that obtained with 

each drug alone. To determine possible synergism between voriconazole and anidulafungin,   

the  efficacy  was  analysed  based  on  Bliss expected  effect   (Eexpected)  and  the  

experimentally  observed effect  (Eobserved)  was calculated  to  assess antifungal  efficacy of  

combination  therapy.  Significant Bliss independence-based synergy was found in vivo 

between voriconazole and anidulafungin, with observed effects being 119.0% and 35.5% 

higher than would be expected  if  the  drugs  were  acting  independently against 

voriconazole-susceptible and voriconazole-resistant A. fumigatus infection, respectively 

(Figure 2). 

Figure 3 shows the relationship between observed versus expected percentage of survival 

for all voriconazole + anidulafungin combinations.   

Based on the  AUC0–24/MIC–response relationships, there appeared to be an excellent 

linear relationship between    observed   and    expected   AUC0–24/MICs  of    the 

combinations. For the voriconazole-susceptible isolate, the slope was significantly different 

from 1 and the intercept significantly different  from  0, indicating  synergism. In  contrast,  

the  slope was not significantly different from 1 for the voriconazole- resistant isolate, and the 

intercept was not significantly different from 0, indicating additivity. 

 

 

 

 

 

 

 

 

 

4 

 

4 
 



CHAPTER 4.2 |  

 

120 

 

 

 

 
Table 3. Observed in vivo efficacy of voriconazole + anidulafungin combination therapy 

against infection caused by the voriconazole- susceptible (MIC 0.25 mg/L) and voriconazole-

resistant (MIC 4 mg/L) A. fumigatus isolates 

AFG, anidulafungin; VRC, voriconazole. 

Results are presented as observed percentage of survival. 

 

Observed % survival of voriconazole + anidulafungin combination therapy  

V
o

ri
co

n
az

o
le

-s
u

sc
e

p
ti

b
le

  A
.f

u
m

ig
a

tu
s Dose mg/kg 0 2.5 VCZa 5 VCZ 10 VCZ 20VCZ 

0 0 18.2 72.7 81.8 100 

2.5 AFG 18.2 54.5 72.7 90.9 100 

5 AFG 27.3 72.7 90.9 90.9 100 

10 AFG 45.4 81.8 81.8 100 100 

20 AFG 72.7 90.9 90.9 100 100 

 

V
o

ri
co

n
az

o
le

-r
e

si
st

an
t 

A
.f

u
m

ig
a

tu
s 

0 0 9.1 45.4 63.6 72.7 

2.5 AFGb 9.1 18.2 54.6 54.6 81.8 

5 AFG 18.2 36.4 54.6 63.6 81.8 

10 AFG 36.4 45.4 72.7 63.6 81.8 

20 AFG 45.4 63.6 72.7 81.8 100 
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Figure 2.  

A. fumigatus SUM ΔE (%) Mean ΔE (%) ± SEM 

Voriconazole-susceptible 
(MIC 0.25 mg/L) 

119.0 7.4 2.7 

Voriconazole-resistant 
(MIC    4   mg/L) 

35.5 2.2 2 

4 

 

(a) 

(b) 
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Figure 2. Interaction surfaces obtained from  response surface analysis of Bliss independence 

no-interaction  model  for in vivo combination  of voriconazole and anidulafungin  against  (a)  

voriconazole-susceptible (voriconazole  MIC = 0.25 mg/L  and  anidulafungin  MEC = 0.03 

mg/L)  and  (b) voriconazole-resistant (voriconazole MIC = 4 mg/L and anidulafungin  MEC = 

0.03 mg/L) A. fumigatus isolates.  

The x-axis and y-axis represent the efficacy of voriconazole and anidulafungin, respectively. 

The z-axis is DE in %. The 0-plane represents Bliss independent interactions, whereas the 

volumes above the  0-plane  represent statistically  significantly  synergistic (positive DE)  

interactions. 

The magnitude of interactions is directly related to DE. The different tones in three-

dimensional plots represent different percentile bands of synergy. AFG, anidulafungin; VRC, 

voriconazole; MEC, minimum  effective concentration. 
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Figure 3. Observed versus  predicted  (using  non-parametric   Bliss independence  no-

interaction   model)  percentage  of  survival  for  various intraperitoneal  dosing regimens 

(2.5, 5, 10 and 20 mg/kg)  of voriconazole + anidulafungin  combinations.  

The slope significantly deviated from 0 for both voriconazole-susceptible (bottom) and 

voriconazole-resistant (below) A. fumigatus isolates (non-0 slope, with  P  value <0.0001). The 

PD indices (AUC0–24/MIC) of single agents were used to predict the efficacies of the 

combination therapy on the basis of a linear regression analysis to determine the presence of  

synergism. By plotting  predicted  versus observed effect,  any deviation  of  slope from  1 and  

intercept  from  0 indicates interaction in vivo. 
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Discussion 

In the present study we investigated whether the combination of voriconazole and 

anidulafungin could be used as a treatment option in patients with azole-resistant IA using an 

experimental model of infection. We observed that the combination of voriconazole and 

anidulafungin was synergistic in voriconazole- susceptible IA, but additive in voriconazole-

resistant IA. Voriconazole monotherapy was effective against the voriconazole- susceptible 

isolate, whereas efficacy of voriconazole was significantly  reduced  in  mice  infected   with   

the  TR34/L98H isolate, with an MIC of 4 mg/L. For the latter, maximum survival was not 

reached with the highest dose.  

The exposure–response relationships indicate that increased survival of both 

voriconazole-susceptible   and   voriconazole-resistant   isolates was dependent on the dose, 

but a much better relationship existed with  the total  AUC0-24/MIC ratio, in line with  

previous results (14, 27). Those studies, as well as others (32), have indicated that achieving a 

serum free-drug AUC/MIC ratio of greater than 25 is the value of the PD index linked to 

successful treatment. Since the  MIC for  the  voriconazole-resistant isolate is 4 mg/L and the 

AUC0–24 is 58.1 h.mg/L for the 20 mg/kg voriconazole dose (and the unbound fraction even 

lower, 17.0 h.mg/L), this explains why a maximum  effect  could not be reached for the 

resistant isolate.  

Anidulafungin monotherapy was less effective and, although increasing doses increased 

survival, maximum survival  was  not  achieved  for  infections  with  either  isolate, which 

explains why anidulafungin is not an effective echinocandin for single-drug therapy against 

aspergillus infections. 

A possible limitation  of the experimental design used in the current study is that the 

effects were observed in non- neutropenic animals and the route of infection was 

dissemination rather than inhalation. However, IA in the non-neutropenic host is observed 

with increasing frequency, although other host factors might  be impaired in such patients, in 

particular those in intensive care units (1).  The effects observed could therefore be an 

underestimate of the exposure required. On the other hand, studies with  posaconazole and  

voriconazole in a neutropenic model (15), and  non-neutropenic   model (14, 27),  have  

shown  that the exposure – response relationships are of the same order of magnitude;  in 

fact,  slightly  lower  exposures were required in the neutropenic model. 

There are conflicting reports on the efficacy of combination therapy with    

voriconazole+ anidulafungin.   van   de   Sande et al. (34), using human-equivalent doses of 

both drugs, found no additional benefit of adding anidulafungin to treatment with 

voriconazole for a voriconazole-susceptible isolate.  
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In our study there  was  a  clear  benefit  of  adding  anidulafungin,  and  the combination 

was found to be synergistic rather than additive. In other studies, the combination  was also 

found to significantly enhance  the  efficacy  of  antifungal   therapy  compared  with either 

drug alone as measured by increased survival, reduction in residual fungal burden (log cfu/g), 

reduced galactomannan antigenaemia and decreased pulmonary injury (determined by lung  

weights,  pulmonary  infarct  scores and  CT  scan  image score), indicating a synergistic action 

in vivo (19).   

Our results are also comparable to in vitro or animal studies comparing other 

combinations of echinocandins and triazoles. Indeed, synergistic or additive effects of 

echinocandins combined with an azole anti- fungal have been observed in some in vitro and 

experimental animal models (16,17, 19, 20, 34-45). In such studies, synergistic combinations 

were obtained when voriconazole was combined with caspofungin in a guinea pig model of IA 

(40, 46), or in combination with micafungin  in  the  study  of  Lewis and  Kontoyiannis (39). 

In vivo synergistic interaction between ravuconazole and micafungin in experimental  

invasive pulmonary  aspergillosis led to significant reductions in mortality, residual fungal 

burden and serum  galactomannan   antigenaemia,  compared  with  either agent alone (46). 

Cuenca-Estrella et al. (35), reported in vitro synergistic interactions between itraconazole and 

caspofungin, similar to the study of Shalit et al. (36). In vivo synergy between voriconazole 

and caspofungin n has been demonstrated by Kirkpatrick et al. (41), in an experimental model 

of IA in guinea pigs. 

Although we did find that the combination  had a beneficial effect  on  infection  with  the 

voriconazole-resistant  isolate,  and 100% survival could be reached using the highest doses of 

both drugs, the effect of the combination on the voriconazole-resistant isolate was some-

what different  from  the effect on the voriconazole-susceptible   isolate,  and  appears  to  be  

additive rather  than  synergistic.  This was  confirmed  by  applying  the methodology 

developed previously for antibacterial drugs (31). 

We found a good correlation between the expected effects of the combination, based on 

the relationship between AUC0–24/MIC and mortality during single drug therapy, and the 

observed effects. Thus, for the voriconazole-resistant isolate, the effect of the combination 

could be predicted by adding the predicted effects based on the AUC0─24/MIC relationships 

found for monotherapy based on the Prichard model, whereas clear synergy was observed for 

the voriconazole-susceptible isolate. Translating these results to treatment for infections in 

humans, it can be concluded that the addition of anidulafungin to voriconazole has merit, in 

particular for infections caused by voriconazole susceptible isolates.  
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Although most guidelines indicate voriconazole as an agent of choice, the cure rate in 

patients treated with voriconazole alone is not optimal (4-6), and addition of anidulafungin, 

especially in patients with advanced or severe disease, may be of benefit. The question that 

remains is whether the additive effect of anidulafungin in patients with voriconazole resistant 

isolate infections is enough to overcome resistance and up to which MIC of voriconazole 

application of anidulafungin is meaningful.  

The loss of synergistic drug interaction between voriconazole and anidulafungin in mice 

infected with an A. fumigatus isolate for which  voriconazole has an MIC of  4 mg/L  raises 

concern regarding the use of this combination in azole-resistant IA. This indicates that the 

drug interaction varies according to the susceptibility  of  the  isolate  to  voriconazole. It 

seems that  the azole target is lost in isolates for which the MIC is high and the loss of 

voriconazole efficacy cannot be overcome by adding anidulafungin.  

The MIC of voriconazole for the TR34/L98H isolate we used in our experiments was 4 mg/L, 

which is above the resistance breakpoint of > 2 mg/L.6 In isolates for which the MIC of 

voriconazole is higher, i.e. 8, 16  or  >16 mg/L,  possibly even less drug interaction  can be 

expected. As the drug interaction between echinocandins and triazoles is most likely due to 

simultaneous independent mechanisms of action, the consequence could be that in those 

isolates for which the MIC of voriconazole is 16 mg/L the efficacy of the voriconazole + 

anidulafungin combination relies solely on the efficacy of anidulafungin, which is suboptimal. 

Clearly, it is difficult to extrapolate our observations to general statements regarding the 

use of voriconazole + anidulafungin in the management  of azole-resistant IA as we have 

investigated only one voriconazole-resistant isolate with one resistance mechanism. More 

isolates should be investigated in order to understand in  more  depth  the  potential   of  

voriconazole + anidulafungin combination therapy in azole-resistant aspergillus disease. 

 In conclusion, there is a clear benefit of combining voriconazole and anidulafungin, but 

the reduced effect of combination therapy in azole-resistant IA raises some concern.
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Abstract 

The management of invasive aspergillosis (IA) has become more complicated due to the 

emergence of acquired azole resistance in Aspergillus fumigatus, which is associated with 

treatment failure and a mortality rate of 88%. Treatment with liposomal amphotericin B (L-

AmB) may be a useful alternative to improve therapeutic outcome in azole-resistant IA. Four 

clinical A. fumigatus isolates obtained from patients with proven IA were studied in a 

nonneutropenic murine model of infection: a wild- type isolate without mutations in the 

cyp51A gene and three azole-resistant isolates harboring a single mutation at codon 220 

(M220I) and tandem repeat mutations (a 34bp tandem repeat mutation in the promoter 

region of the cyp51A gene in combination with substitutions at codon L98 [TR34/L98H] and a 

46-bp tandem repeat mutation in the promoter region of the cyp51A gene in combination 

with mutation at codons Y121 and T289 [TR46/Y121F/T289A]), respectively. Female CD-1 mice 

were infected intravenously 24 h prior to the start of therapy. Groups of 11 mice were treated 

at days 1, 2, and 5 postchallenge with in- creasing 4-fold doses of L-AmB ranging from 0.004 to 

16 mg/kg/day and observed for 14 days. Survival for all 4 isolates at day 14 was significantly 

better than that of controls. A dose-response relationship was observed independent of the 

azole resistance mechanism. The Hill-type model with a variable slope fitted the relationship 

between the dose and 14-day survival well for all isolates, with R2 values of 0.95 (wild-type), 

0.97 (M220I), 0.85 (TR34/L98H), and 0.94 (TR46/Y121F/T289A), respectively. Multiple logistic 

regression analysis confirmed that there was no significant difference between groups. The 

results of these experiments indicate that L-AmB was able to prolong survival in vivo in 

disseminated IA independent of the presence of an azole resistance mechanism in a dose-

dependent manner, and therefore, they support a role for L-AmB in the treatment of azole-

resistant IA. 
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Introduction 

Voriconazole is the recommended first-choice therapy for invasive infections caused by 

Aspergillus species (1, 2). However, the management of invasive aspergillosis (IA) has become 

more complicated due to the emergence of acquired azole resistance in Aspergillus fumigatus 

(3), and azole resistance has been reported on different continents (4–8). There is increasing 

evidence that azole resistance is associated with treatment failure (5, 9, 10), and a mortality 

rate of 88% has been reported (5). These clinical observations are also supported by animal 

models of IA, where the MIC was shown to have major implications for the efficacy of 

voriconazole and posaconazole (11, 12). Therefore, it is important to explore alternative 

treatment regimens. Lipid formulations of the amphotericin B and echinocandin antifungals or 

combination therapy may be important alternative options, in patients with azole-resistant 

Aspergillus diseases. 

We previously investigated the pharmacodynamics of anidulafungin monotherapy and the 

combination of voriconazole and anidulafungin (13–15). Although anidulafungin treatment 

improved the survival of mice in a dose-dependent manner, a maximal response was not 

achieved when mice were infected with an azole-susceptible or azole-resistant isolate, even in 

those treated with the highest anidulafungin dose. The results of combination therapy 

suggested that voriconazole and anidulafungin have a synergistic interaction in mice 

infected with a voriconazole-susceptible isolate. However, the synergistic interaction was lost 

in the azole-resistant isolate (voriconazole MIC, 4 mg/liter), as only an additive interaction was 

observed (13). A relation between the voriconazole MIC and the fractional inhibitory 

concentration (FIC) index was observed in vitro, which indicated that further increase of the 

voriconazole MIC was associated with less favor- able drug interaction (14). In infection due 

to isolates which are highly resistant to voriconazole, the efficacy of the combination might 

rely only on that of anidulafungin, which is suboptimal. In clinical practice, this is a major 

drawback, as isolates that are highly resistant to voriconazole are increasingly common (4), and 

in culture-negative patients we will be unable to determine voriconazole susceptibility. 

Treatment with a liposomal amphotericin B (L-AmB) may be a useful alternative to improve 

therapeutic outcome in azole-resistant IA, as the in vitro activity of AmB appears not to be 

affected in azole-resistant isolates (J. W. M. Van der Linden, S. M. Camps, G. A. Kampinga, J. 

P. A. Arends, Y. J. Debets-Ossenkopp, P. J. A. Haas, B. J. A. Rijnders, E. J. Kuijper, F. H. van Tiel, 

J. Varga, A. Karawajczyk, J. Zoll, W. Melchers, and P. E. Verweij, submitted for publication). L-

AmB has been developed to reduce toxicity and enhance the safety profile and efficacy of 

AmB (16–20). L- AmB significantly reduced dose-limiting toxicities by allowing administration of 

higher doses of the drug and improving the pharmacokinetic and pharmacodynamic properties 

(21, 22). 
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There are currently no data on the in vivo efficacy of L-AmB in azole-resistant IA. Here we 

investigated the pharmacodynamics and dose- response relationships of L-AmB against wild-

type and three clinical azole-resistant A. fumigatus isolates harboring different resistance 

mechanisms in an immunocompetent murine model of disseminated aspergillosis. 

