PDF hosted at the Radboud Repository of the Radboud University Nijmegen

The following full text is a preprint version which may differ from the publisher's version.

For additional information about this publication click this link.
http://hdl.handle.net/2066/121531

Please be advised that this information was generated on 2019-11-17 and may be subject to change.
Measurement of the mass difference between top and anti-top quarks in pp collisions at $\sqrt{s} = 7$ TeV using the ATLAS detector

The ATLAS Collaboration

Abstract

A measurement of the mass difference between top and anti-top quarks is presented. In a 4.7 fb$^{-1}$ data sample of proton–proton collisions at $\sqrt{s} = 7$ TeV recorded with the ATLAS detector at the LHC, events consistent with $t\bar{t}$ production and decay into a single charged lepton final state are reconstructed. For each event, the mass difference between the top and anti-top quark candidate is calculated. A two b-tag requirement is used in order to reduce the background contribution. A maximum likelihood fit to these per-event mass differences yields $\Delta m \equiv m_t - m_{\bar{t}} = 0.67 \pm 0.61(\text{stat}) \pm 0.41(\text{syst})$ GeV, consistent with CPT invariance.
Measurement of the mass difference between top and anti-top quarks in pp collisions at $\sqrt{s} = 7$ TeV using the ATLAS detector

Abstract
A measurement of the mass difference between top and anti-top quarks is presented. In a 4.7 fb$^{-1}$ data sample of proton–proton collisions at $\sqrt{s} = 7$ TeV recorded with the ATLAS detector at the LHC, events consistent with $t\bar{t}$ production and decay into a single charged lepton final state are reconstructed. For each event, the mass difference between the top and anti-top quark candidate is calculated. A two b-tag requirement is used in order to reduce the background contribution. A maximum likelihood fit to these per-event mass differences yields $\Delta m \equiv m_t - m_{\bar{t}} = 0.67 \pm 0.61\text{(stat)} \pm 0.41\text{(syst)}$ GeV, consistent with CPT invariance.

1. Introduction
The CPT symmetry 1 required by a locally gauge-invariant quantum field theory dictates that the masses of all particles and their anti-particles be exactly equal. Any deviation from this would have major implications for particle physics, implying a non-local field theory [1]. Searches for CPT violation both in the B meson sector [2, 3, 4, 5] and with K mesons [6, 7, 8] have not yielded any deviations from the Standard Model (SM). The top quark has the unique property of decaying before hadronization, making it the only quark for which a direct measurement of its mass is possible. The CDF Collaboration measured the mass difference between top and anti-top quarks to be $\Delta m \equiv m_t - m_{\bar{t}} = 3.3 \pm 1.4 \pm 1.0$ GeV [9], approximately 2 standard deviations away from zero. The D0 Collaboration measured $\Delta m = 0.8 \pm 1.8 \pm 0.5$ GeV [10], in agreement with the SM value. The CMS Collaboration recently measured $\Delta m = -0.44 \pm 0.46 \pm 0.27$ GeV [11], also in agreement with the SM value. The CDF and D0 analyses used both the top and anti-top quarks within each event to measure Δm. In the CMS measurement, the masses of the top and anti-top quarks with hadronic W boson decays are extracted from two separate samples, split using the lepton charge, and subtracted from one another. In this Letter, the ATLAS Collaboration presents a measurement of this mass difference. The top and anti-top quarks are each taken from the same event, in which a $t\bar{t}$ pair is produced and decays in the lepton+jets channel.

2. ATLAS detector

ATLAS [12] is a general-purpose particle physics detector with cylindrical geometry covering nearly the entire solid angle around the collision point. Cylindrical coordinates (r, ϕ) are used in the transverse plane, where ϕ is the azimuthal angle around the beam pipe. The pseudorapidity is defined as $\eta \equiv -\ln \tan(\theta/2)$, where θ is the polar angle. The transverse mass (m_T) of any two objects is defined as $m_T \equiv \sqrt{2E_T^1E_T^2(1 - \cos \Delta \phi)}$, where E_T is the object’s transverse energy, defined in the plane transverse to the beam axis.

