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Radiation therapy

1.1 Principles and practice

According to the Global Health Observatory of the World Health Organization (WHO), can-

cer is a leading cause of death worldwide and accounted for 7.6 million deaths (13% of all

deaths) in 2008 [1]. �e WHO regions for Europe and the Americas had the highest inci-

dence of all types of cancer combined for both sexes. In these regions, cancer has been the

predominant mortality risk since 2008. Lung, breast, stomach, liver and colorectal cancers

cause the majority of deaths.

Surgery, systemic agents and ionising radiation are the threemain cancer treatmentmodal-

ities. In many solid tumours, surgery is the primary option for local treatment of the tu-

mour and/or regional lymph node metastases with a curative intent. Systemic treatments

(e.g. chemotherapy, biological agents) globally a�ect tumour cell survival mechanisms and
are mostly administered in combination with surgery or radiotherapy in a curative setting, or

as single modality for palliative intent. Radiation therapy, also called ‘radiotherapy’, is con-

sidered the treatment of choice in approximately 50% of the cases. It is also applied for the

treatment of solid tumours, and is speci�cally suitable for surgically inaccessible tumours or

for organ-preserving treatment strategies. Radiotherapy is administered with curative or pal-

liative intent, and may be applied solely or in combination with surgery and/or chemotherapy.

�e goal of curative radiotherapy is to deliver a therapeutic dose of ionising radiation to

tumourous target tissues in order to sterilise the proliferation of clonogenic cells while mini-

mising the risks of complications to the surrounding normal tissues. In a palliative setting, the

dose administered is restricted and the aim is to alleviate pain symptoms in order to achieve

the highest possible quality of life. Radiotherapy is a common treatment for many di�erent

types of malignancies, such as cancer of the prostate, breast, lung, rectum, brain, skin and

head-and-neck region.
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Treatment planning optimisation for individualised dose prescription

In radiotherapy, the patient is either exposed to an internally or externally applied ra-

diation source, indicated as brachytherapy (derived from the ancient Greek words βραχυζ

and θεραπεια meaning ‘short distance’ and ‘healing’, respectively) and teletherapy (derived

from the ancient Greek word τηλε, meaning ‘distant’), respectively. In brachytherapy, a sealed

source containing a relatively low-energy photon emitting radioactive isotope is placed within

or in close proximity to the tumour in order to provide local radiation therapy.�is approach

typically delivers very high doses to relatively small target volumes that can be reached via nat-

ural or arti�cial ori�ces. In modern teletherapy, the source is either based on a high-energy

ray emitting radionuclide (e.g. 60Co tomotherapy [2]) or a particle accelerator electronically
generating highly energetic rays of particles (electrons, protons, neutrons, heavy or light ions)

that are collimated to produce a beam of ionising radiation, see e.g. [3]. When the external
beam is pointed onto the patient’s body and penetrates through the skin and the tissues un-

derneath it, the energetic particles interact with matter by electrical forces and lose kinetic

energy while depositing dose (measured in J/kg) into the tissue at a certain depth.

1.2 External beam radiotherapy: development of delivery techniques

Most contemporary radiotherapy is carried out with linear accelerators (linacs) that produce

megavolt photon X-ray beams, which are directed to the target volume (i.e. the gross tumour
volume plus a margin for spatial uncertainties) from several di�erent orientations around the

patient to adequately cover the o�en deeply situated target volume while preventing from

overdosing surrounding healthy normal tissues. �e linac has several degrees of freedom to

achieve this, typically comprising of a rotating gantry, beam collimator and treatment couch

(Figure 1.1). Furthermore, the beam energy and the beam shape can be altered.

Figure 1.1: Schematic representation of rotational degrees of freedom of a linear ac-
celerator treating a patient’s brain tumour from di�erent directions. (Reprinted with

permission from [4].)

In conventional conformal radiation therapy a small number of di�erent geometrical beam

shapes are adapted to conform to the anatomy of the individual target volume by partially

blocking the beam with customised apertures. Each of the apertures could be used with either

a uniform or coarsely modi�ed radiation intensity level across the beam, the latter being re-
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General introduction

alised by pre-fabricated wedge �lters. Since the intersection of these shaped beams de�nes the

volume that receives the highest radiation dose, there are limited possibilities to �t the shape

of the resulting dose distribution to the shape of the target, especially in the case of irregularly

shaped concave target volumes.

Intensity-modulated radiation therapy

Improved beam shaping was accomplished through technological advances in hardware and

so�ware that took place over the past two decades when linear accelerators were equippedwith

a computer-controlled multi-leaf collimator (MLC) system mounted in the gantry head (Fig-

ure 1.2). In three-dimensional conformal radiation therapy (3D-CRT), the pairwise-opposed

tungsten leaves are independently positioned for each beam to match the projection of the

target volume onto the �uence plane of the beam. By dynamically blocking di�erent parts

of the beam during irradiation with the sliding leaves, the MLC is able to produce segmented

�uence intensity-modulated �elds that use amuch larger number of apertures than in conven-

tional conformal radiotherapy.�is form ofmulti-�eld intensity-modulated radiation therapy

(IMRT) allows to create complex, highly conformal uniform target dose distributions that en-

couraged e�orts of dose escalation and paved the road for non-uniform ‘dose sculpting’ [5–7].

In recent years, this technique has been further developed and was converted frommulti-�eld

Figure 1.2: Multi-leaf collimator used for IMRT delivery. (Image courtesy of Varian
Medical Systems, Inc., Palo Alto, USA.)

IMRT with static beam directions into continuously rotating intensity modulation, originally

designated as intensity-modulated arc therapy (IMAT) [8–10], but nowadays known as ‘con-

formal rotational radiotherapy’ or ‘conformal arc-therapy’, making treatment delivery faster

than for conventional IMRT.
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The IMRT planning optimisation problem

Alongside the extensive technological developments in hardware, also signi�cant advances in

so�ware were made. Computerised treatment planning systems (TPSs) were not only able

to perform accurate dose computations, but also di�erent optimisation approaches were in-

troduced for the following reasons: 1) to deal with the vastly increased number of degrees of

freedom that came with IMRT and 2) because new imaging modalities (e.g. computed tomog-
raphy (CT), magnetic resonance imaging (MRI), positron emission tomography (PET)) pro-

vided 3D morphological and physiological images of the patient’s anatomy and the tumour’s

biology, respectively, allowing for improved normal tissue sparing, whole-target dose escala-

tion and selective intra-tumoural dose (de-)escalation (i.e. dose painting) [11]. Following the
latter approach, there is a need to spatially adapt the dose distribution not only to the physi-

cal conformality (i.e. using anatomical data), but also to the biological conformality (i.e. using
metabolic, functional, genotypic and phenotypic data).

Designing an adequate IMRT plan that handles the inherently con�icting goals of deliv-

ering a su�ciently high therapeutic dose to the target volume while avoiding injurious doses

to the normal tissue, comprises choices to be made principally relating to medical, biological

and physical parameters. While the decisions for a particular treatment regimen (e.g. tumour
dose prescription, normal-tissue tolerance dose limits, time-dose fractionation, etc.) are pre-

dominantly determined by consensus opinions established through empirical knowledge and

experience of the radiation oncologist and results of clinical trials, the physical characteristics

of the treatment (i.e. radiation modality, treatment setup geometry, beam arrangement, beam
settings, etc.) are mainly de�ned by the expertise of the medical physicist. Finding optimal

balances in these decisions challenges both the radiation oncologist and the medical physicist

in their daily practice.

To introduce themain contributions of thework described in this thesis, the problem state-

ment is illuminated through amulti-disciplinary review, including perspectives from the �elds

of physics, mathematics, biology, and the clinic.
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2.1 Physical perspective: the reverse engineering approach

Computerised treatment plan design

It has been acknowledged that with the advancement of IMRT and the associated level of com-

plexity in designing treatment plans, it was crucial to make an interdisciplinary e�ort to inte-

grate sophisticated optimisation techniques into the treatment planning process and to explore

methods to optimise the clinical outcome of radiotherapy [12].�emajor problem, however, is

that clinical knowledge may be di�cult to acquire and formulate into computer-interpretable

format. Physics expertise related to tuneable delivery-related parameters, however, seemed

easier to integrate into computerised routines.�e problem of designing optimal beam num-

bers, beam directions, MLC-based beam intensity pro�les (also called �uencemaps) and aper-

tures prominently lends itself to a mathematical optimisation approach. Especially the �uence

map optimisation (FMO) problem and the beam aperture modulation problem have received

much attention during the past years from both medical physicists as well as operations re-

searchers. A comprehensive literature overview can be found in e.g. [13–15]. Figure 2.1 shows
a schematic representation of a projected MLC-aperture onto the total resulting �uence map,

contributing to the total dose distribution of a prostate cancer patient.

Figure 2.1: Schematic representation of a projected MLC-aperture onto the total re-
sulting �uence map, contributing to the total dose distribution for a prostate cancer

patient. (Image courtesy of RaySearch AB, Stockholm, Sweden.)

Forward and inverse treatment planning

In conventional conformal radiation therapy and 3D-CRT the treatment planning problemhas

been solved by a ‘forward’ approach, where all design parameters of the plan weremanually set

in the TPS by the planner. Subsequently, the dose distribution in the patient was calculated by

the TPS. If the planner was not satis�edwith the resulting dose distribution, the design param-
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General introduction

eters were manually altered and a dose re-computation was done. �is approach is therefore

essentially a trial-and-error procedure.

With the advent of IMRT, it became impossible to create dose distributions by forward

treatment planning due to the increased dimension of the design space and the lack of guaran-

tee that the solution obtained is truly optimal [16].�erefore, an ‘inverse treatment planning’

approach has been explored, where tuneable machine-dependent treatment delivery parame-

ters need to be found tomeet pre-set requirements of the dose distribution using computerised

optimisation models.�is means that the solution is obtained from the speci�cation of ideal

properties of the dose distribution, rather than from a syntactical description of the design

parameters and the application of some compiling recipe [4].�e major di�erence to the for-

ward approach is that the inverse approach provides a more systematic solution procedure,

and hence lends itself for a mathematical optimisation approach.

2.2 Mathematical perspective: formulation as multi-criteria optimisation
problem

Unfortunately, the terms ‘optimal’ and ‘optimisation’ have di�erent interpretations for the dif-

ferent stakeholders involved in the treatment planning process. Whereas clinicians may in-

terpret optimisation relatively loosely as (iteratively) improving the treatment plan to obtain a

certain acceptable trade-o� between treatment bene�t and injury, physicists and mathemati-

cians use a more rigorous de�nition: striving for nothing less than the best possible solution

within certain pre-set bounds. In the next subsections, the formal terminology of a mathe-

matical optimisation problem is introduced and methods to �nd solutions are discussed.

Terminology

Following the terminology from [12], a more formal description of the inverse treatment plan-

ning optimisation problem can be given. �is is essential for the remainder of this thesis.

IMRT treatment planning typically involves the selection of certain delivery parameters (e.g.
beam angles, �eld segments, monitor units).�e basic components of the optimisation prob-

lem are the design or decision variables (i.e. delivery parameters), the objective function to be
maximised (or minimised), and constraints on the decision choices. A solution algorithm is
designed to �nd design variable values such that the objective function value is maximal (or

minimal) and all constraints are satis�ed.

Inmulti-objective optimisation, the objective function is a composite of multiple functions
and can be either a vector-valued function or a univariate function representing the weighted

sum of the constituent functions. Typically, some form of a penalty function is used to re�ect

the clinical desirability of the target dose distribution (e.g. minimum dose and dose hetero-
geneity), penalising undesirable doses. For normal tissues, either an objective function (e.g.
maximum dose deposited in a certain volume) or constraint (e.g. the tolerance dose level) is
included to re�ect the avoidance of excessive doses. �e set of all possible solutions that do

9
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not violate the constraints is called the feasible design space. A solution is optimal if it is feasible
and the objective function achieves the best possible value among the feasible solutions.

Finding the ‘best compromise’ solution

A formal mathematical representation of the problem is required for any algorithm to yield

candidate treatment plans for evaluation.�e de�nition of objectives and constraints to ful�l

the clinical aims is however challenging, because the goals are o�en contradictory, mutually

dependent, case speci�c and subjective. By way of example, consider target coverage and dose

homogeneity versus normal-tissue sparing and dose conformality. As a result of this, the initial
aims cannot be perfectly achieved and a trade-o� is required. Unfortunately and inherently,

the ‘best compromise’ solution is unknown in advance. Finding a solution therefore requires a

decision-making strategy and some form of user/algorithm interaction to guide the search and
selection process. To facilitate this, the planner is asked to articulate preference information,
while the algorithm can use structure information about the mathematical properties (e.g. cur-
vature, convexity, degeneracy) of the optimisation problem.

Scalarisation method

�e classical approach is to use weighting factors that (should) capture the judgement about
the relative importance or priority of the respective objectives. By combining these into a

weighted average of the constituent objective functions, a single composite objective function

arises.�e composite function is then used as a single objective in the optimisation problem.

Disadvantages of this approach are that the weighting factors usually have no clinical mean-

ing, and are de�ned on arbitrary and incommensurable scales. Another drawback is that the

sensitivity of the resulting solution to perturbations in the weights is unknown beforehand.

Hence, the optimal weighting factors must be determined by an iterative trial-and-error pro-

cess, which involves multiple optimisation runs and renders the treatment planning process

to be ine�cient and not intuitive.

Constrained optimisation methods

By realising that delivering the prescribed dose to the target volume is only limited by the

organ-at-risk (OAR) constraints, another approach is to re�ne the constraints until the treat-

ment plan is overall acceptable. As clinicians and treatment planners o�en have a hierarchical

conception of the planning goals, constrained optimisation can be exploited to address the goals
in a stepwisemanner. In prioritised goal programming, highest-order goals are considered �rst.
In subsequent steps, the achievements of the previous steps are turned into constraints, and a

single new goal is incorporated as objective function.�is approach has been applied success-

fully to IMRT inverse treatment planning optimisation by several investigators [17–19]. User

interaction has been incorporated by quantifying the impact of small perturbations of the con-

straints on the resulting dose distribution, helping to reduce the human iteration loop [20, 21].

Several variants of this approach have been introduced, using for example, pre-emptive goal

10



General introduction

programming [17], lexicographical ordering [18] and successive relaxation [19]. In the �rst two
methods, the objectives are handled one by one and in a prede�ned order, whereas in the latter

method the algorithm tries to �nd a solution ful�lling all constraints while subsequently relax-

ing limiting (lower-priority) constraints if a solution cannot be found. Since there is no tuning

of weighting factors, it is an intuitive and straightforward approach. Nevertheless, multiple

optimisation runs are required and only one �nal solution is presented. Hence, it hampers the

possibility to explore nearby candidate solutions that can give the decision maker a sense of

how small concessions can be exchanged for large gains in case of regret about the preceding

assignment of priorities.

Pareto optimisation: an a posteriori planning approach

In the approaches discussed so far, a priori preference information had to be articulated, either
by assigning weighting factors or priority levels. However, it is unclear in advance how depen-

dent the objectives and constraints are. Without a thorough understanding of the degree in

which the criteria are competing, it is di�cult to de�ne an intelligent basis for a priori quan-
ti�cation, not ranking, of the inherent trade-o� between these criteria. Hence, the weighting

factors or priority levels are o�en determined empirically and are based on advancing experi-

ence of the treatment planner. Furthermore, since no sensitivity information of the solution

obtained is presented, the user remains unacquainted with the existence of a more appropri-

ate operating point if small changes in the choice of values for weights or priority levels were

e�ectuated.

Clinicians o�en experience di�culty in de�ning a complete, unique representation of the

treatment planning optimisation problem, and typically di�er in how they formulate it.�ey

are, however, perfectly capable of ranking individually prepared treatment plans [22]. Taking

this “I know it when I see it” concept as a starting-point to decouple the optimisation process
from the decision-making process, several investigators explored the potential ofmulti-criteria

optimisation (MCO) techniques using an a posteriori preference method to solve the FMO
problem in IMRT [23–29].

Among the di�erent methods, so-called Pareto optimisation is a versatile approach that is
able to quantify the trade-o� between the objective functions and allows the decision-maker to

select an appropriate treatment plan from a pre-computed set of best-compromise solutions.

It has been applied on many optimisation problems in economics and engineering involving

multiple objectives (see e.g. [30]). Instead of aggregating all objective functions into a single
composite objective function, the constituent objectives are considered simultaneously as an

objective vector function. Since no single best solution exists for such vector optimisation

problems, optimality has to be rede�ned. �e Italian-Swiss socio-economist Vilfredo Pareto
(1848−1923) introduced the notion that a solution is (strongly) Pareto e�cient or Pareto op-
timal if no single objective can be further improved without deteriorating at least one other
objective [31]. A more formal de�nition is given in textbooks (e.g. [32]). As a result, a set of
best-compromise solutions exists, that represents thePareto e�cient frontier (PEF)when being
evaluated in the space of objective functions.
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Di�erent strategies have been applied to generate the PEF for IMRT treatment planning

problems. Initially, a brute-force approach was used to systematically generate feasible plans

and subsequently test these for Pareto optimality [24].�e large computational burden of this

approachhas stimulated others to develop and applymore sophisticatedPEF-generatingmeth-

ods keeping the computation times within clinically acceptable limits. Since the mathematical

complexity depends on the number of objective functions, �rst the case with 2 objectives is

considered. Work presented in this thesis (Papers V, VI) employs structural information of
the FMO problem to provide a Sandwich-type algorithm for adaptive approximation of the

PEF, which allows for e�cient and dynamic generation of Pareto optimal IMRT plans.

Another aspect of a posteriori optimisation is the need for a technique to aid the decision-
maker in the selection of a �nal solution from the Pareto set representation.�is is o�en called

‘navigation’. Di�erent interfaces for navigation through Pareto optimal IMRT plans have been

developed [33, 34].�is is beyond the scope of the work presented in this thesis.

2.3 Clinical perspective: balancing treatment bene�t and risk trade-o�s

Population-based dose prescription

In today’s clinical practice, IMRT optimisation is routinely used as a ‘meta-optimisation’ pro-

cedure [35]. Treatment planners do not really expect the TPS to devise truly optimal treatment

plans. Instead, they require the system to create plans that closely match the prescription and

tolerance dose levels speci�ed for the tumour and normal tissues, respectively. �ere is no

incentive for the planner to do any better, as a link to quanti�able clinical outcome is lacking

in the TPSs.

An underlying reason for this is that in contemporary radiotherapy consensus guidelines

for treatment of speci�c patient categories are ‘frozen’ in local or (inter)national protocols,

that specify for a given beam modality (i.e. photons or protons) and tumour type the precise
radiation dose (within internationally established uniformity limits [36–38]), the fractionation

regimen and the normal-tissue dose-volume limiting constraints that shall be used. Hence, a

compromise is established balancing between the probability of tumour control that can be

achieved and the risks of normal-tissue complications that are considered acceptable.

As discussed previously, IMRT has introduced a vast number of degrees of freedom to

shape the dose distribution and has thereby increased the possibilities to make physician spe-

ci�c trade-o�s between target coverage and sparing of normal tissues. Physicians may di�er-

ently rate the various aspects involved in this trade-o� and usually include other information

in their decision-making when balancing the treatment risks and bene�t. �ese include the

patient’s condition, age, social circumstances, type of complications expected, options for sal-

vage treatment and patient preferences.�e widespread implementation of IMRTwill empha-

sise these di�erences and calls for decision-support tools to assist in balancing the treatment

risk-bene�t trade-o�s to �nd and select a ‘customised’ plan that is considered optimal for the

particular patient.
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Dose escalation without adaptation for inter-patient diversity

Advances in the IMRT delivery technology, the availability of imaging data and its application

in so�ware systems for inverse treatment planning have been translated into improved nor-

mal tissue sparing, which consequently allows to escalate the dose to the tumour aiming for

improved tumour control. Despite these developments, the way in which the tumour dose is

prescribed has hardly changed: the (escalated) dose is still prescribed to the same level for ev-
ery patient in the particular risk category. Such a ‘one-size-�ts all’ approach will lead to relative
underdosage in individuals with a favourable geometrical relationship between target volume

and organs at risk, who are able to tolerate a higher tumour prescription dose. Possibilities to

fully exploit dose escalation in these patients are le� unemployed.�is hampers the potential

to ‘customise’ the dose prescription in relation to the anatomical diversity of patients.

Another aspect that is ignored in the current ‘one-size-�ts all’ dose prescription approach

is the diversity in outcome related risk-taking predilections between the physician and the

patient, but also between patients.�e physician’s perception of what constitutes an acceptable

risk level for (severe) side e�ects o�en prevails, with perhaps less emphasis on the associated

level of tumour control. Such a conservative strategy is consistentwith theHippocratic “dictum
primum non nocere” (“�rst, do no harm”), which outweighs “cure at all costs”. In practice,
this means the treatment plan is designed to maximise bene�t while constraining the risks

to prede�ned maximum acceptance levels. Other treatment plans with higher values of both

bene�t and risks always exist (e.g. by simultaneously scaling themonitor units of all beams), but
they are rarely considered, and the patient does not have any signi�cant input to the decision-

making process.

�e patient’s perception of the treatment outcome shows a great diversity as well. Some

patientsmay prefer a higher dose aiming for increased tumour control, while othersmay attach

more importance to speci�c quality of life (QoL) related aspects. Results from a prospective

trial conducted in patients with localised prostate carcinoma scheduled for 3D-CRT who were

o�ered an a priori choice between two (�xed) dose prescription levels have con�rmed this
hypothesis: the majority (79%) of patients opted to be involved in the choice of their own

treatment, and 75% of those patients chose the lower dose arm [39].

As patients di�erently rate the increase in treatment bene�t from the increase in treatment

risk, re�ecting their willingness to accept higher toxicity in exchange for increased bene�t, no

assumptions with regard to their risk-taking preferences should be made prior to designing

the treatment plan. Instead, they should be o�ered the possibility to a posteriori choose from a
set of ‘best compromise’ solutions based on their speci�c anatomical (and possibly biological)

characteristics.

�e ultimate way to accomplish this is to exploit su�ciently reliable estimates of the tu-

mour control probability (TCP) and the normal tissue complication probability (NTCP) based

on the patient’s individually optimised 3D dose distribution and fractionation regimen. �is

is challenging, because the treatment response measures also depend on the speci�c tumour

characteristics (e.g. spatial distribution and density of clonogenic cells, di�erential radiosen-
sitivity of cells during the cell cycle, acute and chronic hypoxia, cell proliferation) and the
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normal-tissue properties (e.g. functionally disabled subregions and fractionation sensitivity),
which are o�en uncertain or unknown for an individual patient. Moreover, the dose distri-

butions that enter into the models to quantify treatment outcome in terms of TCP and NTCP

mostly neglect that the planned and the delivered dose distribution di�er due to treatment

delivery uncertainties, e.g. inter- and intra-fractional anatomic variations and patient set-up
inaccuracies. Nevertheless, it is considered important and useful to explore the potential of

outcome-related metrics in treatment plan evaluation and optimisation in order to assess and

rank the therapeutic performance of rival plans.

Patient empowerment: shared decision-making

In an era of individualised cancer therapy, where patient empowerment enters into the clinic,

radiotherapy should move on towards customised treatment planning where individualisation
is not restricted to adapting the spatial dose distribution to the patient’s anatomy alone, but

also involves shared decision-making between the radiation oncologist and the patient in an
attempt to balance the trade-o� in treatment bene�t and injury probabilities with the individ-

ual preferences.

�is requires that the current treatment planning systems should not only have the abil-

ity to compute TCP and NTCP estimates from 3D dose distributions, but additionally should

also be equipped with functionality to assess the best achievable trade-o� between these es-

timates for a variety of treatment plans with di�erent tumour dose prescriptions, fractiona-

tion regimens and relative dose distributions. So�ware tools to intelligently generate these

best achievable treatment plans in a systematic andmethodologically correct way, and present

these alternatives in an intuitive manner to the physician or the patient are currently lacking.

Ultimately, the TPSs should be interfaced with a multi-factorial decision-support system,

where all available prognostic data (i.e. factors related to a measurable characteristic on the
likely outcome of the cancer disease in an untreated individual) and predictive data (i.e. fac-
tors related to the identi�cation of a characteristic on the likely bene�t from treatment) from

physical, clinical and biological origin is aggregated into prediction models to estimate treat-

ment outcome with the highest accuracy, and allow to truly optimise the treatment plan for
the individual patient [40]. Probably the most challenging part will be to acquire relevant

information from the individual patient’s biology (i.e. genotypic or phenotypic data).

2.4 Biological perspective: improving treatment response

Quanti�cation of treatment plan quality by dose-volume metrics

Careful evaluation of the dose distributions in terms of isodose contour shape, target dose

heterogeneity and normal tissue dose-volume (DV) factors is mandatory to verify against the

protocol requirements and for documentation to correlate with clinical outcome. Taking full

advantage of IMRT to shape the dose distribution critically relies on radiobiological informa-

tion, including the speci�cation of dose-volume constraints, to safely guide prescriptions and

information about the usefulness of heterogeneous target dose distributions [41]. Although
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this data is still sparse, there is a need to pursue this further, as extrapolating historic data ob-

tained from 3D-CRT dose distributions to predict the outcome of IMRT dose distributions is

speculative and inherently risky. To quote Paliwal et al. [42]: “the science of optimising ther-
apeutic gain lags signi�cantly behind the capability to deliver IMRT dose distributions”. �is is
partly due to the fact that the quality of a treatment plan hitherto has been judged by correlat-

ing the above physical quantities to biological response rather than directly by TCP andNTCP

estimates. However, it is widely recognised that DV parameters are merely surrogate measures

of biological response, and preferable should be replaced by biological indices to more closely

re�ect the clinical goals of radiation therapy [43].

