PDF hosted at the Radboud Repository of the Radboud University Nijmegen

The following full text is a publisher's version.

For additional information about this publication click this link.
http://hdl.handle.net/2066/122394

Please be advised that this information was generated on 2019-11-11 and may be subject to change.
Computational Thinking Skills in Dutch Secondary Education

Natala Grgurina, University of Groningen, n.grgurina@rug.nl
Erik Barendsen, Radboud University Nijmegen
Bert Zwaneveld, Open University
Wim van de Griff, University of Groningen
Ezid Stoker, Radboud University Nijmegen

We shall study the following issues:

1. What is an operational definition of Computational Thinking, tailored to the specific situation and needs of secondary education in the Netherlands?
2. How can students’ CT problem solving skills be assessed?
3. What is a suitable pedagogical approach to teach students and stimulate their learning of CT problem solving skills?

Some CT aspects can be recognized in current CS teaching practice. How can we ensure systematic teaching of CT in the CS curriculum?

We started with CSTA/ISTE characterization of the nine essential CT aspects (in the left column of the table). Using the CSTA examples of learning experiences and samples of existing teaching materials, we iteratively constructed a refinement of the CT characterization (the right column of the table).

The first phase of the research is focused on CT aspects in the existing teaching practice. We ask:

i. Which aspects of CT can be recognized in Dutch CS teaching materials, curriculum specifications and policy documents?

We shall develop an instrument to assess students’ CT in the second phase.

A pedagogical approach will be developed in the third phase.

The effects of the curriculum intervention will be assessed in the fourth phase.

Some CT aspects can be recognized in current CS teaching practice.

Computational Thinking is the thought process involved in formulating problems and their solutions so that the solutions are represented in a form that can be effectively carried out by an information processing agent.

“Computational thinking is a problem-solving process that includes (but is not limited to) the following characteristics:

- Formulating problems in a way that enables us to use a computer and other tools to help solve them
- Selecting, organizing and analyzing data
- Representing data through abstractions, such as models and simulations
- Automating solutions through algorithmic thinking (a series of ordered steps)
- Identifying, analyzing, and implementing possible solutions with the goal of achieving the most efficient and effective combination of steps and resources
- Generalizing and transferring this problem-solving process to a wide variety of problems”

Categories

<table>
<thead>
<tr>
<th>Category</th>
<th>Subcategory</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data Collection</td>
<td>Collecting data</td>
</tr>
<tr>
<td>Data Analysis</td>
<td>Drawing conclusions</td>
</tr>
<tr>
<td>Data Representation</td>
<td>Arrange data for analysis</td>
</tr>
<tr>
<td>Problem decomposition</td>
<td>Breaking down tasks</td>
</tr>
<tr>
<td>Abstraction</td>
<td>Finding characteristics</td>
</tr>
<tr>
<td>Algorithms & procedures</td>
<td>Making sequential steps in a specific order</td>
</tr>
<tr>
<td>Automation</td>
<td>Recognizing different forms of automation</td>
</tr>
<tr>
<td>Simulation</td>
<td>Creating pseudo-code</td>
</tr>
<tr>
<td>Parallelization</td>
<td>Combine/merge activities</td>
</tr>
</tbody>
</table>

A typical CS assignment in secondary education

Make a model / simulation / program for:

- Traffic lights for a busy traffic crossing
- Elevator in an apartment building

Computational thinking is a problem-solving process that includes (but is not limited to) the following characteristics:

- Formulating problems in a way that enables us to use a computer and other tools to help solve them
- Selecting, organizing and analyzing data
- Representing data through abstractions, such as models and simulations
- Automating solutions through algorithmic thinking (a series of ordered steps)
- Identifying, analyzing, and implementing possible solutions with the goal of achieving the most efficient and effective combination of steps and resources
- Generalizing and transferring this problem-solving process to a wide variety of problems”

With this draft definition we shall establish CS teachers’ PCK on CT through structured interviews (CoRe).

Result of the first phase: final operational definition of CT tailored to the needs of CS course in Dutch secondary education.

An instrument to assess students’ CT will be developed in the second phase.

A pedagogical approach will be developed in the third phase.

The effects of the curriculum intervention will be assessed in the fourth phase.