The inner detector (ID) systems, located closest to the interaction region, are immersed in a 2 T axial magnetic field and provide charged particle tracking in the range $|\eta| < 2.47$. The ID systems consist of a high-granularity silicon pixel detector and a silicon microstrip detector, as well as a transition radiation tracker. Located outside the solenoid, electromagnetic calorimetry is provided by barrel and endcap lead/liquid-argon calorimeters, and hadronic calorimetry by the steel/scintillating-tile sampling calorimeters in the central region, and liquid-argon calorimeters in the endcap/forward regions. Comprising separate trigger and high-precision tracking chambers, the muon

1CPT is the combination of three symmetries; Charge conjugation (C), Parity (P) and Time reversal (T).
3. Data sample and event selection

This analysis uses 4.7±0.2 fb⁻¹ of proton–proton collision data recorded by the ATLAS experiment at √s = 7 TeV in 2011. The selected events used in this analysis must contain the signature of a ττ event decaying in the lepton+jets channel. Exactly one charged lepton is required — either a single electron with ET > 25 GeV, or a single muon with pT > 20 GeV, where pT is the object’s transverse momentum, defined in the plane transverse to the beam axis. Energy deposits are selected as electron candidates based on their shower shapes in the electromagnetic calorimeters and on the presence of a good-quality track pointing to them. Electron candidates are required to pass the “tight” quality cuts described in Ref. [1], to fall inside a well-instrumented region of the detector, and to be well isolated from other objects in the event. Muons are required to pass “tight” muon quality cuts [15, 16, 17], to be well measured in both the ID and the muon spectrometer, and to be isolated from other objects in the event. Events with an electron (muon) are required to have been triggered by an electron (muon) trigger with an ET (pT) threshold of 20 (18) GeV. The selection requirements ensure that triggered events are on the trigger efficiency plateau [18, 19].

Jets are reconstructed in the calorimeter using the anti-kt algorithm [20, 21] with a radius parameter of 0.4, starting from energy deposits grouped into noise-suppressed topological clusters [22, 23]. Jets are required to satisfy pT > 25 GeV and |η| < 2.5. Events with jets arising from problematic regions in the calorimeters, beam backgrounds and cosmic rays are rejected [24]. Additional corrections are applied after the default ATLAS jet energy calibration [24] to restore on average the partonic energies in ττ events. Jets from the decay of long-lived heavy-flavor hadrons are selected by using a multivariate tagging algorithm (b-tagging) [25, 26]. The transverse momentum of neutrinos is inferred from the magnitude of the missing transverse momentum (ETmiss) [27].

In addition to the requirement of exactly one charged lepton, the signal selection for this analysis requires four or more jets, at least two of which must be b-tagged. The selected lepton is required to match a trigger object that caused the event to be recorded. To suppress backgrounds from multi-jet events, ETmiss must be larger than 30 (20) GeV in the electron (muon) channel. Further reduction of the multi-jet background in the electron channel is achieved by requiring the transverse mass (mT) of the lepton and ETmiss to be > 30 GeV. In the muon channel, ETmiss + mT > 60 GeV is required.

4. Simulated samples and background estimation

The ATLAS detector simulation [28], based on Geant4 [29], is used to process simulated signal and background events. Simulated minimum bias collisions are overlaid on top of the hard scatter process, and events are reweighted so that the distribution of the average number of interactions (typically 5–20, see Ref. [30]) per bunch crossing matches the distribution observed in data.

Simulated samples of ττ events are produced using Pythia v6.425 [31] with Δm ranging from −15 GeV to +15 GeV. In total, 15 such samples are used, with decreasing granularity at large |Δm|. Near Δm = 0, the granularity is 0.3 GeV. In these samples, the average top quark mass (∑mc@nlo/2) is set to 172.5 GeV. The underlying-event tune used is AUET2B [32], and the parton distribution function (PDF) set is MRST [33]. Despite being a leading order generator, Pythia is used because it allows generation of events where the masses of the top and anti-top quarks are not equal. Non-zero widths as predicted by the SM for the corresponding top and anti-top quark masses are included in the event generation.