 

Materials and Methods 

Fungal isolates 

Four clinical A. fumigatus isolates obtained from patients with proven IA (classified according to 

EORTC/MSG [European Organization for Research and Treatment of Cancer/Invasive Fungal 

Infections Cooperative Group and the National Institute of Allergy and Infectious Diseases 

Mycoses Study Group] consensus definitions) (23) were used in the experiments: a wild-type 

isolate without mutations in the cyp51A gene (isolate AZN 8196) and three azole-resistant 

isolates harboring an M220I (isolate V28-37), a TR34/L98H (isolate V52-35), and a 

TR46/Y121F/ T289A (isolate V54-10) resistance mechanism. Strain identification and the 

cyp51A gene substitutions were confirmed by sequence-based analysis as described previously 

(4). The isolates had been stored in 10% glycerol broth at -80°C and were revived by 

subculturing on Sabouraud dextrose agar (SAD) supplemented with 0.02% chloramphenicol for 

5 to 7 days at 35 to 37°C. The in vitro antifungal susceptibilities to AmB, itraconazole, 

voriconazole, and posaconazole were determined based on the EUCAST guidelines, using a 

broth microdilution format (24). 

Infection model 

A total of 604 outbred CD-1 (Charles River, the Netherlands) female mice, 4 to 5 weeks 

old, weighing 20 to 25 g, were randomized into groups of 11 mice for L-AmB monotherapy. 

Animals were infected using the procedure described before (11, 13, 15, 25). Before performing 

the experiment, the isolates were cultured once on SAD for 5 days at 35 to 37°C and 

subcultured twice on 15-cm Takashio slants for 5 days at 35 to 37°C. The conidia were 

harvested in 20 ml of sterile phosphate-buffered saline (PBS) plus 0.1% Tween 80 (Boom B.V., 

Meppel, the Netherlands). The conidial suspension was filtered through sterile gauze folded 

four times to remove any hyphae, and the conidia were counted in a hemocytometer. After 

the inoculum was adjusted to the required con- centration, the conidial suspension was 

stored overnight at 4°C. The 90% lethal dose (LD90) was determined for each isolate 

separately.  
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Mice were infected via injection of an inoculum corresponding to LD90 of each iso- late 

into lateral tail vein. The LD90 was 2.4 X 107 (wild-type control), 5 X 107 (M220I), 2.5 X 107 

(TR34/L98H), and 3.5 X 107 (TR46/Y121F/T289A) conidia, respectively. Postinfection viability 

counts of the injected inocula were determined to ensure that the correct inoculum had been 

injected. The animals were housed under standard conditions, with food and water supplied ad 

libitum. The animal studies were conducted in accordance with the recommendations of the 

European Community (directive 86/ 609/EEC, 24 November 1986), and all animal procedures 

were approved by the Animal Welfare Committee of Radboud University (RU-DEC2012-

050).The infected mice were examined at least three times daily. These clinical inspections 

were carried out in order to ensure that there were no cases of desiccation, torticollis, 

staggering, extreme weight loss (a decrease of 15% within 48 h or 20% within 24 h), or body 

temperature drop to below 33°C. Mice demonstrating these signs of disease were humanely 

terminated. On day 15 postinfection, all remaining surviving mice were humanely euthanized 

under isoflurane anesthesia, and blood and internal organs were collected. The survival (in 

days postinfection) was recorded for each mouse in each group and was considered an 

outcome effect measure to assess the therapeutic efficacy of L-AmB monotherapy (26). 

Antifungal compound and treatment regimens 

The commercial formulation of L-AmB (Ambisome) was obtained from manufacturer 

(Gilead Sciences, Amsterdam, the Netherlands). Drug solutions were pre- pared on the day of 

study following instructions of the manufacturer, diluted with a standard 5% glucose 

solution to obtain the desired concentration. Mice were treated intravenously at days 1, 2, 

and 5 postchallenge with increasing 4-fold doses of L-AmB ranging from 0.004 to 16 mg/kg 

once daily and observed for 14 days. Control mice were infected but received only 5% 

glucose. 

Statistical analysis 

All data analyses were performed by using GraphPad Prism, version 5.0, for Windows 

(GraphPad Software, San Diego, CA). Mortality data were analyzed by the log rank test. The 

relationship between the in vivo efficacy (survival) and dose was determined by non- linear 

regression analysis and the Hill equation with a variable slope fitted to the data, with the 

maximum effect (maximum survival) constrained at <100%. The goodness of fit was checked 

by the R2 and visual inspection. Statistical significance was defined as a P value of <0.05 (two-

tailed). For comparison, an F test was performed to define whether the best-fit values (log 

50% effective concentration [EC50]) differed between the four groups. 
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Results 

In vitro susceptibility 

The characteristics and in vitro susceptibilities of the four A. fumigatus isolates are shown in 

Table 1. All isolates grew well after 48 h of incubation at 35 to 37°C. The isolates harboring a 

resistance mechanism showed variable susceptibility profiles against the three azoles. In 

comparison to a MIC of 0.25 mg/liter for the wild-type isolate, voriconazole showed similar 

activity against the isolate harboring the M220I resistance mechanism (MIC, 0.5 mg/liter) but 

reduced in vitro activity against TR34/L98H and TR46/Y121F/T289A isolates, with MICs of 4 and 

16 mg/liter, respectively. There was no difference in the AmB activity between the isolates. 

 

 

 

 

 

Table1. Characteristics of A. fumigatus isolates. All isolates were associated with proven IA, 

according to EORTC/MSG consensus definitions (23).  

MEC, minimum effective concentration; IA, invasive aspergillosis; AMB, amphotericin B; ITC, 

itraconazole; VRC, voriconazole; POS, posaconazole; AFG, anidulafungin. 

 

 

Strain no. 
 Aspergillus 

disease 

Prior   
azole  

exposure 

Cyp51A  
substitution 

MIC or MEC 
 (mg/L) 

AMB ITC 
 

VRC 
 

POS AFG 

 AZN 8196 Proven IA No None 0.5 0.125 0.25 
0.03

1 
0.031 

 V 28-77 Proven IA Yes M 220 I 0.5 >16 0.5 0.5 0.031 

 V 52-35 Proven IA No TR34/L98H 0.5 >16 4 0.5 0.031 

 V 94-10 Proven IA No TR46/Y121F/T289A 0.5 1 >16 0.25 0.016 
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Efficacy of L-AmB monotherapy 

(i) Survival curves 

Figure 1 shows the survival curves of L-AmB-treated mice by dose. The survival curves for 

all control groups receiving intravascular 5% glucose, showed a mortality of 90 or 100%. 

Survival for all four azole-resistant isolates at day 14 was significantly better than that of 

controls. The maximum effect (100% survival) was reached at a dose of 16 mg/kg for the 

wild-type, M220I, and TR34/L98H isolates and at a dose of 4 mg/kg for the 

TR46/Y121F/T289A mutant.  

 

 
 
Figure 1. Efficacy of L-AmB against 4 A. fumigatus isolates. Survival curves are depicted by 

strain. Animals were treated intravenously at days 1, 2, and 5 postchallenge with increasing 

4-fold doses of L-AmB ranging from 0.004 to 16 mg/kg/day and observed for 14 days. Placebo 

groups received 5% glucose. For all groups, n = 11. 
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(ii) Dose-response analysis 

The dose-response curves for dosing regimens and control groups of L-AmB monotherapy 

are shown in Fig. 2. L-AmB treatment improved the survival of the mice in a dose-

dependent manner. A dose-response relationship was observed that depended on the L-

AmB dose level but was independent of the azole-resistance mechanisms. The Hill-type 

model with a variable slope fitted the relationship between the dose and 14-day survival 

well, with R2 values of 0.95 (wild type), 0.97 (M220I), 0.85 (TR34/L98H) and 0.94 

(TR46/Y121F/T289A), respectively. The 50% effective dose (ED50) was 0.29 mg/kg (95% 

confidence interval [CI], 0.05 to 1.65 mg/kg) for the wild type, 0.20 (95% CI, 0.05 to 0.74 

mg/kg) for M220I, 0.59 (95% CI, 0.02 to 14.80 mg/kg) for TR34/L98H, and 0.078 (95% CI, 

0.008 to 0.69 mg/kg) for TR46/Y121F/T289A isolate. 

 
 

 

Figure 2. Fourteen-day survival as a function of L-AmB dose against 4 A. fumigatus isolates. 

Shown are data for the wild type (AZN81-96; voriconazole [VRC] MIC, 0.25 mg/liter) and for 

the M220I (isolate V28-77; VRC MIC, 0.5 mg/ liter), TR34/L98H (V52-35; VRC MIC, 4 

mg/liter), and TR46/Y121F/T289A (V94-10; VRC MIC, 16 mg/liter) mutants. L-AmB treatment 

improved the survival of the infected mice in a dose-dependent manner for all four isolates. 

The curves indicate fits with the Hill equation for each isolate. 
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(iii) Comparative efficacy of L-AmB against the four isolates 

In order to compare the efficacy of L-AmB in treating infection caused by the different 

isolates, the best-fit values for the curves were defined based on the EC50, EC80, and EC90 

of L-AmB and compared to each other (Table 2). The efficacy of L-AmB was not different 

between the isolates with an azole resistance mechanism and wild-type controls (P > 0.05), 

and no difference in efficacy was found when different azole resistance mechanisms were 

compared (P>0.05). The null hypothesis was not rejected in an F test (P = 0.92, F = 0.2241, DFn 

[degrees of freedom numerator]=4, and DFd [degrees of freedom denominator] = 54), 

indicating that log EC50 did not significantly differ between the four groups (Table 2). In 

addition, multiple logistic regression analysis confirmed that there was no significant 

difference between groups (results not shown). 

 

 

Table. Efficacy of L-AmB against four A. fumigatus isolates. No differences were significant. 

DFn, degrees of freedom numerator; DFd, degrees of freedom denominator. 

 

 

 

Efficacy of 
L-AmB 

A. fumigatus isolates 

P 
value 

F test 
(DFn, DFd) 

Difference 
between 
efficacy Wild Type M 220 I Mutant TR34/L98H Mutant 

TR46/Y121F/T289A 
Mutant 

Log EC50 -0.53 (-1.28 to 0.21) -0.70(-1.26 to -0.13 ) -0.22(-1.6 to 1.17 ) -1.10(-2.06 to -0.16 ) 0.70 0.55 (4.49) ns* 

Log EC80 0.71 (-0.036 to 1.46) 0.47 (-0.09 to 1.03) 1.24 (-0.21 to 2.70) 0.10 (-0.73 to 0.94) 0.23 1.459 (4,49) ns 

Log EC90 1.44 (0.34 to 2.53) 1.15 (0.34 to 1.96) 2.10 (-0.12 to 4.32) 0.81 (-0.37 to 2.00) 0.43 0.97 (4,49) ns 
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Discussion 

In the present study, we investigated whether L-AmB could be used as an alternative 

treatment option in patients with azole- resistant IA, using an experimental model of 

infection. We observed that L-AmB was able to prolong survival in vivo in disseminated IA due 

to azole-resistant A. fumigatus isolates independent of the azole resistance phenotype. Despite 

a wide variation in susceptibility to the primary treatment option, voriconazole (range, 0.5 to 

16 mg/liter), a maximal response was achieved with each isolate. Our model indicated that L-

AmB exhibited a dose-dependent effect on survival, with increasing doses corresponding with 

increased survival. 

Both in vitro and in vivo AmB and lipid AmB formulations generally display concentration-

dependent fungicidal activity that begins to plateau once concentrations exceed the MIC of the 

infecting pathogen by 4- to 10-fold (27, 28). The concentration- dependent killing and post 

antifungal effects of AmB had already been shown in several in vitro and in vivo studies of 

efficacy against Candida and Aspergillus species, when the concentration of AmB was increased 

to a level multiple times higher than the MIC (27, 29–35). We previously compared dose-

response relationships of three AmB formulations in our nonneutropenic murine model of IA 

using the same wild-type isolate that was used as the control strain in the present study (20). 

Our previous work indicated that L-AmB exhibited a dose-dependent effect on survival and that 

the maximum effect in terms of survival was higher for L-AmB than for conventional AmB and 

AmB lipid complex (79 to 100%, P <0.05). The maximum effect was reached at a dose of 16 

mg/kg of L-AmB, and the ED50 was 0.06 mg/kg (95% CI, 0.03 to 0.127) (20).  

These results are similar to the present results, as the maximum effect (100% survival) was 

reached at a dose of 4 or 16 mg/kg for all isolates. Our observations are also in keeping with 

previously published experimental studies of aspergillosis (18, 19, 36–40). Leenders et al. 

reported that in a pulmonary aspergillosis infection in rats, L-AmB monotherapy at 5 and 10 

mg/kg was effective in pre- venting dissemination from the lungs to the kidneys, liver, and 

spleen (36). Survival improved from 57% to 86% as the dose of L-AmB increased from 5 to 15 

mg/kg. In another study, Takemoto et al. reported that both 3 and 10 mg/kg of L-AmB were 

efficacious, although 10 mg/kg was the most protective in disseminated murine aspergillosis 

(19). 

The pharmacodynamic target Cmax/MIC (maximum concentration-to-MIC ratio) has been 

shown to be the best predictive parameter for AmB treatment efficacy (28, 41). In one study, 

the pharmacokinetics and pharmacodynamics of L-AmB were investigated in a small cohort of 

pediatric oncology patients with Aspergillus infections (42). In this study, the maximal efficacy 

associated with a higher probability of treatment response was observed when the Cmax/MIC 

of L-AmB was greater than 40, taking into account the individual patient pharmacokinetic 



 L-AMB AGAINST AZOLE-RESISTANT ASPERGILLUS FUMIGATUS 

145 

data, the MIC of the infecting organism, and clinical outcomes. In a similar fashion, when 

pharmacodynamics of AmB in a neutropenic mouse model of disseminated candidiasis were 

evaluated, increased killing was observed when the concentration of drug exceeded the MIC 

2- to 10-fold (27, 33). However, Wiederhold et al. evaluated the pharmacodynamic 

characteristics of AmB in a murine model of invasive pulmonary aspergillosis (28) in which 

the maximal efficacy against this Aspergillus strain was observed at Cmax/MIC values near 2. 

In the present study, the maximum survival was reached at a dose of 16 mg/kg for the 

wild-type, M220I, and TR34/L98H isolates and at a dose of 4 mg/kg for the TR46/Y121F/T289A 

isolate. For most adults, standard L-AmB doses of 3 to 5 mg/kg should surpass the maximum 

concentration-to-MIC ratio of 40 unless the pathogen has an AmB MIC of 2 mg/liter or 

greater (43). In addition, in a recent clinical study that examined the benefits of increasing 

the dosage to 10 mg/kg of L-AmB daily in patients with proven or probable aspergillosis, the 

effectiveness of 3 mg/kg of L-AmB per day as first-line therapy for invasive aspergillosis was 

demonstrated (44). 

We used survival as the endpoint. Although the disadvantage remains that a relatively 

large number of animals is needed to determine dose-response relationships, at present 

survival studies are still considered the most reliable effect measure to assess the efficacy of 

antifungals in experimental models of IA (26). However, efforts are underway and new 

techniques such as qPCR will probably replace survival in the near future, once these models 

have been sufficiently validated (26, 45, 46). 

A possible limitation of the experimental design used in our study is that the effects were 

observed in nonneutropenic animals and the route of infection was intravenous, which is not 

the natural route of infection. The advantage of the model is that administration of 

immunosuppressive drugs, with potential implications for the results, and bacterial sepsis 

do not occur. We believe that our model performs well, giving exposure-response relation- 

ships similar to those in other models of infection. Studies with posaconazole and 

voriconazole in neutropenic (12) and nonneutropenic (11, 25) models have shown that the 

exposure-response relationships are on the same order of magnitude; in fact, slightly lower 

exposures were required in the neutropenic model. 

Given that the clinical experience with the treatment of azole- resistant IA is still limited, it 

remains difficult to develop a treat- ment algorithm. Our study showed that the efficacy of 

L-AmB against isolates harboring different azole resistance mechanisms was similar to that 

against the wild-type control, indicating that L-AmB might have a role in the management of 

azole-resistant A. fumigatus disease.  

In patients receiving azole therapy or prophylaxis, it seems appropriate to change to L-

AmB when azole resistance in A. fumigatus is suspected or documented. In cases with 
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central nervous system involvement, the optimum therapy is un- known. L-AmB may have a 

lower efficacy than voriconazole (47), and therefore combination therapy might be more 

successful. Al- though the echinocandins are known to penetrate the cerebrospinal fluid 

poorly, the combination with L-AmB needs to be investigated in experimental models. 