At present, treatment plan evaluation and optimisation mainly rely on DV-based criteria.

Inherent limitations associated with DV-based inverse treatment planning have been reported

in literature, comprising: 1) the need to specify multiple DV objectives or constraints per OAR

to represent the di�erent portions of the dose-volume histogram (DVH) curve that correlate

with risk of complications, 2) the di�culty of selecting values and weights for these criteria

to obtain optimal outcome estimates in terms of TCP and NTCP; 3) the increased compu-

tational complexity and non-convexity of the resulting optimisation problem, which implies

that search algorithms may get trapped in local minima, potentially leading to less favourable

dose distributions [44, 45]. �e replacement of DV criteria by TCP and NTCP criteria may

overcome these limitations.

Quanti�cation of treatment response by TCP and NTCPmodels

Various models and parameter sets for estimating the treatment response in terms of TCP and

NTCP have been proposed in the past two decades. �ese models either have a mechanistic

biophysical foundation (i.e. the quanti�cation of the e�ects of both unrepairable cell damage
and repairable cell damage susceptible to misrepair a�er irradiation) or are phenomenological

in nature (see e.g. [46]). For a summary of these models see e.g. [47–49].�eir application has
mainly been restricted to the evaluation of 3Ddose distributions from existing treatment plans.
Currently, available dose-volume outcomedata is analysed to determine the ‘best �t’ parameter

values for these models, as for example the QUANTEC review data that has been used to

update and re�ne normal-tissue dose-volume tolerance guidelines along with a description of

the most commonly used NTCP models and their parameters [50].

Fitting the dose-response models to the clinical outcome data requires statistical learn-

ing techniques that produce parameter estimates with their associated con�dence intervals.

Di�erent methods for the statistical validation of dose-response models have been published,

especially with application to NTCP models (e.g. [51, 52]). Although the con�dence intervals
are usually fairly wide, uncertainty issues with current radiobiological models should not pre-

vent them from being exploited for modern radiotherapy. One reason for this is that outcome

models are continually improving as more data become available, and thus will not always be

considered ‘unreliable’. Another reason is that the only way to answer the question whether

“one could have produced another treatment plan which is better according to outcome mea-
sures” is to actually use the radiobiological criteria instead of only relying on the dosimetric
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surrogates to steer the inverse treatment planning optimisation process for IMRT.

Nahum [53] pointed out that the use of current TCP andNTCPmodels is hybrid in nature;

model parameters are derived from population-averaged patient data, but are subsequently
applied to the individual patient’s dose distribution. �erefore, the models should be used
judiciously, i.e. within the range of their applicability and with the apprehension that the pa-
rameter values have been derived under speci�c conditions (e.g. patient population, treatment
technique, dose-time fractionation, etc.). Guidelines on the use and quality assurance of bio-

logically related models for treatment planning have recently been reported by the Biological

E�ects Subcommittee Task Group #166 (TG-166) of the�erapy Physics Committee of the

American Association of Physicists in Medicine (AAPM) [49, 54].

Desired statistical and mathematical properties (e.g. predictive power and convexity, re-
spectively) of the radiobiological models may di�er when being used for either plan evalua-

tion or plan optimisation. Plan optimisation only requires a model with the ability to steer

the optimisation process in the desired direction, while for plan evaluation the accuracy of

the predictions is of paramount importance, especially when absolute values are used [55].

At this moment, absolute estimates of TCP and NTCP as main indicators of plan quality are

not warranted [54]. Treatment plan evaluation should therefore be performed in conjunction

with established DV criteria. Review of the 3D dose distribution should always be part of this

process.

Radiobiological optimisation

�e meaning of ‘radiobiological optimisation’ is generally de�ned as: the attempt to produce

the ‘best’ treatment plan in terms of radiobiological (outcome) criteria. Miller [56] was the

�rst to report on the use of radiobiological criteria to drive multi-�eld radiotherapy treatment

planning. Almost one decade later, it was suggested to use radiobiological models as objective

functions to be incorporated into the inverse treatment planning process for IMRT [57–59].

Since then, a number of papers have been published discussing this topic, see the reviews by

e.g. [41, 48].
DV metrics are known to correlate with TCP or NTCP indices, and may hence be consid-

ered e�ectively radiobiological criteria. In spite of this, the direct use of TCP andNTCPmodels
as objective/constraint functions may increase the radiobiological quality of treatment plans

as these models more e�ciently drive the shape of the DVH curves in the direction of im-

provements than (a set of) �xed DV constraints do.�e TCP and NTCP objective/constraint

functions could potentially be combined with DV constraints to prevent unacceptably large

hot and cold spots in the target, or small hot spots in normal tissues.

According to Nahum [53], di�erent levels of radiobiological optimisation can be distin-

guished, either based on the improvement of the therapeutic performance of an existing treat-
ment plan through (a posteriori) customisation of the dose prescription or on utilising bio-
logical indices for the design optimisation of a new treatment plan, in approximate order of
increasing sophistication:
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. No dose customisation: the (change in) dose (i.e. either the prescribed tumour dose,
Dpres, or the number of fractions, Npres) is prescribed in the same way for every patient;

I. Customisation of prescription dose under iso-toxic conditions: individualisation of
Dpres on an iso-toxic (i.e. equal NTCP level) basis;

II. Customisation of prescription dose and fraction number under iso-toxic conditions:
individualidation of not only Dpres but also Npres on an iso-toxic basis;

III. Radiobiologically guided inverse planning: radiobiological functions are used as ob-
jectives/constraints to drive the inverse treatment planning process; Dpres and Npres are
liberated, resulting in a target dose distributionwith statistics that are entirely determined

by the spatial interplay of these functions. Dosimetric requirements (e.g.minimum target
dose, uniformity) can additionally be used to elevate the clinical acceptance;

IV. Functional image guided inverse planning: patient-speci�c information from biolog-
ical and functional imaging is added to radiobiologically guided inverse planning for

selective intra-tumoural dose (de-)escalation to facilitate a ‘dose-painting’ strategy;

V. Full-blown biology guided inverse planning: patient-speci�c biological information
from e.g. genomics and proteomics is added to any of the previous levels.

A strategy for full clinical implementation of biologically-guided radiation therapy (BGRT)

along the above steps was already presented by Stewart and Li [60] back in 2007. �e work

in this thesis (Papers II, III, V, VII, X) contributes to methodological aspects of the partial
implementation of BGRT treatment planning related to Levels I to III.

Biological conformality

It is well known that the spatial distribution of biological parameters (e.g. spatial distribution
and density of clonogenic cells, di�erential radiosensitivity of cells during the cell cycle, acute

and chronic hypoxia, tumour cell proliferation) in most tumours and normal tissues is het-

erogeneous. Recent progress in functional and biological imaging has made it possible to map

these distributions. �e ability of IMRT to deliver deliberately non-uniform target dose dis-

tributions has stimulated radiotherapy researchers to transcend the limits of physical confor-

mality and explore the concept of biological conformality to further improve the therapeutic

e�cacy of cancer radiation treatment [11, 60, 61].

Several approaches have been suggested to quantitatively incorporate the spatial biology

data into IMRT inverse treatment planning. Voxel-based and sub-volume based prescriptions

have both been pursued as two prototypical strategies for ‘dose painting’ (see e.g. [62, 63]).
Subvolume boosting involves the selection and surdosage of an intra-tumoural target, and

is related to image-based target volume selection and delineation. Examples of randomised

multi-center phase II/III trials currently recruiting participants for integrated boosting of the

primary tumour are: the FLAME study (NCT01168479) for advanced adenocarcinoma of the

prostate, the PET-Boost study (NCT01024829) for inoperable/irresectable non-small-cell lung
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carcinoma (NSCLC), and the ARTFORCE study (NCT01504815) for advanced squamous cell

head-and-neck cancer. Dose painting by numbers is a voxel-level dose prescription based

on a transformation that maps the image data intensities into prescribed dose. However, the

functional form of this transformation is currently unknown.

For either of the two strategies, it is believed that TCP models are required that include

either direct information on the aforementioned biological parameters or indirect information

about the risk classi�cation of the voxels or the subvolumes [64, 65]. �is emphasises the

signi�cance to incorporate such models into the treatment planning process.

Dose escalation by increased target dose heterogeneity

Despite technological advances that facilitate the delivery of deliberately non-uniform target

dose distributions, the way inwhich the tumour dose is prescribed in contemporary IMRT still

complies with strict homogeneity constraints according to international guidelines that were

originally developed for conventional radiotherapy and 3D-CRT.�ese guidelines state that

the target volume should receive between 95% and 107% of the prescribed dose level, aiming

for a uniform target dose distribution [36–38].

Escalation of the prescribed tumour dose has been shown to improve local control and

progression-free or overall survival in di�erent tumours, e.g. adenocarcinoma of the prostate
[66] and advanced-stage NSCLC [67]. However, remaining faithful to the dogma of target

dose homogeneity may hamper dose escalation, because the tolerated dose or NTCP level of

a neighbouring radiation-sensitive OAR may be exceeded. Allowing a higher degree of tar-

get dose heterogeneity by loosening the maximum dose constraint seems an e�ective method

to achieve dose escalation with IMRT.�is was �rst con�rmed for NSCLC patients in a ret-

rospective treatment planning study by Schwarz et al. [68] comparing 3D-CRT and IMRT
techniques, either by prescribing a homogeneous dose to the target volume or allowing en-

larged dose heterogeneity. In this study, a re-optimisation approach using a �xed fraction size

was followed to assess the highest achievable tumour dose (HATD). Radiobiological optimi-

sation combined with dosimetric constraints (i.e. so-called ‘physico-biological optimisation’)
can accomplish this in a more e�cient way (Paper X).
Although exploiting the spatial biological heterogeneity to selectively steer the high-dose

to relevant sub-volumes or voxels seems an obvious strategy, it remains to be proven whether

the paradigm of biological conformality indeed yields improved clinical outcome. As a matter

of fact, it cannot be excluded that increasing the integral dose to the target volume in a spatially

random way rather than in a spatially selective way may have the same e�ect on the TCP. Al-

though existing TCPmodels do not predict this to be true, it cannot be ruled out that this is due

to their limitations.�ese models typically only incorporate direct e�ects of cellular response

to radiation in their mathematical descriptions, and are merely based on the assumption that

the probability of cell survival at a given point is a function solely of the dose deposited to

that point [46]. However, there is an increasing amount of evidence that while direct dam-

age to the DNA plays an important role, also a variety of indirect processes (i.e. alterations
in the tumour microenvironment, intercellular communication, tumour-stroma interactions)
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impacts on cellular responses to radiation [69]. �ese radiation-induced ‘bystander’ e�ects

are believed to becoming increasingly signi�cant when complex spatially highly modulated

dose distributions are delivered through techniques such as IMRT [70], even though the dose

gradients do not take place on a cellular scale. Models describing the in vitro response of cells
to modulated �eld exposures including intercellular signalling e�ects have recently appeared

in literature [71] and may possibly apply to in vivo tissue structures. As long as a re�nement of
existing radiobiological models to incorporate non-targeted e�ects and modulated dose dis-

tributions has not been e�ectuated and validated, existingmodels purely relying on local doses

are considered the designated means to use for the comparison and the ranking of competing

3D dose distributions.

Apart from the spatial biological heterogeneity, also temporal e�ects play a role. It is known

that tumour biology will change under the in�uence radiation therapy (e.g. acute hypoxia).
Currently, it is not clear to what extent a single pre-treatment snapshot of the spatial distri-

bution of some relevant tumour biological feature will be representative for the dynamic be-

haviour of the tumour microenvironment during treatment. �is is considered to be a very

di�cult issue, and is beyond the scope of the work presented in this thesis.

From the di�erent perspectives illuminated in this work before, it is worthwhile to inves-

tigate how moving away from the homogeneity requirements in ‘traditional’ IMRT plans will

a�ect the potential therapeutic gain when the tumour dose for an individual patient is max-

imised to the highest physically achievable level while satisfying pre-set maximally tolerable

normal-tissue dose or NTCP constraints.�e work in this thesis (Paper X) describes the ap-
plication of a physico-biological optimisation approach to e�ciently assess this trade-o� for

individual patients with advanced-stage NSCLC by generating and comparing Pareto e�cient

frontiers in the TCP/NTCP space when the target dose uniformity is either restricted to ‘tra-

ditional’ constraints for both the minimum and the maximum dose or is unrestrained for the

maximum dose only.

Improved normal tissue sparing: consequences of fractionation e�ects

Most radiation treatments are delivered in multiple fractions. �e underlying biological ra-

tionale is that most late responding normal tissues have better repair capacities to recover

between fractions thanmost tumours (see e.g. [72]).�is is re�ected in the di�erence between
the tissue’s fractionation sensitivities (expressed by the α/β value). Fractionation is meant to
selectively spare normal tissues, allowing for deposition of a therapeutic dose in the tumour

while not causing too much irreparable damage to the surrounding normal tissues that un-

avoidably get irradiated as well.

Modern IMRTplanning and delivery techniques have the ability to produce highly confor-

mal homogeneous target dose distributions with much lower doses to adjacent normal tissues

than in conventional radiation therapy or 3D-CRT. When the stringent target dose unifor-

mity limits are relaxed, and non-uniform target dose distributions are allowed, normal tissue

sparing might even further be improved. Nevertheless, conventional multi-fraction regimens

are still widely used, whereas there seems to be less need to fractionate if normal tissues are
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receiving low doses. Reducing the number of fractions (while increasing the fraction size to

achieve tumour iso-e�ect) would certainly not only o�er an opportunity to further increase

the ‘therapeutic ratio’ of radiotherapy, but also would reduce the social burden for patients, the

logistical load for clinics and the economic costs of radiation treatment in general.

Hypofractionation regimens (i.e. schedules with few fractions and high dose per fraction)
have shown to be safely deliverable in speci�c situations where: 1) there is evidence that the

tumour’s α/β-ratio is lower than for the dose-limiting normal tissue (e.g. prostate [73] and
breast [74] carcinoma), and 2) a small target volume is treated with highly conformal irradi-

ation techniques such as stereotactic body radiation therapy (SBRT) or stereotactic ablative

body radiotherapy (SABR) and the dose-limiting normal tissue is exposed to low but nonzero

dose, as e.g. in inoperable early-stage NSCLC [75–77]. �ese cases seem to contradict, be-
cause normal (healthy uninvolved) lung tissue usually has a lower α/β-ratio than the tumour
and according to conventional radiobiological knowledge hypofractionation is not considered

bene�cial in terms of normal tissue sparing in this case [72]. However, the successful clinical

results for early-stage NSCLC treated with SBRT/SABR have proven otherwise. Evidently, the

volume e�ect plays a vital role. Although in the case of stereotactic lung irradiation the non-

involved healthy lung tissue is seriously injured, the fact that the injury is limited to a small

volume makes that there is very little toxicity.

Di�erent bio-mathematical modelling studies have recently shown an increasing number

of indications suggesting that for tumour sites in which the dose-limiting normal tissue re-

ceives a substantially lower dose than the tumour, hypofractionation is less problematic for

the normal tissue in question than conventionally thought and could become radiobiologi-

cally preferable, even if the α/β-ratio of the tumour is larger than the α/β-ratio of the normal
tissue [78–82]. Another aspect that these studies have revealed is that there is interdependence

between the normal-tissue dose heterogeneity and the optimal fractionation regimen.�is as-

pect is a topic of current research and has not been described in full extent for heterogeneous

dose distributions and arbitrary volume e�ect.

Radiation oncology practitioners wanting to modify fractionation regimens on the basis

of this hypothesis will safely do this under conditions that ensure normal-tissue iso-e�ect. Ba-

sically two methods are available to calculate new dose prescriptions with a di�erent number

of fractions and/or fraction size: either theWithers iso-e�ect formula (WIF) [83] or an NTCP

model.�e latter is considered the correct, but more complex way as it takes into account the

whole dose distribution and the volume e�ect of the normal tissue. Although few commer-

cially available TPSs have the ability to calculateNTCP scores from 3Ddose distributions, their

capability to use these models to calculate alternative normal-tissue iso-e�ective schemes with

less fractions is limited [54]. Additional so�ware exists that enables ‘iso-toxic optimisation’ as

long as only the prescription dose is rescaled and the fraction number and/or fraction size are
altered, but also requires the full 3D dose distribution to be available (in the form of a DVH)

[84].

Instead, the more simple former method is o�en applied, which is based on the well-

established linear-quadratic model of cell killing [72] and incorporates only the fractionation

sensitivity parameter α/β and the dose in the normal tissue. However, it is unclear what nor-
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mal tissue dose should be used when exploiting the WIF, especially when heterogeneous dose

distributions are considered. A universally adopted practice is to use the prescribed tumour

dose as a conservative estimate of the maximum normal tissue dose. Strictly speaking, WIF

only applies to normal tissues receiving this maximum dose uniformly or when the normal-

tissue response is solely determined by this dose. For all other situations the use of the WIF

to derive a new regimen that is intended to be iso-e�ective will e�ectively overestimate the

NTCP and thus result in highly conservative prescriptions when the number of fractions is re-

duced. Hence, the WIF seems too primitive and inappropriate for fractionation optimisation

of highly conformal dose distributions delivered with modern radiation therapy techniques.

�e conclusion is that to determine the optimal fractionation regimen, the relationship be-

tween the degree of normal-tissue dose heterogeneity, the volume e�ect associated with the

clinical endpoint studied and the fractionation sensitivity should be known.�e work in this

thesis (Paper IV) contributes to the unravelling of this relationship.
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Main contributions and summary of appended papers

Compared to conventional radiotherapy and 3D-CRT, modern IMRT planning optimisation

and delivery techniques have substantially improved the ability to spare normal tissue struc-

tures that are at risk when the target volume is irradiated with a prescribed dose that is meant

to achieve a certain therapeutic bene�t. However, the way in which the dose is prescribed to

patients with a certain tumour belonging to the same risk category has not changed. Unifor-

mity in tumour dose prescription between these patients does not imply uniformity in side

e�ects. Current dose prescription protocols do not take into account the anatomical variety

in tumour size and localisation relative to surrounding normal tissues amongst individual pa-

tients.�is variety o�ers the opportunity to customise the dose prescription. Di�erent strate-
gies can be followed, of which maximally tolerable, iso-toxic and risk-adaptive approaches are

part, depending on the decision-making roles of the physician and the patient. Current TPSs

do not accommodate decision-support tools to investigate these approaches in a systematic

manner. Advanced planning optimisation methods are required to supply this de�ciency.�e

ten papers included in this thesis describe di�erent aspects of new methodologies and their

application for clinically relevant cases.

�e �rst paper (Paper I) introduces the rationale and importance to breach the dogma of
uniformdose prescription for patients belonging to the same treatment group, by including in-

dividual risk-taking predilections in the selection of an ‘optimal’ treatment plan from a range

of pre-computed alternatives with acceptable TCP and NTCP estimated obtained from 3D

dose distributions.�e following three papers (Papers II, III, IV) deal with dose prescription
customisation approaches to improve the therapeutic performance of an existing treatment
plan by re-normalisation, i.e. without the need to redesign the relative dose distribution. �e
last six papers pertain to dose prescription customisation approaches where dose distributions

are newly designed through intelligent re-optimisationmethods, either by using only dosimet-
ric criteria (Papers V, VI, VII) or by using radiobiological objectives (Papers VIII, IX, X).
In the last paper, concepts developed in the preceding papers are combined to compare the
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re-normalisation and re-optimisation approaches when individualised dose escalation under

restricted and unrestricted target dose heterogeneity properties is applied to IMRT of NSCLC

patients.

3.1 Inclusion of patient preferences into radiotherapy treatment planning

A �rst strategy to accomplish customised dose prescription is to take the risk-taking prefer-

ences of individual patients into account. In Paper I, it is proposed to include patient predilec-
tions into the treatment planning process to individualise the trade-o� between TCP and
NTCP based on the planned 3D dose distribution. IMRT facilitates to generate treatment

plans with di�erent prescription doses over a range of TCP and NTCP estimates. �e ac-

ceptable range of treatment plans, from which a single ‘best compromise’ solution needs to

be chosen, can be explored in various degrees of sophistication. Evaluating these solutions by

exploiting the therapeutic operating characteristic (TOC) graph and the Pareto e�cient frontier
(PEF) seems very attractive for previously and newly designed treatment plans, respectively.

From this exploration, the physicianmay choose treatment options for discussion of treatment

preferences with the patient.�e di�erences between these options can be assessed with esti-

mates for TCP and NTCPs.�is requires new tools for decision-support to be developed and

integrated with existing radiation treatment planning systems.

3.2 Customisation of prescription dose using the TOC graph

In Paper II, the concept of the TOC graph is applied as a decision-aid to quantify the trade-o�
between TCP and NTCP estimates using an a posteriori treatment planning optimisation ap-
proach. For an existing treatment plan, the dose prescription is re-normalised by ‘Level I’ opti-

misation (see page 17), either by changing the fraction size while keeping the fraction number

�xed or vice versa, to assess the range of TCP and NTCP estimates from the 3D dose distribu-
tion. In contrast to the criticised concept of uncomplicated tumour control probability, P+, no
assumptions with regard to a priori risk-taking preferences between TCP and NTCP are made
to �nd the ‘optimum’ prescription dose.�e TOC concept is illustrated by a clinical example

of prostate cancer where the trade-o� between 5-year biochemical no evidence of disease, late

gastrointestinal morbidity and genitourinary morbidity is studied for a cohort of patients and

for an individual patient.

�e area under the TOC graph is proposed as a new index for the therapeutic power of a

treatment technique or plan, independent of the prescribed dose level. A comparison between

3D-CRT and IMRT plans designed for the same patient anatomy shows the e�ect of increased

therapeutic power that can be achieved by modern inverse treatment planning optimisation

and delivery techniques. �e results suggest that increasing the target dose conformity and

heterogeneity broadens the therapeutic window and augments the therapeutic power of indi-

vidualised radiotherapy.
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3.3 Customisation of fraction dose and number in NSCLC radiotherapy

An alternative way to customise the dose prescription is via individualised dose escalation

strategies. Here, the physician prede�nes the maximally tolerable dose or NTCP limits for

relevant OARs.�e prescription dose of an existing treatment plan is escalated for an individ-

ual patient until the �rst normal-tissue limit is met. Recently, iso-toxic clinical protocols have

been put in practice for advanced-stage NSCLC radiotherapy with promising results. In some

of these protocols, the fraction number is increased while keeping the fraction size constant,

whereas in others the opposite is carried through. Inmost of these protocols only the tolerance

doses of the uninvolved lung tissue and the spinal cord have been taken into account.

In Paper III, the dose prescription is individualised in a retrospective in silico study in 38
advanced-stage NSCLC patients, taking into account dose constraints not only for the unin-

volved lung tissue and the spinal cord, but also for the oesophagus, the brachial plexus and the

heart. ‘Level II’ optimisation (see page 17) is applied by adjusting both the fraction size and

number for both a maximally tolerable and an iso-toxic dose escalation approach. It is shown

that in 79% of the cases signi�cant dose escalation with therapeutic gain is possible.�e maxi-

mum oesophageal dose is found to be the dominant dose-limiting constraint in most patients.

3.4 Normal-tissue fractionation accounting for heterogeneous dose and volume
e�ect: the e�ective α/β concept

�ere is renewed interest in hypofractionation since a growing amount of evidence has shown

that it can be safely applied using highly conformal IMRT techniques in speci�c situations.�e

standard method to derive tumour dose prescriptions for new (hypofractionation) regimens

under iso-e�ect conditions is to exploit the well-known linear-quadratic based Withers iso-

e�ect formula (WIF), incorporating the intrinsic fractionation sensitivity measures α/β for
the tumour and the most relevant dose-limiting normal tissue.�e ratio of these measures is

used to assess the potential for hypofractionation. Recently obtained insights into radiobiolog-

ical modelling have shown that tumour localisations where the anatomy allows substantially

lower dose to the dose-limiting normal tissue than to the tumour, may have the potential for

hypofractionation even if the abovementioned ratio seems unfavourable.

In Paper IV, we show that the WIF yields conservative hypofractionation prescriptions
with non-exact normal-tissue iso-e�ect estimates for tissues with a (quasi-)parallel architec-

ture receiving a relatively low dose. We propose a generalised WIF for exact normal-tissue
iso-e�ect calculations, which retains the tumour prescription doses, but replaces the conven-

tional fractionation sensitivity measure α/β with an e�ective fractionation sensitivity measure,
(α/β)eff, which takes into account the non-trivial interdependency between the normal-tissue
dose heterogeneity and volume e�ect associated with the clinical endpoint in question. Situ-

ations where hypofractionation can be safely applied can be easily identi�ed using the new

(α/β)eff concept. Examples are shown for DVH data of the uninvolved lung tissue in NSCLC
patients treated with IMRT and SABR plans.

25



Treatment planning optimisation for individualised dose prescription

3.5 E�cient generation of Pareto optimal IMRT plans

Designing the �uencemaps for IMRT can be formulated as amulti-objective inverse treatment

planning optimisation problem. Among the di�erent methods to solve such problems, Pareto

optimisation is the only approach that quanti�es the trade-o� between inherently con�icting

plan objectives and allows the decision maker to select an ‘optimal’ plan from a pre-computed

set of best compromises.�is set is represented by the PEF in the objective space and contains

an in�nitely number of elements. Generally, no closed form of the PEF exists. One way to

obtain the PEF is by discrete approximation.�is requires multiple optimisation problems to

be solved. To con�ne the computational burden, only methods are considered that are guar-

anteed to solve the problem to global Pareto optimality and avoid the unnecessary generation

of non-Pareto optimal plans.