Pseudo-experiments and additional checks for systematic uncertainties are performed with a SM ττ sample with Δm = 0 generated using MC@NLO [34].

\[\text{In total, 15 signal samples were generated with a } \Delta m \text{ of } \pm 15, \pm 10, \pm 5, \pm 3, \pm 1, \pm 0.6, \pm 0.3 \text{ and } 0 \text{ GeV.} \]
v4.01 interfaced to HERWIG v6.520 [36] and JIMMY v4.31 [37]. Except for multi-jet processes, Monte Carlo simulations are used to study and estimate the backgrounds. The background from production of single W bosons in association with jets is studied using ALPGEN v2.13 [35] interfaced to HERWIG and JIMMY. The MLM matching scheme [39] is used to form inclusive W + jets samples, taking appropriate care to remove overlapping events in heavy-flavor phase space stemming from both the hard scatter and the showering. Diboson events are generated using HERWIG. Single-top events are generated using MC@NLO in the s- and Wt–channels, and AcerMC v3.8 [40] in the t-channel. The distribution of the multi-jet background is taken from a control region in data where leptons are required to be semi-isolated and have large impact parameter (d_0 divided by its uncertainty) with respect to the collision vertex. The semi-isolated selection requires the scalar p_T sum for tracks in a cone of 0.3 around the electron (muon) divided by its uncertainty (q_T) to be between 0.1 and 0.3. The normalization of this background is obtained from a likelihood fit to the E_T^{miss} distribution in data [11].

5. Kinematic fits

In order to measure a quantity sensitive to the mass difference Δm between the top and anti-top quarks, the kinematic χ^2 fitter described below is used to reconstruct the $t\bar{t}$ system from the observed lepton, E_T^{miss} and jets. The assignment of the selected jets to the partons from the $t\bar{t}$ decay uses knowledge of the over-constrained $t\bar{t}$ system with the reconstructed top/anti-top quark mass difference (Δm_{fit}) as a free parameter in each event. In the kinematic fitter, the p_T of the lepton and jets is allowed to fluctuate within uncertainties determined from simulated $t\bar{t}$ events. The average top quark mass is fixed, but the individual t and \bar{t} masses are allowed to fluctuate while being constrained by the predicted top quark width. The masses of the two reconstructed W bosons are also allowed to vary within the W boson width. The fit is applied by examining all jet–parton assignments (from among the five leading jets) consistent with the b-jet assignment and minimizing the following χ^2:

$$
\chi^2 = \sum_{i=s,4jets} \left(\frac{p_T^{i,fit} - p_T^{i,meas}}{\sigma_T^i} \right)^2 + \sum_{j=x,y} \left(\frac{p_T^{j,fit} - p_T^{j,meas}}{\sigma_T^j} \right)^2 + \sum_{k=jj,WW} \left(\frac{m_{k,meas}^i - m_{k,fit}^i}{\sigma_{k,fit}^i} \right)^2 + \left(\frac{m_{b;jj}^i - m_{b,fit}^i}{\sigma_{b,fit}^i} \right)^2,
$$

where $p_T^{i,fit}$ and $p_T^{i,meas}$ are the fitted and measured p_T of the jets and the charged lepton, and σ_T^i is the uncertainty on those values. The unclustered energy in the calorimeter (E_U) is defined as a quantity that includes all energy not associated with the primary lepton or the jets and is used to correct E_T^{miss}. The width of the W boson (σ_W) is set to the PDG value [12], and the top quark width (σ_t) is set to the value predicted from theory. The top quark mass (m_t) is fixed to 172.5 GeV, and the W boson mass (m_W) is set to $m_W = 80.42$ GeV. The value of m^1_{fit} is the fitted dijet (lepton–neutrino) mass from the hadronic (leptonic) W boson decay, and m^1_{meas} and m^1_{fit} are the fitted top quark masses with leptonically and hadronically decaying W bosons. The value of the mass difference between the hadronic- and leptonic-side top quarks is a free parameter in the fit. In each event, the single jet–parton assignment with the lowest χ^2 is used, and the fitted value of Δm_{fit} is taken as an observable to measure the true Δm. As seen in Eq. (2), Δm is calculated from the product of the lepton charge (q_L) and the difference between $m_{b,fit}$ and $m_{b,meas}$. Events with $\chi^2 > 10$ for the best jet–parton assignment are considered to be poorly measured or background, and are rejected. The value of this cut is chosen based on studies of simulated signal events, and the efficiency of the χ^2 selection is estimated in simulation to be 55% for $t\bar{t}$ signal events and 31% for background events. Table I shows the expected and observed number
Table 1: The observed number of events in data, the expected number of events from signal and background processes and the total number of events, after all selection requirements. Uncertainties shown include statistical and total systematic uncertainties added in quadrature.