Another potentially effective combination is L-AmB plus flucytosine, a combination that has 

been shown to be effective in central nervous system infections due to Cryptococcus 

neoformans (48). The efficacy of flucytosine against A. fumigatus infection has long been 

controversial, but we previously showed efficacy of flucytosine against A. fumigatus infection 

in our animal model (49) and a good correlation with in vitro activity when the MIC was 

determined at pH 5 instead of pH 7 (50). Clearly, more research is needed to allow 

recommendations to be made. In the absence of clinical trials that could provide clinical 

evidence for treatment choices in azole-resistant Aspergillus diseases, we believe that our 

findings support a role for L-AmB. 
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Abstract 

Azole resistance is an emerging problem in Aspergillus fumigatus and is associated with a high 

probability of treatment failure. An azole resistance mechanism typically decreases the 

activity of multiple azole compounds, depending on the mutation. As alternative treatment 

options are limited and in some isolates the minimum inhibitory concentration (MIC) 

increases by only a few two-fold dilutions steps, we investigated if voriconazole and 

posaconazole have a role in treating azole-resistant Aspergillus disease. The relation between 

resistance genotype and phenotype, pharmacokinetic and pharmacodynamic properties, and 

(pre)clinical treatment efficacy were reviewed. The results were used to estimate the 

exposure needed to achieve the pharmacodynamic target for each MIC. For posaconazole 

adequate exposure can be achieved only for wild type isolates as dose escalation does not 

allow PD target attainment. However, the new intravenous formulation might result in 

sufficient exposure to treat isolates with a MIC of 0.5 mg/L. For voriconazole our analysis 

indicated that the exposure needed to treat infection due to isolates with a MIC of 2 mg/L is 

feasible and maybe isolates with a MIC of 4 mg/L. However, extreme caution and strict 

monitoring of drug levels would be required, as the probability of toxicity will also increase.   
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Aspergillus fumigatus; Invasive aspergillosis; Voriconazole; Posaconazole; Azole-resistance; 
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Introduction 

Azole resistance is an emerging problem in species of the genus Aspergillus (1, 2). The 

polyphasic approach to the taxonomic classification of aspergilli has resulted in the 

recognition of new species (3). These new or sibling species are difficult to identify using 

conventional methods, often requiring molecular techniques (4, 5). Recent epidemiologic 

research indicates that sibling species of Aspergillus may cause invasive aspergillosis in 

susceptible hosts (6-11). Many of these species show a susceptibility profile that differs from 

the conventional species, usually with reduced activity of specific antifungal agents (4). 

In addition to intrinsic resistance within the aspergillus family (12), there are increasing 

reports of acquired resistance to azoles (1). The majority of reports concern Aspergillus 

fumigatus (13), although azole resistance has been reported sporadically in other species as 

well, such as A. flavus (14) and A. terreus (15).  

In A. fumigatus two routes of resistance selection have been reported; Azole resistance 

has been reported in patients with chronic cavitating aspergillus diseases that receive long-

term azole therapy (16). In these patients the initial infection is caused by an azole-

susceptible isolate, but through therapy azole-resistant isolates may be cultured. A second 

route of resistance selection is believed to occur through exposure of A. fumigatus to azole 

compounds in the environment (2, 17-19). Azoles are commonly used for crop protection or 

material preservation. Some of the fungicides were found to have a molecule structure very 

similar to that of the medical triazoles (18, 19). The fungus is believed to develop mutations 

that confer resistance to fungicides, but due to the molecule similarity with the medical 

triazoles, the latter become inactive as well.  

A wide range of mutations in A. fumigatus have been described conferring azole-

resistance commonly involving modifications in the cyp51A-gene, the target of antifungal 

azoles. Cyp51A mutations in A. fumigatus commonly affect the activity of all mold-active 

antifungal azoles. Specific mutations correspond with various phenotypes characterized by 

complete loss of activity of a specific azole, and with decreased activity of others (20). 

If a role for the azoles remains in the management of azole-resistant aspergillosis (21), 

optimizing drug exposure appears critical to increase the probability of treatment success. In 

this context, understanding of the pharmacokinetics (PK) and pharmacodynamics (PD) and 

more importantly defining the pharmacodynamic target of the azole compounds is crucial to 

increase the probability of a favorable clinical response (22). 

 

Reduced susceptibility of the fungus for azoles has significant impact on the ability to 

achieve the PD-target, and sometimes targets can only be achieved at the cost of increased 

probability of toxicity. Many variables, such as the underlying azole resistance mechanism and 
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PK/PD properties of the antifungal agent, are important to determine if treatment with an 

azole remains feasible (23). Furthermore, in the absence of extensive clinical experience with 

the treatment of azole-resistant aspergillosis, data obtained through in vitro susceptibility 

testing and experimental models of infection are needed to design treatment strategies.   

We reviewed our current understanding of azole resistance and the potential role of 

voriconazole and posaconazole in order to guide clinicians to manage patients with azole-

resistant aspergillus disease. The results of in vitro and preclinical studies were extrapolated 

to humans to provide evidence that may support the use of voriconazole and posaconazole in 

isolates with attenuated azole susceptibility. 

 
Triazole antifungals: Mode of action and label indication 
for invasive aspergillosis 

The antifungal triazoles are synthetic compounds that have >1 triazole ring attached to an 

isobutyl core (e.g., voriconazole, ravuconazole, and isavuconazole) or to an asymmetric 

carbon atom with a lipophilic complex mixed functional aromatic chain (e.g., itraconazole and 

posaconazole) (24). Triazoles inhibit the synthesis of ergosterol from lanosterol in the fungal 

cell membrane (24, 25); the target is the cytochrome (CYP)-dependent 14-a-demethylase 

(CYP51 or Erg11p), which catalyses this reaction. Thereby, ergosterol is depleted and methyl-

sterols accumulate within the cell membrane and lead to either inhibition of fungal cell 

growth or death, depending on the species and antifungal compound involved. Triazoles are 

generally fungistatic, although itraconazole, voriconazole, posaconazole and isavuconazole 

have been shown to be fungicidal against Aspergillus spp. (25-27). The various azoles have 

different affinities for the CYP-dependent 14-a-demethylase, which in return results in various 

antifungal activities (28); and therefore various susceptibilities to Aspergillus spp.  

Four triazole compounds (fluconazole, itraconazole, voriconazole, and posaconazole) have 

been clinically licensed and are currently in wide use for the prevention and treatment of 

invasive fungal infections (29, 30).  

Fluconazole has a lack of efficacy against moulds such as Aspergillus spp., therefore 

targeted prophylaxis or treatment against aspergillosis cannot be covered by this agent. 

Itraconazole is commonly used for the treatment of chronic and allergic conditions (29, 30).  
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Voriconazole has broad in vitro activity against Aspergillus spp., is recommended first 

choice treatment of invasive aspergillosis with a label indication in adults and children aged 2 

and above (30). In addition, voriconazole is the drug of choice for treatment of central 

nervous system aspergillosis (31).  

Posaconazole is licensed only for patients aged 18 years or older (29); for prophylaxis in 

patients receiving remission-induction chemotherapy for acute myelogenous leukemia (AML) 

or myelodysplastic syndromes (MDS) expected to result in prolonged neutropenia and who 

are at high risk of developing invasive fungal infections; for prophylaxis of invasive fungal 

infections in hematopoietic stem cell transplant (HSCT) recipients who are undergoing high-

dose immunosuppressive therapy for graft versus host disease and who are at high risk of 

developing invasive fungal infections; and for salvage therapy of invasive aspergillosis in 

patients with disease that is refractory to amphotericin B or itraconazole or in patients who 

are intolerant of these medicinal products (21, 32-34).   

 
Phenotypic detection of azole resistance and clinical 
breakpoints for Aspergillus spp 

In recent years major advances have been made in the detection of azole resistance in 

Aspergillus spp. Both the Clinical and Laboratory Standards Institute (CLSI) and European 

Committee on Antimicrobial susceptibility Testing-subcommittee on Antifungal Susceptibility 

Testing (EUCAST-AFST) have developed and standardized phenotypic methods that enable the 

reliable and reproducible determination of the minimal inhibitory concentration (MIC) for 

conidia-forming moulds or Aspergillus spp. (35, 36).  

When a collection of fungal strains is tested, typically a Gaussian distribution of MICs is 

found referred to as the wild type population. The right side of the distribution, i.e. growth of 

isolates that is inhibited only by a higher concentration of the drug or any isolates / 

populations to the right side of the wild type distribution might contain isolates that possess a 

resistance mechanism. These isolates are considered non-wild type (37). Testing of large 

collections of fungi enables the determination of an epidemiological cut - off, which is the 

concentration of drug that inhibits 95% of the fungal species. 

Notably, a clinical breakpoint is needed to obtain a clinically meaningful interpretation of 

the MIC of individual isolates. A standardized approach is followed, which incorporates 

standard dosing recommendations and formulations of antifungal agents, the PK/PD 

characteristics, information from experimental models of infection and results from clinical 

trials. All this information is analyzed and leads to the clinical breakpoint, i.e. the classification 
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of the isolate as susceptible to the drug or resistant. There are currently three sets of 

breakpoints and epidemiological cut-off values available; The first was published in 2009 by 

Verweij et al. based on clinical experience and the available knowledge at that time (13). 

Since then breakpoints have been published by the CLSI (38) and the EUCAST-AFT (39, 40). 

The breakpoints are shown in table 1. 

 

 

Table 1. Epidemiological cut-off values, proposed EUCAST breakpoints (MIC, mg/L) for the A. 

fumigatus and clinically licensed active azoles ( adopted from  Hope et al. 2013, Arendrup et 

al. 2012 and Verweij et al. 2009) and CLSI  breakpoints adopted from Espinel-Ingroff et al. 

2010.  
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Genotypic detection of azole resistance mechanisms in 
Aspergillus spp 

In addition to the phenotypic methods, significant insight has been obtained regarding the 

underlying genetic mechanisms that confer an azole resistant phenotype. In A. fumigatus two 

distinct but closely related cyp51 genes were found (cyp51A and cyp51B) that share 63% 

sequence identity and encode for two different cyp51 proteins (41, 42). Azole binding studies 

showed that fluconazole has the weakest binding with cyp51A and cyp51B proteins, which is 

in keeping with the lack of activity against A. fumigatus. Furthermore cyp51B showed more 

tight bindings with azoles compared to cyp51A and is generally more susceptible to azole 

compounds compared to cyp51A (41). Therefore, it has been postulated that the cyp51A gene 

encodes for the major 14-alpha-demethylase enzyme activity required for growth, and the 

cyp51B gene encodes for alternative functions for particular growth conditions or even being 

functionally redundant (41). This provides a possible explanation to why mutations in azole-

resistant A. fumigatus isolates are predominantly detected in the cyp51A gene and only rarely 

in the cyp51B gene (41, 43). Also in cyp51B no mutations have yet been proven to be 

correlated to azole resistance (44). 

Three different studies adapted the X-ray crystallography of Mycobacterium tuberculosis 

protein to develop an A. fumigatus cyp51A 3-D protein model (45-47). All models show that 

two ligand entry channels can be identified in the cyp51A protein. The ligand access channels 

immersed in the endoplasmic reticulum (ER) membrane would allow highly lipophilic sterol 

substrates as well as azole compounds to dock into the channels and restrict access of other 

metabolites (41). The azole compounds can bind to the active heme molecule located in the 

center of the cyp51A protein and thereby inhibiting its enzyme function.  

Different single nucleotide polymorphisms (SNPs) in the cyp51A-gene are related to 

resistance against one or more azole compounds found in clinical induced azole resistant A. 

fumigatus isolates (Table 2). Although several SNPs have been reported, codons 54, 98 and 

220 are the most frequently characterized hot spots. According to protein homology 

modeling, these codons are located in the opening of one of the ligand access channels, which 

is thought to interfere with the entry of azole compounds into the hydrophobic access 

channel (48).  

In addition to single point mutations, a combination of genetic changes has been 

described in azole-resistant A. fumigatus isolates. The duplication of a set of sequences in the 

promoter region significantly increases the expression of cyp51A which for one part provides 

an explanation for the decrease in azole susceptibility. 
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Importantly, recombinant experiments showed that only when both mutations were 

introduced the multi azole resistance (MAR) phenotype was observed (20, 49) . Up until now, 

three mechanisms have been described: a 34 base pair tandem repeat (TR) combined with a 

L98H substitution in the cyp51A-gene (TR34/L98H) (2, 49-51), a 53 bp TR without substitutions 

in the cyp51A-gene (TR53)(52, 53), and recently a 46 bp TR with two substitutions in the 

cyp51A-gene (TR46/Y121F/T289A)(54, 55). Unlike the point mutations, the resistance 

mechanisms with a TR appear not have a predictable phenotype for all azole compounds. 

Isolates with TR53 are associated with a pan-azole-resistant phenotype and was reported to 

have caused aspergillus osteomyelitis in a pediatric patient in 2006 (53). Isolates harboring 

the TR34/L98H resistance mechanism are all highly resistant to itraconazole and have a MIC of 

0.5 mg/l for posaconazole, but the activity of voriconazole varies, ranging from 1 to >16 mg/L. 

Likewise in isolates with the TR46/Y121F/T289A, voriconazole is inactive but the activity of 

itraconazole may vary ranging from 0.5 to 16 mg/L. Notably, this type of resistance 

mechanisms has been found in isolates that are associated with the environmental route of 

resistance selection. A TR in the promoter region has been described in several azole-resistant 

plant pathogenic fungi, which adds to the evidence that selection of this type of resistance 

mechanism occurs in the environment (17).  

Although the azole target cyp51A is a hotspot for mutations that confer phenotypic 

resistance, there is an increasing number of resistant isolates with a wild type cyp51A 

sequences, indicating the presence of another, yet unknown resistance mechanism. Recently,  

Camps et al. reported a novel resistance mechanism, consisting of a mutation in the CCAAT 

binding transcription factor complex subunit HapE (56). The substitution was found in P88L 

within the exonic region of HapE gene causing the resistance phenotype. Unlike cyp51A-

mediated resistance mechanisms, HapE was associated with a fitness cost (57). In addition, 

the increased mRNA expression of the Aft1 transposon (AfuMDR1 and AfuMDR4 transporters) 

was demonstrated in pan-azole resistant A. fumigatus isolates, which could contribute to 

azole resistance or simply represent a stress response (58).  

Nevertheless, as is the case for A. fumigatus, azole resistance in other species of 

Aspergillus such as A. flavus (14), and A. terreus (15), may be caused by alterations and over-

expression of the azole target 14a-demethylase. This indicates that acquired azole resistance 

is a clinical challenge that is not restricted to A. fumigatus. The voriconazole-resistant strain of 

A. flavus was isolated from the surgical lung specimen of an invasive aspergillosis patient with 

no response to voriconazole therapy (14). Through sequencing and gene replacement studies 

the T788G mis-sense mutation in the cyp51C gene was identified as responsible for 

voriconazole resistance in A. flavus. In another study by Arendrup et al., azole resistance in A. 

terreus isolates was explored (15). The itraconazole MIC was elevated (1–2 mg/L), and 

voriconazole and posaconazole MICs were 0.5–4 and 0.06–0.5 mg/L, respectively. Sequencing 
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of the cyp51A-gene suggested a potential role of the M217I alteration in itraconazole 

resistance in A. terreus. This codon corresponds to M220 in A. fumigatus. 

 

 

Table 2. The minimum inhibitory concentrations (MICs) of clinical A. fumigatus isolates with 

various cyp51A conferring azole-resistance phenotype.  
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Clinical implications of azole resistance in A. fumigatus 

There are currently no randomized controlled trials showing that azole resistance is 

associated with an increased probability of treatment failure compared to infection with wild 

type isolates. Case series have been published including both patients with azole-resistant 

chronic aspergillus diseases and azole-resistant invasive aspergillosis that show the recovery 

of an azole-resistant isolate is associated with a high probability of azole treatment failure (2, 

16, 53, 59-64).  

In  the study of Howard et al. a wide range of mutations was found in azole-resistant A. 

fumigatus isolates that were cultured from clinical samples in patients with primarily non-

invasive aspergillus infections (16). A total of 14 patients were investigated; 2 patients had 

invasive disease; 9 had chronic diseases with ≥ 1 aspergillomas; 2 had allergic 

bronchopulmonary aspergillosis; and one had aspergillus bronchitis. Thirteen of 14 evaluated 

patients had prior itraconazole exposure. Eight patients failed azole therapy (progressed), and 

5 failed to improve (clinically stable disease). In patient 14 the infection also failed to 

treatment with voriconazole for 18 months, in which the corresponding isolates had MICs of 

>8 mg/L for both itraconazole and voriconazole. 

Two case series of patients with azole-resistant invasive aspergillosis were reported from 

the Netherlands (54, 65). In one study, eight patients with proven or probable, culture-

positive invasive aspergillosis due to A. fumigatus harboring the TR34/L98H resistance 

mechanism were described. All five patients with invasive pulmonary aspergillosis failed to 

voriconazole therapy and had died at 12 weeks post diagnosis, while two of three patients 

presenting with disseminated aspergillosis died, despite treatment with multiple drugs with 

anti-aspergillus activity (65). Overall, seven of eight (88%) patients had died at 12 weeks after 

diagnosis. Although all TR34/L98H isolates were highly resistant of itraconazole, approximately 

80% were found to also be voriconazole resistant.  