In Paper V, a new algorithm for iterative discrete approximation of the PEF up to some
prede�ned error is developed using an ε-constraint optimisation approach. �e convexity of
the optimisation problem is exploited to construct piecewise-linear upper and lower bounds

to approximate the PEF from a small initial set of Pareto optimal treatment plans. A new

‘Sandwich algorithm’ is presented (see Paper VI) in which these bounds are used with three
iterative strategies to determine the location of the next Pareto optimal solution such that the

uncertainty in the estimated PEF is maximally reduced. It is shown that an intelligent initial

solution for a new Pareto optimal plan can be obtained by �uence map interpolation of neigh-

bouring Pareto optimal plans. �e method is applied to a simpli�ed clinical head-and-neck

case with two objectives to map the trade-o� between target dose heterogeneity and normal-

tissue sparing. �e results show that with all three strategies representative estimates of the

PEF can be produced in an e�cient and e�ective manner.

3.6 E�cient approximation of the convex Pareto e�cient frontier

For the case of a nonlinear bi-objective convex optimisation problem, the PEF is a univariate

convex function. Discrete approximation is an established method to reconstruct this func-

tion. So-called ‘Sandwich algorithms’ have been proposed for univariate approximation of

convex functions. In these algorithms, piecewise-linear upper and lower bounds of the con-

vex function are constructed, making use of derivative information. However, this type of

information may be absent. Instead, only function evaluation information may be available.

�is is the case with ε-constraint optimisation.
InPaperVI, the proof is presented that the univariate PEF is a decreasing convex function.

Piecewise-linear upper and lower bounds for the univariate convex PEF are derived that are

only based on function evaluation information. Complete proofs for these bounds are given.

New ‘Sandwich algorithms’ are proposed that iteratively add new Pareto optimal points in a

systematic way until a desired accuracy of the PEF approximation is obtained.�e new algo-

rithms show linear convergence. If in addition derivative information is available, quadratic

convergence can be shown under certain conditions. Furthermore, it is proven that lower

bounds resulting from the combination of function evaluation and derivative information are

26



General introduction

tighter than those derived from function evaluation information only. Numerical examples

are given that illustrate the usefulness of the algorithms.

3.7 Practical approach to assess IMRT plan trade-o�s in NSCLC radiotherapy

In existing TPSs for inverse planning of IMRT, the dose and dose-volume based criteria to steer

the optimisation algorithm di�er from those used for evaluation of the resulting 3D dose dis-

tribution. Clinically establishedDVH criteria are o�en used to evaluate the quality of a (given)

3D dose distribution. DVH-based objective functions that are used for optimisation typically

have been replaced with quadratic penalties measuring the deviation from some prescribed

dose level per voxel.�e correlation between the objective values and the plan evaluation cri-

teria is weak in DVH-based optimisation models.�is may hamper the use of Pareto optimi-

sation, because the PEF shows the (quantitative) trade-o�s in the plan objective space instead

of in the plan evaluation space. Furthermore, these DVH-based objective functions are non-

convex. In practice, repeated re-optimisation is o�en required to achieve acceptable solutions

that ful�l the clinically relevant plan requirements, which renders this approach ine�cient.

To circumvent this problem, we describe in Paper VII a so�ware tool that was interfaced
with the standard TPS to automatically generate a range of deliverable IMRT plans by system-

atically varying the parameters of the optimisation functions and to facilitate the analysis of the

trade-o� between clinically relevant dosimetric parameters for target coverage and normal tis-

sue sparing.�e tool is applied to investigate this trade-o� for 5 patients with advanced-stage

NSCLC who are scheduled to receive IMRT.

Linear relationships between pair-wise clinically relevant dosimetric parameters are es-

tablished and shown to be dependent on the particular case.�is is used as a meta-model to

support the decision-making of an individualised treatment plan.

3.8 Convex reformulation of radiobiological optimisation for IMRT planning

When radiobiological treatment plan evaluation criteria based on TCP and NTCPmodels are

to be included as objective and constraint functions in ‘Level III’ optimisation (see page 17),

suitablemathematical transformations have to be applied tomake these functions strictly con-

vex/concave, depending on the criterion to be minimised/maximised. Otherwise, the optimi-

sation problem is hard to solve and it cannot be guaranteed that the unique, globally best

solution is found.

In Paper VIII, we derive transformations for several well-known radiobiological mod-
els taking dose fractionation e�ects into account and establish conditions under which trans-

formed functions result in equivalent convex criteria that do not change the set of Pareto opti-

mal treatment plans. In addition, we show that applying increasing and concave transforma-

tions to convex objective functions is bene�cial for the piecewise-linear approximation of the

Pareto e�cient frontier.
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3.9 E�ect of transformations on approximation of Pareto e�cient frontier

As shown in the preceding paper, Pareto optimisation with radiobiological objective and con-

straint functions, requires mathematical transformations to make existing TCP and NTCP

functions strictly convex/concave. We note that transformations of di�erent quality exist.
Certain transformations yield transformed objective functions that are less convex than other

transformations.�is is particularly useful for the approximation of the Pareto e�cient fron-

tier by piecewise-linear upper and lower bounds.

In Paper IX, we mathematically prove that if the objective function is already convex, an
increasing and concave transformation that yields a less convex function results in tighter up-

per and lower bounds of the PEF that is to be approximated than the original functions. For

transformed radiobiological criteria analysed before by others, we note that such increasing

and concave transformations may exist.

3.10 Physico-biological optimisation of IMRT plans for individualised dose
escalation in NSCLC radiotherapy

�e ‘best’ achievable dose distribution for radiation treatment depends on the patient anatomy,

the underlying biological heterogeneity, the physical limitations of the radiation technique in

question, and the risk-taking predilections of the physician or the patient. Within the con-

text of this multi-dimensional space a ‘best compromise’ solution needs to be found which is

believed to yield the best achievable trade-o� between treatment bene�t and injury. It is desir-

able that the TPS can generate a set of ‘best compromise’ treatment plans, i.e. with the highest
achievable TCP conditional to a chosen NTCP level, while avoiding the unnecessary e�ort in

search for non-achievable plans.

Paper X describes a retrospective in silico dose escalation study where optimisation max-
imising TCP subject to both dosimetric and NTCP constraints is used to generate these solu-

tions for patients with advanced-stage NSCLC. To assess the full potential of ‘Level III’ opti-

misation (see page 17) for IMRT, a comparison is made between homogeneous and heteroge-

neous target dose escalation. For the homogeneous case, ‘Level III’ optimisation is compared

to ‘Level I’ optimisation by re-normalisation of the fraction size. �e overall results suggest

that substantial increases in local tumour control can be achieved over a range of tolerable risk

levels for all patients in the study when the between-patient and within-target uniformity in

dose prescription is no longer preserved.
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4

General discussion and future perspectives

A�er a concise recapitulation of the previous sections, a re�ection of some aspects is given

in the light of future research e�orts that are required to bring the concepts that have been

developed in the framework of this thesis into clinical practice.

4.1 From population-based dose prescription by physician consensus to
individualised dose prescription by patient preferences

In current radiation treatment protocols, patients with similar clinical characteristics, such

as tumour localisation and stage, co-morbidity, performance status, age, and social circum-

stances receive the same dose prescription regardless of their willingness to accept the risk of

particular side-e�ects in exchange for reducing the risk of recurrence or metastases. Clinical

practice patterns have shown that treatment judgment is predominantly reserved to physi-

cians. Although physician’s decisions are expected to be congruent with best clinical evidence,

this does not guarantee to yield the ‘best’ result for the individual patient. In their treatment

strategy, physicians rely on consensus guidelines that strive for maximisation of TCP for a
given, pre-selected level of NTCP. To achieve this goal, uniform dose prescriptions are em-

ployed for patients with tumours belonging to the same risk category. However, the variety in

patient anatomy, biological heterogeneity and risk-taking preferences of patients is not taken
into account in the current dose prescription paradigm. Although alternative dose prescrip-

tions with di�erent combinations of TCP and NTCPs exist, they are generally ignored. �is

has constituted an ‘iatrocratic’ regime, where the physician may unintentionally withhold the

patient to undergo the ‘optimal’ treatment. What is considered ‘optimal’ is however di�cult

to ascertain, especially when the balancing of treatment bene�t and risks involves subjective

decision-making and when the decision criteria (i.e. TCP and NTCP estimates) are cursed
with uncertainties.
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�e treatment planning studies based on bio-e�ect models presented in this thesis support

the observation that inter-patient and intra-patient uniformity in dose prescription does not

yield optimal therapeutic performance in current radiation therapy practices. We hypothesise

that if sophisticated imaging, advanced treatment planning and delivery techniques, and the

best available bio-mathematical treatment response models are judiciously used, the concept

of a population-based dose prescription in today’s treatment protocols can be replaced by indi-
vidualised dose prescription.�e methodologies described in this thesis can provide valuable
tools for this purpose.

By empowering the patient to actively participate in the decision-making process, higher

levels of adherence to and satisfaction with their treatment may be achieved, eventually result-

ing in a better short- and long-term quality of life. Individualised dose prescription by inclu-

sion of patient risk-taking preferences is proposed as a new paradigm to improve the treatment

outcome of modern radiation therapy.�is would involve a new way of medical counselling,

as physicians have di�culty predicting the treatment decisional preferences of their patients.

Treatment decision discussions are challenging, not only for physicians to transfer unbiased

medical information to patients, but also for patients to conceptualise the bene�ts and risks

and to form a treatment decision. Decision-aids that are adequate and intuitive enough for

this task are required for this. More research in this �eld is needed to establish evidence-based

methods that focus on assessing the determinants of decision-making according to patients’

individual needs (e.g. knowledge, values and support), in�uencing the quality of their deci-
sions. In addition, indicators of decision quality measuring expectations, satisfaction, regret,

and concordance between the patients’ values and the chosen treatment should be investigated.

4.2 Dose prescription by patient preferences: achievements so far

Fundamental problems in individualised IMRT planning comprise of: 1) the assessment of

the trade-o� between mutually dependent goals and 2) the balancing of risks associated with

exposure of one organ against another.

Multi-objective optimisation techniques using the Pareto optimality concept have the abil-

ity to objectively assess the trade-o� and present a range of achievable ‘best compromise’ plans
in an intuitive way via the PEF.�e work presented in this thesis mainly considers bi-objective

problems, comprising one objective related to the target volume and one related to a relevant

OAR. As multiple organs and di�erent morbidities may be involved in clinically realistic sit-

uations, the PEF constitutes a multi-dimensional surface. Recently, an e�cient method has

been developed to approximate the multi-dimensional PEF by a sequential algorithm [85] that

permits parallelised computation [86, 87]. Advanced multi-objective optimisation methods

based on these techniques have recently been implemented in next generation commercially

available treatment planning systems. E�ective and e�cient techniques to ‘navigate’ over the

multi-dimensional PEF need to be evaluated.�is requires intuitive decision-support tools to

be interfaced with the TPS, allowing a full evaluation of the 3D dose distribution to be part of

the �nal decision-making process.
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Balancing the treatment bene�t and risk involves subjective decision-making, as di�er-

ent patients may have di�erent levels of acceptance for injuries. Modelling the way in which

physicians or patients handle the trade-o� between di�erent severities of treatment-related

side-e�ects is di�cult, if not impossible.�erefore, it is suggested to present a range of treat-

ment plans with di�erent risk-related metrics to the decision-makers.�e methods presented

in this thesis provide di�erent ways to incorporate intuitive (radiobiologically relevant) risk

metrics into the treatment planning process to optimise the treatment plans in terms of the

dose prescription, thereby aiming to improve the clinical outcome for the individual patient.

�is is either accomplished by altering the prescribed dose per fraction and/or the number of

fractions, or by releasing the target dose uniformity constraint.�e range of ‘best compromise’

treatment plans can be assessed using the Pareto optimisation concept.�e absolute values of

the resulting risk-bene�t predictions should be interpreted with care as long as model calibra-

tion against clinical endpoints is cumbersome. Nevertheless, it entails the best information

available so far, and can probably provide reasonably reliable estimates of outcome di�erences
between treatment plans being generated with the same dose delivery technique exploiting

conventional fractionation regimens.

4.3 Integration of the new methodology in clinical practice

For ‘Level I’ and ‘Level II’ optimisation, implementation into clinical practice seems to be

straightforward. Tolerance of normal tissue is the major dose-limiting factor for the adminis-

tration of radiotherapy. Current knowledge of radiation side-e�ects has reached a level where

predictions for conventional fractionation regimens are considered su�ciently reliable for cer-

tain relevant organs/tissues and endpoints (e.g. rectal bleeding, pneumonitis, xerostomia) such
that protocols for tumour dose individualisation have already been developed and applied.

One example is our single-institution IDEAL-VMAT Phase II trial (NCT01577212) for indi-

vidualised hypofractionated radiotherapy in patients with NSCLC, which was initiated based

on the �ndings reported in Paper III.
For ‘Level III’ optimisation, the clinical implementationmay bemore challenging since the

traditional way of dose prescription (in terms of total dose, number of fractions, target dose

heterogeneity) is liberated. Although this can be accomplished in a controlled way, for exam-

ple by successively releasing the conventional target dose heterogeneity constraints, some level

of con�dence in the radiobiological models steering both the treatment plan design and the

decision-making process is required. Some notes of caution are in order before exact predic-

tions of treatment outcome can be trustworthy enough to serve quantitative decision-making.

Firstly, the methods and models employed do not account for uncertainties. Although

the parameters of the radiobiological models may be cursed with large con�dence intervals,

this may not have major e�ect on the solution (i.e. the �uence map that de�nes the treatment
plan), while the e�ect on the quantitative evaluation (i.e. the predicted TCP or NTCP value)
of the treatment plan could be large. �e rationale for this is that during maximisation of

TCP, for example, the optimiser strives to escalate the target dose as much as possible given

the constraints imposed. Preliminary results showed that variation of the model parameters
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could barely improve the TCP value, suggesting the solution to be robust with respect to the

model parameters. Clearly, more research is needed to generalise this �nding.

Secondly, the radiobiological models employed are based on the linear-quadratic (LQ) ex-

pression, which links the cell survival fraction to the absorbed dose. At high doses per frac-

tion, approximately above 6−10 Gy, the LQ model may overpredict cell killing, which will
result in an underprediction of TCP and an overprediction of NTCP.More sophisticatedmod-
els need to be developed and applied to become universally accepted. For large fraction sizes,

cell killing may not be the dominant process mediating the irradiation response for both early

and late e�ects. �ere is an increasing amount of evidence suggesting that vascular and im-

mune reactions also substantially contribute to cell death in the high dose-per-fraction range.

Bio-mathematical models should therefore be adapted to properly account for these in vivo
e�ects. However, bio-mathematical modelling may never be able to completely describe the

complex biological processes involved in the response of high-dose fractionated radiother-

apy. Nevertheless, it facilitates the ability to design treatment plans with improved therapeutic

power once su�cient clinical outcome data has been obtained.

�irdly, the geometrical uncertainties during treatment delivery are not taken into account

in the optimisation process. Treatment planning of heterogeneous target dose distributions

requires that geometrical uncertainties, which are currently included in (population-based)

treatment planning margins, are directly incorporated into the treatment planning optimi-

sation to obtain robust treatment plans. Hence, more research into robust optimisation or

probabilistic treatment planning is recommended.

Fourthly, the predictive value of the trade-o� between TCP and NTCP(s) needs to be val-

idated. E�orts are needed to improve the quality, reliability and robustness of the treatment

risk prediction models.�erefore, quality control of the treatment planning and delivery pro-

cess by an independent in vivo dosimetry system is required to enable the evaluation of the
delivered dose distribution and the correlation with established clinical goals as quanti�ed

through the risk measures. Hence, development and implementation of 3D in vivo dosimetry
in combination with dose-response modelling incorporating the latest advances in areas such

as imaging and genetics is considered compulsory.

Fi�hly,many of the contemporary predictionmodels only include dosimetric data and lack

clinical, treatment, imaging and molecular factors. In order to be able to more accurately and

precisely predict treatment outcomes, it is required that such data is acquired via standardised

procedures. �is allows for assessment of the robustness, reproducibility and clinical utility

of the data and stimulates the development of validated multi-factorial decision-support sys-

tems that are considered important for the implementation of truly individualised radiation

oncology [40].

4.4 Consequences for clinical trials

Prescribing doses to individual patients taking into account their risk-taking preferences will

a�ect the way in which randomised clinical trials can be conducted, especially when the study

is designed to compare a population-based dose prescription approach to an individualised
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dose prescription approach. In the classical trial design, where treatment arms with di�er-

ent population-based dose prescriptions are compared, the primary endpoint (e.g. disease free
survival, overall survival, QoL) is de�ned unequivocally. However, this is not the case in tri-

als with a treatment arm involving individualised dose prescription, as certain patients in the

study cohort will attach more weight to QoL related aspects than to tumour control, for exam-

ple. In trials where individualisation has already been incorporated in the design (e.g. compar-
ing individualised radiotherapy with or without chemotherapy) this may not be problematic.

�e challenge remains how to build a reasonable level of evidence when selection bias (by the

patient) is explicitly added to the treatment selection process.�is is clearly a �eld wheremore

research is needed.
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Inclusion of individual patient preferences into the radiotherapy treatment planning 
process

H Huizenga*, AL Hoffmann, JHAM Kaanders, PFM Stalmeier, JJ van Tol-Geerdink 
Radboud University Nijmegen Medical Centre, Nijmegen, NL 

Treatment prescription and planning in radiotherapy include a trade-off between TCP and NTCPs. The 
question is, whether it is possible to individualize the trade-off between TCP and NTCP in the treatment 
planning process, based on the 3D dose distribution. The importance follows from a study in which patients 
with a primary localized prostate carcinoma were offered a choice between a 70 Gy and 74 Gy 3D-CRT 
treatment. Once these patients were informed about the existence of the trade-off via an independent 
decision aid, 80% wanted to choose and 75% of those patients chose the lower dose option. However, the 
actual TCP and NTCPs are expected to vary significantly dependent on the type of IMRT and IGRT 
methods used nowadays. Uniformity in dose prescription and margins does not imply uniformity in 
NTCPs. Irrespective of the equipment and treatment technique in a particular institution, a range of 
treatment solutions can be found with a range of estimates for TCP and NTCPs. The acceptable range of 
treatment plans, from which a choice needs to be made, can be explored in various degrees of 
sophistication, of which evaluating the Pareto frontier is the most attractive. From this exploration the 
physician may choose treatment options for discussion of treatment preferences with the patient. The 
differences between these two plans can be characterized with estimates for TCP and NTCPs. The 
estimated differences in TCP and NTCPs estimates between optional plans is expected to be relatively 
accurate, since the 3D dose distributions are relatively similar, in the sense that the same treatment 
equipment and beam geometries are involved. The proposal circumvents the uncertainty in treatment 
outcome for the large variety of treatment methods applied nowadays. New tools in treatment planning 
systems are required, e.g. for the generation of Pareto frontiers. 
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Introduction

The treatment prescription and treatment plan in radiotherapy is well known to be a trade-off between 
the probability to achieve loco-regional tumor control (TCP) and the probability to cause 
complications or severe side effects to normal tissues (NTCPs). Here, TCP and NTCP is short for 
clinical outcome measures as life expectancy and probabilities of specifically stated side effects, and 
does not refer to the use of a specific model. The chosen compromise is mostly hidden in local, 
national or international treatment protocols and is based on consensus about what is considered to be 
the best compromise for a specific patient group. An important question however is whether the trade-
off between TCP and NTCP can be individualized, i.e. whether patient preferences can be included in 
the treatment planning process. E.g. Amols et al (1997) proposed to take doctors’ or patients’ 
predilections for TCP or NTCP into account by ranking of treatment plans based on a TCP and NTCP 
based figure of merit. In the present paper we summarize results obtained from a recent clinical 
decision-making trial that we conducted, and we suggest a method to implement patient preferences in 
treatment planning on an individualized basis. 

Recent results from a clinical trial 

From 2000-2005 patients with a primary localized prostate carcinoma to be treated with three-
dimensional conformal radiotherapy (3D-CRT), were included in a study in which they were offered a 
choice between a 70 Gy and a 74 Gy treatment (van Tol et al 2006b, 2006c). Probabilities presented 
for cure (local control, overall and disease-free survival bNED, life expectancy) and side-effects 
(erectile dysfunction and severe late gastro-intestinal and genitourinary effects) were based on a 
systematic literature review of the clinical effects of 3D conformal radiotherapy (van Tol et al 2006a).  

Once these patients were informed about the existence of the trade-off between TCP and NTCPs for 
their treatment, via an independent decision aid, 80% wanted to choose between the two treatment 
arms (van Tol et al 2006b), and 75% of those patients chose the lower dose option (Van Tol et al
2006c). It was the first study in which, to the knowledge of the authors, the patients’ choice between 
two radiation treatments was actually implemented. From the study of Van Tol et al (2006bc) it is 
clear that most prostate cancer patients want to be involved in the decision-making and actually want 
to make a choice, once a decision aid is provided. Some prefer a higher dose with enhanced life-
expectancy, while others attach more weight to specific quality of life aspects (e.g. gastro-intestinal 
toxicity). 

Discussion 

The choice between the 70 Gy and 74 Gy treatment in this study (van Tol et al 2006abc) can neither 
be generalized to other institutions nor be included in national or international protocols. The actual 
probability of tumor control and complications is generally expected to be dependent on the 
sophistication of the treatment, e.g. on  

• the amount of imaging data used to define the target volume,  
• possible means to separate target volume from organs at risk, e.g. by a rectal balloon in 

prostate cancer,
• the chosen margins,
• the treatment technique and equipment applied, e.g. various types of beam configuration and 

IMRT, or tomotherapy, 
• the amount of image-guidance during treatment delivery, e.g. in prostate cancer the use of 

lasers and/or EPIDs and gold markers or cone-beam CT based adaptive strategies on the 
accelerator to verify the daily target volume position and shape.  
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The quest for (inter)national consensus on treatment protocols is also hampered by the fact that 
treatment techniques and processes start to vary  much more than in the past. Uniformity in dose 
prescription and margins does not imply uniformity in probabilities of side-effects. 

The type of IMRT and IGRT determines the width of the therapeutic window, and thus the possibility 
to allow a higher dose to the target volume and/or to achieve a lower dose to the organs at risk. As 
such, the actual choice offered by Van Tol et al cannot be implemented in its present form in 
institutions that have embarked on methods as IMRT, IGRT, dose escalation, hypofractionation and/or 
tomotherapy. The only way to take into account this variety, is to predict TCP and NTCP on the basis 
of patients’ individual 3D dose distribution and fractionation scheme. This is quite a challenge, since 
the improvement in clinical outcome for this variety of treatments offered by various institutions is not 
yet known from clinical trials, and thus the uncertainty in the probabilities is significant.  

In the design of the study of Van Tol et al it was clearly decided that only treatment options would be 
offered to the patients that fall into the range of adequate treatment options, according to local, 
national or international treatment protocols. The only difference between both arms was the 
possibility for a subjective trade-off between TCP and NTCP, but within the range of adequate 
treatment options. TCP and NTCPs presented to the patients were based on literature; the planned 
patients’ 3D dose distribution was not used to calculate estimates for TCP or NTCPs. The trade-off 
was implemented as a choice between two dose level prescriptions, which was considered possible 
because the treatment technique in both arms was the same. As stated above, not the dose level itself, 
but all details of the treatment determine the clinical outcome. As such, it seems more appropriate to 
characterize choice options by estimates for TCP and NTCPs based on the planned 3D dose 
distribution of a patient.  

Specific TCP and NTCP models with specific parameter sets (e.g. Webb and Nahum, 1993, Burman et 
al 1991, Ten Haken 2001) have often been criticized. Indeed, the simple models cannot describe the 
complex biological behavior of cells and tissues exposed to radiation. Moreover, the dose distributions 
that enter in these models mostly neglect that the delivered dose distribution to volumes might differ 
from the planned dose distribution, due to inter- and intrafractional movement and patient set-up 
uncertainty. Nevertheless, it is generally believed that these models are adequate to rank treatment 
plans, if and only if these models are used to interpolate between dose levels of clinical known end 
points, and refrain from extrapolation. 

Proposal

Irrespective of the radiotherapy equipment and treatment technique available in a particular institution, 
almost always a range of treatment solutions can be found, some with a slightly higher and some with 
a slightly lower probability of cure, with an unavoidable related slightly higher or lower probability of 
adverse side effects. Most of the modern treatment planning systems can provide TCP-  and NTCP-
estimates for these treatment solutions, based on models and the 3D dose distribution, with the model 
calibrated against clinical endpoints.  

The acceptable range of treatment plans, from which a choice needs to be made, can be explored in 
various degrees of sophistication: 

a) by scaling the dose distribution to a slightly lower or higher prescription (Lind et al 1999, 
Sanchez-Nieto et al 2001) 

b) by adaptation of the weights of objectives in dose-based inverse IMRT treatment planning 
(e.g. Craft et al 2005) 

c) by adaptation of weights in biological-based or physico-biological inverse IMRT treatment 
planning (Hoffmann et al 2003, 2005) 

d) by exploring the Pareto-efficient frontier  in a few dimensions (Yu et al 1997). Craft et al
(2006) and Hoffmann et al (2006) have shown that these frontiers can be generated 
dynamically and efficiently. 
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From this exploration the physician may choose two (or more) treatment options for discussion of 
treatment preferences with the patient. Options should fall into the range of adequate treatments, but 
differ in the “weights” attached to TCP and NTCPs. The differences between optional plans can be 
characterized with TCP and NTCP measures in terms of life expectancy and probability of severe side 
effects. The estimated difference in calculated TCP and NTCP between these plans is expected to be 
relatively accurate, since the 3D dose distributions are relatively similar, in the sense that the same 
treatment equipment and beam geometries are involved, and optional plans are within the range of 
adequate treatments according to medical protocols. Unfortunately, the absolute values for TCP and 
NTCPs will be less accurate. Anyhow, it is the best information available and also serves as the basis 
for evaluation by the physician.  