<table>
<thead>
<tr>
<th>Channel</th>
<th>Muon</th>
<th>Electron</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data</td>
<td>8854</td>
<td>4941</td>
</tr>
<tr>
<td>SM $t\bar{t} \rightarrow W^+bW^−\bar{b}$</td>
<td>$7700^{+1600}_{−1700}$</td>
<td>$4500^{+900}_{−1000}$</td>
</tr>
<tr>
<td>W/Z + jets</td>
<td>$320±90$</td>
<td>$160±40$</td>
</tr>
<tr>
<td>Single top</td>
<td>$300±50$</td>
<td>$170±30$</td>
</tr>
<tr>
<td>Diboson</td>
<td>$5±1$</td>
<td>$3±1$</td>
</tr>
<tr>
<td>Multi-jet</td>
<td>$220±110$</td>
<td>$110±60$</td>
</tr>
<tr>
<td>Total expected (SM)</td>
<td>$8550^{+1600}_{−1700}$</td>
<td>$4900^{+900}_{−1000}$</td>
</tr>
</tbody>
</table>

Fig. 1: Parameterization of Δm^fit for simulated $t\bar{t}$ samples with different values of Δm.

$L(D|n_s, n_b, \Delta m) =
q(N, n_s + n_b) \times
\prod_{i=1}^{N} \frac{n_s p_s(\Delta m^\text{fit},i|\Delta m) + n_b p_b(\Delta m^\text{fit},i)}{n_s + n_b}$

(3)

where $q(N, n_s + n_b)$ is the Poisson probability to observe N events given $n_s + n_b$ expected events and the product over i is over the N reconstructed events. The likelihood is maximized over all three parameters ($n_s, n_b, \Delta m$). Ensembles of pseudo-experiments are run to ensure that the fits are unbiased and return correct statistical uncertainties. The widths of pull distributions are consistent with unity. Due to the use of PYTHIA to generate templates and MC@NLO to run ensemble tests, a 175 MeV offset is applied to all pseudo-experiments (and to the nominal fit result) to return an unbiased measurement, with the statistical uncertainty of 50 MeV on this calibration taken as a systematic uncertainty. The 175 MeV offset is the average difference between the MC@NLO samples with the top and anti-top quark masses reweighted to the distributions in PYTHIA for a given mass difference. When running pseudo-experiments, events are drawn directly from the simulated samples and not from the parameterizations in order to check for any potential bias.

The extended maximum likelihood fit is applied to the full 2011 dataset, yielding the result shown in Fig. (3). The value of 175 MeV quoted above is subtracted from the result to correct for this bias, giving a measured top/anti-top quark mass difference of $m_t - m_{\bar{t}} = 0.67 \pm 0.61\text{(stat)}$. The χ^2 per
Fig. 2: Parameterized background template.

Fig. 3: Reconstructed top/anti-top quark mass difference with the best maximum likelihood fit for signal and background overlaid.

Table 2: Systematic uncertainties.