In the second study the emergence of a voriconazole highly resistance mechanism was 

described, associated with the TR46/Y121F/T289A resistance mechanism (54). Among the 15 

patients identified with a TR46/Y121F/T289A isolate, 8 were diagnosed with azole-resistant 

invasive aspergillosis. Three of these patients were classified as having probable disease and 4 

as proven invasive aspergillosis. One patient could not be classified according to the 

EORTC/MSG consensus definitions (66). This patient showed bone destruction of the skull on 

computed tomography scan and A. fumigatus was recovered repeatedly from the ear, 

without any other explanation. All patients with invasive aspergillosis due to 

TR46/Y121F/T289A were azole-naive, except 1 patient with probable and 1 patient with 

proven invasive aspergillosis. At 12 weeks after recovery of the TR46/Y121F/T289A isolate, 4 of 

8 patients with invasive aspergillosis had died and 2 patients had a persisting infection. All 
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patients who died had received primary therapy with voriconazole. In 4 patients, primary 

therapy was initiated with liposomal amphotericin B. In 3 of these patients, invasive 

aspergillosis was diagnosed, and all patients were alive at 12 weeks. In addition, a number of 

single cases have been described harboring TR34/L98H (2, 16, 51, 53, 59-64) or 

TR46/Y121F/T289A resistance mechanisms (55, 67). In all cases, patients with infection due to 

an azole-resistant isolate failed to azole therapy.   

Although the current clinical experience suggests that azole resistance is associated with 

treatment failure, it should be recognized that there are numerous factors that impact on 

treatment outcome. Patients with underlying malignancy are prone to fail to azole therapy, 

even if the infection is caused by an azole-susceptible isolate. Azole exposure might have 

been insufficient in patients failing therapy and as most patients may not be culture-positive, 

treatment might have been initiated relatively late in the course of the infection. Therefore, 

azole-resistant infection might occur predominantly in patients in poor clinical condition, 

compared to wild type isolates. In the absence of robust clinical evidence, experimental 

models of aspergillus infection can help us to understand the implications of MIC elevation on 

treatment efficacy. 

 

Efficacy of voriconazole and posaconazole in 

experimental models of azole resistant aspergillosis 

Several experimental models have been used to explore PK and PD properties of voriconazole 

and posaconazole in the setting of azole-resistant aspergillosis. These models are summarized 

in Table 3 (68-72). Using a non-neutropenic murine model of invasive aspergillosis 

voriconazole and posaconazole (response measured as survival) showed a clear exposure-

dependent relation with response for both voriconazole-susceptible and voriconazole-

resistant strains. For each dose the response was lower in mice infected with the azole-

resistant isolate compared to that of mice infected with the azole-susceptible isolate. As for 

voriconazole and posaconazole the dose correlates with exposure, a higher exposure of the 

azole was required to achieve similar efficacy when harboring azole-resistant strains.   
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Table 3. Pharmacodynamic index (PDI) of voriconazole and posaconazole correlated with 

measures of efficacy in in vitro and preclinical models of invasive aspergillosis 
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Jeans et al. developed an in vitro dynamic model of the human alveolus invasive 

pulmonary aspergillosis to study the impact of MIC on exposure-response relationships of 

voriconazole, against wild-type and azole-resistant A. fumigatus (70). The antifungal effect of 

voriconazole was assessed by measuring levels of galactomannan. Galactomannan 

concentrations began to increase approximately 16–24 hours post-inoculation, and a 

maximum was reached approximately after 36 hours. The rate of increase and the maximum 

galactomannan concentrations were comparable. The isolates with higher MICs required 

higher area under the concentration time curves (AUCs) to achieve similar suppression of 

galactomannan compared to the wild-type controls.  

Howard et al. also used this in vitro model to study the impact of MIC on PK/PD 

relationships of posaconazole (72). The results were validated using an inhalational murine 

model of invasive pulmonary aspergillosis. Similarly, the administration of posaconazole 

caused a dose-dependent decline in serum galactomannan concentrations with near-maximal 

suppression following 20 mg/kg/day. The posaconazole MICs affected the exposure-response 

relationships, those strains with a higher MIC had higher 50% effective pharmacodynamic 

index (EI50). 

In another study, Lepak  et al. investigated  the pharmacodynamic target of posaconazole 

in an immunocompromised murine model of invasive pulmonary aspergillosis against Cyp51A 

wild-type isolates and isolates carrying Cyp51A mutations conferring azole resistance (71). 

Efficacy was assessed by quantitative PCR (qPCR) of lung homogenate and survival. Mortality 

mirrored qPCR results, with the greatest improvement in survival noted at the same dosing 

regimens that produced fungistatic or fungicidal activity. The results demonstrated that more 

posaconazole, on a mg/kg basis, was required for efficacy against organisms with reduced in 

vitro susceptibility. 

In conclusion, all models show a clear exposure-response relationship. In most models, 

the exposures that are required for efficacy are in a similar range and therefore underscore 

the value of these models. However, it should be realized that the models are designed and 

optimized to find these relationships, and the pharmacodynamic targets that are derived 

from the models may therefore over- or underestimate the ‘true’ target. For instance, the 

EC50 in survival studies is a reproducible measure for efficacy, but not necessarily coincides 

with the same endpoint in humans. 

Importantly, the pharmacodynamic endpoint in experimental models of invasive 

aspergillosis that best predicts the outcome of patients with pulmonary infections is not well 

known and still suffers lack of standardization. Using the abovementioned studies the EI50, EI80 

and EI90 over 7 or 14 days survival for voriconazole and posaconazole can be estimated (Table 

3). 
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In addition, in vitro studies and in vivo models differ concerning the route of infection, the 

efficacy parameter, the presence or absence neutropenia, level of protein binding and other 

variables. 

Both in vitro and in vivo studies have indicated that the ratio of the area under the 

concentration time curve (AUC) at 24 hours to the minimum inhibitory concentration (MIC) is 

the main PK/PD parameter that best predicts voriconazole and posaconazole efficacy in 

invasive aspergillosis.  

Therefore, for purpose of further discussion, we decided to use the effective exposure 

index at 50% (EI50) AUC0-24/MIC as the value most predictive of treatment, which is generally 

considered in the relationships between the PK/PD evaluation of antimicrobial agents (73). 

However, one should consider that higher values such as EI80 or EI90 are more reliable when 

translating to the patient setting. Importantly, this higher value was similar to EI50 in 

voriconazole studies, and not consistent/achievable in all posaconazole experimental studies 

analyzed in our review. Moreover, the range of PD-target predicting therapeutic success using 

either in vitro or in vivo model was in the same range in abovementioned voriconazole and 

posaconazole studies (Table 4 and 5).   

 

 

Bridging experimental results to humans: is there a role 
for voriconazole and posaconazole in azole-resistant 
invasive aspergillosis? 

Based on the estimates of the PD-targets for voriconazole and posaconazole we can now 

determine if there remains a role for voriconazole or posaconazole in the management of 

azole-resistant disease. The integration of all above information is given in Table 4 for 

voriconazole and Table 5 for posaconazole. The underlying resistance mechanisms are 

provided for each MIC-value. Based on the estimates of the PD-target, the exposure can be 

calculated that is needed to achieve the PD-target for each MIC. The exposure corresponds 

with plasma levels, which are typically higher than those needed for treating infection due to 

wild-type isolates. The feasibility of achieving higher exposure depends on characteristics of 

the drug related to absorption and clearance, but is limited by toxicity.  

 



BRIDGING EXPERIMENTAL PKS/PDS TO HUMANS 

171 

For voriconazole, a total drug AUC/MIC ratio of 21.96 was associated with 50% probability 

of success (EI50) to suppress galactomannan concentrations in a dynamic in vitro model of the 

human alveolus (70). Using an immunocompetent murine model of invasive aspergillosis, we 

observed that achieving a serum total AUC0-24/MIC ratio of 17.61 was the PD-target linked to 

half-maximum antifungal effect predicting therapeutic success (Table 3) (69).  

Recently, Pascual et al. performed a population pharmacokinetic analysis (NONMEM) on 

505 plasma concentration measurements involving 55 patients with invasive mycoses who 

received recommended voriconazole doses in order to describe factors influencing the 

pharmacokinetic variability, to assess associations between plasma concentrations and 

efficacy or neurotoxicity/hepatotoxicity, and  to define intravenous and oral doses required 

for achieving drug exposure with the most appropriate efficacy/toxicity profile (74). A logistic 

multivariate regression analysis revealed the therapeutic target with a clinically appropriate 

efficacy-safety profile, close to that recently reported by others (75). An independent 

association between voriconazole trough concentrations and probability of response or 

neurotoxicity was identified for a therapeutic range of 1.5 mg/L (>85% probability of 

response) to 4.5 mg/L (<15% probability of neurotoxicity). Population-based simulations with 

the recommended 200 mg oral or 300 mg intravenous twice-daily regimens predicted 

probabilities of 49% and 87%, respectively, for achievement of 1.5 mg/L and of 8% and 37%, 

respectively, for achievement of 4.5 mg/L. With 300–400 mg twice-daily oral doses and 200–

300mg twice-daily intravenous doses, the predicted probabilities of achieving the lower target 

concentration were 68%–78% for the oral regimen and 70%–87% for the intravenous 

regimen, and the predicted probabilities of achieving the upper target concentration were 

19%–29% for the oral regimen and 18–37% for the intravenous regimen (74). Apparently, 

patients achieving higher concentrations of voriconazole may show higher exposure and a 

better response to therapy, but they are at higher risk for toxicity. In contrast, patients 

achieving lower concentrations may have reduced therapeutic response but subsequently a 

lower risk for adverse events. 

Whereas the Pascual study is based on trough levels as a measure of exposure (74), 

because it is much easier to determine than the AUC, all preclinical models are AUC based 

(69, 70, 76). However, voriconazole trough levels correlate well with AUC as determined in 

several studies. Estimates of total AUC0–24 in patients showed that standard dose on the basis 

of 200 mg twice daily oral voriconazole results in a total AUC value of 18 to 23 mg.h/L (77). 

Population PK modeling of voriconazole in adults (78) and other PK studies (figure 1) (79), 

revealed that the trough concentration are well correlated with the AUC, and a drug level of 1 

and 5.3 mg/L corresponded with a total AUC0-24 of 43 and 175  mg.h/L, respectively.  
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The AUC levels required for efficacy as derived from the trough levels in the Pascual study 

correspond well with the AUC levels required for efficacy in preclinical models. Assuming no 

resistant strains in the Pascual study, the ECOFF can be used as the upper value of the MIC 

distribution and the denominator in the AUC/MIC. Since this is 1 mg/L it follows that the 

AUC/MIC ratio required for optimal treatment is 30, which is very close to the 

pharmacodynamic targets derived from preclinical models in order to achieve therapeutic 

success.  

 

Figure1. Linear regression analysis between exposure (AUC0-24 of voriconazole (left) and 

posaconazole (right) and plasma trough concentration in human. 

Therefore, it can be expected that isolates with a MIC that is classified as susceptible can 

be treated with voriconazole, with a probability of exposure attainment of over 90% 

according to Hope et al. using licensed doses of voriconazole (40, 78). For isolates with a 

voriconazole MIC of 2 mg/L, classified as intermediate susceptibility by Verweij et al. (13), the 

plasma level should exceed 1.03 mg/L which is well attainable. Voriconazole MIC of 4 mg/L is 

classified as resistant, and in order to achieve the PD-target a higher exposure is needed (≥ 

2.65 mg/L). Higher exposure of voriconazole can be achieved using dose escalation, but will 

be associated with increased probability of toxicity. Clearly if voriconazole would be used in 

this setting intravenous administration would be required as well as close monitoring of 

plasma levels. For isolates with a MIC exceeding 4 mg/L very high plasma levels exceeding 

5.30 mg/L are needed, which are in a range where toxicity can be anticipated. 
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Posaconazole is currently not licensed for the primary therapy of invasive aspergillosis, but 

may be used for salvage therapy. Similar to the other triazoles, posaconazole displays 

concentration-dependent with time dependence pharmacodynamic characteristics, for which 

a total AUC0-24/ MIC ratio ranging 167 to 178 was the value predictive of success associated 

with half-maximal efficacy. Estimates of the total AUC0-24 for patients infected with A. 

fumigatus with a posaconazole MIC of 0.125 mg/L receiving 800 mg/day are 13-17 mg.h/L, 

corresponding to the best response rate (80-82). On the other hand, optimal outcome could 

be achieved with posaconazole plasma concentrations of ~ 0.7 mg/L when administered for 

prophylaxis. However, for purpose of salvage therapy, Walsh et al. showed that an average 

concentration of 1.25 mg/L was associated with a higher probability of a clinical response for 

patients with invasive aspergillosis receiving posaconazole 800 mg/day (83), corresponding to 

an AUC of approximately 30 mg.h/L. Therefore, with fixed dosing of 800 mg/day (200 mg four 

times a day), drug exposures may not be high enough to cover the entire wild-type 

distribution, reliably in persistently neutropenic hosts with invasive aspergillosis. The patients 

infected with an Aspergillus strain with a MIC of 0.25 mg/L, will need to obtain an AUC0-24 of ~ 

40–50 mg.h/L, which corresponds with trough concentrations of >1.25 mg/L, as shown in 

figure 1 (79, 82). 

According to available data shown in table 5, the exposure needed to treat infection due 

to isolates that are classified as susceptible can only just be achieved with a low probability of 

exposure attainment in isolates with a MIC of 0.125 mg/L (13, 39). Given the current 

problems of increasing the exposure of the drug due to its formulation and limited 

absorption, there appears to be no room for posaconazole for the treatment of isolates that 

are not within the wild type distribution. However, a new oral tablet and intravenous 

formulation are under development and soon to be brought the clinical practice (84). The 

tablet is designed to release the entire dose of solubilized posaconazole in the small intestine, 

maximizing systemic absorption. In an exploratory study, this new solid oral formulation 

significantly increased exposure to posaconazole relative to the oral suspension in fasting 

healthy volunteers (85). Following single and multiple doses of posaconazole solid oral tablets 

(200 and 400 mg) in healthy subjects, the exposure increased in a dose-related manner. When 

the dose was increased in a 1:2 ratio, exposure increased in 1:1.9 and 1:1.8 ratios for days 1 

and 14, respectively. On day 1, the dose-normalized posaconazole exposure (AUCtau) was 

substantially higher than for the oral suspension under both fasted and fed conditions (85). 

Notably, a novel cyclodextrin formulation of posaconazole is under development for 

intravenous (i.v) use. In a phase 1B study, the pharmacokinetics of 2 doses of i.v. 

posaconazole was investigated in 55 patient volunteers (86). The higher protective blood level 

of posaconazole was found for the 300 mg given once daily, for which the average blood 

concentration at 14 days was 1.43 mg/L. The minimum effective concentration was seen in 

95% of patients. Recently, Cornely et al. reported that 300 mg posaconazole i.v. was well 

tolerated and resulted in higher exposure compared to the oral suspension (Cornely et al., 
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2013). A lowest mean Cmin value of 1,297 mg/L was achieved for posaconazole i.v 300 mg vs. 

751 mg/L for posaconazole oral suspension. Although our calculations indicate that a 

posaconazole exposure of ≥ 3.33 mg/L would be required to treat infection due to isolates 

with a posaconazole MIC of 0.5 mg/L, we believe that this might be achievable using the i.v. 

formulation. Given that a significant proportion of isolates harboring an azole resistance 

mechanism exhibit a posaconazole MIC of 0.5 mg/L, this approach requires further 

investigation in experimental models.  

 

Concluding remarks 

The management of azole-resistant Aspergillus disease remains a challenge. There are 

currently no guidelines or recommendations that guide clinicians confronted with azole 

resistance. Furthermore, pre-clinical or clinical evidence that support treatment choices is 

scarce. Experimental models of infection indicate that liposomal-amphotericin B may be 

effective (87), or a combination of voriconazole or posaconazole with an echinocandin (76, 

88, 89). In addition to the choice of antifungal regimen other important issues remain such as 

the early detection of azole resistance, especially in culture negative patients. Also treatment 

regimens for patients with infection in tissues that are difficult to reach, such as the brain, 

remain problematic.  

In our current review we explored the role of azole monotherapy in the management of 

azole-resistant aspergillosis. We believe that only a modest role of voriconazole and 

posaconazole remains, if any. Clearly, the use of an azole can only be considered in patients 

that fail alternative regimens or are intolerant to polyene therapy. Although it appears that 

voriconazole can be used to treat infection due to isolates with a MIC of 2 mg/L, in isolates 

with a MIC of 4 mg/L the risk of toxicity is significant. In this setting of dose escalation, 

intravenous administration, extensive monitoring of plasma levels and close clinical and 

radiological follow-up is required. At current there appears to be no role for posaconazole in 

the treatment of isolates with a MIC outside the wild type population. We believe that this is 

due to the difficulty in achieving sufficient exposure. However, we anticipate that adequate 

drug exposure might be achieved with the i.v. formulation that might allow treatment of 

infections due to isolates with a MIC of 0.5 mg/L, although this possibility would need to be 

explored in experimental models.  
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Abstract 

Voriconazole and posaconazole are extended-spectrum triazoles recommended for 

treatment, prophylaxis and salvage therapy of aspergillus  diseases. Over the past decade 

many papers have emerged supporting the use of therapeutic drug monitoring (TDM) for 

azole antifungals. TDM is used to tailor the exposure of a specific drug to the individuals to 

optimize treatment response and minimize side effects. We reviewed the pharmacokinetics 

and pharmacodynamics (PK-PD) characteristics  of voriconazole and posaconazole. We 

present the available evidence on target concentrations defining maximal efficacy and 

minimal toxicity. Finally we provide some practical recommendations how to best perform 

TDM in clinical practice. 