The first (a) and fourth method (d) do not require a trade-off prior to the treatment planning process. 
Once the treatment planning process is finished, the physician might choose scaling (a) or pick a plan 
from the Pareto frontier (d). Possibilities (b) and (c) require an iterative treatment planning process, 
and are thus inefficient. Ultimately, we prefer method (d), because it directly provides insight into the 
effect of changes. 

Conclusion

The inclusion of individual patient preferences in radiotherapy treatment planning is a way to act upon 
our finding that prostate cancer patients are - and other groups of radiotherapy patients might be - 
more willing to be involved in decision-making than has been thought in the past (Van Tol et al
2006b). The proposal to focus on differences between optional plans with more or less the same 
technique circumvents the uncertainty about treatment outcome for the large variety of actual 
treatment methods applied nowadays. For (d) new tools in radiotherapy treatment planning systems 
are required. 
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Employing the therapeutic operating
characteristic (TOC) graph for individualised dose
prescription
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Abstract

Background: In current practice, patients scheduled for radiotherapy are treated according to ‘rigid’ protocols with
predefined dose prescriptions that do not consider risk-taking preferences of individuals. The therapeutic operating
characteristic (TOC) graph is applied as a decision-aid to assess the trade-off between treatment benefit and
morbidity to facilitate dose prescription customisation.

Methods: Historical dose-response data from prostate cancer patient cohorts treated with 3D-conformal
radiotherapy is used to construct TOC graphs. Next, intensity-modulated (IMRT) plans are generated by optimisation
based on dosimetric criteria and dose-response relationships. TOC graphs are constructed for dose-scaling of the
optimised IMRT plan and individualised dose prescription. The area under the TOC curve (AUC) is estimated to
measure the therapeutic power of these plans.

Results: On a continuous scale, the TOC graph directly visualises treatment benefit and morbidity risk of physicians’
or patients’ choices for dose (de-)escalation. The trade-off between these probabilities facilitates the selection of an
individualised dose prescription. TOC graphs show broader therapeutic window and higher AUCs with increasing
target dose heterogeneity.

Conclusions: The TOC graph gives patients and physicians access to a decision-aid and read-out of the trade-off
between treatment benefit and morbidity risks for individualised dose prescription customisation over a continuous
range of dose levels.

Keywords: Radiotherapy, Treatment planning, Individualisation, Dose-response relations, Decision-making

Background
The main task in radiation dose prescription and treatment
planning is to maximise the tumour control probability
(TCP) while maintaining an acceptable normal tissue
complication probability (NTCP). Currently, this com-
promise is ‘frozen’ in treatment protocols, which are
based on consensus opinions about what is considered
to be the best trade-off for a specific patient population.
However, in an era where patient empowerment enters
into clinical practice, subjective criteria reflecting the
physician’s or individual patient’s risk-taking preferences

should inherently be taken into account to establish a
‘customised’ treatment. Therefore, individualised treatment
prescription and planning requires decision-making
based on TCP and NTCP scores rather than on dosimetric
criteria alone.
Amols et al. proposed an a posteriori decision-making

approach to rank existing treatment plans having different
combinations of TCP and NTCP based on a single figure
of merit quantifying the physician’s preferences [1]. An-
other approach is to extract patient preferences prior to
treatment. In a recent prospective trial involving patients
with localised prostate carcinoma scheduled for three-
dimensional conformal radiotherapy (3D-CRT), patients
were offered an a priori choice between treatments with
two alternative dose levels resulting in different probabilities
for tumour control and side-effects [2,3]. From this study, it
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became clear that the majority (79%) of patients opted to
be involved in the choice of their treatment once a
decision-aid was provided, and most patients attached a
higher weight to quality-of-life related aspects than to
tumour control [4].
The availability of modern treatment techniques pro-

vides the ability to design a variety of treatment plans
with divergent trade-offs between benefit and morbidity.
The ultimate way to take this variety into account is to
predict TCP and NTCP scores for the individual patient
based on the 3D dose distribution and fractionation scheme
applied. This is challenging, since the clinical outcome
measures for these treatments are not well known. Further-
more, specific tumour characteristics determining radiation
response (e.g., intrinsic radiosensitivity and hypoxia) are
often unknown for the individual patient. Nevertheless,
various models and parameter sets to estimate TCP and
NTCP from a 3D dose distribution have been developed
and applied (e.g., [5-8]). It is generally believed that these
models are adequate to rank rival treatment plans provided
they are used over the dose range from which they have
been derived. Some of these models have been incorporated
into modern treatment planning systems, enabling a
‘radiobiological’ evaluation of treatment plans. However,
the TCP/NTCP trade-off is difficult to assess in current
treatment planning systems, even for a simple ‘dose
scalarisation’ approach where only the prescription dose of
a given treatment plan is changed for either a fixed number
of fractions or for a fixed fraction dose. The concept of
maximizing the probability of uncomplicated tumour
control, P+, as a function of dose has been proposed to find
the single optimum dose level for this approach [9,10]. The
criticism against this measure is that an a priori ‘rigid’
trade-off between TCP and NTCP is assumed without
knowing their interrelationship over the range of potential
dose prescriptions. As such, it is not suitable as a single
measure for dose prescription customisation.
The aim of the present paper is to apply the concept of

the therapeutic operating characteristic (TOC) graph to
assess the trade-off in the TCP/NTCP domain over a con-
tinuous range of prescribed dose levels for given treatment
plans. The TOC graph is presented as an interactive tool for
dose prescription customisation of a treatment plan for an
individual patient. We compare the P+ and TOC graph and
discuss their value for individualised dose prescription opti-
misation. The concept is illustrated by a clinical example of
prostate cancer where the trade-off between 5-year bio-
chemical no evidence of disease (bNED5), late gastrointes-
tinal (GI) and genitourinary (GU) morbidity is studied.

Methods
Therapeutic operating characteristic (TOC) graph
The TOC is a parametric plot of TCP vs. NTCP with the
prescribed dose as a continuous independent parameter

[11-15]. As TCP and NTCP increase with total dose,
their interrelationship presents an ascending curve in
the benefit-injury decision space. The TOC graph can be
used to estimate the optimal level of therapeutic effect
and the associated dose level, based on individual risk-
taking preferences.
So far, few quantitative measures of therapeutic window

or therapeutic power have been published. Both refer to a
quality index for radiotherapy to achieve loco-regional
tumour control and to prevent severe late side effects. We
propose to use the area under the curve (AUC) of the
TOC graph as an index of the therapeutic power of a
treatment technique or plan, independent of consensus on
the prescribed dose level. This is by analogy with the AUC
of the ROC graph used in diagnostic radiology [16].

TOC graph for a patient population: modelling results
from clinical studies
The TOC graph was first applied to clinical outcome
data from a systematic literature review on the effects of
radiation dose on tumour control and morbidity in the
treatment of prostate cancer [3]. The trade-off between
TCP (i.e., bNED5), NTCPGI and NTCPGU (late GI and
GU morbidity Grade ≥2 RTOG) was assessed for
three-dimensional conformal radiotherapy (3D-CRT)
techniques of combined data from dose escalation
studies. The models and parameters used to describe
the dose-effect relationship for the patient population
studied are summarised in Additional file 1.

TOC graph for an individual patient: technique
assessment and dose prescription customisation
TCP and NTCP models derived from the literature were
applied to a 3D dose distribution of a given initial
treatment plan to construct TOC graphs by a posteriori
variation of the total prescription dose. This was either
accomplished by variation of the number of fractions
(at constant dose-per-fraction assuming no tumour cell
repopulation correction for overall treatment time) or
by variation of the fraction dose (while keeping the
number of fractions constant). TOC graphs were generated
after treatment planning to allow for TCP/NTCP balancing
and selection of the preferred prescription for therapy
delivery. Taking the individual’s risk-taking preferences
into account, a treatment plan with a customised dose
prescription can be selected as a point on the TOC
graph. We illustrate the concept of dose-level scaling
for a typical prostate cancer patient using different
treatment delivery and plan optimisation techniques in
a step-wise approach. Firstly, TCP/NTCP evaluation
was done for a forward planned 3D-CRT dose distribution
that had initially been designed for standard fractionation.
Secondly, a TOC graph was generated for an intensity-
modulated radiotherapy (IMRT) plan obtained by inverse

Hoffmann et al. Radiation Oncology 2013, 8:55 Page 2 of 9
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planning using dose and dose-volume (i.e., physical) objec-
tives with equivalent initial prescribed dose (IMRTphys), as
it was expected that the NTCP of the IMRTphys plan was
lower under tumour iso-effective conditions than for the
3D-CRT plan. Then a third plan (IMRTbiol) was obtained
from the IMRTphys plan by physico-biological optimisation,
improving the TCP under isotoxic conditions. The hypo-
thetical benefit of scaling the IMRTbiol was also assessed.
TOC graphs and AUCs of the three plans were compared.

Organ segmentation and standard treatment plans
Both the 3D-CRT and IMRTphys plans had the same
dose prescription recipe: 78 Gy in 39 fractions satisfying
the 95% and 107% under- and overdosage criteria
according to ICRU 50 criteria. The planning target volume
(PTV) encompassed the prostate gland and base of the
seminal vesicles plus a 5 mm isotropic margin. The rectum
and bladder were delineated as organs at risk (OARs).
The 3D-CRT plan comprised a wedged 10 MV co-planar
4-beam arrangement. The IMRTphys plan encompassed a
10 MV co-planar 5-beam geometry and was generated for
a maximum of 60 step-and-shoot segments by inverse
treatment planning (Pinnacle3 version 7.6c; Philips
Radiation Oncology Systems, Fitchburg, USA) with direct
machine parameter optimisation (DMPO; RaySearch
Laboratories AB, Stockholm, Sweden).

Physico-biological treatment plan optimisation
For isotoxic optimisation, values for NTCPGI and
NTCPGU were calculated from the IMRTphys plan, and
constituted upper limits for the IMRTbiol plan at fixed
fraction number (N = 39). The physical objectives from
the IMRTphys plan were converted into constraints,
resulting in the following physico-biological optimisation
problem:

maximise TCP
�
D

� �

subject to NTCPGI
�
D

� �
≤ntcpGI

NTCPGU
�
D

� �
≤ntcpGU

DVHi D;V j
� �

≤dvhi;j

where D is the dose distribution to be optimised, and
ntcpGI, ntcpGU, dvhi,j are constraint values for organ i and
dose-volume constraint j as obtained from the IMRTphys

plan after it had been generated by inverse planning. Non-
clinical research software (ORBIT Workstation, version 1.5;
RaySearch Laboratories AB, Stockholm, Sweden) was used
to solve this problem with DMPO [17]. The dose-response
models used are summarised in Additional file 2.
For TOC analysis, treatment plans were retrieved from

Pinnacle3 and ORBIT Workstation into an in-house
developed software tool (MATLAB version 7.6.0;
The MathWorks Inc., Natick, USA). For the tumour a

conservative (α/β)T = 2 Gy adopted from [18] was
applied, while for both OAR endpoints generally
accepted values of (α/β)OAR = 3 Gy and 6 Gy were
adopted for Grade ≥2 late GI [19] and late GU toxicity
[20], respectively. These (α/β) ratios were used to account
for voxel-based fractionation correction prior to calculating
TCP and NTCP scores.

Results
TOC graph for patient population
Figure 1 illustrates the population-averaged dose-response
graphs for TCP and NTCP as a function of the prescribed
dose level in the 2 Gy equivalent dose (EQD2) range
of 60–80 Gy, obtained from a systematic literature
review [3].
In Figure 2A, two TOC graphs depict the trade-offs

between the TCP, NTCPGI, and NTCPGU of Figure 1
when plotted against each other. Figure 2B illustrates
the TOC graph zoomed in on the EQD2 range of 60–80
Gy for GI morbidity. In this graph, the dose level for
which the increase in TCP and NTCP with dose is equal,
and hence P+ = TCP – NTCP achieves its maximum
value, is 72 Gy with associated TCP = 75% and NTCP =
12%. Below this level, the gain in TCP per unit dose is
larger than the increase in NTCP, whereas the converse
is true beyond this level.
In Figure 3, the interdependence between TCP, NTCPGI

and NTCPGU as a function of the prescribed dose is shown
in a 3D TOC graph together with its 2D projections on the
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Figure 1 Dose response graphs obtained from systematic
literature review. TCP (green), NTCPGI (blue) and NTCPGU (red) as a
function of the prescribed total dose in 2 Gy fractions, obtained
from a systematic literature review over the dose range of 60–80 Gy
for 3D-CRT [3]. Dashed curves represent the relationship over
extrapolated dose ranges.
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TCP/NTCPGI and TCP/NTCPGU space that is shown in
Figure 2A.

TOC graphs for individual patient
In Figures 4A and 4B, TOC graphs are shown for the
initial (i.e., 39 × 2 Gy) 3D-CRT treatment plan (TCP = 83%,
NTCP = 25%) as a function of the scaled dose per fraction
and the number of fractions, respectively. Dose statistics
for renormalised plans are given in Table 1. It is evident
that both curves coincide at the nominal dose prescription

of 2 Gy per fraction or N = 39 fractions. Their relative pos-
ition in the TCP/NTCP space is insensitive to the model
parameters (TD50, γ37, m, a), and only depends on the ratio
of (α/β)T to (α/β)OAR. Since (α/β)T < (α/β)OAR, escalating
the total dose beyond the original 78 Gy level by adding
fractions will increase the TCP/NTCP ratio less than by
increasing the fraction dose. This becomes apparent from
Table 1 when comparing the TCP and NTCP scores for
the plans with a 5% nominally higher prescription dose of
82 Gy, obtained either from scaling the fraction size to 2.1

Figure 2 TOC graphs reconstructed from systematic literature review. TOC graphs showing (A) the trade-offs between TCP and either
NTCPGI (blue) or NTCPGU (red) over the dose range of 60–80 Gy in 2 Gy fractions (solid curve) and the extrapolated dose ranges (dashed curve).
In (B) the dashed line represents the tangent where TCP and NTCPGI equally increase with dose and defines the optimum of P+ = TCP - NTCP (○).
Dose levels in 2 Gy fractions are indicated (●) along the curve.
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Figure 3 3D TOC graph reconstructed from systematic literature review. Multidimensional TOC graph (black) for TCP, NTCPGI, and NTCPGU
as a function of the prescribed dose in 2 Gy fractions. Projection of TOC graphs for TCP vs. NTCPGU (red) and TCP vs. NTCPGI (blue) are shown.
Thin curves represent the relationship over extrapolated dose ranges; the 78 Gy plan is indicated (●).
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Gy (with 39 fractions) or from increasing the number of
fractions to 41 (with 2 Gy per fraction). The opposite
holds in case of dose de-escalation below 78 Gy and for
(α/β)T > (α/β)OAR. When plotted in the same graph, both
TOC curves would coincide only if (α/β)T = (α/β)OAR.
In Figure 5, TOC graphs for the 3D-CRT, IMRTphys, and

IMRTbiol plans for the same patient anatomy are shown.
Dose statistics for the initial plans are given in Table 2. By
comparing the TOC graphs for the 3D-CRT and the
IMRT plans, it is obvious that the IMRTphys plan has a
more conformal dose distribution than the 3D-CRT plan,
reducing NTCP (from 25% to 13%) at constant TCP = 83%.
Comparison of the TOC graphs for the IMRTphys

and the IMRTbiol plan suggests that an increase in
TCP (from 83% to 87%) can be obtained at constant
NTCP =13%. It can be seen that the three TOC graphs
do not cross and have different AUCs (3D-CRT: 0.87,
IMRTphys: 0.91, IMRTbiol: 0.93). The IMRTbiol plan
outperforms the IMRTphys plan over the whole range of
prescribed dose levels and fractionation schemes, whereas
the latter outperforms the 3D-CRT plan. By comparing the
TOC graphs, its use for prescription dose customisation
becomes apparent; when rescaling a given treatment plan
does not fulfill the TCP/NTCP trade-off requirements, only
re-optimization (with more direct steering of the TCP/
NTCP criteria) will improve the quality of the plan.

Figure 4 TOC graphs for fraction size and fraction number variation. TOC graphs for prostate 3D-CRT plan showing trade-off between TCP
and NTCPGI as a function of (A) the dose-per-fraction scale factor (at constant fraction number) and (B) the number of fractions N (at constant
fraction dose). The initial plan (39 × 2 Gy) is marked (○) at the 100% dose level and at N = 39, respectively.

Table 1 Dose and response statistics for renormalised 3D-CRT plans

Dose-per-fraction (N = 39) Number of fractions (2 Gy/fraction)

95% 100% 105% N = 37 N = 39 N = 41

prostate

Dmin 73.2 77.1 80.9 73.1 77.1 81.1

Dmean 74.3 78.2 82.1 74.2 78.2 82.2

Dmax 75.1 79.1 83.1 75.0 79.1 83.2

TCP 76% 83% 89% 78% 83% 87%

rectum

Dmean 45.3 47.7 50.1 45.3 47.7 50.1

Dmax 74.9 78.9 82.8 74.9 78.9 82.9

NTCPGI 13% 25% 44% 16% 25% 38%

bladder

Dmean 31.6 33.3 34.9 31.6 33.3 35.0

Dmax 74.0 77.9 81.8 73.9 77.9 81.9

NTCPGU 13% 15% 16% 13% 15% 19%

Abbreviations: N, number of fractions; Dmin, minimum dose; Dmean, mean dose; Dmax, maximum dose, TCP, tumour control probability, NTCPGI, probability of late
gastrointestinal morbidity; NTCPGU, probability of late genitourinary morbidity.
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Figure 5 clearly shows that both the TOC’s shape and
its AUC help to estimate the therapeutic power of a
treatment plan over a continuous range of TCP and
NTCP scores. Finally, the TOC graph of the best
performing (IMRTbiol) plan can be presented to the

physician and/or patient to assess the trade-off between
treatment benefit and morbidity and to choose from the
TOC graph the dose-level that best fits their preferences.

Discussion
In an era of individualised cancer therapy, radiotherapy
should move towards customised dose prescription in
order to maximise individual patient’s outcome and
quality of life. The currently applied ‘rigid’ treatment
protocols neither take into account the anatomical diver-
sity of patients within the risk group nor their individual
risk-taking preferences. The standard strategy will lead
to relative underdosage in individuals who are willing to
tolerate a higher radiation dose aiming for tumour
control, whilst relatively overdosing those not willing to
accept the possible adverse effects resulting from the
predefined radiation dose. Hence, there is a need to
move toward customised treatment planning where
individualisation is not restricted to adapting the spatial
dose distribution to the patient’s anatomy, but also
involves balancing of treatment benefit and morbidity in
terms of TCP and NTCP.
As an overture towards individualised TCP and NTCP

risk balancing, we conducted a prospective decision-
making trial in patients with localised prostate carcinoma
scheduled for 3D-CRT, who were offered an a priori
restricted choice between treatments with two alternative
pre-selected dose levels [2]. To take this one step further,
a tool to depict a continuum of clinically relevant dose
levels and their corresponding TCP and NTCP indices
would be helpful to assist selecting an optimum dose level
after an initial treatment plan has been generated for the
individual patient.
In previous work by Lind et al., the concept of maximiz-

ing the probability of uncomplicated tumour control, P+, as
a function of dose has been proposed to find the optimum
dose level [10]. It should be noted that the TOC graph pro-
vides unbiased information in comparison to the P+ graph
when plotted as a function of dose. This becomes clear
when the general expression for P+ is considered:

Pþ ¼ TCP � NTCP þ δ NTCP 1� TCPð Þf gð Þ; ð1Þ

where δ is the estimated fraction of patients for which
tumour and normal tissue response are statistically
independent (0 ≤ δ ≤ 1) [9]. Expression (1) assumes that
an implicit a priori trade-off between TCP and NTCP is
made. For example, with δ = 0 equation (1) reduces to
P+ = TCP – NTCP, assuming that the risk of recurrence is
equally important as the risk of suffering from (severe)
side effects. Therefore, P+ has often been criticised as a
measure that does not reflect the clinical reality that
reductions in TCP are rated differently from the risk of
complications by clinicians and patients. By plotting TCP
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Figure 5 TOC graphs for 3D-CRT, IMRTphys and IMRTbiol plans.
TOC graphs for TCP vs. NTCPGI obtained by dose level scaling of a
prostate 3D-CRT plan (solid curve), the IMRTphys plan (dashed curve),
and the IMRTbiol plan (dotted curve) at constant fraction number,
N = 39. Symbols (● , ○, □) represent the TCP and NTCP scores of
the initial plans.

Table 2 Dose and response statistics for initial treatment
plans (39 fractions)

3D-CRT IMRTphys IMRTbiol

prostate

Dmin 77.1 75.4 74.1

Dmean 78.2 78.8 81.8

Dmax 79.1 81.8 97.0

TCP 83% 83% 87%

rectum

Dmean 47.7 36.8 36.3

Dmax 78.9 80.1 84.7

NTCPGI 25% 13% 13%

bladder

Dmean 33.3 25.1 17.7

Dmax 77.9 82.4 93.8

NTCPGU 15% 14% 14%

Abbreviations: 3D-CRT, three-dimensional conformal radiation therapy; IMRTphys,
physically optimised IMRT plan; IMRTbiol, physico-biologically optimised IMRT
plan; Dmin, minimum dose; Dmean, mean dose; Dmax, maximum dose, TCP,
tumour control probability, NTCPGI, probability of late gastrointestinal
morbidity; NTCPGU, probability of late genitourinary morbidity.
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vs. NTCP with the prescribed dose as an independent
parameter, no assumption with regard to a priori risk-
taking preferences between TCP and NTCP is made.
Instead, their interrelationship is assessed over the whole
range of potential dose levels to facilitate the selection of
an optimum that satisfies the risk-taking preferences of
the individual clinician or patient. Using the full TOC
graph instead of selecting the single dose level where P+ is
maximal pre-empts the criticism against a priori balancing
the TCP/NTCP trade-off.
In the 1970’s Moore and Mendelsohn proposed the

TOC curve as a method to optimise treatment levels in
cancer therapy [11] and later on, it was used in studies
on radiation therapy for head and neck tumours [12-14].
However, this concept has only been employed to deter-
mine an optimum dose level for a patient population in
a ‘one size fits all’ approach. We emphasize that with the
current possibilities and knowledge of inverse treatment
planning techniques (e.g., by explicitly incorporating
dose-response relationships into the optimization as
objective and/or constraint functions) the application
options for individualized dose prescription strategies may
be more important and clinically relevant than before.
The TOC graph used in the current work provides a

means to visualise and explore the trade-off between
TCP and NTCP in an intuitive manner to be used as a
tool for a posteriori dose prescription customisation of
an initial treatment plan for an individual patient. Plans
with different TCP/NTCP trade-offs can be generated
from the same underlying relative dose distribution by
scaling of the prescribed dose or fractionation scheme.
Since no re-planning is required, the TOC graph can be
generated off-line. Furthermore, this approach facilitates
the interactive balance between TCP and NTCP of a
given plan after treatment planning and plan optimisation
and does not require risk-taking predilections to be articu-
lated a priori, as is the case in today’s inverse treatment
planning approaches. Additionally, by exploiting the AUC,
a quantitative definition of the therapeutic power is
provided independent of consensus on the dose level.
The clinical application of changing the prescribed

dose and fractionation after an initial treatment plan has
been generated has recently gained renewed interest as
part of individualised dose prescription strategies that
escalate the tumour dose until maximally tolerable
NTCP limits are reached in, for example, non-small cell
lung cancer radiotherapy [6,7,21,22]. Current treatment
planning systems lack the means to assess the effects of
dose or fractionation variation of a given treatment plan
in terms of TCP and NTCP indices and do not provide
insight in their interrelationship. Consequently, it is
common practice to completely re-design and re-
calculate a treatment plan once the dose description or
fractionation schedule has changed. Our re-scaling

approach together with the TOC concept brings
individualised dose prescription into clinical practice by
providing an intuitive and easy-to-apply tool to find the
preferred prescription dose for either a fixed number of
fractions (by changing the dose per fraction) of for fixed
fraction dose (by changing the number of fractions)
which yields pre-selected NTCP limit(s) for the OAR(s).

Practical use of TOC graph
To exploit our concept in the clinical workflow, first, a
TOC graph is generated from historical dose-response
data that were derived for a group of patients treated
with the same irradiation technique but with different
dose prescriptions. The individual patient and the radiation
oncologist interactively choose TCP/NTCP coordinates
from the TOC graph in a first decision-making step, which
results in an intended dose prescription. Subsequently, an
initial treatment plan is designed for the intended dose
prescription based on the individual patient’s anatomy.
Hence, the population-based TOC can be used to establish
an evidence-based ‘customised’ dose prescription for a
given treatment technique prior to designing a treatment
plan for the intended dose prescription level. Finally, a sec-
ond decision-making step is required to further customise
the dose prescription by re-normalisation and to achieve at
least the desired, but likely superior, TCP/NTCP scores.