<table>
<thead>
<tr>
<th>Systematic Uncertainty</th>
<th>$\Delta(\Delta m)$ [GeV]</th>
</tr>
</thead>
<tbody>
<tr>
<td>b/\bar{b} decay uncertainties</td>
<td>0.34</td>
</tr>
<tr>
<td>K^+/K^- calorimeter response asymmetry</td>
<td>0.08</td>
</tr>
<tr>
<td>Residual b vs \bar{b} differences</td>
<td>0.08</td>
</tr>
<tr>
<td>b-tagging</td>
<td>0.08</td>
</tr>
<tr>
<td>Mis-tagging as a b-quark jet</td>
<td>0.05</td>
</tr>
<tr>
<td>Jet energy scale</td>
<td>0.04</td>
</tr>
<tr>
<td>b-jet energy scale</td>
<td>0.05</td>
</tr>
<tr>
<td>Jet energy resolution</td>
<td>0.03</td>
</tr>
<tr>
<td>Parton shower</td>
<td>0.08</td>
</tr>
<tr>
<td>MC generator</td>
<td>0.08</td>
</tr>
<tr>
<td>ISR/FSR</td>
<td>0.07</td>
</tr>
<tr>
<td>Calibration method</td>
<td>0.05</td>
</tr>
<tr>
<td>Non-$t\bar{t}$ normalization</td>
<td>0.04</td>
</tr>
<tr>
<td>Non-$t\bar{t}$ shape</td>
<td>0.04</td>
</tr>
<tr>
<td>Parton distribution function</td>
<td>0.02</td>
</tr>
<tr>
<td>Lepton energy scale asymmetry</td>
<td><0.01</td>
</tr>
<tr>
<td>Electron reconstruction & identification</td>
<td>0.02</td>
</tr>
<tr>
<td>Muon reconstruction & identification</td>
<td>0.04</td>
</tr>
<tr>
<td>Top mass input</td>
<td>0.04</td>
</tr>
<tr>
<td>Total</td>
<td>0.41</td>
</tr>
</tbody>
</table>
b-hadrons can also lead to uncertainties in the particle content and hadron momentum spectra, and thus in the calorimeter response. This uncertainty is evaluated by comparing POWHEG samples that use Evtgen [44] and Pythia to decay b-hadrons, and is estimated to be 340 MeV. The Evtgen particle decay simulation implements different hadron decay models and up-to-date b-hadron decay tables. An additional 80 MeV is assigned to account for any residual difference in response between jets from b and b quarks due to effects not considered above. Parton shower and additional fragmentation uncertainties are estimated by comparing POWHEG samples interfaced with HERWIG to those interfaced with PYTHIA.

Other uncertainties are small compared to those from differences between jets from b- and b-quarks. The uncertainty on Δm from the uncertainty on the b-tagging efficiency is measured by varying the b-tag scale factors, which correct simulated efficiencies to those measured in data, within 1σ of their uncertainties. The systematic effects from uncertain light- and b-jet energy scales and resolutions are small, as they affect the top and antitop quark masses in the same way [45, 46]. Generator uncertainties are estimated by comparing pseudo-experiments using MC@NLO and POWHEG. A systematic uncertainty on the amount of QCD radiation is derived from AcerMC $t\bar{t}$ samples that have varying amounts of initial- and final-state radiation [47]. Uncertainties from the template parameterization are estimated by varying the parameters within their uncertainties, and are found to be small. The systematic uncertainties due to background shape and rate are estimated by replacing the $W+J$jets background used in pseudo-experiments with the shape from the multi-jet background and by varying the normalization within uncertainties. A small systematic uncertainty due to the parton distribution functions of the proton is evaluated by taking the envelope of the MSTW2008NLO [48], NNPDF2.3 [49] and CTEQ6.6 [50] PDF set uncertainties, following the PDF4LHC recommendations [51]. Asymmetries due to lepton energy scales are negligible. A systematic uncertainty on the top quark mass of 40 MeV is estimated by comparing pseudo-experiments where the input average top quark mass is shifted up and down by 1.5 GeV. Other systematic uncertainties considered are those caused by the uncertainty on the lepton identification and reconstruction.

8. Conclusions

The analysis described in this Letter is the first measurement by ATLAS of the mass difference between the top and anti-top quarks using event-by-event quantities in $t\bar{t}$ events. It is based on 4.7 fb$^{-1}$ of 7 TeV proton–proton collisions at the LHC. The mass difference, Δm, is calculated using a kinematic χ^2 fitter. The measured mass difference is $\Delta m = m_t - m_{\bar{t}} = 0.67 \pm 0.61$ (stat) ± 0.41 (syst) GeV, consistent with the SM expectation of no mass difference.