 

Keywords 

Aspergillus, Azole antifungal drugs, Pharmacodynamics, Pharmacokinetics, Therapeutic drug 

monitoring 

 

 

 

 

 

 

 

 

6

4 

 

6 
 



CHAPTER 6.2 |  

 
 

190 

 

 

 

 

 

 

 

 

 

 

 

 

 



TDM OF POSACONAZOLE AND VORICONAZOLE 

  191 

Introduction 

The strategy to tailor the individuals’ exposure through the assessment of a patient serum or 

plasma concentration and subsequently adaptation of the dosing regimen is called 

therapeutic drug monitoring (TDM). TDM has since long been used to optimize treatment for 

several drug classes, most importantly the aminoglycosides and glycopeptides, and has been 

shown of significant benefit to patients [1]. Over the past decade a vast amount of evidence 

has been published, supporting a role for TDM in the class of azole antifungal drugs. 

Azole antifungals, such as voriconazole and posaconazole, are recommended drugs to 

manage aspergillus diseases [2, 3]. Invasive aspergillosis (IA) is a life-threatening opportunistic 

fungal infection in immunocompromised patients with an overall mortality ranging between 

30 to 88% [4-7]. Voriconazole is most frequently used in the treatment for IA and 

posaconazole  for prophylaxis and salvage therapy [2,3,8,9]. 

To select the most appropriate drug and to optimize the exposure of the drug by adapting 

the administered dose, understanding of the pharmacokinetics (PK) and the 

pharmacodynamics (PD) is crucial [7]. The aim of this manuscript is to start  with  a  brief  

overview of  the  PK  of voriconazole and posaconazole. Next we discuss the  current  

evidence, supporting  the  use of TDM in the case of voriconazole and posaconazole. We will 

focus particularly  on target concentrations  that correlate with maximal response in the 

context of patients underlying invasive aspergillosis (IA) and on the correlation between 

exposure and  toxicity. Finally some practical recommendations are given. 

 

Antifungal triazoles 

The antifungal triazoles are synthetic compounds that have >1 triazole ring attached to an 

isobutyl core (e.g., voriconazole, ravuconazole and isavuconazole) or to an asymmetric carbon 

atom with a lipophilic complex mixed functional aromatic chain (e.g., itraconazole and 

posaconazole) [10]. Triazoles inhibit the synthesis of ergosterol from lanosterol in the fungal 

cell membrane [10,11].  The target is the cytochrome (CYP)─dependent 14-a-demethylase 

(CYP51 or Erg11p), which catalyzes this  reaction.  Thereby, ergosterol is depleted and methyl-

sterols accumulate within the cell membrane and lead to either inhibition of fungal cell 

growth or death, depending on the species and antifungal compound involved.  

Triazoles are generally fungistatic, although itraconazole, voriconazole and posaconazole 

have been shown to be fungicidal against Aspergillus spp [11]. The various  azoles have 

different affinities for the CYP-dependent 14-a-demethylase, which in return result in various 
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antifungal activities [12], and therefore susceptibilities. Four triazole compounds (fluconazole, 

itraconazole, voriconazole and posaconazole) have been approved and are currently in wide 

use for the prevention and treatment of invasive  fungal infections (IFIs) [101,102]. 

 

Label indication of triazoles for invasive aspergillosis 

Voriconazole has a label indication for the treatment of IA, treatment of candidemia in 

non-neutropenic patients, treatment of fluconazole-resistant serious  invasive Candida  

infections (including C. krusei) and treatment of serious fungal infections caused by 

Scedosporium spp. and Fusarium spp [102]. Voriconazole can be used on-label in adults and 

pediatrics aged 2 and above. 

Posaconazole is  licensed for  the  treatment  of:  IA  in patients with disease that is  

refractory to amphotericin B or itraconazole or in patients who are intolerant of these 

medicinal products; Fusariosis in patients with disease that is refractory to amphotericin B or 

in patients who are intolerant of amphotericin  B;   oropharyngeal  candidiasis   and   for the 

treatment of less common infections such  as  chromoblastomycosis and mycetoma and 

coccidioidomycosis.  In addition posaconazole has a label for the prophylaxis of invasive 

fungal infection in  patients with graft-versus-host   disease  (GvHD) or after remission-

induction chemotherapy for acute myeloid leukemia or myelodysplastic syndrome (AML-

MDS). Posaconazole  is  licensed  only  for   patients  aged  18   years  or older [101]. 
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Table 1. Basic pharmacokinetics properties of voriconazole and posaconazole. 

Current concepts in antifungal pharmacology: b.i.d: Twice daily; CDx: Suflobutylether-beta-

cyclodextrin in vorinonazole for injection; CSF: Cerebrospinal fluid; CYP: Cytochrome; i.v.: 

Intravenous; p.o.: Per orem; PK: Pharmacokinetics; q.i.d.: Four-times a day; t.i.d.: Three-times 

a daily. Data taken from [60]. 

 

 
Parameter 

 
Voriconazole 

 
Posaconazole 
 

Formulation IV solution (CDx), PO capsules,  
PO suspension 

PO suspension 

Maintenance dose for adults for 
antifungal treatment 

4 mg/kg BID IV; 200 mg BID PO 400 mg BID PO 

Absolute bioavailability +/- 90% (bioavailability decreased when 
taken together with a meal and (but lower in 
children) 

8-47% (Variable; saturable oral absorption; 
dose dependent; availability increased by 
intake with fat-rich food and gastric acid 
inhibitors decrease drug absorption)  

Volume of distribution 4.6 L/kg 5-25 L/kg 

Cmax 3-4.6 mg/L 1.5-2.2 mg/L 

AUC 0-24 20.3 mg x h/L 8.9 mg x h/L 

Tissue penetration  

- Lung tissue  

- Cerebrospinal fluid (CSF)  

- Vitreous humor  

- Urine 

 

Good 

Good (CSF – plasma ratio 0.3 – 0.6) 

Good (around 60%) 

<2% 

 

Good / excellent  

Poor (CSF - plasma ratio 0 – 2.4)  

Limited (around 21%)  

< 0.1% 

Protein binding 58 % > 98 % 

Half life 6 hours (but nonlinear PK) 25-35 hours 

Time to reach steady state 2 days 7-10 days 

Elimination Renal > Faecal; primarily as inactive 
metabolites 

Faecal > Renal; extensively in unchanged 
form 

Metabolism Hepatic via CYP2C19, 2C9 and CYP3A4   Hepatic by UGT1A4 

CYP inhibition CYP3A4,2C19,>2C9 CYP3A4 



CHAPTER 6.2 |  

 
 

194 

Pharmacokinetic & pharmacodynamic relationships 

For the purpose of this review, we first explore the pharmacokinetics (PK) profile of the drug, 

and then integrate the information on exposure-response and exposure-toxicity. 

Pharmacokinetics of voriconazole 

Voriconazole, a structural congener of fluconazole, is a second- generation triazole with 

broad-spectrum antifungal activity, including enhanced potency against Aspergillus species 

and other molds that are fluconazole or itraconazole-resistant [2,14-15]. Current dosing 

recommendations are provided in the summary of product characteristics (SPC) [102]. The 

compound is available in both intravenous and oral formulations. Pharmacokinetic properties 

are depicted in (TABLE 1): briefly stated, when given orally to a fasting adult person, the drug 

has a bioavailability of > 90% yielding a maximum plasma concentration (Cmax) 

approximately 2 h after administration [16]. 

Food has a negative impact on the drug’s bioavailability,  by reducing its exposure 

approximately 22% [17]. A meal with a  high fat content will reduce the mean Cmax  and area 

under the curve (AUC) by 34% and 24%, respectively. Thus it is recommended  to  administer 

the  drug  either 1  h  before or  after meals [102,17]. Voriconazole  is extensively distributed 

into tissues and penetrates well into cerebrospinal  fluid and into vitreous and aqueous 

humors with an estimated volume of distribution of around 4.6 l/kg. The steady-state  plasma 

concentrations of voriconazole in healthy volunteers are reached at day 2 of treat- ment 

(after a loading dose) [18]. 

CYP2C19 is  the  dominant  metabolic pathway with CYP2C9 and CYP3A4 being involved to 

a much lesser extent. Polymorphisms in CYP2C19 will render the population into ultra-rapid 

(2C19*17), extensive (or wild-type 2C19*1) and poor metabolizers  (2C19*2 or *3). The latter 

will result in a prolonged clearance of voriconazole and is of particular importance in the 

Asian population where the prevalence of these mutations is highest at around 20-30%. The 

CYP3A4 route will play a more dominant role in patient with 2C19 loss of functional alleles. In 

addition to being a substrate to many CYP enzymes, voriconazole  is also an inhibitor of 

CYP2C9, CYP2C19 and CYP3A4 [19].  Voriconazole displays nonlinear  PK  in  adult patients 

over the therapeutic range with Cmax   and AUC values that increase disproportionately  as 

the dose increases. This non─linearity is both time- and dose dependent [18,20]. The 

apparent half-life of  voriconazole is  approximately 6  h  (TABLE 1)   and increases  when 

voriconazole  concentration increases. Pediatric and adolescent patients have different PK 

compared to adults [21], resulting in pseudo linear PK. 
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Pharmacokinetics of posaconazole 

Posaconazole,  a structural analog of itraconazole, is the most recently approved triazole 

antifungal that is available  as an oral suspension. Posaconazole is an extended-spectrum  

triazole. Posaconazole has in  vitro activity against Aspergillus  species and many other  fungi 

[22-24]. In  vivo, posaconazole has demonstrated efficacy  in several models  of experimental 

pulmonary, cerebral and disseminated aspergillosis  [25-29]. Up  until today, posaconazole  is 

only available  as an oral solution but a solid oral as  well as  intravenous formulation are 

currently under development [30].  Posaconazole is  slowly absorbed  with  a median 

absorption time (Tmax) of 5 h (TABLE 1). In healthy volunteers, posaconazole showed dose-

proportional PK over the range of 50-800 mg. [31]. Dosages above 800 mg showed no further 

or minimal increase in plasma concentrations  or total exposure due to a saturation of the 

gastrointestinal absorption mechanism. Posaconazole binds  predominantly  to  albumin, and 

the drug protein binding is high (>98%). Posaconazole has a large mean apparent volume of 

distribution after oral administration (Vd/F), which is approximately   5-25 l/kg, suggesting 

extensive extra vascular distribution and penetration into intra- cellular spaces [32]. Steady-

state PK are reached after a period of 7-10  days. The  relative oral  bioavailability of  

posaconazole varies significantly  among different regimens and is significantly increased by 

administration  in  divided doses. The same  total daily dose of posaconazole administered  in 

two or four dosages results in a two to threefold increase in exposure, respectively, compared 

to once daily dosing [31]. Previous studies have demonstrated  that  food, particularly meals  

with high fat content, significantly increases   posaconazole bioavailability. Therefore, 

posaconazole should be administered with food whenever possible to  ensure  optimal 

absorption [33]. Posaconazole  penetrates well into the lungs, however, the drug has a limited 

penetration in the brain tissue that may limit its antifungal activity in IFIs of the central 

nervous  system [31,34]. About 20-30% of posaconazole is metabolized via the UDP-

glucuronosyl-transferase enzymsystem (UGT─1A4) to an inactive metabolite, with the 

remainder being eliminated unchanged in the feces  and to  a lesser extent in urine [35]. The 

estimated elimination half-life in both patients and healthy volunteers is about 30-35 h. There 

is limited  support  for  the  dosing of  posaconazole in  pediatric patients and no formal 

dosing information for posaconazole  is available. A single center study provided a dosing 

algorithm that was   subsequently    tested  in   chronic  granulomatous   disease patients and 

resulted in adequate exposure [36]. 
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Exposure-response relations in patients 

Voriconazole concentrations associated with efficacy 

There are numerous reports on the relationships between efficacy of voriconazole and its 

plasma concentrations. A selection of the most recent articles is outlined below. 

Pascual et al., conducted a prospective, observational study in 52 patients receiving 

voriconazole for treatment of IFDs [37], using trough levels rather than random samples and 

showed a correlation  between efficacy and plasma concentration. Approximately 60%  of 

patients  had  a hematologic malignancy and about half were treated for IA, in which lack of 

therapeutic response was more common among patients with voriconazole trough 

concentrations <1 mg/l. 

In another study investigating the role of therapeutic dose monitoring, in the treatment of 

fungal infections with voriconazole in 34 Japanese patients with hematologic malignancies, 

there was no correlation between voriconazole trough levels and response to therapy [38]. 

However, when patients with refractory underlying  hematologic  disease were removed from 

the analysis, cases with a  concentration of >2 mg/l  were associated  with favorable response 

to  voriconazole. From these results, they concluded that TDM   should be  executed and  

targeted to 2-6 mg/l to improve efficacy and to avoid side effects. 

In an Australian population, the benefit of TDM was shown in 25 patients with proven or 

probable IFIs who experienced two or more episodes of voriconazole TDM at a tertiary 

referral hospital [39]. The authors performed a chart review to investigate the association 

between serum trough concentrations and outcomes of IFI such as  IFI related mortality. 

Patients were more  likely to  die  if  their  initial trough  concentration was below 0.35 mg/l.  

A significant intra patient  variability in voriconazole concentration was evident.  

Immunosuppression was a strong factor that  was associated with IFD  mortality. However,  

successful outcomes were more likely among patients with a median trough voriconazole 

concentration >2.2 mg/l. 

Neely et al., investigated the voriconazole PK-PD and TDM in a pediatric subpopulation 

aged between 2 and 12 years, and notably predicted that 34% of patients receiving 

voriconazole at a dose of 7 mg/kg b.i.d. did not attain the target of >1.0 mg/l [40]. There was  

a statistically  significant association  between crude mortality and voriconazole  12 h  trough 

concentrations  below 1 mg/l. However, trough concentrations >1 mg/l were associated with 

a higher likelihood of success. 
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In an observational study, Troke et al., analyzed the relation- ship between both mean 

plasma voriconazole concentrations  and mean concentration/MIC ratios with efficacy for 825 

patients from nine Phase II and III clinical studies [41]. In this study, the patients with higher 

free Cmax/MIC ratios had a higher probability of clinical response. A trough/MIC ratio of 2-5 

was suggested as a target. The Cavg for 72% of the patients was 0.5-5 mg/l, with the maximum 

response rate (74%) at 3-4 mg/l. 

For  patients  with  Cavg   <0.5  mg/l,  the  response rate  was 57%. As a conclusion, the 

authors  emphasized the importance of considering the MIC, when it is available,  together 

with the plasma concentration, in predicting the therapeutic response for patients receiving 

voriconazole. 

Dolton et al., performed a retrospective analysis investigating the  relationship between 

voriconazole concentration and patients  clinical outcome at  seven hospitals in  Australia 

[42]. Medical records were reviewed for patients who received voriconazole and had at least 

1 concentration measured 201 patients with 783 voriconazole  trough concentrations  were 

included in the  analysis. Voriconazole concentrations  of  <1.7 mg/l  were associated with a 

significantly greater incidence of treatment failure   (19/74    patients    [26%])   than    

concentrations    of >1.7 mg/l (6/89 patients [7%]; p < 0.01). 

Up until today, the only randomized trial investigating the use of TDM  comes from Park et 

al. They performed a randomized, assessor-blinded,  controlled, single center trial to 

determine whether routine TDM  of voriconazole reduces drug adverse events or improves 

treatment response in IFIs including IA [43].  Patients  were randomly assigned  to  TDM  or  

non- TDM  groups. In  the TDM  group, voriconazole  dosage was adjusted (target range, 1.0-

5.5 mg/l) according to the serum trough concentrations measured on the 4th day after 

initiation of voriconazole. The non-TDM  group received a fixed, standard dosage. Both 

treatment response (at 12 weeks after the initiation of therapy) and voriconazole-related  

adverse events were monitored. The  analysis included a total of 110  patients  in both arms 

and baseline characteristics were comparable between the two groups. The primary endpoint 

whether routine TDM of   voriconazole  reduced   the   incidence  of   voriconazole- related 

adverse events was not met as there was no difference between the  TDM  group  and  the  

non-TDM  group  (both 42%; p = 0.97). Yet, the percentage of patient who discontinued 

voriconazole due to adverse events was significantly lower in the TDM group compared to the 

non-TDM group (4% vs 17%; p = 0.02). A complete or partial response was observed in 81% 

(30 of 37) in favor of patients  in the TDM  group compared  to   57%  (20  of  34)  in  the  non-

TDM   group (p = 0.04). Although TDM  of voriconazole  did not decrease the overall incidence 

of voriconazole  related adverse events, it did significantly reduce the incidence of 

voriconazole discontinuation due to adverse events. And more importantly the success rate  

in  the  treatment  of  IFIs  was more  favorable in  the TDM arm. 
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In the setting of prophylaxis there is limited evidence with regards to voriconazole 

breakpoints linking exposure to efficacy of prophylaxis. Mitsani and colleagues performed a 

prospective, observational study in 93 lung transplant recipients [44]. They found that there 

was fewer colonization and there were fewer IFIs at troughs of >1.5 mg/l (p = 0.01). 