Physico-biological treatment plan optimisation
We showed that constrained optimisation in inverse
planning based on TCP and NTCP models resulted in
an iso-toxic treatment plan with improved TCP. As the
TCP model allows for some degree of dose heterogeneity
in the PTV, a dose reduction in parts of the PTV is
exploited to reduce the NTCP, whereas in other parts
the dose is escalated. A steep dose fall-off at the border
of the PTV keeps the TCP constant, and allows for better
sparing of the OAR, which facilitates dose escalation
resulting in the same NTCP with higher TCP.

Relation of TOC graph to Pareto efficient frontier
The TOC graph should not be confused with the Pareto
efficient frontier (PEF) that has been discussed in radio-
therapy lately (e.g., [23]). The principles of TOC and PEF
are fundamentally different. Whereas the TOC graph has
been obtained from scaling a single treatment plan, a PEF
would have required the physico-biological optimisation
problem to be repeatedly solved to optimality for different
a priori set NTCP constraint values. A comparison
between the TOC and PEF is however beyond the scope
of this paper and will be addressed in another paper by
the authors.
Due to uncertainties in the radiobiological models, the

choice for a final dose level should not solely be based on
the TOC graph, but should always include the underlying
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3D dose distribution. Preferably, the TOC graph should be
presented together with the model parameters, TCP/
NTCP values, and confidence levels [13].
However, confidence intervals for all model parameters

are not available or may be unreliable for IMRT dose
distributions, as they have mainly been derived from 3D
conformal radiotherapy dose distributions. As more
clinical data comes available the TOC-based estimate of
the optimal dose level will get more trustworthy. We
therefore recommend to carefully introduce the TOC
into clinical practice, by gradually releasing the interval
of dose-level re-scaling towards values where the uncer-
tainties are largest. The true value of the TOC graph
and underlying TCP/NTCP models should be assessed
in clinical trials comparing the predicted and actual
TCP and NTCP values.

Conclusions
For an individual patient, the TOC graph can be
exploited as an a posteriori decision aid in risk-adapted
dose prescription customisation of a given treatment
plan as a function of the prescribed dose level or the
number of fractions. It provides physicians and patients
with a decision aid for individual risk-taking preferences
in terms of TCP/NTCP trade-off. The AUC is a dose
level independent measure of the therapeutic power of a
treatment plan.

Additional files

Additional file 1: TCP and NTCP models used in systematic
literature review.

Additional file 2: TCP and NTCP models used by ORBIT
Workstation.
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TCP and NTCPmodels used in systematic literature review

In [3], a Probit model has been used to describe the tumour control probability (TCP) as a function of

the prescribed dose level:

TCP(D) = Φ(D − TD50
m ⋅ TD50

) ,

where

Φ(z) = 1√
2π ∫

z

−∞
exp(−t2/2)dt.

is the standard normal cumulative distribution function, D is the prescribed equivalent total dose in 2 Gy
fractions, TD50 is the e�ective dose at the 50% response level andm determines the slope of the sigmoidal
function Φ.�e model parameters used are TD50 = 56.18 Gy and m = 0.39 for the overall bNED.�ese
values were derived from a �t over the dose domain of 60–80 Gy in 2 Gy fractions.

�e normal tissue complication probability (NTCP) model used in [3] is a logistic regression model:

NTCP(D) = 1

1 + exp(−a − bD) ,

where D is the prescribed equivalent total dose in 2 Gy fractions, and a and b are �tting parameters.
Parameter values a = −11.08 and b = 0.06 gave the best �t over the relevant dose domain for gastroin-
testinal toxicity, while for genitourinary toxicity parameter values a = −6.47 and b = 0.03 resulted from
the �tting procedure.

TCP and NTCPmodels used by ORBITWorkstation

�e linear-quadratic Poisson model was used to calculate the TCP for a heterogeneous dose distribution

D = {D i} [7]:

TCP(D) =∏
i
(exp(− exp(e ⋅ γ37 − (e ⋅ γ37 − ln(ln 2))

EQD2(D i)
TD50

)
v i

,

where TD50 is the dose at the 50% response level, γ37 is the normalized dose-response gradient at the
37% response level, and D i and v i are the dose bins and relative volumes of the dose-volume histogram
(DVH), respectively. �e model parameters TD50 = 56.18 Gy and γ37 = 1.3 and α/β = 2 Gy perfectly
match the dose-response of the above Probit TCP model over the dose domain of 60–80 Gy in 2 Gy

fractions.

For NTCP calculation, the Lyman-Kutcher-Burmanmodel was used with 2 Gy fractionation correc-

tion based on the linear-quadratic cell survival model [24, 25]:

NTCP(D) = Φ(
gEUD

2,a(D) − TD50
m ⋅ TD50

) ,

where Φ(z) is the standard normal cumulative distribution function, and

gEUD
2,a(D) = [∑

i
v iEQD2(D i)a]

1/a

is the generalized equivalent uniform dose for a 2 Gy fractionation-corrected DVH with dose bins D i

and relative volume v i . Model parameters for Grade ≥ 2 late rectal toxicity (TD50 = 76.9 Gy, m = 0.13,
a = 12.5) and α/β = 3 Gy were adopted from [19]. Model parameters for Grade ≥ 2 late bladder toxicity
(TD50 = 62 Gy, m = 0.11, a = 7.7) and α/β = 6 Gy were adopted from [20].
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Summary

An in silico trial of 38
patients with advanced non-
small-cell lung cancer
treated by intensity-
modulated radiation therapy
investigated the therapeutic
gain of individualized dose
prescription with dose esca-
lation based on normal tissue
dose constraints for various
hypofractionation schemes.
This trial demonstrated that
individualized dose escala-
tion based on scaling of
existing treatment plans with
standard fractionation
enables a therapeutic gain in
79% of the cases.

Purpose: Local tumor control and outcome remain poor in patients with advanced non-small-cell
lung cancer (NSCLC) treated by external beam radiotherapy. We investigated the therapeutic gain
of individualized dose prescription with dose escalation based on normal tissue dose constraints for
various hypofractionation schemes delivered with intensity-modulated radiation therapy.
Methods and Materials: For 38 Stage III NSCLC patients, the dose level of an existing curative
treatment plan with standard fractionation (66 Gy) was rescaled based on dose constraints for the
lung, spinal cord, esophagus, brachial plexus, and heart. The effect on tumor total dose (TTD) and
biologic tumor effective dose in 2-Gy fractions (TED) corrected for overall treatment time (OTT)
was compared for isotoxic and maximally tolerable schemes given in 15, 20, and 33 fractions.
Rescaling was accomplished by altering the dose per fraction and/or the number of fractions while
keeping the relative dose distribution of the original treatment plan.
Results: For 30 of the 38 patients, dose escalation by individualized hypofractionation yielded
therapeutic gain. For the maximally tolerable dose scheme in 33 fractions (MTD33), individualized
dose escalation resulted in a 2.5e21% gain in TTD. In the isotoxic schemes, the number of frac-
tions could be reduced with a marginal increase in TED. For the maximally tolerable dose
schemes, the TED could be escalated up to 36.6%, and for all patients beyond the level of the iso-
toxic and the MTD33 schemes (range, 3.3e36.6%). Reduction of the OTT contributed to the ther-
apeutic gain of the shortened schemes. For the maximally tolerable schemes, the maximum
esophageal dose was the dominant dose-limiting constraint in most patients.
Conclusions: This modeling study showed that individualized dose prescription for hypofractiona-
tion in NSCLC radiotherapy, based on scaling of existing treatment plans up to normal tissue dose
constraints, enables dose escalation with therapeutic gain in 79% of the cases.� 2012 Elsevier Inc.
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Radiobiological modeling
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Introduction

In patients with advanced non-small-cell lung cancer (NSCLC)
treated by external beam radiation therapy (EBRT) alone, local
tumor control and outcome remain poor. It is known that failure at
the primary tumor site adversely influences progression-free,
metastases-free, and overall survival. Better local control rates can
be achieved through treatment modification by the addition of
concurrent chemotherapy, intensification of the radiotherapy
schedule or dose escalation. Concurrent chemotherapy has been
shown to improve treatment outcome but also to increase acute
(esophageal) side effects (1e3). Several Phase I/II trials explored
altered EBRT fractionation schedules that increased the biologic
effective dose to the primary tumor and reduced the local relapse
rate (4e6). Intensification of the irradiation schedule by continuous,
hyperfractionated, accelerated radiotherapy showed an absolute
improvement in 2-year survival of 9% (5), but it is not available in
many centers because of its heavy logistic load. In patients treated
with concurrent chemoradiation, radiotherapy dose escalation
facilitated by advancing technology resulted in an improved 3-year
overall survival from 9% to 31% with no significant difference in
side effects (4). Recently, van Baardwijk et al. published an indi-
vidualized dose prescription study in a group of 166 Stage III
NSCLC patients (6). Using a three-dimensional conformal radio-
therapy (3D-CRT) technique with an accelerated scheme of 1.8-Gy
fractions twice daily, patients were treated to the maximally toler-
able dose (MTD) by increasing the number of fractions until normal
tissue constraints for the healthy lung tissue and spinal cord were
met. Delivering a median tumor total dose (TTD) of 64.8� 11.4 Gy
in a median overall treatment time (OTT) of 25 � 5.8 days, the 1-
and 2-year overall survival was favorable with acceptable toxicity.

It is evident that dose escalation in NSCLC patients is hampered by
radiation-sensitivenormal tissues, suchas the surroundinghealthy lung,
spinal cord, esophagus, heart, and brachial plexus (1, 3, 7e10). Both
local control andcomplication rateshave improvedover thepast decade
because of technological progress in conformal dose delivery. Further
benefit from organ-sparing technologies (e.g., intensity-modulated
radiation therapy [IMRT]) can be expected when combined with
innovative (e.g., individualized), short fractionation schemes.

It has been estimated that the best local control rate could be ach-
ieved by delivering the total dose in an OTTof less than 5 weeks (11,
12). Hypofractionation strategies delivering a high TTD within
a short OTTmeet these demands. However, clinical trials and outcome
data of hypofractionation schedules for advanced NSCLC are to be
awaited.Most trials use a population-based dose prescription protocol,
in which a rigid predefined dose prescription will lead to underdosage
in some individuals and to adverse effects from overdosage in others.

Therefore, the aim of the present study was to pursue the
potential implications of changing a widely used population-based
treatment schedule (33 � 2 Gy) into a more intensified, individ-
ualized hypofractionation schedule with acceptable toxicity. The
effect on tumor total dose was studied for both isotoxic and
maximally tolerable hypofractionation schemes.

Methods and Materials

Patient characteristics

Thirty-eight consecutive patients with Stage IIIA/B NSCLC treated
with curative intent at our institution (by sequential chemotherapy

and radiotherapy, concurrent schedules, or radiation therapy alone)
were retrospectively included in this study (Table 1).

Organ segmentation and treatment planning
technique

For all 38 patients, original treatment plans with standard frac-
tionation were retrieved from the treatment planning system (TPS)
archive (Pinnacle3, version 8.0h; Philips Radiation Oncology
Systems, Fitchburg, WI). The gross tumor volume (GTVT) had
been defined on a contrast-enhanced (18F-fluorodeoxyglucose
positron emission tomography) computed tomography scan, and
the planning target volume was created following the institute’s
guidelines. Contouring of the lungs and heart had been done
automatically by the TPS and was manually corrected if necessary.
The esophagus had been delineated from the lower border of the
cricoid cartilage to the gastroesophageal junction. The spinal cord
had been considered to be at the inner margin of the entire bony
thoracic spinal canal. All plans were generated using coplanar 10-
MV photon beams and multisegment fields for step-and-shoot
IMRT delivery. All plans had been normalized to a mean dose of

Table 1 Patient characteristics (n Z 38)

Age (years; median [range]) 66.1 [47.5e78.6]
Tumor location (no. of patients)
Left upper lobe 8
Left lower lobe 7
Left hilus 2
Left lung 1
Right upper lobe 10
Right middle lobe 2
Right lower lobe 5
Right hilus 2
Unknown* 1

Stage (no. of patients)
IIIA 23
IIIB 15

T stage (no. of patients)
T0* 1
T1 4
T2 14
T3 7
T4 12

N stage (no. of patients)
N0 2
N1 2
N2 29
N3 5

Organ volume (cm3; median [range])
GTVT 125 [5e802]
Lungs 4,193 [2,663e6,587]
LungseGTVT 4,165 [2,655e6,571]

Treatment (no. of patients)
Concurrent RT and CHT 22
Sequential RT and CHT 13
RT alone 3

Abbreviations: GTVT Z gross primary tumor volume; RT Z radi-

ation therapy; CHT Z chemotherapy.

* Primary tumor not detected by computed tomography, positron

emission tomography, or pathology.
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66 Gy in 33 fractions satisfying the International Commission on
Radiation Units and Measurements 50/62 guidelines.

Customized dose prescription based on normal
tissue dose constraints

For each original treatment plan, the mean normalized total dose
(NTDmean) was calculated for the total volume of the paired lungs
excluding the GTVT (indicated as lungseGTVT) using an a/b
ratio of 4 Gy (8). The NTDmean is the mean of the doses delivered
to lungseGTVT, adjusted for the dose per fraction (13). The
NTDmean was calculated using

NTDmeanZD,
a=bþD=N,

�
1þ

�sD

D

�2�

a=bþ 2
; ð1Þ

where D and sD are the mean and the standard deviation of the
physical total dose distribution in lungseGTVT, respectively (see
Appendix 1, available online at www.redjournal.org). Because the
NTDmean is strongly correlated with the incidence of Grade �2
radiation-induced pneumonitis (7), an NTDmean �19 Gy4 was
used as a constraint. All patients had a pretreatment forced expi-
ratory volume at 1 s of more than 1.5 L and a diffusion capacity of
lungs for carbon monoxide higher than 40%.

For organs at risk with a predominant “serial” structure, the
maximum normalized total dose, NTDmax, was calculated as the
maximum dose in 2-Gy fractions using the EQD2 formula:

NTDmaxZDmax,
a=bþDmax=N

a=bþ 2
; ð2Þ

where Dmax is the maximum total dose in the organ at risk, N is the
number of fractions, and a/b is the fractionation sensitivity of the
organ.

The monitor units of all beams of the original treatment plans
were simultaneously rescaled using an individualized prescribed
MTD based on maximum normal tissue dose constraints for the
lung (NTDmean �19 Gy4 for low-medium grade pneumonitis) (7);
esophagus (NTDmax � 80 Gy3 and NTDmean �34 Gy3 for late
esophagitis/esophageal stricture; a/b Z 3 Gy) (3); spinal cord
(NTDmax �50 Gy2 for myelopathy; a/b Z 2 Gy) (10); brachial
plexus (NTDmax �66 Gy2 for plexopathy; a/bZ 2 Gy) (10); heart
(NTDmean �26 Gy3 for pericarditis; a/b Z 3 Gy) (9). As
a conservative estimate of the MTD, we used an a/b Z 3 Gy for
late esophageal toxicity instead of a/b Z 8e10 Gy for acute
esophageal toxicity. Acute esophagitis is burdensome during and
shortly after completion of (chemo)radiation, but it does not
influence daily life in the long term.

Rescaling was accomplished by altering the fraction size and/or
the number of fractions while keeping the same beam arrangement
and the relative dose distribution of the original treatment plan. To
investigate the value of rescaling on TTD and the effect of the
OTT, five schedules were assessed for each patient based on the
original treatment plan (TPorig) using these two approaches.

1. The isotoxic dose approach aimed at obtaining isotoxic
schedules (ITD15 and ITD20) by rescaling the fraction size of
TPorig at a fixed fraction number (N Z 15 and N Z 20) while
applying the normal tissue NTD levels calculated from TPorig
as constraints.

2. The maximally tolerable dose approach aimed at dose-
escalation of ITD15, ITD20, and TPorig to obtain MTD15,
MTD20, and MTD33, respectively, by further scaling the

fraction size depending on the previously mentioned maximal
normal tissue dose constraints.

In both approaches, it was the first-met dose limit that stopped
the escalation.

The tumor effective dose (TED) was calculated as the
normalized tumor total dose, corrected for OTT:

TEDZN,d,
a=bþ d

a=bþ 2
�Dprolif ,max½0; ðt� tkÞ�; ð3Þ

where N is the number of fractions, d the dose per fraction, a/b the
fractionation sensitivity, Dprolif the dose recovered daily in 2-Gy
fractions, t the OTT, and tk is the onset point for tumor cell repo-
pulation in days since start of the treatment. Dprolif was assumed to
be 0.45 Gy (14), whereas tk was chosen at 21 days (11). The
hypothesized effect of additional chemotherapy on accelerated
tumor cell repopulation was not taken into account as conclusive
data are lacking. No temporal corrections for OTT or incomplete
repair were made for the organs at risk. In this study, the maximum
TTD (TTDmax) was restricted to 82.5 Gy in 33 fractions (i.e.,
a maximum increase of 25% in total dose relative to the standard
scheme), which is in line with the dose levels applied in other
(radiation only) dose escalation studies using 3D-CRT (4, 15).

Sensitivity analysis

Because the benefit of reducing OTT is mainly driven byDprolif and
tk, we investigated how robust the results were depending on these
parameters. We variedDprolif over the interval 0.45e0.60 Gy/day at
constant tkZ 21 days, and varied tk over the interval 14e28 days at
constant Dprolif Z 0.45 Gy/day. We investigated worst-case
scenarios for Dprolif and tk to give no improvement in TED with
respect to standard fractionation. The a/b ratios of the dominant
dose limiting toxicities were perturbed to assess the effect on TED.

Statistical analysis

Results were analyzed for each patient in the cohort individually.
The percentage of patients that would benefit from the individu-
alized dose escalation schemes was calculated. Median dose
values for TTD, TED, NTDmean, and NTDmax were calculated for
the cohort. The Wilcoxon signed-rank test was used to compare
the cohort results.

Results

Benefit for individual patients

For 12 of 38 patients, either themaximally tolerable dose to the heart
(nZ 4) or the brachial plexus (nZ 8) had already been reached in
the original treatment plan. In the former 4 patients, a 5% thera-
peutic gain in TED could only be obtained under isotoxic conditions
at 15 or 20 fractions, whereas in the latter 8 patients, no gain could be
obtained at all. For the remaining 26 patients, dose escalation always
yielded therapeutic gain (Table 2). For the isotoxic schemes ITD15

and ITD20, the number of fractions could be safely reduced for these
patients while a marginal increase of 0.2e8.3% and of 2.9e8.3% in
TED was obtained, respectively. For the maximally tolerable
schemes, dose escalationwas feasible for all 26 patients, resulting in
a gain of 2.5e21% in TTD and in tumor fraction dose for theMTD33
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schedule, and of 3.3e36.6% and 6.2e34.8% in TED forMTD15 and
MTD20, respectively. Hence, 30/38 cases (79%) had benefitted from
either isotoxic or maximally tolerable dose escalation (68.5%) or
from isotoxic dose escalation alone (10.5%). In 8/38 cases (21%), no
dose escalation was feasible at all.

Comparison of schemes for patient cohort

Table 2 shows the median TTD, tumor fraction dose, and TED for
all six schemes. Both isotoxic and maximally tolerable schemes
showed a higher TED at 15 and 20 fractions than the standard
scheme at 33 fractions. There was a significant difference between
the TED of the ITD15 and ITD20 schemes (p < 0.001), and of the
MTD15 and MTD20 schemes (p = 0.0001). The TED of the MTD33

schedule was significantly lower than for the MTD15 or MTD20

schemes (p < 0.001). The results suggest that the TED can be
safely escalated by 5.8% and 23.7% relative to the standard
scheme for the isotoxic and maximally tolerable schemes given in
20 fractions, respectively.

Dose to tumor: Effect of repopulation

In Figure 1, TEDs for both the individually escalated isotoxic and
maximally tolerable schemes are graphed against the number of
fractions for a typical patient. The ascending phase shows the

TED to increase with time, whereas at 16 fractions (and 21 days)
the repopulation effect begins to subtract from the effective dose.
The increase in TED then becomes slower with repopulation and
reaches a maximum at 20 fractions, after which the TED falls off
because of prolongation of the OTT.

In 24 of the 30 patients (80%), the maximum TED was reached at
20 fractions for both the isotoxic and maximally tolerable schemes,
whereas in 6 patients (20%) the maximum was at 15 fractions.

Sensitivity analysis

Increasing Dprolif from 0.45 Gy/day to 0.60 Gy/day caused an
increase in TED of 6.5% for both ITD15 and ITD20 and of 7.2%
for MTD15 and MTD20. Increasing Dprolif did not change the
proportion of patients with the largest benefit from MTD15 or
MTD20, but more patients benefitted from ITD15 as opposed to
ITD20. Perturbation of tk showed that the loss in TED was more
sensitive to delayed onset than the gain in TED is for advanced
onset of tumor cell repopulation. The uncertainty in TED from tk
was estimated to be less than -6% for the 15 and 20 fraction
schedules. For most patients, we found TED to not improve for
ITD15 and ITD20 relative to the standard schedule in case tk <15
days and Dprolif z 0.25 Gy/day. Because these values seem low in
relation to literature (11, 14), we believe our estimates of thera-
peutic gain are conservative.

Table 2 Median and (range) of dose to tumor in patient cohort for different schedules

TPorig (n Z 30) ITD20 (n Z 30) ITD15 (n Z 30) MTD33 (n Z 26) MTD20 (n Z 26) MTD15 (n Z 26)

TTD (Gy) 66.0
e

56.7 (55.4e57.8) 51.5 (49.8e53.1) 74.2* (67.5e79.9) 64.2 (56.9e68.5) 58.0 (51.0e63.6)

TFD (Gy) 2.00
e

2.84 (2.77e2.89) 3.43 (3.32e3.54) 2.25* (2.05e2.42) 3.21 (2.85e3.43) 3.86 (3.40e4.24)

TED (Gy10) 55.2
e

58.4* (56.8e59.8) 57.7* (55.3e59.8) 64.9* (57.0e71.9) 68.3* (58.6e74.4) 67.0* (57.0e75.4)

Abbreviations: TPorig Z original treatment plan; ITD20 Z isotoxic dose plan in 20 fractions; ITD15 Z isotoxic dose plan in 15 fractions; MTD33 Z
maximally tolerable dose plan in 33 fractions; MTD20 Z maximally tolerable dose plan in 20 fractions; MTD15 Z maximally tolerable dose plan in 15

fractions; TTD Z tumor total dose; TFD Z tumor fraction dose; TED Z tumor effective dose in 2-Gy fractions corrected for overall treatment time.

* Significant difference from TPorig; p < 0.001.
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Varying the a/b for myelopathy over the range of 1e4 Gy, we
found the median TED to change �4% for ITD15 and ITD20. For the
MTD schemes, the median TED changed �7% when varying the a/
b for late esophageal toxicity over the range of 1e6 Gy. We estimate
that the added uncertainties in quadrature do not exceed the 10% level.

Dose to normal tissues

Table 3 shows the median NTD values of the relevant organs at
risk for all schemes. No significant differences were observed for
the median NTD values of the ITD15 and ITD20 schemes in
comparison with the standard scheme, except for the residual
healthy lungs, where a lower NTDmean is found. The median NTD
values of the three MTD schemes were significantly greater than
those of the standard scheme, except for the NTDmean of the
healthy lungs for MTD15. As expected, the median NTDmax of the
brachial plexus was low due to the distant primary tumor locali-
zation relative to the brachial plexus in the majority of patients.
For all organs at risk, the median NTD values were below the
respective tolerance dose levels. For the esophagus, the median
NTDmax values for the three MTD schemes all reached the
tolerance dose level for late esophageal toxicity.

Dominant dose-limiting organ

In Table 4, the frequency distribution of the dominant dose-
limiting constraints is shown. The maximum cord dose was the
dominant dose-limiting factor in 25 (83%) of the isotoxic plans,
but in none of the three MTD schemes. The maximum dose to the
brachial plexus was dose-limiting in 13% of the ITD plans. In
roughly 20% of the MTD plans, the mean lung dose was the
dominant constraint. The maximum esophageal dose was dose-
limiting in all three MTD schemes: in roughly 60% of cases for
MTD33 and in 70% for MTD15 and MTD20. The mean doses to the
esophagus and heart were dose-limiting in 1 patient for MTD15

and MTD20, and in 2 patients for MTD33. The TTDmax was not
reached in any of the cases.

Discussion

Individualized dose prescription

In current clinical practice, all patients within a certain risk group
scheduled for radiation therapy are treated according to “rigid”
protocols and receive a predefined identical dose level. This
strategy does not take into account the diversity in patients and
tumors within the group leading to relative underdosage in some
individuals in order to prevent the occurrence of adverse effects
caused by overdosage in the entire group. Several steps have
already been taken for individualization of beam shapes, beam
weights, nonuniform beam intensities according to the tumor
shape, and 3D patient anatomy. In an era of individualized cancer
therapy, there is a need to move toward customized radiation
treatment planning including individualized dose prescription.
Acknowledging this, Van Baardwijk et al. studied the approach of
individual dose prescription based on an accelerated scheme of
1.8-Gy fractions twice daily, and recently reported favorable
overall survival rates with limited toxicity (6, 16).

Hypofractionation has regained interest, partially because
outcome of clinical trials has shown a smaller than conventionally
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expected difference between the fractionation sensitivities of tumors
andnormal tissues, but alsobecause of the ability ofmodern treatment
delivery techniques to produce highly conformal dose distributions.
For organs with a marked volume effect such as the healthy lungs,
moderate hypofractionation using modern delivery techniques may
not substantially increase radiation pneumonitis risk even though the
tumor fractionation sensitivity is smaller than that of the critical
normal tissue (17, 18). Recently, two groups independently reported
that hypofractionation tends to decrease the damage to the volume of
the healthy lung for highly conformal dose distributions (18, 19).
Based on a conventional fractionation schedule (i.e., 60 Gy in 30
fractions), Vogelius et al. produced tumor isoeffective hypofractio-
nation plans using 3D-CRT and tomotherapy, and found the latter to
decrease the mean pneumonitis risk by 2.3% relative to the former
when using 20 fractions. Consequently, historical trials of hypo-
fractionation applying 3D-CRT techniques may overestimate the
relative toxicity when compared with modern highly conformal
treatment delivery techniques. Hence, with the increasing cost of
cancer therapy, hypofractionation is attractive from an economic,
logistic and patient convenience perspective, and may even allow for
dose escalation with little detrimental effect to the therapeutic ratio.