9. Acknowledgements

We thank CERN for the very successful operation of the LHC, as well as the support staff from our institutions without whom ATLAS could not be operated efficiently.

We acknowledge the support of ANPCyT, Argentina; YerPhI, Armenia; ARC, Australia; BMWF and FWF, Austria; ANAS, Azerbaijan; STC, Belarus; CNPq and FAPESP, Brazil; NSERC, NRC and CFI, Canada; CERN; CONICYT, Chile; CAS, MOST and NSFC, China; COLCIENCIAS, Colombia; MSMT CR, MPO CR and VSC CR, Czech Republic; DNRF, DNSRC and Lundbeck Foundation, Denmark; EPLANET, ERC and NSRF, European Union; IN2P3-CNRS, CEA-DSM/IRFU, France; GNSF, Georgia; BMBF, DFG, HGF, MPG and AvH Foundation, Germany; GSRT and NSRF, Greece; ISF, MINERVA, GIF, DIP and Benoziyo Center, Israel; INFN, Italy; MEXT and JSPS, Japan; CNRST, Morocco; FOM and NWO, Netherlands; BRF and RCN, Norway; MNiSW, Poland; GRICES and FCT, Portugal; MINECO, Spain; SRC and Wallenberg Foundation, Sweden; SER, SNSF and Cantons of Bern and Geneva, Switzerland; NSC, Taiwan; TAEK, Turkey; STFC, the Royal Society and Leverhulme Trust, United Kingdom; DOE and NSF, United States of America.

The crucial computing support from all WLCG partners is acknowledged gratefully, in particular from CERN and the ATLAS Tier-1 facilities at TRIUMF (Canada), NDGF (Denmark, Norway, Sweden), CC-IN2P3 (France), KIT/GridKA (Germany), INFN-CNAF (Italy), NL-T1 (Netherlands),

6
References

7
INFN Gruppo Collegato di Cosenza; Dipartimento di Fisica, Università della Calabria, Rende, Italy

AGH University of Science and Technology, Faculty of Physics and Applied Computer Science, Krakow; Marian Smoluchowski Institute of Physics, Jagiellonian University, Krakow, Poland

The Henryk Niewodniczanski Institute of Nuclear Physics, Polish Academy of Sciences, Krakow, Poland

Physics Department, Southern Methodist University, Dallas TX, United States of America

Physics Department, University of Texas at Dallas, Richardson TX, United States of America

DESY, Hamburg and Zeuthen, Germany

Institut für Experimentelle Physik IV, Technische Universität Dortmund, Dortmund, Germany

Institut für Kern- und Teilchenphysik, Technische Universität Dresden, Dresden, Germany

Department of Physics, Duke University, Durham NC, United States of America

SUPA - School of Physics and Astronomy, University of Edinburgh, Edinburgh, United Kingdom

INFN Laboratori Nazionali di Frascati, Frascati, Italy

Fakultät für Mathematik und Physik, Albert-Ludwigs-Universität, Freiburg, Germany

Section de Physique, Université de Genève, Geneva, Switzerland

INFN Sezione di Genova; Dipartimento di Fisica, Università di Genova, Genova, Italy

E. Andronikashvili Institute of Physics, Iv. Javakhishvili Tbilisi State University, Tbilisi; High Energy Physics Institute, Tbilisi State University, Tbilisi, Georgia

II Physikalisches Institut, Justus-Liebig-Universität Giessen, Giessen, Germany

SUPA - School of Physics and Astronomy, University of Glasgow, Glasgow, United Kingdom

II Physikalisches Institut, Georg-August-Universität, Göttingen, Germany

Laboratoire de Physique Subatomique et de Cosmologie, Université Joseph Fourier and CNRS/IN2P3 and Institut National Polytechnique de Grenoble, Grenoble, France

Department of Physics, Hampton University, Hampton VA, United States of America

Laboratory for Particle Physics and Cosmology, Harvard University, Cambridge MA, United States of America