 

Posaconazole concentrations associated with efficacy 

For posaconazole,  TDM  is an emerging field. TDM  should certainly be considered for 

patients  failing therapy, the treatment of infections at sanctuary sites, treatment of 

uncommon or in vitro less susceptible  organisms,  patients with mucositis or malabsorption 

and  those  unable  to  take  drug  with  high- fat food [45,46]. TDM  can also be used to 

monitor compliance in the setting of long term therapy. 

In patients with IA who were refractory to or intolerant of conventional antifungal 

therapy, the rate of clinical response to posaconazole   salvages  therapy increased by 

increasing average plasma concentrations. Patients with an average concentration  of 0.13 

mg/l, 0.41 mg/l, 0.72 mg/l and 1.25 mg/l responded successfully in 24%, 53%, 53% and 74% of 

cases, respectively [47]. 

The relationship between concentrations of posaconazole  in blood and efficacy were 

investigated in two US FDA Phase II/III prophylaxis trials in neutropenic patients undergoing 

allogeneic hematopoietic stem cell transplantation (acute myeloid leukemia or 

myelodysplastic syndrome patients) [8], and in patients under- lying GvHD [9]. All patients  

received posaconazole 200 mg t.i.d. for antifungal prophylaxis. The incidence of proven or 

probable breakthrough  fungal infections was 6.5% in neutropenic patients with posaconazole 

average plasma concentrations  below 0.7 mg/ l versus 1.9% in those who attained average 

plasma concentrations above 0.7 mg/l [8], and 3.9% vs 0% in GvHD patients [9], respectively. 

In   addition,  posaconazole concentrations   were nearly twofold lower in the small group of 

patients (n = 5) who developed an IFI than in the cohort (n = 241) that did not develop 

infection (Cavg  of 0.61 mg/l in the infected cohort and C average of 0.92 mg/l in the 

uninfected cohort, respectively). However, these differences were not  statistically significant, 

possibly due to the small number of patients who developed infection (2.4%). 

Jang et al., reanalyzed the exposure-response  findings of the aforementioned two clinical 

studies [48]. According to the logistic regression results, the clinical failure rate at an average 

con- centration <0.7 mg/l was >25% and  >35% in  study 1  and study  2,  respectively. The  

exposure-response analyses thus revealed a clear relationship  between a higher incidence of 

clinical failure, defined as  the initiation of empirical therapy, and lower Cavg, consistent with 
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these analyses,  most of the break- through instances of proven or probable IFIs were 

observed in patients  who attained low Cavg   (<0.7 mg/l). The herein proposed target 

concentration of 0.7 mg/l is subject to debate, [49] and need to be further evaluated. 

Recently, Dolton  et  al.,  performed  a  retrospective chart review of 86 patients on 

posaconazole in whom >1 concentration had   been  determined  [50].   Twelve  patients   out 

of 72 patients who failed prophylaxis had significantly lower concentrations compared to 

patients who did not fail prophylaxis (0.289 mg/l vs  0.485 mg/l; p  < 0.01). Fungal 

breakthrough infections were significantly predicted by the median posaconazole 

concentration (p < 0.05). 

 

Concentrations associated with toxicity 

At the event of the growing proportion of heavily immunocompromised patients, there is  

also an increase of patients at risk for or experiencing an IFI who are receiving systemic 

antifungal agents. As a consequence, clinicians need to be aware of not  only the more 

familiar dose-limiting toxicities  associated with systemic antifungal agents [51], but also 

longer-term risks, including recurrent drug interactions, organ dysfunction, cutaneous 

reactions and malignancies [52]. 

Voriconazole TDM target associated with toxicity 

There is a clear relationship between voriconazole exposure and the incidence of neurological 

side effects or neurotoxicity; however the exposure-response  relationship is not  as well 

established for many other adverse events caused by voriconazole. Particularly for 

hepatotoxicity there appears to  be no unique cut-off point above which hepatic toxicity 

becomes prevailing but  the odds  of having elevated liver enzymes  increases  with the 

increase of exposure to voriconazole  [37,42,43,53]. 

Tan and colleagues  performed a retrospective  analysis on the data on file from the 

manufacturer. They combined data from ten Phase II and III clinical trials. They found a 

positive association between mean plasma voriconazole concentration and the frequency of 

visual adverse events (p= 0.01).  In  addition  they found  a weaker but still significant 

association with increased liver function test results [53].  

Likewise, Pascual and colleagues found in a prospective study a correlation between 

voriconazole  trough levels  and toxicity [37]. Patients with voriconazole  plasma 

concentrations of >5.5 mg/l, 31% (5/16) were at higher risk for developing neurotoxicity 

(confusion, hallucinations, myoclonus) compared to patients with lower concentrations 
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(0/36). There was no clear and distinctive correlation between trough concentration  and  

hepatotoxicity.  

In  another  retrospective trial  of 25  allo-HSCT recipients, elevated levels of aspartate 

amino-transferase and  alkaline phosphatase significantly correlated with elevated 

voriconazole  trough concentrations [54]. Furthermore,  there  was a  link  between 

voriconazole concentrations and the probability of photopsia [53]. Cessation of therapy due 

to photopsia was rarely required. 

 There are also a number of reports of other adverse events, such as hypoglycemia  and 

skin and pulmonary toxicity occurring in the context of voriconazole  therapy, but a causal 

relationships  with exposure has not been established up until today [55]. 

 

Posaconazole TDM target associated with toxicity 

A few studies have investigated the exposure-toxicity  relationship of posaconazole. Based on 

those studies, there appears to be no relationship  between average posaconazole 

concentrations and adverse events [47,48,50]. This may be attributable to the fact that  toxic 

concentrations  are not  reached due to  the limited absorption. 

Jang and colleagues  combined the data from the two large prophylaxis trials of 

posaconazole  (n=467 patients). Patients were stratified by quartile posaconazole  

concentration. Those patients with a lower posaconazole  concentration had a lower 

incidence of treatment-related adverse events. The authors suggested a possible relationship 

for posaconazole  safety; however, these differences did not reach statistical significance [48]. 

Exposure response relations  of  posaconazole and  factors impacting PK were investigated 

in a multicenter study of posaconazole therapeutic drug monitoring,. The  authors  did  not 

observe any causal relation between posaconazole concentrations and the incidence of 

elevated liver function tests [50]. In another study, Moton et al., used pooled posaconazole 

safety data from 18 studies in healthy volunteers and two sub- sets  from clinical trials with 

posaconazole  doses ranging from 50 to 1200 mg/day, and found no relationship between 

adverse events and dose [56]. 
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Factors optimizing the efficacy of voriconazole 

& posaconazole in invasive aspergillosis 

In general, successful  management strategies  of IA depend on three principal aspects related 

to  the pathogen, the host and the drug. In each aspect, a multitude of factors influence 

patient outcomes. However, few of these variables  are under the control of the clinician. A  

schematic translation of  such  interaction  is  shown in (FIGURE  1). The PK (drug) factors that 

have impact of the target attainment  of  voriconazole and  posaconazole have been 

discussed above. 

 

Pathogen factors: the problem  of azole-resistance 

Acquired azole-resistance in  A.  fumigatus is  becoming  an important pathogen-related 

factor that compromises the clinical efficacy of  azole antifungals. A wide range of  mutations  

in A. fumigatus have been  described conferring azole-resistance commonly involves 

modifications  in the cyp51A-gene. Cyp51A mutations in A. fumigatus  commonly affect the 

activity of all mold-active antifungal azoles. Specific mutations  correspond with various 

phenotypes characterized by complete  loss of activity of a specific azole, and with decreased 

activity of others. If the activity of an azole is decreased, increased exposure might remain an 

option to treat patients successfully  [57,58].  Using a non-neutropenic murine model of IA, 

we recently investigated the  PD  and  PK  properties of  voriconazole against clinical A. 

fumigatus  isolates with cyp51A  mutations (MIC 2-4 mg/l) in order to determine whether the 

efficacy of the drug was reduced [57,58]. Voriconazole response (measured as survival) 

showed a clear concentration-dependent relation in both voriconazole susceptible and 

voriconazole resistant strains although, for each dose the response was lower in mice infected 

with the voriconazole-resistant  isolate. As an  example, at  the  highest dose of voriconazole  

investigated 100% survival was reached. In mice infected with the voriconazole-susceptible  

isolate com- pared  to  72.2%  survival in  mice  infected with  the voriconazole-resistant 

isolate. As dose correlated with exposure, this illustrates that higher exposure of voriconazole  

was required to achieve similar efficacy when harboring voriconazole resistant strains. Given 

that, a standard dosage of voriconazole may not be  adequate  in  azole-resistant IA,  a  higher  

drug  exposure appears to be required. This could be achieved using therapeutic drug 

monitoring of voriconazole  that may help linking to successful treatment in azole-resistance 

IA. Similar to voriconazole, higher posaconazole exposure was required to achieve the same 

therapeutic efficacy for posaconazole-resistant A. fumigatus isolates  compared   with   

posaconazole-susceptible strains. Recently, we used a non-neutropenic murine model of 

disseminated aspergillosis  to  investigate the comparative efficacies  of various  regimens  of 

6

4 

 

6 
 



CHAPTER 6.2 |  

 
 

202 

posaconazole  against clinical A. fumigatus cyp51A  mutated isolates  [59]. Both drug 

exposure and the susceptibility of the isolate impacted the efficacy of posaconazole 

treatment in A. fumigatus. We observed a 50% loss of efficacy if the MIC increased from 0.03-

0.5 mg/l. The loss of efficacy was completely  or partly compensated by increasing the 

posaconazole exposure by increasing the dose. Similar to voriconazole, an  optimal  

posaconazole AUC/MIC  predictive of  treatment success  in case of azole-resistant  IA needs 

further elucidation in humans. 

Host & drug factors: the role of inter-patient variability 

Many covariates are known to cause significant  patient-to-patient  variability in the PK of 

voriconazole and posaconazole for treatment or prophylaxis in IA. For example, changes in 

oral absorption (i.e., due to mucositis), distribution (i.e., due to fluid retention) as well in 

metabolism and  clearance (i.e., chemotherapy induced changes in liver and kidney function, 

drug-drug interactions, PK changes in protein binding, extracorporeal elimination etc.) may be 

present with the consequence of higher degree of toxicity or sub-optimal effectiveness 

[50,60-64]. Intensive care patients will most likely have different PK compared to 

hematological patients [65]. This is, among many factors, attributable to the changes  in 

hemodynamics in this population [61]. In septic shock, blood flow is directed to vital organs 

(i.e., brain and heart) with hypoperfusion of organs such as the liver, the gastrointestinal 

system and  the  kidney, which will result in altered clearance. Clearance of drugs will be even 

further influenced  when  extracorporeal elimination  techniques  are deployed [63,64]. Other  

challenges in  this  population  are the increase in volume of distribution as well as  shift in 

protein binding that may result in changes in both PK as well as PD of the drug. 

In  addition  to  the  PK  variability in  different cohorts of patients, one should underscore 

the group of patients who is considered at high risk for IA; including patients  underlying 

hematological  malignancies,  critically ill patients under steroids treatments, patients with 

allergic bronchopulmonairy  aspergillosis or  chronic obstructive pulmonary disease who 

require mechanical ventilation and  cystic fibrosis patients  underlying lung transplantations 

[66]. 
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Figure 1. The schematic triad  of ‘the host’, ‘the bug (pathogen)’ and ‘the drug’ optimizing 

efficacy of antifungals. 
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Practical issues optimizing TDM 

The  appropriate practice of TDM  is based on  several disciplines, including:  analytical 

analysis and sample selection. 

Impact of analytical assays 

Defining the analytical problem before embarking on development of an assay procedure is a 

critical step. Using TDM  in routine practice implies that a validated analytical  assay has to be 

readily available  for the real-time determination of plasma or serum concentrations. In the 

literature reports on single or integrated assays for azoles antifungal drugs are available, but 

in only few hospitals have such an assay operational and instantaneously available [67-69]. A 

proficiency testing program is available to help further improve analytical methods [70]. 

Analytical assays  have to  be validated according to  the current requirements for  validation 

of  bioanalytical assays [103]. Having an assay with a high specificity and accuracy, appears 

challenging. To help identify sources of errors and to further improve analytical  methods,  

participation  in   an   external  proficiency- testing program is recommended. Results from a 

recent proficiency testing program show that correct analyses  within the   predefined  range  

of  80   to   120%   of   the   weighed- in concentrations  were as follows: fluconazole, 79% (n  = 

14 analyses); itraconazole, 78%  (n  =  23);  hydroxy-itraconazole; itraconazole, 78%  (n=23);  

hydroxy-itraconazole, 78% (n = 18); voriconazole, 82% (n = 57) and posaconazole, 62%  (n  =  

26).  The  results   from  this   proficiency-testing program demonstrate the need for and 

utility of an ongoing proficiency-testing  program to further improve the analytical methods 

for routine patient management [70].  

Impact of sampling techniques 

Interaction of the laboratory in sample selection and collecting technique is a key component 

of TDM. The sampling techniques influence outcomes from TDM  specifically in drugs with a 

short half-life such as voriconazole.  In older studies assessing the attributable value of TDM  

of voriconazole,  the sampling has been performed in  many cases randomly, which makes 

interpretation of the results difficult [54,71]. The ultimate sampling scheme would encompass 

a certain amount of sampling moments that would best predict exposure but this method is 

considered unfavorable for many reasons such as  patient burden, required nursing time, 

complex logistics, etc. 

In routine practice the most common sampling  moment is just prior to the next dose 

(trough concentrations or Cmin).  Using a single sample will reduce costs and more important 

will reduce patients  burden due to frequent sampling. Since trough concentrations  correlate 
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with  exposure, this  provides  a  measure that in clinical practice can be easily introduced. For 

posaconazole different aspects apply. This drug has a very long terminal half-life. The  

difference between peak and trough concentrations  is minimal, especially when frequent 

dosing (i.e., t.i.d. or q.i.d.) is used [72]. Sampling at trough concentrations is there- fore not 

necessary but may only be preferred from a practical point of view. 

On  the  other  hands, the  therapeutic range for a  drug  is based on  steady-state plasma 

concentrations. Concentrations drawn too  soon after a dosage regimen has been started or 

changed may provide misleading information. In  the case of voriconazole a first sample can 

be drawn on day 3 of therapy. But for posaconazole,  steady state conditions are only reached 

by day 7-10. An algorithm has been suggested  to be able to determine samples early after 

start of therapy (day 3) and targeting a lower concentration that  will eventually result in  a 

final target concentration on day 7 [48]. 

And lastly, the  frequency of  sampling remains subject to ongoing debate. A single sample 

is not considered TDM  and will not  provide the  necessary input  on  a  patient’s intra- 

individual pharmacokinetic variability. Multiple  interventions over time are sometimes  

necessary to achieve target concentrations  and remain within the therapeutic range. There is 

substantial   intra-individual  variation   in   voriconazole  trough concentrations over time. 

Due to the high intra-subject variability an optimal sampling frequency has to be determined 

to timely adjust dose in order to achieve concentrations  within the target range. A good 

starting point would be to perform TDM  once or twice a week shortly after initiation of 

therapy. This can be reduced to once every two weeks when the patient is clinically improving 

or even less frequent when the patient is no  longer in  the  hospital. Changes  in  clinical 

condition or when interacting drugs  are introduced may prompt for more frequent sampling 

even when therapy has been given already for a longer period of time [73]. 
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Table 2. Provisional target  concentrations of voriconazole and posaconazole used for the 

prevention or treatment of invasive fungal infections. 