Radiobiological modeling has shown that increased biologi-
cally effective dose to tumors can be achieved by shortening the
radiation delivery schedule and increasing the dose per fraction.
Based on these findings, we investigated the possibility of either
isotoxic or maximally tolerable hypofractionation schedules
escalating the radiation dose up to normal tissue dose constraints.
For 26/38 patients, dose escalation was feasible in both isotoxic
and maximally tolerable hypofractionation schemes with a short-
ened or conventional overall treatment time. As expected, the
extent of dose escalation varied between individual patients
mainly based on tumor localization relative to the organs at risk.
In the modeling presented in this study, the organs-at-risk dose
recovered per day was neglected. The Dprolif of 0.45 Gy/day is
lower than 0.6 Gy/day assumed by others (14), resulting in
conservative estimates of therapeutic gain. Furthermore, the onset
of accelerated tumor cell repopulation tk was assumed to be 21
days, although there is weak evidence for this, as the onset might
start earlier. Sensitivity analysis has shown that the actual values
of Dprolif and tk are considered noncritical for the viability of our
trial.

Clinical trials on treatment-related toxicity

As opposed to broad knowledge on pulmonary and neurological
toxicity, no firm recommendations on the maximally tolerable
esophageal dose exist (Radiation Therapy Oncology Group) and no

hypofractionation trials for primary esophageal tumors have been
conducted. Therefore, two 3D-CRT based Phase I/II trials have
been approved in the UK investigating individualized dose esca-
lation based on normal tissue dose constraints in patients with Stage
II or III NSCLC. In the multicenter Phase I/II trial, Isotoxic Dose
Escalation and Acceleration in Lung Cancer ChemoRadiotherapy
(IDEAL-CRT; ISRCTN12155469), concurrent chemotherapy is
combined with a total radiation dose of 63e73 Gy given in 30
fractions over 6 weeks. Patients are allocated to one of seven total
dose levels such that each patient has the same risk of Grade �2
radiation pneumonitis (based on an estimated relative normalized
total dose [rNTDmean] to the lung) and keeping within tolerance
limits for the spinal cord or esophagus. The second trial, IsoToxic
Accelerated RadioTherapy (I-START; CRUK/10/005), has recently
been approved for patients with locally advanced NSCLC to be
treated with radiation only. According to this protocol, the dose to
an individual patient ranges from 58e65 Gy in 20 fractions over 4
weeks, taking into account established dose constraints to the
organs at risk. The primary end point of both trials is to establish the
maximally tolerable dose to the esophagus during and shortly after
treatment. In these 3D-CRT based trials, the maximally achievable
lung dosewas estimated using the rNTDmean as a surrogate measure
of healthy lung volume irradiated (13, 20), whereas in our study an
exact calculation based on NTDmean of Equation 1 was exploited in
combination with highly conformal IMRT. Besides, wewere able to
calculate both isotoxic and maximally tolerable schedules with
different numbers of fractions also incorporating corrections for
overall treatment time. Noteworthy, our methodology allows the
calculation of the individual prescription dose directly from the
preset NTDmean and NTDmax dose levels.

In the United States, the University of Wisconsin is conducting
a helical tomotherapy-based hypofractionation study
(NCT00214123) with pulmonary toxicity (pneumonitis Grade 3
lasting for more than 2 weeks) as primary end point. The purpose
of this trial is to pilot reducing the duration of radiation treatment
for lung cancer patients from 6 to 5 weeks using tomotherapy.
Specific patient doses are based on tumor volume being treated
and are prescribed using rNTDmean according to five dose bins,
treating with an increasing dose per fraction at a fixed number of
fractions. Results of an interim analysis have been reported (17,
18), and further data of these trials are to be awaited.

Conclusions

Our modeling study showed that individualized dose prescription
for hypofractionation in Stage III NSCLC radiotherapy, based on

Table 4 Frequency distribution of dominant normal tissue dose constraints

ITD20 (n Z 30) ITD15 (n Z 30) MTD33 (n Z 26) MTD20 (n Z 26) MTD15 (n Z 26)

NTDmax (cord) 25 25 0 0 0
NTDmean (lungseGTVT) 0 0 6 5 5
NTDmax (plexus) 4 4 1 1 1
NTDmean (esophagus) 1 1 2 1 1
NTDmax (esophagus) 0 0 15 18 18
NTDmean (heart) 0 0 2 1 1

Abbreviations: ITD20 Z isotoxic dose plan in 20 fractions; ITD15 Z isotoxic dose plan in 15 fractions; MTD33 Z maximally tolerable dose plan in 33

fractions; MTD20 Z maximally tolerable dose plan in 20 fractions; MTD15 Z maximally tolerable dose plan in 15 fractions; NTDmean Z mean

normalized total dose; NTDmax Z maximum normalized total dose.
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rescaling of existing treatment plans with standard fractionation
up to normal tissue dose constraints, enables dose escalation with
a therapeutic gain in 79% of the cases. For dose escalation beyond
the presented levels, esophagus-sparing dose delivery techniques
are mandatory.
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Appendix 1: Analytical formula for mean normalized total dose

Conventionally, the mean normalized total dose, NTDmean , is calculated from conversion of the di�er-
ential dose-volume histogram (DVH) using:

NTDmean =∑
i
v iNTDi , (III.1)

where v i is the fractional volume of the organ irradiated to a normalized total dose NTDi (7), de�ned as

the biologically equivalent dose in 2 Gy fractions of the corresponding physical total dose D i given in n
fractions (13):

NTDi = D i
α/β + D i/n

α/β + 2 . (III.2)

Substitution of (III.2) into (III.1) and rearrangement of sum terms yields:

NTDmean =
α/β

α/β + 2∑i
v iD i +

1/n
α/β + 2∑i

v iD i
2
. (III.3)

By noting that∑i v iD i and∑i v iD i
2
are the weighted �rst and second sample moments of the physical

total dose distribution D = {D i}, respectively, and the weighted sample variance of D is de�ned as:
σ 2D = ∑i v iD i

2 − (∑i v iD i)2 , equation (III.3) can be rewritten in the form:

NTDmean = D̄
α/β + D̄/n (1 + ( σ2D

D̄ )
2

)
α/β + 2 , (III.4)

where D̄ = ∑i v iD i is the weighted mean dose of the dose distributionD.
From (III.4) it can be concluded that NTDmean can be calculated from the mean total dose, D̄, and

the standard deviation σ 2D , provided that the fractionation sensitivity measure α/β and the number
of fractions n are given. Since most treatment planning systems provide these two statistical metrics,
the method to convert the physical dose in the DVH bins into corresponding NTD doses to calculate

NTDmean has become obsolete.�e newly established analytical relation betweenNTDmean and D̄makes
experimentally determined �rst-order corrections of the latter out-dated (7, 16).
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Abstract
The simple Linear–Quadratic (LQ)-based Withers iso-effect formula (WIF)
is widely used in external-beam radiotherapy to derive a new tumour dose
prescription such that there is normal-tissue (NT) iso-effect when changing
the fraction size and/or number. However, as conventionally applied, the
WIF is invalid unless the normal-tissue response is solely determined by the
tumour dose. We propose a generalized WIF (gWIF) which retains the tumour
prescription dose, but replaces the intrinsic fractionation sensitivity measure
(α/β) by a new concept, the normal-tissue effective fractionation sensitivity,
(α/β)NT

eff , which takes into account both the dose heterogeneity in, and the
volume effect of, the late-responding normal-tissue in question. Closed-form
analytical expressions for (α/β)NT

eff ensuring exact normal-tissue iso-effect are
derived for: (i) uniform dose, and (ii) arbitrary dose distributions with volume-
effect parameter n = 1 from the normal-tissue dose–volume histogram. For
arbitrary dose distributions and arbitrary n, a numerical solution for (α/β)NT

eff
exhibits a weak dependence on the number of fractions. As n is increased,
(α/β)NT

eff increases from its intrinsic value at n = 0 (100% serial normal-
tissue) to values close to or even exceeding the tumour (α/β) at n = 1 (100%
parallel normal-tissue), with the highest values of (α/β)NT

eff corresponding to
the most conformal dose distributions. Applications of this new concept to
inverse planning and to highly conformal modalities are discussed, as is the
effect of possible deviations from LQ behaviour at large fraction sizes.

1. Introduction

Fractionation was introduced early in the history of radiation therapy (Thames and Hendry
1987, Steel 2007). Coutard (1929) established what we would now recognize as standard frac-
tionation for treating head and neck cancer: large numbers of relatively small doses of radiation
(typically around 2 Gy), delivered each weekday, yielded the best ‘therapeutic ratio’, i.e. the
highest chance of local tumour control (even cure) for acceptably low complication rates.

+
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Five decades later, these essentially empirical findings were put on a theoretical basis via
the Linear–Quadratic (LQ) model of cell killing (Fowler 1989, Chapman 2003, Steel 2007), that
incorporates a fractionation sensitivity parameter α/β as ratio of the intrinsic radiosensitivities
α and β. A mixture of animal experiments and empirical observations indicated that iso-effect
curves (connecting total dose and dose per fraction) for ‘late’ normal-tissue (NT) complications
were characterized by an α/β ratio of around 3 Gy (though with quite wide variations), whereas
the corresponding curves for tumour iso-effect were best described by α/β ≈ 10 Gy (Thames
et al 1982). It followed that for a given level of tumour control (assuming negligible clonogen
proliferation) the effects on normal tissues would continually decrease as the number of
fractions increased and the fraction size decreased.

1.1. Withers iso-effect formula

Making direct use of the LQ model, Withers et al (1983) derived a simple formula for
converting from a reference fractionation regimen (total dose Dref, fraction size dref) to a new
one (total dose Dnew, fraction size dnew), in order to ensure iso-effect for the tissue of interest,
characterized by its α/β ratio:

Dnew

Dref
= α/β + dref

α/β + dnew
. (1)

This equation, known as the Withers iso-effect formula (WIF), became the standard method
for relating one fractionation regimen to another. It has been taught to generations of radiation
oncologists, and can be found in numerous textbooks (Steel 2007, Joiner and van der Kogel
2009, Hall and Giaccia 2011). Generally one assumes α/β = 3 Gy for late-responding normal
tissues but the formula functions equally well for tumours when α/β is usually set equal to
10 Gy.

If (1) is used to convert a conventional multi-fraction regimen (e.g. 33 fractions of 2.0 Gy)
to a small number of much larger fractions for normal-tissue iso-effect, then the new regimen
will result in a drastically reduced tumour control probability (TCP). Equally well, if one
instead derives a new total dose and larger fraction size for tumour iso-effect, a significant
increase in complication probability would be expected. Therefore in order to maximize the
‘therapeutic ratio’ radiotherapy must be delivered in a large number of small fractions, which
is one of the tenets of classical radiobiology.

There is increasing evidence that curative radiotherapy using large fraction sizes can
be safely delivered using highly conformal irradiation techniques in specific situations e.g.
early stage lung tumours, often referred to as stereotactic body radiotherapy or stereotactic
ablative radiotherapy (SABR) (Blomgren et al 1995, Fowler et al 2004, Grau et al 2006,
Timmerman 2008, Borst et al 2009). The application of (1) to such regimen (typically 3 ×
15–20 Gy) strongly suggests that they are very far from normal-tissue iso-effective compared
to standard well-tolerated regimens e.g. 20 × 2.75 Gy. However, estimates of normal-tissue
complication probability (NTCP) for these very large fraction sizes are consistent with the
acceptably low complication rates observed clinically. All the above suggests that there is a
major problem with the Withers expression in certain clinically relevant situations involving
modern, highly conformal dose-delivery techniques (Nahum and Chapman 2003, Calandrino
et al 2005, Vogelius et al 2010, Jin et al 2010, Myerson 2011).

1.2. Aim of this paper

In this paper, starting from a critical examination of the WIF, we develop an alternative analysis
of normal-tissue fractionation sensitivity. Our analysis explicitly takes into account both the
dose heterogeneity present in most normal tissues and the organ-specific nature of the so-called
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‘volume effect’, as addressed by Nahum and Kutcher (2007) and many other investigators. A
modified form of the WIF is derived, and we show that this hetero- or generalized Withers
expression explains why certain hypo-fractionated regimen, such as the ones referred to above,
are within normal-tissue tolerance. Furthermore, the new expression provides a methodology
to readily identify other situations where hypo-fractionation can or cannot be safely applied.

2. Theory

2.1. Re-derivation of Withers iso-effect formula

For N equal fractions of dose d, assuming that sublethal lesion repair is completed in the
inter-fraction interval, the LQ-based surviving fraction (SF) is given by

SF(N, d;α, β) = exp(−αd − βd2)N

= exp(−αNd − βNd2). (2)

Identifying Nd as the total dose D, this becomes

SF(D, d;α, β) = exp(−αD − β dD)

= exp

[
−αD

(
1 + d

α/β

)]
. (3)

Two fractionation regimens are said to be iso-effective if their surviving fractions are equal.
Thus to convert from a reference regimen (Nref, dref) to a new regimen (Nnew, dnew) we equate
the exponents:

αDnew

(
1 + dnew

α/β

)
= αDref

(
1 + dref

α/β

)
,

and recover the WIF of (1), written alternatively as:

Dnew

Dref
=

(
1 + dref

α/β

)(
1 + dnew

α/β

)−1

. (4)

2.2. WIF in clinical practice: implicit assumptions

The application of the WIF to tumours is generally unproblematic. In most clinical situations
the tumour receives an almost uniform dose and thus the tumour total dose D and the tumour
fraction dose d are unambiguously defined. However, the WIF is more commonly used to
convert from the reference regimen to one with a different number of fractions and/or fraction
size which is iso-effective for normal tissue rather than for the tumour. Thus, α/β = 3 Gy is
typically used but it is not obvious what the normal-tissue doses DNT and dNT should be. The
universally adopted practice is to use the prescribed total and fractional dose values for the
tumour, DT and dT, respectively. Now the most critical normal tissue will usually be positioned
adjacent to the tumour and therefore the maximum values of DNT and dNT will certainly be
close to DT and dT.

This use of the WIF is therefore strictly correct either for normal tissues receiving this
maximum dose uniformly (almost never the case) or where normal-tissue response is solely
determined by the maximum dose it receives, i.e. for 100% serial organs such as the spinal
cord. For all other situations, i.e. the overwhelming majority encountered in clinical practice,
the inescapable conclusion is that the WIF as conventionally applied is invalid.

A clinical example of this invalidity is normal lung tissue surrounding a lung tumour. There
is a large body of evidence that radiation pneumonitis is correlated with (radiobiologically
adjusted) mean lung dose (MLD) in the paired non-involved lung (Marks et al 2010), and the
MLD of a typical lung treatment plan is a certain percentage of the prescribed total dose DT;
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for modern dose-delivery techniques this is often around 20% (Hoffmann et al 2012, Roelofs
et al 2012). The WIF as conventionally applied implicitly assumes that a small high-dose
region totally controls the complication response of the rest of the lung tissue. Therefore, the
conventional use of the WIF to derive a new regimen that is intended to be iso-effective for
radiation pneumonitis will effectively overestimate the normal-tissue complication probability
(NTCP) and thus result in conservative prescriptions when the number of fractions is decreased.
An example is given in section 3.1.

2.3. The concept of effective fractionation sensitivity, (α/β)NT
eff

From the previous section, it is clear that the conventional WIF is invalid for normal-tissue
iso-effect in the way it is generally used. Nevertheless, we wish to retain the WIF expression
for its simplicity. We will now develop an alternative form of the WIF that explicitly takes
into account both the dose heterogeneity present in most normal tissues and the organ-specific
nature of the volume effect. The only change to the conventional WIF is the replacement of
the intrinsic α/β ratio by a new concept: the effective α/β ratio.

For reasons of comprehensibility, we start with the hypothetical case where the normal
tissue receives a uniform dose. Subsequently, we consider the general and more realistic
case of a heterogeneous dose distribution, where we exploit a dose–volume histogram (DVH)
reduction technique to represent the heterogeneous dose distribution by a uniform equivalent
normal-tissue dose.

2.3.1. Effective α/β ratio for uniform normal-tissue dose. Suppose that under the reference
regimen the normal tissue receives a uniform dose with fraction size, dNT

ref , and that this dose
is different to the tumour fraction size, dT

ref. We now change the fractionation regimen iso-
effectively to produce a new one with dT

new and dNT
new for Nnew fractions. Further it is assumed that

the normal tissue and tumour responses are characterized by (α/β)NT and (α/β)T, respectively.
Applying the WIF for normal-tissue iso-effect to this situation, the ratio of the total doses

for the new and reference regimens can be written in the same format as the WIF of (4):

DNT
new

DNT
ref

=
(

1 + dNT
ref

(α/β)NT

)(
1 + dNT

new

(α/β)NT

)−1

. (5)

Note that the ratio of total doses must be the same in the tumour as in the normal tissues,
as they both have to scale in the same way for a given treatment plan, i.e. the relative dose
distribution is not being modified; it is only re-scaled.

It is important to realize that the above expression differs in one significant respect from
the conventional use of WIF. In (5) we are using the respective doses in the normal tissue,
and not those in the tumour. Suppose now that we wish to retain the way in which WIF is
conventionally employed, i.e. we want the expression to involve the respective doses to the
tumour; note that DNT

new/DNT
ref must be equal to DT

new/DT
ref. In other words, we wish to find an

‘effective’ α/β ratio, (α/β)NT
eff , such that

DNT
new

DNT
ref

=
(

1 + dT
ref

(α/β)NT
eff

)(
1 + dT

new

(α/β)NT
eff

)−1

, (6)

where the left-hand side is given by (5). This will be the case provided that

(α/β)NT
eff = dT

ref

dNT
ref

(α/β)NT (7)

and

(α/β)NT
eff = dT

new

dNT
new

(α/β)NT (8)

for the reference and new regimen, respectively.
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Identities (7) and (8) are equivalent because dT
ref/dNT

ref = dT
new/dNT

new as we are merely
re-scaling the reference dose distribution to produce the new one for a different number of
fractions.

Summarizing, for this special case of a uniform dose delivered to the normal tissue for
which we require iso-effect, the conventional WIF of (1) will still apply, using the reference
and the new tumour fractional and total doses, but employing an effective α/β ratio given by

(α/β)NT
eff = dT

dNT
(α/β)NT, (9)

where we have removed the subscripts ‘ref’ and ‘new’, since it does not matter which regimen
is used as long as dT and dNT are taken from the same regimen. We introduce here the adjective
‘intrinsic’ for (α/β)NT to distinguish it from the new concept (α/β)NT

eff .

2.3.2. Effective α/β ratio for heterogeneous normal-tissue dose. Now we will deal with the
more complicated situation of a heterogeneous dose distribution. We consider that the correct
way to describe normal-tissue iso-effectiveness is to use NTCP models that take into account
the whole dose distribution and the volume effect. Our analysis is based on the assumption
that the power-law model for local dose–volume effect is correct.

Suppose that under the reference regimen with Nref fractions the normal tissue receives a
heterogeneous fractional dose distribution, (Nref, dNT

ref ), where dNT
ref is a vector of dose per voxel

values. Re-scaling the dose distribution produces a new fractionation regimen, (Nnew, dNT
new),

for a different number of fractions, Nnew. For normal-tissue iso-effect of the dose distributions
(Nref, dNT

ref ) and (Nnew, dNT
new), their NTCPs must to be equal. The NTCP can be expressed as a

monotonically increasing function g of a generalized tissue damage function F , i.e.

NTCP(N, dNT) = g(F(N, dNT)), (10)

where F is separable into a local damage function f weighting the biological effect of the dose
per voxel for a given end-point:

F(N, dNT) = f −1

[
V∑

i=1

vi f
(
E

(
N, dNT

i

))]
,

and f accounts for the volume effect of the effective dose E(N, di) (see below) in voxel i
having a fractional volume vi, and

∑V
i=1 vi = 1 is the normalized total volume over all V

voxels of the whole organ (Romeijn et al 2004, Myerson 2011).
In the Lyman–Kutcher–Burman (LKB) NTCP model (Lyman 1985, Kutcher et al 1991)

g(z) = 1/
√

2π
∫ z
−∞ e−t2/2 dt is the standard normal cumulative distribution function and

F(N, d) = gEUDa(N, d) is the generalized equivalent uniform dose (Niemierko 1999), which
is based on the power-law relationship f (D) = Da relating dose and volume to local biological
effect. The parameter a characterizes the volume-dependence of the tissue, and is related to the
original Lyman (1985) formulation via a = 1/n. For normal tissues with a serial architecture
the value of n is close to 0, whereas for organs with a parallel architecture it is closer to 1.
To account for fractionation effects in a tissue with a given intrinsic fractionation sensitivity
α/β, the function E is the biologically effective dose BED(N, di;α/β) = Ndi(1 + di/(α/β))

(Fowler 1989).
We derive an expression for the effective α/β ratio in the context of the gEUDa model

with the BED-based fractionation correction. This generates a radiobiologically corrected
gEUDa, which is also known as the ‘modified equivalent uniform dose’ (Park et al 2005) or
‘generalized equivalent uniform BED’ (gEUBEDa) (Hoffmann et al 2008). Note that the same
results would have been obtained for any NTCP model that satisfies identity (10).

We first consider the n = 1 case and then extend our methodology to 0 � n � 1.
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Normal tissue with ‘parallel’ architecture. In case of a ‘parallel’ organ, n = 1, gEUBEDa
reduces to the radiobiologically adjusted mean dose (BEDmean). As an example, we refer to
non-small cell lung cancer (NSCLC) radiotherapy, where the BEDmean has been shown to
correlate with radiation pneumonitis (Marks et al 2010).

Assuming normal-tissue iso-effect conditions, the ratio of the mean total doses for the
new and reference regimens can be found by equating their analytical expressions for BEDmean

(see Appendix A), analogous to the derivation of the ratio of total doses in (5):

D̄NT
new

D̄NT
ref

=
(

1 + h · d̄NT
ref

(α/β)NT

)(
1 + h · d̄NT

new

(α/β)NT

)−1

, (11)

where h = 1 + (σ NT
d /d̄NT)2 is a normal-tissue dose heterogeneity factor, d̄NT is the fractional

mean dose, and σ NT
d is the standard deviation of the fractional dose distribution dNT. Since the

relative dose distribution is invariant under scaling, the dose heterogeneity factor h is equal
for the new and reference regimens. Expressing the ratio of normal-tissue doses D̄NT

new/D̄NT
ref in

terms of (6), we obtain

D̄NT
new

D̄NT
ref

=
(

1 + dT
ref

(α/β)NT
eff

)(
1 + dT

new

(α/β)NT
eff

)−1

. (12)

Equating (11) and (12), and solving for (α/β)NT
eff yields

(α/β)NT
eff = 1

1 + (
σ NT

dref

/
d̄NT

ref

)2

dT
ref

d̄NT
ref

(α/β)NT (13)

and

(α/β)NT
eff = 1

1 + (
σ NT

dnew

/
d̄NT

new

)2

dT
new

d̄NT
new

(α/β)NT (14)

for the reference and new regimen, respectively. Identities (13) and (14) are equivalent
because dT

ref/d̄NT
ref = dT

new/d̄NT
new as we are merely re-scaling the reference dose distribution to

produce the new one for a different number of fractions. For a homogeneous dose distribution,
σ NT

dref
= σ NT

dnew
= 0, and these two identities reduce to (7) and (8), respectively.

Following the same reasoning as in subsection 2.3.1 and removing the subscripts ‘ref’
and ‘new’, we arrive at

(α/β)NT
eff = 1

1 + (
σ NT

d

/
d̄NT

)2

dT

d̄NT
(α/β)NT. (15)

Summarizing, for this special case of a heterogeneous dose distribution in a purely
‘parallel’ normal tissue for which we require iso-effect, the conventional WIF of (1) will still
apply, using the tumour doses, providing that the intrinsic (α/β)NT is replaced by the effective
α/β ratio from (15).

Normal tissue with arbitrary architecture. We now address the general case of 0 �
n � 1. Suppose that a fictitious normal-tissue structure exists, which receives the tumour
prescription dose (Nref, dT

ref). We now require the new prescription (Nnew, dT
new) such that

the two fractionation regimens are iso-effective for an effective normal-tissue fractionation
sensitivity (α/β)NT

eff and for equal NTCPs of the corresponding normal-tissue dose distributions
(Nref, dNT

ref ) and (Nnew, dNT
new). Hence, the BEDs of both regimens and the corresponding

gEUBEDas of the dose distributions should be equal, i.e.