Kirchhoff-Institut für Physik, Ruprecht-Karls-Universität Heidelberg, Heidelberg; Physikalisches Institut, Ruprecht-Karls-Universität Heidelberg, Heidelberg; ZITI Institut für technische Informatik, Ruprecht-Karls-Universität Heidelberg, Mannheim, Germany

Faculty of Applied Information Science, Hiroshima Institute of Technology, Hiroshima, Japan

Department of Physics, Indiana University, Bloomington IN, United States of America

Institut für Astro- und Teilchenphysik, Leopold-Franzens-Universität, Innsbruck, Austria

University of Iowa, Iowa City IA, United States of America

Department of Physics and Astronomy, Iowa State University, Ames IA, United States of America

Joint Institute for Nuclear Research, JINR Dubna, Dubna, Russia

KEK, High Energy Accelerator Research Organization, Tsukuba, Japan

Graduate School of Science, Kobe University, Kobe, Japan

Faculty of Science, Kyoto University, Kyoto, Japan

Kyoto University of Education, Kyoto, Japan

Department of Physics, Kyushu University, Fukuoka, Japan

Istituto de Física La Plata, Universidad Nacional de La Plata and CONICET, La Plata, Argentina

Physics Department, Lancaster University, Lancaster, United Kingdom

INFN Sezione di Lecce; Dipartimento di Matematica e Fisica, Università del Salento, Lecce, Italy

Oliver Lodge Laboratory, University of Liverpool, Liverpool, United Kingdom

Department of Physics, Jožef Stefan Institute and University of Ljubljana, Ljubljana, Slovenia

School of Physics and Astronomy, Queen Mary University of London, London, United Kingdom

Department of Physics, Royal Holloway University of London, Surrey, United Kingdom

Department of Physics and Astronomy, University College London, London, United Kingdom

Louisiana Tech University, Ruston LA, United States of America

Laboratoire de Physique Nucléaire et de Hautes Energies, UPMC and Université Paris-Diderot and CNRS/IN2P3, Paris, France