 

 

 
Recommended trough concentration 

 
Voriconazole 

 
Primary prophylaxis  ND, same as primary  therapy 

 
Secondary prophylaxis ND, same as primary therapy 

 

Primary therapy (focus of  >1 mg/l and <4 mg/l (<6 mg/l infection: lung) if 

no hepatic 

enzyme elevation) 

 
Primary therapy >2 mg/l 
(disseminated or sanctuary sites) 

 
Posaconazole 

 
Primary prophylaxis  >0.7 mg/l 

 
Secondary prophylaxis ND, >0.7 mg/l-1.0 mg/l 

 
Primary therapy ND, >1.0-1.25 mg/l 

 
Salvage therapy >1.25 mg/l 
 
ND: Not determined. 
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Conclusion 

TDM should be routinely applied for voriconazole and posaconazole treatment of infections  

caused by A. fumigatus.  TDM will be useful to ensure adequate exposure when using a given 

dose in a particular patient. Based on the evidence presented in this review we propose the 

breakpoints for the treatment of azole susceptible IA in hematological patients that are 

summarized in (TABLE 2). In addition, evidence is increasing  that a better understanding of 

the susceptibility could assist the management of patients with IA due to A. fumigatus  

isolates. We therefore suggest that the in vitro testing of A. fumigatus azole susceptibility 

should be performed systematically when considering azole therapy. 

 

Expert commentary & five-year view 

At the moment, TDM can be considered a diagnostic tool. Diagnostics  may be useful to  

detect a change in  a clinical condition such  as an infection or in the case of TDM a sub- or   

supra-therapeutic  exposure.  Unfortunately,  diagnostics  always  follow a change in clinical 

condition that necessitates frequent monitoring. The inherent downside of TDM  is the 

possible delay in  first  time  assessment as  well as  follow- up assessments. This  may be due 

to pharmacokinetic aspects (i.e., steady state not reached), cost-aspects  as well the 

availability of in-house testing  facilities. A delay in the possibility to timely determinate too 

low or too high exposure may have clinical consequences.  It  has  been  repeatedly shown  

that delay in the initiation of antifungal therapy and inadequate exposures  are independently 

associated with increased hospital mortality. 

At this time point,  TDM  is  warranted since the current dosing regimens do not fit the 

individual. Many antifungal drugs have been licensed at a dose that has been changed at a 

later  stage  regardless of  the  population  examined. For instance, both  the  adult  and  

pediatric dosing guideline of voriconazole has  changed after  market  introduction.  This 

indicates that when these drugs came on the market, no sufficient data were available to 

identify the optimal dose in specific cohorts of patients. 

Collaborative efforts are necessary to  identify as many as possible factors that contribute 

to changes in PK-PD to finally truly individualize upfront a patients’  dosing regimen. In vivo 

experimental models could be used to  explicate pathogen influence. Specific patients’ 

populations such as children, hematology, and ICU patients need to be included in clinical 

trials. Host  factors such as  mucositis for  oral absorption, obesity, renal and hepatic 

dysfunction and the extent of their influence need to be resolved. This research should be 

performed before or very short after market authorization. We can then seek for a 
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probabilistic model to upfront give the patient the optimal dose based on specific patient 

features (identified co-variates). This   implies  that   we  would   switch  from   TDM   as  a 

concentration guided dosing tool to an approach were the drug concentration could be used 

as a validation set of an individualized dosing advice and  thereby bringing it  to  earlier time 

point  with subsequent reduction in host-risk. Also, whenever possible an attempt should be 

made to integrate PD parameters such as a pathogen’s  MIC. This probabilistic approach, with 

a tailored dose followed by validation of target concentrations, will be performed very soon 

(i.e., 2 or 3 days) after start of therapy. Inherent to whatever new approach is chosen, we may 

not be able to identify all factors that cause changes in PK-PD. In other words: a residual error 

will always be present. And unforeseen changes in the clinical situation will prompt for new 

assessments of concentrations. But we strongly believe that we should put effort into 

bringing this diagnostic tool to an earlier time point after initiation of therapy with a tailored 

dose. 

From a practical point of view 
Have  an   adequate  (in-house)  technique  with  short   turn- around time; take more than 

one sample; start measuring in the first few days of therapy; use trough concentrations for 

correct interpretation; measure again with changed clinical circumstances. 

 
Key issues 

- Therapeutic drug monitoring (TDM) of posaconazole and voriconazole can be 

recommended in the setting of prophylaxis and treatment of invasive fungal disease 

caused by Aspergillus fumigatus. 

- TDM may be beneficial to warrant optimal efficacy of posaconazole and voriconazole 

and to reduce toxicity in the case of voriconazole. 

- Controlled trials TDM versus no-TDM (specifically for posaconazole) are warranted to 

provide the necessary justification of the value of TDM. 

- Incorporation of MIC, disease status, genomics, other covariates will allow more 

thorough interpretation of the results obtained. 
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General discussion and future prospectives 

Azole resistance is an emerging problem in Aspergillus fumigatus. Resistance development in 

patients with chronic azole therapy complicates the management of aspergillus diseases in 

individual cases; however the emergence of azole resistance through environmental selection 

has been shown to be a concern for every patient at risk for aspergillus disease in endemic 

areas. As resistance is a relatively recent phenomenon, there is a lack of evidence and clinical 

experience in how this problem is best managed. The research described in this thesis is 

aimed to provide some experimental evidence that will help to guide physicians in the 

treatment of patients with azole-resistant aspergillus diseases. 

 

1. Towards personalized management of invasive fungal 

infections 

Several management strategies have evolved over the past decades that are aimed at the 

timely treatment of patients with (presumed) invasive fungal infections (IFIs). Early studies 

advocated the empiric treatment strategy where patients with persistent fever, despite 

broad-spectrum antibacterial therapy, receive a broad-spectrum antifungal agent, without 

having made the diagnosis of a fungal infection (1). Any fungus could cause the infection in 

this setting, of course depending on the local epidemiology. With the availability of 

biomarkers, such as galactomannan (GM), and computed tomography a diagnostic-driven 

approach became possible. In GM-positive patients the treating physician would know that 

the fungal infection was most likely caused by a member of the aspergillus family. This 

approach allows a more targeted use of antifungal agents and some studies indicate the 

diagnostic-driven strategy is as effective as the empiric strategy (2). However, biomarkers, 

such as GM, are at best genus-specific and do not provide information concerning the 

Aspergillus species or the drug-susceptibility.  

Given the changes in aspergillus taxonomy and the emergence of acquired resistance, the 

current biomarkers may provide insufficient information to guide the treatment choice. An 

important focus of research should be the development of diagnostic tools that allow 

aspergillus speciation and the detection of resistance markers directly in clinical specimens. 

Direct detection of resistance markers is difficult as the Cyp-gene is a single copy gene, thus 

developing a diagnostic tool with sufficient sensitivity is a challenge. Furthermore, the 

diversity of Cyp-mediated resistance mechanisms represents another challenge. In the 

Netherlands surveillance studies shows that the diversity of resistance mutations is limited, 

i.e. mainly TR34/L98H and TR46/Y121F/T289A, and therefore a molecular tool that would allow 
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detection of only these two resistance mechanisms might significantly improve our ability to 

detect azole resistance at an early stage. In other settings where resistance mutations are 

more diverse the benefit of such an approach might be limited. Investigators from 

Manchester have reported multiple Cyp51A-mediated mutations in patient isolates, and also 

a substantial proportions of resistant isolates show non mutations in the Cyp51A-gene 

indicating that other, yet unknown, resistance mechanisms may be present (3, 4). Possibly in 

settings with a high diversity of resistance mechanisms a sequence-based approach might be 

more appropriate.  

Our studies indicate that in a setting of aspergillus isolates with a greater range of MIC-

values (i.e. wild type and non-wild type) the drug exposure becomes critical. Although we 

have shown that the role of voriconazole and posaconazole in azole-resistant aspergillosis is 

probably very limited, there remain situations that azole therapy will be considered. In 

situations that the PD-target can still be achieved, the therapeutic index will be lower and 

sufficient exposure more difficult to achieve. Intensive monitoring of patients, including 

therapeutic drug monitoring (TDM), then becomes critical. Other patient factors such as drug 

interactions, drug clearance and toxicity need to be considered.  

The trend we anticipate is towards individualization of the management of patients with 

invasive aspergillosis and other aspergillus diseases. Factors such as those regarding the 

fungus (species, resistance mutations and virulence markers), pharmacology (drug choice and 

prediction of expected exposure) and host (site of infection, immune suppression and genetic 

susceptibility) will be used to optimize the management of the fungal infection aiming at 

improved outcome (Fig. 1). Given reports on increased resistance in other opportunistic fungi, 

such as C. glabrata (5), such an approach might be broadly applicable in the mycology field. 

This personalized approach is similar to that advocated in other areas of human medicine, 

particularly in the area of oncology that proposes the customization of healthcare, with 

medical decisions, practices, and/or products being tailored to the individual patient (6-8). We 

believe that with the availability of new molecular diagnostic techniques to detect drug 

resistance mechanisms in opportunistic fungi, advances in antifungal susceptibity testing, 

increased understanding and monitoring of antifungal drug levels and identification of host 

genetic risk factors, the management of invasive fungal infections will evolve towards 

personalized mycology (Fig. 2).  
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Figure 1: Key factors optimizing therapeutic approaches for antifungal therapy against 

invasive aspergillosis. 
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2. Recommendations for the management of azole-

resistant aspergillosis 

Current aspergillus treatment guidelines, such as IDSA (9) and ECIL (10), do not address the 

issue of azole resistance. In the literature only case series or individual cases of azole-resistant 

aspergillus diseases have been published, and therefore the best approach to manage these 

patients is unknown.  

In the absence of clinical evidence and with limited preclinical evidence, one needs to rely 

on expert opinion. Therefore recently the Dutch Society for Medical Mycology organized an 

international expert meeting aimed to discuss how experts would manage azole resistance in 

different patient groups in endemic and non-endemic situations. I contributed to this expert 

meeting and it was evident that even among the experts opinions were divided. In the 

context of my thesis one important issue is the best alternative treatment option in patients 

with azole-resistant aspergillosis. Liposomal amphotericin B (L-AmB) is recommended as 

alternative treatment option for (azole-susceptible) invasive aspergillosis and our animal 

experiment showed that the efficacy of L-AmB in azole-resistant infections was similar to that 

of wild type infection (11). Nevertheless there is doubt that the efficacy of L-AmB is similar to 

that of voriconazole, based on post marketing studies (12-17).  

In an editorial Denning et al estimated that L-AmB would be 10 to 15% less efficacious 

compared to voriconazole (18). If this would be true a switch of first line therapy from 

voriconazole to L-AmB would come with a trade off. Such a switch would then be justified 

only when higher levels of environmental resistance are found. However, other studies, such 

as the ambiload clinical trial (19), report an efficacy of L-AmB which is comparable to that of 

voriconazole. The problem is that we have no studies that directly compare the efficacy of 

voriconazole with that of L-AmB. Furthermore, comparing different clinical studies is difficult 

as they will differ with respect to inclusion criteria, underlying diseases and certainty of 

diagnosis. Also in retrospective studies that compare the efficacy of L-AmB with voriconazole, 

patients treated with L-AmB are usually treated before voriconazole was licensed (2002), 

thereby introducing other factors, such as general improved supportive care, that influence 

outcome (13).  

As a new randomized comparative trial is unlikely to be performed, this dilemma will 

prove difficult to resolve. One option would be to re-analyze patients enrolled in different 

prospective clinical trials, as was recently published for candidemia (20). Factors that could 

cause potential bias, such as the year in which the patient was treated, could be matched. 

The feasibility of such an analysis depends amongst other factors on the willingness of the 
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pharmaceutical companies to share relevant data on file. An alternative might be to set up a 

registry of cases with azole-resistant aspergillosis, in which standardized information is 

collected of patients with documented azole-resistant disease. Matched control cases of 

azole-susceptible aspergillosis may be included as comparison. 

 

 

Figure 2: Schematic of personalized mycology. Modified from Sadowska et al. Ther Adv Med 

Oncol. 2011;3(4):207-18.  
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3. Investigation of alternative treatment options 

Although the therapeutic arsenal of antifungal drug classes for the treatment of aspergillus 

diseases is limited, there are compounds from other drug classes that could be re-evaluated 

in the setting of azole resistance. One advantage of this approach is that these drugs are 

already licensed and alternative treatment regimens could be implemented rapidly. Currently 

there are patient groups where treatment options are extremely limited, such as patients 

with central nervous system (CNS) aspergillosis. In CNS aspergillosis voriconazole has shown 

better efficacy compared to alternatives regimens, i.e. ployene-based therapy, and patients 

with azole-resistant CNS aspergillosis have proven extremely difficult to manage (21).  

Flucytosine (5-FC) is one of the drugs that could be evaluated for treatment of azole-

resistant aspergillosis, particularly in cases that involve the CNS. In the clinical setting, the 

combination of 5-FC and L-AmB was effective in CNS infections due to Cryptococcus 

neoformans, (22) but its use in the treatment of aspergillus infection has been controversial. 

The drug has been used in patients with invasive aspergillosis in combination with L-AmB (23). 

One small prospective study was published showing no benefit of AmB+5-FC combination 

therapy compared to AmB monotherapy (24), however only patients with proven IFIs were 

enrolled in this study indicating that treatment was started at a late stage of infection. 5-FC 

was found to be active in vitro against A.fumigatus isolates when the MIC was determined at 

PH 5 instead of PH 7 (25, 26). In experimental models mice infected with isolates with a low 5-

FC MIC (at pH 5) could be successfully treated with 5-FC monotherapy (26, 27). As there are 

currently no data regarding the in vitro activity of 5-FC against azole-resistant A. fumigatus 

isolates, and no in vivo data to support its use, this should be investigated. Given the excellent 

penetration of 5-FC in CNS and eye, combination therapy with L-AmB or voriconazole might 

be an option in these difficult to treat infections (28). 

Another drug with in vitro activity against A. fumigatus is the allylamine terbinafine. 

Terbinafine appeared to be as effective as amphotericin B and itraconazole in the treatment 

of bronchopulmonary aspergillosis in non-immunocompromised patients (29). In two cases of 

aspergillus endophthalmitis, terbinafine in combination with amphotericin B showed a 

synergistic interaction (30). The use of terbinafine in combination therapy for aspergillus 

infections with azoles was also promising in vitro, against both itraconazole-susceptible and -

resistant A. fumigatus isolates (31, 32). In addition, the interaction between triazoles and 

terbinafine was synergistic in vitro and in salvage therapy of Scedosporium prolificans 

infection, a fungus inherently resistant to voriconazole (33-35). In this approach, the efficacy 

of combination therapy relies on terbinafine and its synergistic interaction with voriconazole. 

In our opinion, therefore, the combination of voriconazole and terbinafine may be an 

attractive option for azole-resistant aspergillus diseases, and requires further investigation. 
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Another potential strategy to overcome antifungal drug resistance is to make currently 

available antifungals more effective. This approach is to identify compounds that act in 

synergy with currently licensed antifungals. 

Chemosensitizing agents possess antifungal activity, but at insufficient levels to serve as 

antimycotics, alone (36). Their main function is to disrupt fungal stress response, destabilize 

the structural integrity of cellular and vacuolar membranes or stimulate production of 

reactive oxygen species, augmenting oxidative stress and apoptosis. When chemosensitizers 

are co-applied with a commercial antifungal agent, an additive or synergistic interaction may 

occur, augmenting antifungal efficacy (36). This augmentation, in turn, lowers effective 

dosages, costs, negative side effects and, in some cases, countermands resistance. Notably, 

combination of such agent  2 ─ Adamantanamine (AC17) which is a close structural analog of 

amantadine, with azoles has been shown a promising lead in the search for more effective 

antifungal therapeutics (37). This approach might improve the efficacy of the azoles against 

A.fumigatus isolates simply allowing more drugs to enter the cell, or they may act by affecting 

a pathway that leads to synergy, such as inhibiting a fungal stress response.  

 

4. Investigation of new targets for antifungals 

Development of new antifungal drug targets for fungi has proven difficult. It is complicated to 

design an agent that selectively kills one eukaryote (pathogen) while not harming the larger 

infected eukaryote (host). Notably, decades of Aspergillus pathogenesis research have 

confirmed its multifactorial nature. There are myriad studies highlighting A. fumigatus 

virulence factors, all of which are possible antifungal drug targets. Researchers strive to 

elucidate the following factors: calcineurin” conserved protein phosphatase important in 

stress responded pmrA (38), heat shock protein 90 (Hsp90) (39), the endoplasmic reticulum 

transmembrane sensors(40), Basic fibroblast growth factor (BCGF) (41), and sterol regulatory 

element–binding protein transcription factor which mediates hypoxia adaptation to the site 

of infection (42). Recent data also suggest a bifunctional role for galactosaminogalactan in the 

pathogenesis of invasive aspergillosis, and suggest that it may serve as a useful target for 

antifungal therapy (43). However, clearly, to move from ‘‘virulence factor’’ to next critical 

steps as drug target requires more investigation. 
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5. Immunotherapy as an alternative therapeutic option 

The host-fungal interactions play a critical role for all fungal pathogens. Targeting this 

interaction may provide novel therapies, which could be used alone or in combination with 

existing antifungal drugs. There is an increasing demand for novel therapeutic strategies 

aimed at enhancing or restoring antifungal immunity in immunocompromised patients. In this 

regard, modulation of specific innate immune functions and vaccination are promising 

immunotherapeutic strategies (44).  