BED
(
Nnew, dT

new; (α/β)NT
eff

) ≡ BED
(
Nref, dT

ref; (α/β)NT
eff

)
, (16)
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where we use (α/β)NT
eff , and

gEUBEDa

(
Nnew, dNT

new; (α/β)NT
)) ≡ gEUBEDa

(
Nref, dNT

ref ; (α/β)NT
))

, (17)

where we use the intrinsic (α/β)NT for the full dose distribution in the real normal tissue.
In order to obtain (α/β)NT

eff from equations (16) and (17), we introduce the scaling factor
f as:

f
(
Nnew; Nref, dT

ref, (α/β)NT
eff

) = dT
new

(
Nnew; Nref, dT

ref, (α/β)NT
eff

)
/dT

ref, (18)

where

dT
new

(
Nnew; Nref, dT

ref, (α/β)NT
eff

) = 1

2
(α/β)NT

eff

[
−1 +

√
1 + 4

Nref

Nnew

dT
ref

(α/β)NT
eff

(
1 + dT

ref

(α/β)NT
eff

)]

(19)

is obtained from solving (16). Expression (19) is not new; it is a modification of the one that
applies to the conventional WIF as given in textbooks, see e.g. Jones and Morgan (2007), with
(α/β)NT

eff replacing (α/β)NT.
Hence, (17) can be written as:

gEUBEDa

(
Nnew, f · dNT

ref ; (α/β)NT
)) ≡ gEUBEDa

(
Nref, dNT

ref ; (α/β)NT
))

. (20)

Equation (20) links (α/β)NT
eff to the intrinsic (α/β)NT for given values of Nref and Nnew.

Although we have not been able to find an analytical solution, a numerical solution was
obtained by using Brent’s root-finding algorithm (Brent 1973). Examples will be given in
section 3.2.2.

In the limiting case of Nnew approaching Nref, it is possible to derive a closed-form
expression for (α/β)NT

eff (see appendix B):

(α/β)NT
eff =

∑V
i=1 vi

(
1 + dNT

i
(α/β)NT

)a−1 (
dNT

i

)a

∑V
i=1 vi

(
1 + dNT

i
(α/β)NT

)a−1 (
dNT

i

)a+1
(α/β)NTdT, (21)

where dT and dNT
i apply to the reference regimen.

By substituting a = 1/n, it can be shown that (21) reduces to (9) in the case of n = 0, and
to (15) in the case of n = 1.

2.4. The generalized Withers iso-effect formula (gWIF)

Summarizing the above derivations, we now present the generalized WIF (gWIF) for normal-
tissue iso-effect as the conventional WIF of (1) with the intrinsic α/β ratio replaced by the
(α/β)NT

eff of (15) in the case of n = 1, or in the case of arbitrary n, by (21) for Nnew close to
Nref, and by the numerical solution of (20) if Nnew is not close to Nref:

DT
new

DT
ref

= (α/β)NT
eff + dT

ref

(α/β)NT
eff + dT

new

. (22)

By noting that the left-hand side of (22) equals Nnew/Nref · dT
new/dT

ref, dT
new can be obtained as

function of Nnew for a given reference regimen (Nref, dT
ref) and a given (α/β)NT

eff by making use
of (19).

3. Numerical evaluation

In this section we provide some examples of the use of the (α/β)NT
eff and gWIF concepts for

specific normal-tissue dose distributions.
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Figure 1. For a parallel normal tissue (n = 1) and plan IMRT2 (see table 2) the conventional WIF
results in a decreasing NTCP with decreasing fraction number (a), whereas the gWIF results in
exact iso-NTCP at any fraction number (b). Arrows indicate tumour dose prescriptions at 33, 21,
15 and 9 fractions.

3.1. Example of gWIF versus WIF

To illustrate the invalidity of WIF and the utility of gWIF, we have used the DVH of a 100%
parallel organ (i.e. the paired non-involved lungs) from a given dose distribution at standard
fractionation (see IMRT2 plan in subsection 3.2) to compute the NTCP according to the LKB
model with parameters (TD50 = 31.4 Gy, m = 0.45, n = 1) taken from Marks et al (2010).
The NTCP of the reference regimen at 33 × 2.0 Gy is 8.6%.

Figure 1(a) shows the NTCP values that result from the new prescription doses given
by the conventional WIF when the number of fractions is reduced relative to the reference
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Figure 2. Cumulative dose-volume histograms for uninvolved lung tissue of (a) IMRT and (b)
SABR plans having a prescribed dose of 33× 2 Gy and 8× 7.5 Gy, respectively, for the reference
regimen.

Table 1. TNM stage and gross tumour volume characteristics of NSCLC patients.

Plan ID Stage TNM Volume (cm3) Location

IMRT1 IIIA cT2N2M0 57 Left hilus
IMRT2 IIIA cT4N0M0 330 Left lung
IMRT3 IIIA cT0N2M0 27 Mediastinum
SABR1 IB cT2N0M0 6 Left upper lobe
SABR2 IA cT1N0M0 3 Left lower lobe
SABR3 IA cT1N0M0 1 Right upper lobe

regimen. Decreasing the number of fractions from 33 to, for example, 21, 15 and 9 fractions,
the prescribed tumour fractional doses according to WIF become 2.74, 3.42 and 4.74 Gy,
respectively, and the resulting NTCP values are 8.0%, 7.6% and 7.1%, respectively. If the
WIF were valid, a constant NTCP of 8.6% would have resulted independently of the number
of fractions. This is exactly what is achieved by applying the gWIF (figure 1(b)). Note that
the new tumour doses in figure 1(b) are higher than the WIF-derived values in figure 1(a).
We have verified the new prescription doses given by gWIF using the BioSuite software for
isotoxic dose and fractionation optimization (Uzan and Nahum 2012).

3.2. Patient and treatment plan data

In this subsection we evaluate (α/β)NT
eff for different treatment plans and normal-tissue

architecture. Representative DVH data (figure 2) of the uninvolved lung tissue were extracted
from six treatment plans for NSCLC patients with different tumour characteristics (table 1):
three from IMRT plans with six co-planar 10 MV photon beams using multi-segment fields
for step-and-shoot delivery, and three from SABR plans with 10 MV photon beams delivered
using volumetric modulated arc therapy with two arcs.

Relevant dosimetric characteristics of the IMRT and SABR plans are summarized in
table 2.
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Table 2. Dose statistics (in Gy) of IMRT and SABR plans for their respective fractionation
regimens; the values of (α/β)NT

eff are given for each plan, calculated assuming that the intrinsic
(α/β)NT = 3 Gy and n = 1.

Plan ID DT D̄NT σ NT
D (α/β)NT

eff

IMRT1 33 × 2.0 Gy 18.2 21.6 4.5
IMRT2 33 × 2.0 Gy 14.9 17.4 5.6
IMRT3 33 × 2.0 Gy 13.1 11.5 8.5
SABR1 8 × 7.5 Gy 5.0 10.2 7.0
SABR2 8 × 7.5 Gy 3.0 7.6 8.1
SABR3 8 × 7.5 Gy 3.7 7.8 8.9

Abbreviations: DT = prescribed total tumour dose; D̄NT = mean of normal-tissue total dose;
σNT

D = standard deviation of normal-tissue total dose; (α/β)NT
eff = effective α/β ratio of normal

tissue.

3.2.1. (α/β)NT
eff for normal tissues with ‘parallel’ architecture. In table 2 the connection

between normal-tissue fractionation sensitivity, expressed in terms of our new effective α/β

concept, and the degree of normal-tissue sparing is illustrated for the case of n = 1. The
(α/β)NT

eff varies from 4.5 Gy for IMRT1, for which DT/D̄NT = 3.63 but the normal-tissue
dose distribution is very broad (σ NT

D = 21.6 Gy), to as high as 8.9 Gy for SABR3 for which
DT/D̄NT = 16.22 with a relatively narrow dose distribution (σ NT

D = 7.8 Gy). In the latter case,
as the value of 8.9 is very close to 10, the value usually assumed for the tumour, there is almost
nothing to be gained from using a large number of fractions.

3.2.2. (α/β)NT
eff for normal tissue with arbitrary architecture. In figure 3 we explore the

effect on (α/β)NT
eff of not only the dose heterogeneity (as in table 2) but also the variation in

the value of the volume-effect parameter n and the number of fractions Nnew. For the three
IMRT and three SABR plans, (α/β)NT

eff has been calculated for the full spectrum of n values
ranging from zero to unity. In this case, the reference and new number of fractions, Nref and
Nnew, respectively, must also be specified. The pair of curves for each plan correspond to the
(α/β)NT

eff at Nnew = 1 and to the limiting case of Nnew approaching Nref.
It can be seen how (α/β)NT

eff is close to the intrinsic (α/β)NT value (i.e. 3 Gy) for serial
normal-tissue behaviour (n = 0), which corresponds to the conditions of validity of the
conventional WIF. As n increases (α/β)NT

eff increases, with the rate of increase being greater
for the more conformal plans. Note that for n = 0, the (α/β)NT

eff of the IMRT plans in figure 3(a)
is 5% below (α/β)NT = 3 Gy. This is due to the fact that in these particular treatment plans
the normal-tissue maximum dose is 105% of the prescribed tumour dose. The (α/β)NT

eff of
the SABR plans in figure 3(b) at n = 0 is 20% below (α/β)NT = 3 Gy, since the maximum
normal-tissue dose in these cases is 125% of the (nominal) prescribed tumour dose.

Figure 4 shows how the magnitude of the difference between the pairs of curves in figure 3
depends on the value of Nnew compared to Nref for (α/β)NT

eff evaluated numerically from (20).
These differences are clearly largest for Nnew = 1. As the lower of each pair of curves in
figure 3 corresponds to Nnew = 1, figure 4 demonstrates that these lower curves are lower
bounds on the value of (α/β)NT

eff .

3.3. Practical use of (α/β)NT
eff for iso-effect calculations

As an example of the practical use of (α/β)NT
eff , we give here the prescription for normal-tissue

iso-effect when the number of fractions for the IMRT cases is changed from the reference
value of 33 to the new value of 20. By applying the conventional WIF, one would have used
(19) with the intrinsic (α/β)NT of 3 Gy to obtain a tumour fractional dose for the new regimen
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Figure 3. The normal-tissue effective fractionation sensitivity (α/β)NT
eff as function of the volume

parameter n for (a) IMRT and (b) SABR plans, assuming an intrinsic (α/β)NT = 3 Gy. Lower
curves correspond to (α/β)NT

eff at Nnew = 1 from (20); higher curves correspond to the limiting
case of Nnew approaching Nref from (21).

of 2.83 Gy. If we instead apply gWIF and use (19) with (α/β)NT
eff = 4.5, 5.6 or 8.5 Gy (see

table 2) to account for the normal-tissue dose heterogeneity and volume effect, the tumour
fractional doses would now be 2.90, 2.94 and 3.01 Gy, respectively, instead of the constant
value of 2.83 Gy which is obtained if the differences between the three treatment plans are
ignored. Using (α/β)T = 10 Gy for the tumour, this implies increases of 3.0%, 4.8% and
7.9%, respectively, in the 2 Gy equi-effective dose (EQD210) 3 for the tumour relative to the
2.83 Gy per fraction regimen. If additionally the (normalized) gradient of the tumour dose–
response relationship were known, the (relative) increase in tumour control probability could
be calculated.

3.4. Implications of (α/β)NT
eff for the therapeutic gain

Figure 5 shows how the EQD210 would vary under normal-tissue iso-effect conditions for four
different values of (α/β)NT

eff ; it has been assumed that there is no tumour clonogen proliferation.

3 EQDXα/β is the new notation for the equi-effective dose, defined as the biologically equivalent total dose delivered
by a reference treatment plan using a fraction size of X Gy (Bentzen et al 2012).
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Figure 4. Differences in (α/β)NT
eff calculated from (20) relative to (21) for the IMRT3 plan with

Nref = 33 and Nnew = N = 1, 9, 15 or 21 fractions (a), and for the SABR3 plan with Nref = 8
and Nnew = N = 1, 3, 5 or 7 fractions (b), as a function of volume-effect parameter n; the intrinsic
(α/β)NT = 3 Gy.

For (α/β)NT
eff > (α/β)T, which is possible for an ultra-conformal treatment delivery

technique and a parallel organ, the therapeutic gain increases with a decreasing number of
fractions.

4. Discussion

Radiation oncology practitioners wanting to modify treatment fractionation to ensure normal-
tissue iso-effect have hitherto had basically only two tools: either the simple LQ-based
WIF or full-blown NTCP modelling. When going from smaller to larger fractions, WIF-
derived (tumour) doses are highly conservative, i.e. in many situations they result in decreased
complication rates compared to the (small-fraction) reference regimen; this is probably why
the use of WIF has continued. A corollary to this is that the use of the WIF to convert from
a large-fraction-size regimen which is just within tolerance to a small-fraction-size one could
be dangerous in the case of a quasi-parallel normal tissue. An NTCP model-based approach
may yield a ‘correct’ value of the NTCP for a given number of fractions and a given (total)
dose distribution, but offers no immediate insight into what would happen if the fractionation
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Figure 5. The 2 Gy equi-effective dose for a tumour with (α/β)T = 10 Gy as function of the
number of fractions under normal-tissue iso-effect conditions (n = 1) for a reference regimen of
33 × 2 Gy. The curves show the effect of different values of (α/β)NT

eff .

regimen were changed. By contrast, the intrinsic (α/β)NT in the WIF gives users an apparent
‘feel’ for what is going on. We consider that the new (α/β)NT

eff concept will not only allow the
user to retain this ‘feel’ but also extend its validity to any combination of normal-tissue dose
distribution and architecture.

The connection between the heterogeneity of a normal-tissue dose distribution and the
fractionation sensitivity has not been generally appreciated. The classic experimental iso-effect
plot of Thames et al (1982), featured in radiobiology textbooks, e.g. Steel (2007), demonstrated
that (α/β)NT ≈ 3 Gy for late-responding normal tissues, but is significantly higher for early
reactions. A large body of experimental work supported these findings (Thames and Hendry
1987). The most plausible reason for this is that these early experiments, mostly done on
small animals using relatively large fields, corresponded to one of the ‘extreme’ conditions
for which the conventional Withers expression is valid: uniform normal-tissue irradiation. In
such situations (α/β)NT

eff is equal to the intrinsic (α/β)NT.
We envisage the new (α/β)NT

eff concept being used in several different ways:

(i) to derive, for exact normal-tissue iso-effect, fractionation regimens differing from the
reference one (whether converting from a large to a small number of fractions or vice
versa).

(ii) as a metric for gauging the hypo-fractionation potential of any given treatment plan. This
will be particularly attractive for tumours with rapidly proliferating clonogens.

(iii) to quantify the degree of invalidity of the (conventional) WIF in a given situation; this
will be given by the difference between the intrinsic and the effective (α/β)NT.

(iv) in radiobiological inverse treatment planning with a pre-set number of fractions,
maximization of (α/β)NT

eff could be added to other objectives. If a high value of (α/β)NT
eff

is obtained, the optimization might be repeated with a smaller number of fractions to
obtain a better overall treatment plan.

Naturally there are uncertainties associated with the numerical values of our new (α/β)NT
eff

concept. Firstly, this should be viewed in the context of what it replaces, i.e. the WIF with
the intrinsic (α/β)NT. We have clearly demonstrated that except in the hypothetical case of a

83



Treatment planning optimisation for individualised dose prescription

6910 A L Hoffmann and A E Nahum

uniform normal-tissue dose equal to the tumour dose, it is only for perfectly ‘serial’ normal
tissues that the use of the WIF is valid. In all other situations, the WIF leads to a reduction
of the therapeutic ratio, compared to the reference regimen it replaces, i.e. the use of gWIF
will drastically reduce the error inherent in the use of the WIF. Secondly, if a gWIF-derived
hypo-fractionation regimen is applied, but n for the normal tissue has been overestimated,
then (α/β)NT

eff will be overestimated. This would result in a total tumour dose and fraction
size, corresponding to an NTCP slightly greater than that for the reference regimen; the
order of magnitude of this over-estimation of (α/β)NT

eff can be judged from figure 3. An
additional consideration is the probable over-prediction of cell killing by the LQ expression at
large fraction sizes—see below—which will work in the opposite direction, making it highly
unlikely that an overestimate of n will result in a significant increase in NTCP in any practical
situation.

The WIF is completely based on the LQ model of cell killing and this also applies to
the analysis presented here. However, the validity of the LQ model at large doses has been
questioned (Kirkpatrick et al 2009). At fractional doses above ≈ 10 Gy certain experiments
indicate that the LQ expression over-predicts cell killing/under-predicts cell survival, e.g.
Wang et al (2010) and the so-called generalized LQ model (Carlone et al 2005, Wang et al
2010) may be more appropriate. If cell killing at large fraction sizes is, at least for some
cell types, less than that predicted by the LQ model, then LQ-based radiobiological models
will over-predict NTCP (Wennberg et al 2011). It follows therefore that iso-effective hypo-
fractionation regimens based on our expressions for (α/β)NT

eff could over-predict complication
rates (i.e. be sub-iso-effective) but is highly unlikely to under-predict them. In other words,
hypo-fractionated regimens resulting from the gWIF may in practice be safer than the small-
fraction reference regimens they were derived from.

More normal-tissue sparing, whether achieved by beam-shaping alone, intensity
modulation, stereotaxy or any other modern radiotherapy delivery technique, will result in
a higher (α/β)NT

eff and consequently hypo-fractionation may be an option. For spot-scanned
proton therapy, which can achieve a high degree of normal-tissue sparing, e.g. Nyström (2010)
and Schippers and Lomax (2011), it follows that high (α/β)NT

eff values can be expected for
normal tissues with a large volume effect. Proton treatments with a smaller number of fractions
would make this modality less expensive per treatment course, with implications for increasing
the numbers of patients who could benefit from it.

5. Conclusions

The widely used Withers iso-effect formula, as conventionally applied to late-responding
normal tissues is only correct for the ‘special’ cases of a normal tissue receiving a uniform
dose equal to the tumour dose or one with a 100% serial structure where the maximum
dose is equal to the tumour dose. This important limitation is removed by using our new
effective α/β concept for normal tissues, which makes explicit the relationship between the
degree of normal-tissue dose heterogeneity, the volume effect associated with the clinical
end-point and the fractionation sensitivity. Using (α/β)NT

eff instead of the intrinsic (α/β)NT

in the otherwise unmodified Withers iso-effect formula for calculating a new tumour dose
prescription ensures exact normal-tissue iso-effect when changing the fractionation regimen
of a given dose distribution. The more conformal the target dose distribution and/or the more
‘parallel’ the normal-tissue architecture, the higher is (α/β)NT

eff and hence the greater is the
potential for hypo-fractionation. The (α/β)NT

eff concept in the well-established Withers iso-
effect formula constitutes a user-friendly tool for exploiting the hypo-fractionation potential
of modern, highly conformal dose-delivery methods.
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Appendix A. Analytical formula for mean biologically effective total dose

The mean biologically effective dose, BEDmean, is calculated from the fractional dose
distribution (N, d) and the fractionation sensitivity α/β as a weighted sum over the BED-
converted fractional doses di delivered over N fractions:

BEDmean(N, d;α/β) =
V∑

i=1

viBED(N, di;α/β), (A.1)

where vi is the fractional volume of the organ irradiated to a BED

BED(N, di;α/β) = Ndi

(
1 + di

α/β

)
, (A.2)

and
∑V

i=1 vi = 1 is the normalized total volume over all V voxels of the whole organ.
Substitution of the total dose Di = Ndi and BED(N, di;α/β) from (A.2) into (A.1) and
rearrangement of terms yields

BEDmean(N, D;α/β) =
∑

i

viDi + 1/N

α/β

∑
i

viD
2
i . (A.3)

By noting that
∑

i viDi and
∑

i viD2
i are the weighted first and second sample moments of

the total dose distribution D, respectively, and its weighted sample variance is defined as
σ 2

D = ∑
i viD2

i − (
∑

i viDi)
2, (A.3) can be re-written in the form

BEDmean(N, D;α/β) = D̄

(
1 + h · d̄

α/β

)
, (A.4)

where D̄ = ∑
i viDi is the mean total dose, d̄ = D̄/N is the mean fractional dose, and

h = 1 + (σD/D̄)2 is a dose heterogeneity factor.

Appendix B. Condition for simultaneous tumour and normal-tissue iso-effectiveness at
the reference regimen

For iso-effectiveness of the fictitious normal-tissue structure receiving the tumour prescription
dose (Nref, dT

ref) we require a family of fractionation regimens (N, dT) that are iso-effective
for an effective normal-tissue fractionation sensitivity (α/β)NT

eff . Hence the surviving fraction
SF(N, dT) should be constant as a function of N. Note that in this case dT is uniquely determined
by N, so we can re-write (2) as

SF
(
N;αNT

eff , βNT
eff

) = exp

[
−αNT

eff NdT(N)

(
1 + dT(N)

(α/β)NT
eff

)]

and solve for ∂SF/∂N = 0. It is straightforward to show that this gives the differential equation:

∂dT

∂N
= −dT

N

(
1 + dT

(α/β)NT
eff

) (
1 + 2dT

(α/β)NT
eff

)−1

. (B.1)

85



Treatment planning optimisation for individualised dose prescription

6912 A L Hoffmann and A E Nahum

For iso-effectiveness of the normal-tissue dose distribution, we investigate when the
generalized tissue damage function gEUBED is a constant function of N, with

gEUBEDa(N, dNT; (α/β)NT)) =
{

V∑
i=1

vi
[
BED

(
N, dNT

i ; (α/β)NT)]a

}1/a

, (B.2)

and

BED
(
N, dNT

i ; (α/β)NT) = NdNT
i

(
1 + dNT

i

(α/β)NT

)
. (B.3)

This means setting:

∂gEUBEDa

∂N
= 0.

Substituting the right-hand side of (B.2) in the above, this can be re-written as

1

a

[
gEUBEDa(N, dNT; (α/β)NT))

]1−a · ∂

∂N

{
V∑

i=1

vi
[
BED

(
N, dNT

i ; (α/β)NT
))]a

}
= 0,

which reduces to

∂

∂N

{
V∑

i=1

vi
[
BED

(
N, dNT

i ; (α/β)NT
))]a

}
= 0.

This can be re-written as
V∑

i=1

vi
[
BED

(
N, dNT

i ; (α/β)NT))]a−1 · ∂

∂N

[
NdNT

i

(
1 + dNT

i

(α/β)NT

)]
= 0.

By noting that dNT
i is a voxel-dependent fraction λi of dT, i.e. dNT

i (N) = λidT(N), and using
(B.1) for iso-effectiveness of the effective normal tissue, this yields

V∑
i=1

vi

(
dT

(α/β)NT
eff

− dNT
i

(α/β)NT

)(
1 + dNT

i

(α/β)NT

)a−1 (
dNT

i

)a = 0, (B.4)

where N as the argument of dT and dNT
i has been omitted for reasons of readability. Solving

(B.4) for (α/β)NT
eff and setting N = Nref it follows that

(α/β)NT
eff =

∑V
i=1 vi

(
1 + dNT

i
(α/β)NT

)a−1 (
dNT

i

)a

∑V
i=1 vi

(
1 + dNT

i
(α/β)NT

)a−1 (
dNT

i

)a+1
(α/β)NTdT,

where dT and dNT
i apply to the reference regimen.

References
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Abstract
In inverse treatment planning for intensity-modulated radiation therapy
(IMRT), beamlet intensity levels in fluence maps of high-energy photon beams
are optimized. Treatment plan evaluation criteria are used as objective functions
to steer the optimization process. Fluence map optimization can be considered
a multi-objective optimization problem, for which a set of Pareto optimal
solutions exists: the Pareto efficient frontier (PEF). In this paper, a constrained
optimization method is pursued to iteratively estimate the PEF up to some
predefined error. We use the property that the PEF is convex for a convex
optimization problem to construct piecewise-linear upper and lower bounds
to approximate the PEF from a small initial set of Pareto optimal plans. A
derivative-free Sandwich algorithm is presented in which these bounds are used
with three strategies to determine the location of the next Pareto optimal solution
such that the uncertainty in the estimated PEF is maximally reduced. We show
that an intelligent initial solution for a new Pareto optimal plan can be obtained
by interpolation of fluence maps from neighbouring Pareto optimal plans. The
method has been applied to a simplified clinical test case using two convex
objective functions to map the trade-off between tumour dose heterogeneity
and critical organ sparing. All three strategies produce representative estimates
of the PEF. The new algorithm is particularly suitable for dynamic generation
of Pareto optimal plans in interactive treatment planning.

(Some figures in this article are in colour only in the electronic version)
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1. Introduction

In inverse treatment planning for intensity-modulated radiation therapy (IMRT), fluence maps
of a finite number of high-energy photon beams are optimized for delivering a sufficiently high
dose to the tumour volume and an adequate sparing of surrounding healthy tissue structures
(Webb 2001). To guide the search process, a fluence map optimization (FMO) model based
on a set of conflicting treatment plan evaluation criteria is generally used (Reemtsen and
Alber 2004). Traditionally, the model has been formulated as a minimization of a composite
objective function being the weighted sum of constituent criteria (Bortfeld 1995, Brahme
1995). However, assigning weights or penalty factors to the constituent criteria prior to
optimization imposes an a priori trade-off between the conflicting criteria. Unfortunately,
there exists no intelligent basis for an a priori quantification of the trade-off without a proper
understanding of which criteria are competing and non-competing. Therefore, the weighting
factors must be determined by a trial-and-error process that involves multiple optimization
problems to be solved repeatedly. This is often done in a human iteration loop, where
the weights are altered in case the solution does not satisfy the clinical goals (Hunt et al
2002). This deteriorates the planning efficiency and does not allow for interactive treatment
planning. Nowadays, the weighting factors are often determined empirically and are based
on advancing clinical experience. However, the weighting factors have no direct relation to
the clinical characteristics of the treatment plan. Furthermore, since the sensitivity of the
optimization result to changes in the weighting factors is unknown beforehand, preferably
these weighting factors should be avoided. To circumvent these problems, it was proposed to
decouple the optimization and decision-making process and formulate the FMO model as a
multi-objective optimization problem (Hamacher and Küfer 2002, Küfer et al 2003, Thieke
2003). In this approach, the weights have been eliminated by considering the optimization task
as a simultaneous minimization over the set of conflicting objectives. Multiple solutions to
such a problem exist, each of which represents an ultimate compromise between the objectives.