Fysiska institutionen, Lunds universitet, Lund, Sweden
Faculty of Pure and Applied Sciences, University of Tsukuba, Tsukuba, Japan
Department of Physics and Astronomy, Tufts University, Medford MA, United States of America
Centro de Investigaciones, Universidad Antonio Narino, Bogota, Colombia
Department of Physics and Astronomy, University of California Irvine, Irvine CA, United States of America
\((a) \) INFN Gruppo Collegato di Udine; \((b) \) ICTP, Trieste; \((c) \) Dipartimento di Chimica, Fisica e Ambiente, Università di Udine, Udine, Italy
Department of Physics, University of Illinois, Urbana IL, United States of America
Department of Physics and Astronomy, University of Uppsala, Uppsala, Sweden
Instituto de Física Corpuscular (IFIC) and Departamento de Física Atómica, Molecular y Nuclear and Departamento de Ingeniería Electrónica and Instituto de Microelectrónica de Barcelona (IMB-CNMT University of Valencia and CSIC, Valencia, Spain
Department of Physics, University of British Columbia, Vancouver BC, Canada
Department of Physics and Astronomy, University of Victoria, Victoria BC, Canada
Department of Physics, University of Warwick, Coventry, United Kingdom
Waseda University, Tokyo, Japan
Department of Particle Physics, The Weizmann Institute of Science, Rehovot, Israel
Department of Physics, University of Wisconsin, Madison WI, United States of America
Fakultät für Physik und Astronomie, Julius-Maximilians-Universität, Würzburg, Germany
Fachbereich C Physik, Bergische Universität Wuppertal, Wuppertal, Germany
Department of Physics, Yale University, New Haven CT, United States of America
Yerevan Physics Institute, Yerevan, Armenia
Centre de Calcul de l’Institut National de Physique Nucléaire et de Physique des Particules (IN2P3), Villeurbanne, France
\(a \) Also at Department of Physics, King’s College London, London, United Kingdom
\(b \) Also at Laboratorio de Instrumentacao e Fisica Experimental de Particulas - LIP, Lisboa, Portugal
\(c \) Also at Institute of Physics, Azerbaijan Academy of Sciences, Baku, Azerbaijan
\(d \) Also at Faculdade de Ciencias and CENUL, Universidade de Lisboa, Lisboa, Portugal
\(e \) Also at Particle Physics Department, Rutherford Appleton Laboratory, Didcot, United Kingdom
\(f \) Also at TRIUMF, Vancouver BC, Canada
\(g \) Also at Department of Physics, California State University, Fresno CA, United States of America
\(h \) Also at Novosibirsk State University, Novosibirsk, Russia
\(i \) Also at Department of Physics, University of Coimbra, Coimbra, Portugal
\(j \) Also at Università di Napoli Parthenope, Napoli, Italy
\(k \) Also at Institute of Particle Physics (IPP), Canada
\(l \) Also at Department of Physics, Middle East Technical University, Ankara, Turkey
\(m \) Also at Louisiana Tech University, Ruston LA, United States of America
\(n \) Also at Dep Fisica and CEFITEC of Faculdade de Ciencias e Tecnologia, Universidade Nova de Lisboa, Caparica, Portugal
\(o \) Also at CPPM, Aix-Marseille Université and CNRS/IN2P3, Marseille, France
\(p \) Also at Department of Physics and Astronomy, Michigan State University, East Lansing MI, United States of America
\(q \) Also at Department of Financial and Management Engineering, University of the Aegean, Chios, Greece
\(r \) Also at Institutio Catalana de Recerca i Estudis Avancats, ICREA, Barcelona, Spain
\(s \) Also at Department of Physics, University of Cape Town, Cape Town, South Africa
\(t \) Also at CERN, Geneva, Switzerland
\(u \) Also at Ochadai Academic Production, Ochanomizu University, Tokyo, Japan
\(v \) Also at Manhattan College, New York NY, United States of America
\(w \) Also at Institute of Physics, Academia Sinica, Taipei, Taiwan
\(x \) Also at School of Physics and Engineering, Sun Yat-sen University, Guanzhou, China
\(y \) Also at Academia Sinica Grid Computing, Institute of Physics, Academia Sinica, Taipei, Taiwan
\(z \) Also at Laboratoire de Physique Nucléaire et de Hautes Energies, UPMC and Université Paris-Diderot
and CNRS/IN2P3, Paris, France

" Also at School of Physical Sciences, National Institute of Science Education and Research, Bhubaneswar, India

" Also at Dipartimento di Fisica, Università La Sapienza, Roma, Italy

" Also at DSM/IRFU (Institut de Recherches sur les Lois Fondamentales de l’Univers), CEA Saclay (Commissariat à l’Energie Atomique et aux Energies Alternatives), Gif-sur-Yvette, France

" Also at Moscow Institute of Physics and Technology State University, Dolgoprudny, Russia

" Also at Section de Physique, Université de Genève, Geneva, Switzerland

" Also at Departamento de Física, Universidade de Minho, Braga, Portugal

" Also at Department of Physics, The University of Texas at Austin, Austin TX, United States of America

" Also at Institute for Particle and Nuclear Physics, Wigner Research Centre for Physics, Budapest, Hungary

" Also at DESY, Hamburg and Zeuthen, Germany

" Also at International School for Advanced Studies (SISSA), Trieste, Italy

" Also at Department of Physics and Astronomy, University of South Carolina, Columbia SC, United States of America

" Also at Faculty of Physics, M.V.Lomonosov Moscow State University, Moscow, Russia

" Also at Nevis Laboratory, Columbia University, Irvington NY, United States of America

" Also at Physics Department, Brookhaven National Laboratory, Upton NY, United States of America

" Also at Moscow Engineering and Physics Institute (MEPhI), Moscow, Russia

" Also at Department of Physics, Oxford University, Oxford, United Kingdom

" Also at Institut für Experimentalphysik, Universität Hamburg, Hamburg, Germany

" Also at Department of Physics, The University of Michigan, Ann Arbor MI, United States of America

" Also at Discipline of Physics, University of KwaZulu-Natal, Durban, South Africa

* Deceased