Colony-stimulating factors (CSFs), granulocyte transfusion, and cytokines (mainly IFN ─ γ) 

are used to augment the number and the function of circulating neutrophils in neutropenic 

patients (45). T-cell therapy including Aspergillus-specific CD4+ Th1 immunity has been shown 

an appealing strategy to favour immunological reconstitution and early adoptive therapy. 

Pentraxin (PTX3), an opsonin that forms complexes on the conidial surface of A. fumigatus, 

thereby amplifying the innate immune response, is also receiving great attention as a 

potential therapeutic agent with anti-inflammatory properties in aspergillosis (46). Thymosin 

alpha1 (Tα1), a naturally occurring thymic peptide, which is approved in some countries for 

the treatment of a number of viral infections (47) and as an an endogenous immune regulator 

was capable of inducing protective immunity to A. fumigatus (48). However, more 

investigation is needed to determine whether this approach is useful in either clearing 

A.fumigatus infections or prolonging survival. 
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Summary 

In humans, Aspergillus fumigatus is the most common and life-threatening aerial fungal 

pathogen, especially among immunocompromised patients, with an overall mortality ranging 

between 30 to 88%. Azole antifungals, such as voriconazole and posaconazole, are 

recommended first choice drugs to manage aspergillus diseases. However, acquired azole-

resistance in A.fumigatus is an emerging problem that compromises the clinical efficacy of 

azole antifungals. An azole-resistant phenotype in A. fumigatus commonly confers with 

modifications in the cyp51A-gene, which affect the activity of all mold-active antifungal 

azoles. Specific mutations correspond with various phenotypes characterized by complete 

loss of activity of a specific azole, and with decreased activity of others.  

Although azole resistance may emerge during antifungal therapy of individual azole-

treated patients, selection of resistance may also occur in the environment. The 

environmental route of resistance selection has the risk of global migration and indeed azole 

resistance in A. fumigatus is increasingly found in multiple European countries, Asia and the 

United States. Azole resistant aspergillus infection is commonly associated with treatment 

failure. Given the prominent role of azoles in the management of aspergillus diseases, 

successful management of azole-resistant aspergillus diseases in patients with chronic 

pulmonary aspergillosis (CPA) and invasive aspergillosis (IA) is a challenge. Therefore, it is 

important to explore alternative therapeutic approaches (Chapter 1). The research described 

in this thesis is aimed to provide some experimental evidence that will help to guide 

physicians in the treatment of patients with azole-resistant aspergillus diseases. 

Experimental models of IA have been used to explore pharmacokinetic (PK) and 

pharmacodynamic (PD) properties of antifungal agents. Survival is considered the golden 

standard effect measure but has the disadvantage that a large number of animals are needed 

to determine the dose–response relationships and PK/PD of antifungals. In Chapter 2 we 

investigated the applications and limitations of molecular techniques to assess therapeutic 

efficacy of antifungal agents in experimental models of invasive aspergillosis. It is expected 

that the use of qPCR will become the primary outcome measure for assessment of PK/PD 

relationships of antifungals in experimental models of IA. 

Anidulafungin belongs to the echinocandins but has an unique site of action, different 

from that of azoles and polyenes, as it targets cell wall synthesis. Chapter 3 describes the PK-

PD properties of anidulafungin monotherapy in a non-neutropenic murine model of invasive 

aspergillosis. For this purpose, we used two clinical isolates with different profiles of 

susceptibility to voriconazole: a voriconazole-susceptible A. fumigatus isolate and a 

voriconazole-resistant A.fumigatus isolate harboring a TR34/L98H mutation in the cyp51A 

gene. Anidulafungin treatment improved the survival of mice in a dose-dependent manner; 
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however, a maximal response was not achieved with either isolate even in those treated with 

the highest anidulafungin dose.  

Although combination therapy is presently not recommended for the primary therapy of 

invasive aspergillosis, it may be an effective alternative approach for treatment of patients 

with azole-resistant Aspergillus disease. A recent clinical trial comparing voriconazole 

monotherapy with voriconazole plus anidulafungin showed a trend towards a better efficacy 

of the combination. However, in the study the majority of patients probably had azole-

susceptible invasive aspergillosis. In vitro interaction studies indicated that a combination of 

voriconazole and anidulafungin might be effective against infections caused by both azole-

susceptible and azole-resistant A. fumigatus isolates, but the combination could possibly be 

less effective in voriconazole-resistant strains with high MICs (Chapter 4.1).  

The in vivo efficacy of voriconazole and anidulafungin was also investigated in a non-

neutropenic murine model of invasive aspergillosis using voriconazole-susceptible 

(voriconazole MIC of 0.5 mg/l) and voriconazole-resistant (voriconazole MIC of 4 mg/l) A. 

fumigatus clinical isolates. The combination of voriconazole and anidulafungin showed a 

synergistic interaction in voriconazole-susceptible invasive aspergillosis, but only an additive 

interaction in voriconazole-resistant invasive aspergillosis. There was a clear benefit of 

combining voriconazole and anidulafungin, but the reduced effect of combination therapy in 

azole-resistant invasive aspergillosis raises some concern (Chapter 4.2). 

In Chapter 5, we investigated whether liposomal-amphotericin B (L-AmB) could be used as 

an alternative treatment option in patients with azole-resistant invasive aspergillosis, using an 

experimental model of infection. To this aim, we studied the pharmacodynamics and dose-

response relationships of L-AmB against wild-type and three clinical azole-resistant 

A.fumigatus isolates harboring different resistance mechanisms in an immunocompetent 

murine model of disseminated aspergillosis. Our results indicated that L-AmB was able to 

prolong survival in vivo in disseminated invasive aspergillosis independent of the presence of 

an azole resistance mechanism in a dose-dependent manner, and therefore, supports a role 

for L-AmB in the treatment of azole-resistant invasive aspergillosis. 

In chapter 6.1 we investigated if voriconazole and posaconazole remain to have a role in 

the treatment of azole-resistant aspergillus disease. In vitro, preclinical studies and clinical 

studies were reviewed and used to estimate the pharmacodynamic (PD) target. Then for each 

MIC the required exposure and plasma level were calculated. Our analysis showed that for 

posaconazole adequate exposure can be achieved only for wild type isolates and that dose 

escalation does not allow PD target attainment. However, the new intravenous formulation 

might result in sufficient exposure to treat isolates with a MIC of 0.5 mg/L. For voriconazole 

our analysis indicated that the exposure needed to treat infection due to isolates with a MIC 

of 2 mg/L is feasible and maybe isolates with a MIC of 4 mg/L. However, extreme caution and 
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strict monitoring of drug levels would be required, as the probability of toxicity will also 

increase. 

In Chapter 6.2 we review the pharmacokinetics and pharmacodynamics of voriconazole 

and posaconazole. Given the PK/PD characteristics of these azoles monitoring of drug 

exposure appears necessary to ensure adequate exposure in individual patients. The 

increased recognition of non-wild type A. fumigatus isolates and other aspergillus species 

with different azole-susceptibility profiles, underscores the need for close and individualized 

patient management.  
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Samenvatting  

In de mens is Aspergillus fumigatus de meest voorkomende schimmel die levensbedreigende 

infecties kan veroorzaken met name bij immuungecompromitteerde patiënten, met een 

letaliteit die varieert tussen 30 en 88%. Azolen, zoals voriconazol en posaconazol, zijn 

aanbevolen eerste keus middelen bij aspergillus ziekten. Echter, verworven azoolresistentie is 

een toenemend probleem die de effectiviteit van azoolgeneesmiddelen bedreigd.  Een 

azoolresistente fenotype hangt vaak samen met genetische veranderingen in het Cyp51A-gen, 

waarbij de activiteit van de azolengroep wordt aangetast. Specifieke mutaties in dit gen 

corresponderen veelal met volledig verlies van activiteit van één bepaalde azool, en met 

verminderde activiteit bij de andere azolen. 

Hoewel azoolresistentie kan ontstaan gedurende behandeling van individuele patiënten, 

kan resistentieselectie ook optreden in het milieu. Deze omgevingsroute van 

resistentieselectie heeft een hoog risico op mondiale verspreiding van resistentie en 

azoolresistentie wordt ook in toenemende mate gerapporteerd in Europese landen, Azië en 

de Verenigde Staten. Azoolresistentie is geassocieerd met het falen op behandeling met 

azolen. Gegeven de prominente rol van azolen bij de behandeling van aspergillusziekten, 

wordt het behandelen van azoolresistente chronische aspergillose (CPA) en acute aspergillose 

een uitdaging. Het is daarom van belang alternatieve behandelingsopties te exploreren 

(Hoofdstuk 1). Het onderzoek zoals beschreven in dit proefschrift heeft als doel 

wetenschappelijk bewijs op basis van experimenteel onderzoek te leveren die clinici kan 

helpen bij de behandeling van patiënten met azoolresistente aspergillus ziekten. 

Experimentele modellen van IA zijn gebruikt bij het onderzoek naar farmacokinetische 

(PK) en farmacodynamische (PD) eigenschappen van antifungale middelen. Overleving wordt 

gezien als de gouden standaard van effectiviteit, maar heeft als nadeel dat er een groot aantal 

dieren nodig zijn om dosis - respons en PK/PD relaties te beschrijven. In Hoofdstuk 2 hebben 

we de toepassingen en beperkingen onderzocht van moleculaire technieken om de 

effectiviteit van antifungale middelen in diermodellen van IA te bepalen. Men verwacht dat 

qPCR de belangrijkste maat van effectiviteit zal worden om Pk/PD relaties van antifungale 

middelen in IA te beschrijven. 

Anidulafungine behoort tot de klasse van de echinocandines en heeft een uniek 

aangrijpingspunt, verschillend van de azolen en polyenen, met als aangrijpingspunt de 

celwand synthese. Hoofdstuk 3 beschrijft de PK-PD eigenschappen van anidulafungine 

monotherapie in een niet-neutropeen muis model van IA. Voor dit onderzoek hebben we 

twee klinische isolaten gebruikt met verschillende gevoeligheidspatronen ten opzichte van 

voriconazol: een voriconazol-gevoelig A. fumigatus isolaat en een voriconazol-resistente A. 

fumigatus isolaat met een TR34/L98H substitutie in het Cyp51A - gen. De overleving van 
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muizen behandeld met anidulafungine verbeterde en was dosis afhankelijk; echter, een 

maximale respons werd met geen van beide isolaten bereikt, zelfs niet in de groepen die met 

de hoogste dosering werden behandeld.  

Hoewel combinatietherapie momenteel niet wordt aanbevolen voor de behandeling van 

IA, zou combinatietherapie een optie kunnen zijn bij azoolresistente aspergillusziekten. In een 

recente klinische trial waarbij de effectiviteit van voriconazol werd vergeleken met dat van 

voriconazol plus anidulafungine was er een trend naar betere effectiviteit bij patiënten die 

met de combinatie werden behandeld. Echter we gaan ervan uit dat de meerderheid van de 

patiënten een infectie hadden met een azool ─ gevoelig isolaat. In vitro interactie onderzoek 

toonde aan dat de combinatie voriconazol en anidulafungine mogelijk effectief zou zijn bij 

zowel azool-gevoelige en azool-resistente infecties, maar dat de combinatie mogelijk minder 

effectief zou kunnen zijn als het isolaat volledig resistent was voor voriconazol (Hoofdstuk 

4.1).  

De in vivo effectiviteit van voriconazol en anidulafungine werd onderzocht in een niet-

neutropeen model van IA waarbij dieren geïnfecteerd werden met klinische A. fumigatus 

isolaten: een voriconazol-gevoelige (voriconazol MIC van 0,5 mg/l) of een azool-resistente 

(voriconazol MIC van 4 mg/l). De combinatie voriconazol en anidulafungine toonde een 

synergistische interactie in azool-gevoelige IA, maar slechts een additieve interactie bij azool-

resistente IA. Hoewel er een duidelijk toegevoegde waarde was van het combineren van 

voriconazol en anidulafungine, is het verlies van synergisme bij azoolresistentie zorgelijk 

(Hoofdstuk 4.2). 

In hoofdstuk 5 hebben we onderzocht of liposomaal-amfotericine B (L-AmB) gebruikt zou 

kunnen worden als alternatieve behandeling voor patiënten met azoolresistente IA, 

gebruikmakend van ons diermodel. Hiertoe werden de farmacodynamiek en dosis-respons 

relaties van L-AmB onderzocht bij muizen geïnfecteerd met een wild-type isolaat en drie 

klinische azool-resistente A. fumigatus isolaten, met verschillende resistentie mechanismen. 

Het onderzoek toonde aan dat L-AmB behandeling de in vivo overleving van de muizen 

verlengde onafhankelijk van de aanwezigheid van een azoolresistentie mechanisme. De 

effectiviteit was dosis afhankelijk en het model ondersteunt het gebruik van L-AmB voor de 

behandeling van azoolresistente IA. 

In hoofdstuk 6.1 hebben we onderzocht of er nog een rol is voor voriconazol en 

posaconazol bij de behandeling van azoolresistente aspergillus ziekte. Relevant in vitro, 

preklinische en klinische studies werden onderzocht en gebruikt om een schatting te maken 

van het farmacodynamisch target (PD). Vervolgens werd er voor MIC berekend wat de 

vereiste blootstelling zou zijn en plasma spiegel om de PD te bereiken. Deze analyse toonde 

dat voor posaconazol een adequate blootstelling bereikt kon worden die ons in staat stelt 

uitsluitend infecties met een wild type gevoeligheid te behandelen, en dat dosis escalatie niet 
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leidt tot een hogere blootstelling. Mogelijk dat met het beschikbaar komen van een 

intraveneuze formulering een voldoende blootstelling bereikt kan worden om infecties door 

isolaten met een MIC van 0,5 mg/l te behandelen. Voor voriconazol toonde ons onderzoek 

aan dat de blootstelling die nodig is om isolaten met een MIC van 2 mg/l te behandelen 

bereikt kan worden, en mogelijk isolaten met een MIC van 4 mg/l. Echter dit dient dan wel 

met grote omzichtigheid en stricte monitoring van plasma spiegels gebeuren, omdat ook het 

risico op toxiciteit sterk toeneemt. 

In Hoofdstuk 6.2 presenteren we literatuuronderzoek naar de farmacokinetiek en 

farmacodynamiek van voriconazol en posaconazol. Gegeven de PK/PD eigenschappen van 

deze middelen is het monitoren van spiegels noodzakelijk om verzekerd te zijn van een 

adequate blootstelling. De noodzaak van nauwgezette monitoring van patiënten is 

toegenomen door de toegenomen risico op non-wild type A. fumigatus en andere Aspergillus 

species met afwijkende gevoeligheidsprofielen.   
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 چکیده فارسی

 

ناشی از قارچ آسپرژیلوس تهاجمی رمان بیماری آسپرژیلوزیس روشهای د

 : از آزمایشگاه تا بالین فومیگاتوس مقاوم به دارو

 
 دکتر سید مجتبی سید موسوی

 
در  "بیماران ،مخصوصا % ۸۸تا    ۰۳بیماری آسپرژیلوزیس مهاجم سبب مرگ و میر در 

یمنی، می شود. عامل این بیماری قارچ بیماریزای موجود سیستم ات اختلالا همبتلا بافراد 

در هوا به نام آسپرژیلوس فومیگاتوس است. در حال حاضر داروهای گروه آزول شامل 

وریکونازول و پوساکونازول بهترین توصیه جهت درمان بیماریهای ناشی از این قارچ 

ده نوظهور مقاومت هستند. هر چند که مصرف طولانی مدت این داروها سبب بروز پدی

دارویی اکتسابی در این قارچ شده است. علاوه بر این، نتایج تحقیقات نشان داده است که 

قارچ آسپرژیلوس فومیگاتوس می تواند مقاومت به این داروها را در محیط کسب کند که 

توان به تاثیرات مصرف بی رویه مشتقات داروهای این خانواده در  از جمله دلایل آن می

تغییرات ژنومی این قارچ در محیط، اشاره نمود. به  "کشاورزی ویا سایر صنایع و متعاقبا

دلیل اینکه از یکطرف داروهای آزولی نقش بسیار مهمی در درمان بیماری آسپرژیلوزیس 

روند مرگ و میر در بین مبتلایان به این مزمن و مهاجم بازی میکنند و از طرف دیگر 

بیماری در حال افزایش است، جستجوی روشهای درمانی جایگزین بسیار حایز اهمیت و 

چهار سال بیان نتایج تحقیقات به عمل آمده در طی مدت ضروری است. در این پایان نامه 

در درمان  تلاش شده است مهمترین راهکارهای مورد نیاز پزشکان، که در آنمی گردد 

ناشی از قارچ آسپرژیلوس فومیگاتوس مقاوم به دارو، از تهاجمی  بیماری آسپرژیلوزیس

 آزمایشگاه تا بالین مورد بحث و بررسی قرار گیرد. 
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