The following full text is a publisher's version.

For additional information about this publication click this link.
http://hdl.handle.net/2066/123389

Please be advised that this information was generated on 2021-02-07 and may be subject to change.
A Bayesian Approach to Constraint Based Causal Inference

Tom Claassen
Radboud University, Nijmegen

tomc@cs.ru.nl

Tom Heskes
Radboud University, Nijmegen
tomh@cs.ru.nl

Keywords: causal discovery, structure learning, graphical models

We target the problem of accuracy and robustness in causal inference from finite data sets. Our idea is to combine the inherent robustness of Bayesian approaches to causal structure discovery, such as GES, with the theoretical strength and clarity of constraint-based methods such as IC and PC/FCI. We obtain probability estimates on the input statements in a constraint-based procedure, which are then processed in decreasing order of reliability.

Interactions between real-world variables are often modeled in the form of a causal DAG G_C. A directed path from A to B in G_C indicates a causal relation $A \Rightarrow B$ in the system. The causal Markov and faithfulness assumptions link the structure of the graph G_C to observed probabilistic in/dependencies, which forms the basis behind existing causal discovery procedures.

Method

We break up this inference process into a series of modular steps on basic logical causal statements of the form $L : (Z \Rightarrow X) \lor (Z \Rightarrow Y)$, and $L : Z \not\Rightarrow X$. Subsequent statements follow from deduction on the causal properties transitivity and acyclicity.

We obtain probability estimates on logical causal statements by summing the normalized posteriors of all structures G that entail L through d-separation:

$$p(L|D) \propto \sum_{G \in \{L\}} p(D|G)p(G).$$

Structures over different (small) subsets of variables $X \subset V$ can already suffice to derive a specific L. This is used in an efficient search strategy over increasing subsets of nodes, where it suffices to keep track of only the maximum probabilities obtained so far.

For the likelihood estimates $p(D|G)$ on possible DAG structures we employ the well-known Bayesian Dirichlet (BD) metric.

We still need to account for the fact that the minimal DAG over subset $X \subset V$ may be unfaithful (uDAG) to the underlying structure. This leads to a modified inference rule, where d-separation remains valid, but the identifiable dependencies are restricted. From this we build a mapping from (possibly unfaithful) uDAGs G to valid logical causal statements L.

Implementation and results

Tests show that a basic implementation of the resulting Bayesian Constraint-based Causal Discovery (BCCD) algorithm already outperforms established procedures such as FCI and Conservative PC. It can also indicate which causal decisions in the output have high reliability and which do not.

The approach is easily adapted into a powerful new independence test that actually increases in power for larger conditioning sets. Future extension include scoring MAGs, and allowing for continuous/mixed data.

Acknowledgments

This research was supported by NWO Vici grant nr.639.023.604.