In this paper, we restrict ourselves to the so-called Pareto optimal (PO) or efficient
solutions (Pareto 1906). These solutions represent the best attainable compromises and have
the property that improving the value of a single objective cannot be accomplished without
worsening at least one other objective value. Treatment plans that possess this property are
referred to as PO plans. Solving the multi-objective optimization problem in inverse treatment
planning for IMRT thus entails characterizing its set of PO treatment plans, which in the
objective space is represented by the Pareto efficient frontier (PEF). The generation of the PO
plans does not require user interaction and a database of plans can be precomputed off-line.
Once the PEF has been generated, the decision maker (i.e., usually the physician) can select a
single PO plan according to the clinical characteristics of the treatment plan and the patient’s
risk-taking preferences. In this way, an a posteriori trade-off is made between competing
treatment plan evaluation criteria.

Clinical rationale. In radiation oncology, consensus guidelines for treatment of specific patient
groups are laid down in local or national treatment protocols, specifying preferred dose levels
for the tumour volume and dose limiting constraints for the organs at risk (e.g., the RTOG
protocols). IMRT has introduced a large number of degrees of freedom to shape the dose
distribution and thereby has increased the possibilities to make physician/patient specific
trade-offs between target coverage and the probability of severe side effects. Physicians
may rate differently the various aspects involved in the trade-off and usually include other
information in balancing the treatment risks and benefit, such as the patient’s condition,
age, social circumstances, type of complications expected, possible salvage treatment of
complications and patient preference (Amols et al 1997, van Tol-Geerdink et al 2006). The
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introduction of IMRT will emphasize these differences and calls for tools to assist in balancing
patient- and physician-specific trade-offs.

Among the different methods to solve multi-objective optimization problems, Pareto
optimization is the only approach that actually shows the trade-offs and allows the decision
maker to select an ‘optimal’ plan from the precomputed set of best compromises. Typically,
inverse planning of IMRT involves multiple dosimetric criteria, either formulated as objectives
or constraints for the tumour volume and organs at risk. These manifold objectives define a
high-dimensional PEF. It is our experience that in practice the clinically relevant trade-offs are
often limited to two or three objectives at most. Typical examples of bi-objective problems
encountered in IMRT are: (1) sparing of the parotid gland(s) versus coverage of the elective
treatment volume in head-and-neck radiotherapy and (2) sparing of the rectal wall versus
dorsal treatment margin in prostate radiotherapy. The other optimization criteria are in fact
considered as constraints (although sometimes implemented as objectives) to be able to focus
on the most relevant trade-offs. This is also necessary since in a (clinical) decision-making
process it is not conceivable to successfully weigh more than three or ultimately four variables
(Graeme et al 2005). Treating all optimization criteria as objectives would make the treatment
plan selection process intractable. Therefore, we start off with a bi-objective problem and
elaborate on how to possibly extend to higher dimensions.

Computational motivation. It can be shown that the PEF is convex when only convex treatment
plan evaluation criteria are considered (Romeijn et al 2004). The same authors also proved
convexity for a number of commonly used treatment plan evaluation criteria and showed that
under certain conditions non-convex criteria can be transformed into equivalent convex criteria.
In this case, identification of PO treatment plans relies on solving a family of convex FMO
models to global optimality. However, this is a computationally intensive task since multiple
optimization runs have to be performed repeatedly, each starting from scratch. Hence, it is
desirable to have a method that is able to generate a representative set of PO plans in as few
as possible optimization runs. To achieve this goal, we incorporate a priori knowledge about
the convexity of the PEF into a new method that approximates the PEF by piecewise-linear
bounds and that enables to dynamically generate an initial solution for a new PO plan. As we
show, the initial fluence maps for this new PO plan can be obtained by interpolation of the
fluence maps of neighbouring PO plans.

Structure of the paper. It is the aim of the present paper to provide an efficient method
to dynamically generate a representative set of PO treatment plans using convexity bounds,
starting from a small number (e.g., three or four) of PO plans that have already been generated.
This paper is organized as follows. In section 2, first a formal introduction to the fluence
map optimization problem is given, and a commonly applied method for single-objective
optimization is described. Secondly, the concept of multi-objective optimization is presented
and the so-called ε-constraint method to generate Pareto optimal solutions is discussed.
In section 3, the new method to approximate the PEF for (nonlinear) convex bi-objective
optimization problems is proposed. Upper and lower bounds for the PEF are constructed
based on the property that the PEF is convex for convex objective functions (Siem et al
2006a). We show that by iteratively minimizing a cost function, representing uncertainty
between the estimated and the true PEF, an improvingly better piecewise-linear approximation
of the PEF can be obtained dynamically. For each new PO plan to be generated, we demonstrate
that a good initial solution can be obtained by fluence map interpolation, which significantly
speeds up the optimization process. In section 4, we show proof of principle on a simplified
clinical case using a patient with head-and-neck cancer. The discussion and conclusions follow
in section 5.
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2. Fluence map optimization problem

2.1. Definition and notation

It is supposed that the patient’s body is discretized into a number of volume elements, denoted
as voxels. Let m be the number of voxels, and let di, i = 1, . . . , m, denote the dose deposited in
voxel i. The dose di for a certain particle fluence is given as the weighted sum of the so-called
pencil beams (Gustafsson et al 1994). The beam element related to a specific unit pencil beam
is denoted as a bixel. A fluence map of a beam is the union of the weights of the bixels for
the specific beam. A total number of n bixel weights wj � 0, j = 1, . . . , n, are the design
variables (also called the optimization variables) in the FMO problem under consideration.
The beam and tissue interaction is described by an influence matrix, P, that relates the bixel
weights to the dose in the voxels. Each bixel has its own pencil beam that is dependent on the
source-to-surface distance, angle of incidence and the patient’s anatomy-dependent electron
density characteristics. The dose distribution d(w) is related to the influence matrix P and the
bixel weights w through a linear relation

d(w) = Pw.

In tensor notation, the dose in voxel i can be denoted as a weighted sum over all bixel weights:

di(w) =
n∑

j=1

Pijwj .

2.2. Single-objective optimization

To steer the optimization algorithm, a single composite objective functionF : Rm
+ �→ R+ is used

to quantify the plan evaluation score as a function of the dose distribution d(w). Examples of
commonly used objective functions for inverse treatment planning are discussed in section 3.1.
It is the task of the optimization algorithm to find a set of bixel weights that minimize F(d(w)):

min
w

F(d(w))

s.t. w � 0.
(1)

The composite objective function usually is a convex combination of constituent objective
functions Fk : Rm

+ �→ R+, k = 1, . . . , l, where l is the number of objective functions
(typically, at least one objective per organ) and the kth objective is assigned an objective
importance weight λk � 0 such that

∑l
k=1 λk = 1:

F(d(w)) :=
l∑

k=1

λkFk(d(w)). (2)

Since in general the objectives Fk are conflicting, and a solution that minimizes all the objective
functions simultaneously does not exist, the weights λk, k = 1, . . . , l, are introduced to make
an a priori trade-off between the separate objectives. As already mentioned above, there
does not exist an intelligent basis for making the trade-off between the objectives prior to
optimization. For example, in clinical inverse treatment planning practice it is often the case
to balance homogeneity of the dose distribution in the target volume against the mean or
maximum dose to an organ at risk (OAR). Unfortunately, the interrelationship between these
contradictory goals is unknown beforehand. A proper balancing of the objectives prior to
optimization is therefore impracticable.
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2.3. Multi-objective optimization and Pareto optimality

Multi-objective optimization decouples the optimization and decision-making process by first
analysing all feasible candidate solutions and subsequently presents the trade-offs between
them to a human decision maker. This allows the decision maker to articulate individual
preference relations between alternative solutions and to select an optimal solution. Such an
approach has been widely applied to solve engineering design problems where cost–quality
trade-offs need to be made between multiple conflicting and possibly incommensurable (e.g.,
having different units) criteria. For a general discussion of this approach see the textbook by
Miettinen (1999) and the survey paper by Marler and Arora (2004). From this perspective, the
problem to design and select an optimal IMRT treatment plan that is tuned to the physician’s
predilections has been considered suitable to be solved with the multi-objective approach.
Initial work from Küfer and co-workers has demonstrated the applicability of this concept for
optimization of inverse treatment planning in IMRT (Hamacher and Küfer 2002, Küfer et al
2003, Thieke 2003).

In solving the FMO problem with the multi-objective optimization approach, a vector F
of all l objective functions Fk : Rm

+ �→ R+, k = 1, . . . , l, is to be minimized simultaneously
(Miettinen 1999, p 5):

min
w

F(d(w)) =




F1(d(w))

F2(d(w))

...

Fl(d(w))




s.t. w � 0.

(3)

Because of the contradiction and possible incommensurability of the objective functions, a
single solution that would be optimal (i.e., minimal) for all the objectives simultaneously
does not exist in general. Instead, multiple solutions exist, and therefore a criterion to define
optimality in the multi-objective context is required. Here, we restrict to those solutions that
have the property that no single-objective value can be improved without deteriorating at least
one other objective value. Solutions that comply with this definition are called Pareto optimal
(also called Edgeworth–Pareto optimal, efficient, nondominated or noninferior; see Pareto
(1906)). A more formal definition of Pareto optimality is the following:

Definition 2.1. An optimization (variable) vector x∗ ∈ X (in our case, x∗ = d(w∗)) is Pareto
optimal (PO) for problem (3) if there does not exist another optimization vector x ∈ X such
that Fi(x) � Fi(x∗) for all i = 1, . . . , l and Fj (x) < Fj (x∗) for at least one index j .

Here, X denotes the feasible design space (often called the feasible decision space), which
is a subset of the optimization variable space X, defined as

X := {x ∈ X | Gi(x) � 0 (i = 1, . . . , q)},
where Gi(x) denotes a constraint function. The treatment plan resulting from the PO bixel
vector w∗ is called the Pareto optimal treatment plan. Usually, an infinite number of PO
solutions exist. The set of PO solutions is commonly referred to as the Pareto optimal set and
is denoted by X ∗. The image of the feasible design space, F(X ), defines the feasible objective
space Z , which is a subset of the objective space Z (also called the feasible criterion space).
In the objective space, the image of the Pareto optimal set, F(X ∗), is mapped to the so-called
Pareto efficient frontier (PEF), denoted by Z∗. It is evident that all Pareto optimal solutions lie
on the lower boundary of the feasible objective space Z (figure 1). A Pareto optimal treatment
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Figure 1. The sets Z and Z∗ represent a feasible objective region with a non-convex (a) and
a convex (b) Pareto efficient frontier (PEF), respectively, for a bi-objective problem. A Pareto
optimal objective vector z∗ is on the boundary Z∗.

plan that is characterized by its objective vector, z∗, is on this boundary. Analogous to the
formal definition of Pareto optimality in the optimization variable space, Pareto optimality has
also been defined formally in the objective space.

Definition 2.2. An objective vector z∗ ∈ Z is Pareto optimal (PO) if there does not exist
another objective vector z ∈ Z such that zi � z∗

i for all i = 1, . . . , l and zj < z∗
j for at least

one index j .

Equivalently, if z∗ is Pareto optimal, then the associated solution, x∗, for which z∗ = F(x∗) is
Pareto optimal.

The purpose of multi-objective optimization is to determine those solutions corresponding
to the PEF. Because the objective space is usually of a lower dimension than the optimization
variable space, the PEF can be used by the decision maker to navigate efficiently through the
PO solutions and select an optimal compromise. Moreover, the physician will only use the
values of the treatment plan evaluation criteria in the decision-making process to select a final
solution and will not be interested in the (design) values of the underlying bixel weights.

2.4. Strategies to find Pareto optimal solutions

In a first attempt to apply a multi-objective approach for the generation of Pareto optimal
IMRT plans, Thieke (2003) used a simple ‘brute force’ strategy to generate feasible candidate
plans and subsequently tested the plans for Pareto optimality. As a clinical example, a case
with one single target and two organs at risk was used. For both OARs, the two constraint
values were varied stepwise over fixed intervals. For all combinations of constraint values
the feasibility was determined, resulting in a grid of feasible plans. From this set, the PO
plans at the PEF were identified and separated from the dominated plans in the interior of
the feasible objective region. The large computational burden to generate plans without the
guarantee of being Pareto optimal and the fact that the majority of the plans generated are
rejected make this strategy highly inefficient for use in a clinical environment. Furthermore, it
is evident that such an ad hoc method does not suffice for cases with multiple targets and more
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than two OARs. Therefore, it was recommended by Thieke (2003) to implement and apply
more sophisticated PEF-generating methods keeping the computation time within clinically
acceptable limits.

From the field of operations research a variety of methods to generate Pareto optimal
solutions for multi-objective optimization and decision-making problems are available (Marler
and Arora 2004). In contrast to the generate-and-test method exploited by Thieke (2003),
nonlinear programming tools capable of generating a Pareto optimal solution for every single
optimization run should be applied to solve the multi-objective FMO problem. These tools
solve a multi-objective optimization problem by scalarization, where it is converted into a
single or a series of single-objective optimization problems. The optimal solutions of multi-
objective optimization problems can be characterized as solutions of certain single-objective
optimization problems. The two most frequently used deterministic generation methods where
only a priori articulation of preference information is used are the so-called weighted-sum
(WS) method and the ε-constraint (EC) method (Miettinen 1999).

In the weighted-sum method, each objective function, Fk , is associated with a weighting
factor, λk , and the weighted sum of the objectives is minimized. Under the assumption that the
constraint set X is convex, the objective functions Fk(x) are convex and the weighting factors
λk � 0, a Pareto optimal solution is obtained by solving the weighting problem of (1), (2):

min
x

l∑
k=1

λkFk(x)

s.t. x ∈ X .

(4)

A WS-method-based Sandwich algorithm that uses derivative information to approximate
the convex Pareto efficient frontier in three- and four-dimensional IMRT objective space has
recently been proposed by Craft et al (2006).

In this paper, we apply the EC method in combination with a derivative-free Sandwich
algorithm to compute well-distributed points on the convex Pareto efficient frontier. In the
ε-constraint method, one of the objective functions is selected to be minimized while all the
others are converted into constraints by setting an upper bound on each of them (Haimes et al
1971). The single-objective optimization problem to be solved is now of the form

min
x

Fk(x)

s.t. Fj (x) � εj for all j = 1, . . . , l, j �= k, x ∈ X ,
(5)

where k ∈ {1, . . . , l} and ε = (ε1, . . . , εk−1, εk+1, . . . , εl)
T is a vector of fixed constraint

values.
As can be proven, the ε-constraint method finds every Pareto optimal solution of any

multi-objective optimization problem, regardless of the convexity of the problem (Miettinen
1999, theorem 3.2.2., p 85). To ensure that a solution is Pareto optimal, either l different
optimization problems have to be solved or a unique solution has to be obtained. In general,
the uniqueness is not easy to verify. However, if the problem is convex and the objective
function to be minimized is strictly convex, a unique solution is guaranteed (Chankong and
Haimes 1983a, p 131).

To generate a Pareto optimal solution, the ε-constraint method is used as an a priori
method, where the decision maker specifies the single-objective function to be minimized
together with the upper bounds on the other objectives. Systematic ways to perturbate the
upper bounds in order to obtain a representative set of Pareto optimal solutions have been
suggested in Chankong and Haimes (1983b). These authors propose an ad hoc strategy to
solve multiple ε-constraint problems on a preselected grid of constraint values ε and attempt
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curve fitting to find a PO solution as a function of ε. Unfortunately, their method does not
provide information on the accuracy of the approximation.

In the next section, we demonstrate how the ε-constraint method can be applied as part
of our algorithm to dynamically generate a representative set of Pareto optimal solutions.

3. Approximation of the Pareto efficient frontier by convexity bounds

3.1. Convex objective functions

Evaluation criteria that are commonly used to measure treatment plan quality can be classified
into physical (i.e., dose-based) and radiobiological (i.e., response-based) score functions
(Brahme 1995). The first class typically measures deviations from a prescribed dose level in
an organ, while the second class attempts to model the radiobiological effect of irradiating the
organ. In general, for a treatment plan determined by a bixel weight vector w, the kth evaluation
function Fk applied to an organ structure V maps the corresponding dose distribution d(w) to
a positive real value Fk(d(w)). Typically, a structure-based treatment plan evaluation criterion
is averaged over the doses to the individual voxels in V and can be expressed as

Fk(d(w)) =
∑
i∈V

µifk(di(w)),

where fk is a voxel-based evaluation function that is convex in di and µi is a voxel-dependent
scaling factor. Often, the scaling factor is chosen to be the voxel volume relative to the total
volume of the organ.

Several authors have analysed the convexity properties of commonly used treatment plan
evaluation functions with respect to the dose to a voxel, di (Bortfeld 1995, Deasy 1997, Llacer
et al 2003, Romeijn et al 2004). It was reported that most of the criteria proposed are convex
functions, or can be transformed into equivalent convex functions, except for dose–volume-
based criteria. The latter type have proven to be non-convex (Deasy 1997) and will therefore
be left out of consideration in the present paper.

For the sake of completeness, it should be mentioned that since the dose to a voxel di is a
linear combination of the bixel weights wj , the convexity properties of the objective functions
also hold for the bixel weights that are to be optimized. This is due to the property that a
convex function remains convex after an affine mapping.

3.2. Upper and lower bounds for the Pareto efficient frontier

In this paragraph we show that in case the PEF is convex, and a number of PO solutions is
available, piecewise-linear upper and lower bounds for the PEF can be derived. These bounds
provide a local approximation of the true PEF and provide a measure of uncertainty.

As indicated in section 2.4, a point on the PEF can be found by solving the ε-constraint
problem (5). Solving this problem yields a unique PO solution, provided that the objective
function Fk to be minimized is strictly convex, the constraint functions Fj are convex for all
j �= k, and the feasible design region X is convex (Chankong and Haimes 1983a, p 131).

In the present paper, we only consider a convex bi-objective optimization problem and
formulate it as an ε-constraint problem:

p(ε) := min
x

F1(x)

s.t. F2(x) � ε x ∈ X ,
(6)
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Figure 2. Upper (solid line) and lower (dashed lines) bounds for the Pareto efficient frontier on
the interval [εi , εi+1] when only function evaluation information in the Pareto optimal points is
available.

where X is a convex set, and F1 and F2 are strictly convex and convex functions, respectively.
Then, the PEF associated with problem (6) is a univariate convex function p : E �→ R+, for
which p(ε) = F1(x∗(ε)) and x∗(ε) is the solution of (6) with ε ∈ E and

E := {ε ∈ R+ : ∃x ∈ X : F2(x) � ε},
the set of feasible constraint values. The complete proof that the PEF is a decreasing convex
function is presented in a related paper by Siem et al (2006a).

Now suppose that n PO solutions p(ε1), . . . , p(εn) are given for the points ε1 < · · · < εn

that partition the interval [ε1, εn] ∈ E . Furthermore, suppose that a PO solution is required
for an intermediate constraint value ε on the subinterval [εi, εi+1], with 2 � i � n − 2. Then,
it can be shown that the line segment connecting the points (εi, p(εi)) and (εi+1, p(εi+1)), for
1 � i � n−1, is an upper bound for p(ε) on this subinterval. The proof is presented in (Siem
et al 2006a). Construction of the upper bound is schematically illustrated in figure 2.

For the derivation of the lower bounds, a classification of methods according to the
availability of derivative information is adopted. In the next two paragraphs, first a derivative-
free approximation method is presented for the case no derivative information in the PO
points is available. Secondly, a derivative-based method is described. We prove that the
derivative-based approximation method provides tighter lower bounds than the derivative-free
method.

3.2.1. Derivative-free approximation methods. These methods only use function evaluation
information to estimate the lower bounds. For IMRT optimization, derivative-free
approximation methods may be preferred over derivative-based approximation methods, as the
solvers commonly used in clinical inverse treatment planning systems usually do not provide
derivative information or may produce derivative information that is numerically unstable.

Similar to the derivation of the upper bound, it can be shown that both the line segment
connecting the points (εi−1, p(εi−1)) and (εi, p(εi)), for 2 � i � n − 1, and the line segment
connecting (εi+1, p(εi+1)) and (εi+2, p(εi+2)), for 1 � i � n − 2, are lower bounds for p(ε)

on the interval [εi, εi+1]. The complete proof for the lower bounds is also presented in (Siem
et al 2006a). In figure 2, the bounds are depicted for a typical univariate convex PEF.
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F2

F1

εi ε i+1

Figure 3. Upper (solid line) and lower (dashed lines) bounds for the Pareto efficient frontier on
the interval [εi , εi+1] when derivative information in the Pareto optimal points is available.

3.2.2. Derivative-based approximation methods. In addition to function evaluation
information, these methods use derivative information to estimate the lower bounds. The
WS method is preferably used, as the weighting factors define a supporting hyperplane,
which by definition provides the derivative information (Boyd and Vandenberghe 2004, Craft
et al 2006). In case the EC method is used, Lagrange multipliers may provide the derivative
information. For the latter case, we refer to Alber et al (2002), who applied sensitivity
information in the form of Lagrange multipliers to balance the gradients of the constraints and
the objective function. Their figure 2 even shows the subdifferentials in the points on the PEF
which is shown in their figure 1.

Now suppose that not only n PO solutions p(ε1), . . . , p(εn) are given for the points
ε1 < · · · < εn, but that also the subdifferentials s(ε1), . . . , s(εn) in these points are given.
We use subdifferentials instead of derivatives because p(ε) may be non-differentiable. Let
ε ∈ [εi, εi+1]. Then, the straight line tangent to the point (εi, p(εi)) is a lower bound for p(ε),
that is,

p(ε) � p(εi) + s(εi)(ε − εi). (7)

Within the subinterval [εi, εi+1] the line segments of the tangent lines through the points
(εi, p(εi)) and (εi+1, p(εi+1)) define a lower bound for p(ε) on this subinterval. This is
schematically depicted in figure 3. In (Siem et al 2006a), it is shown that these lower bounds
are tighter than the lower bounds derived from function evaluation information only.

Because Lagrange multipliers could not be accessed from our clinical treatment planning
system, we did not use derivative information and concentrated on the derivative-free
approximation of the Pareto efficient frontier instead.

3.3. Iterative strategies to generate new Pareto solutions

In the literature, the so-called Sandwich algorithms have been proposed for iteratively
approximating univariate convex functions (Fruhwirth et al 1989, Burkard et al 1991, Rote
1992, Yang and Goh 1997). In these methods, upper and lower bounds are constructed making
use of the convexity of the function to be approximated. However, the methods of Fruhwirth
et al (1989) and Rote (1992) rely on the availability of derivative information, which may
not be available when using the ε-constraint method to solve a multi-objective optimization
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problem. Either the information is not available or not accurate due to numerical errors.
In constraint-based routine inverse treatment planning optimization such an approach would
therefore be impracticable. In Yang and Goh (1997), a derivative-free optimization problem
has to be solved in case no derivative information is available. This usually costs many
function evaluations, which may be time consuming.

In the present paper, we present a new Sandwich-type algorithm to approximate a
univariate convex Pareto curve up to some predescribed error δ using function evaluation
information only. The construction of Pareto curves is usually time consuming since multiple
optimization problems have to be solved that each may be large and difficult to solve. Our
method provides an efficient strategy to approximate the Pareto curve and reduce the time
required to solve the optimization problems by use of a new initial solution.

3.3.1. Sandwich algorithms. Sandwich algorithms generate upper and lower bounds
iteratively, starting from a small number of data points (x1, y(x1)), . . . , (xn, y(xn)) with
x1 < · · · < xn that define a set of intervals, I = {[x1, x2], [x2, x3], . . . , [xn−1, xn]}. Now,
let J ⊆ I denote the set of intervals for which the error δj > δ, with j ∈ J . Different
kinds of error measures can be used, and some examples are presented below. An interval
[a, b] from J is selected and partitioned according to some partitioning rule, resulting in two
subintervals [a, c] and [c, b]. The function evaluation y(c) and, if possible, the derivative
y ′(c) are calculated. Whenever the error of any of the two subintervals is greater than δ, this
subinterval is added to J . The procedure is repeated until all intervals have an error smaller
than δ (i.e., until J = ∅).

Different error measures and partition rules have been proposed in the literature. The
most commonly used error measures are (Rote 1992) as follows:

(i) maximum error on interval: δ[a,b] := max
x∈[a,b]

{u(x) − l(x)},
(ii) area enclosed by upper and lower bounds on interval: δ[a,b] := ∫

[a,b][u(x) − l(x)] dx,

(iii) Hausdorff distance on interval: δ[a,b] := max
{

sup
v∈L

inf
w∈U

‖w − v‖, sup
w∈U

inf
v∈L

‖w − v‖},

where [a, b] is the interval-of-interest, u(x) and l(x) are the upper and lower bounds,
respectively, L := {(x, l(x))|x ∈ [a, b]} and U := {(x, u(x))|x ∈ [a, b]}. An advantage
of the last two error measures over the first one is that they do not discriminate between the
two coordinate directions.

Among the derivative-free partition rules, the most frequently used are the interval
bisection rule (i.e., partition the interval into two equal parts) and the maximum error rule (i.e.,
partition the interval at the point where the maximum error is attained) (Rote 1992).

The most important difference between our Sandwich algorithm applied in combination
with the bounds described in section 3.2 and the traditional Sandwich algorithms is that adding
a new point with our algorithm reduces the error not only in the interval where the point is
added, but also in the adjacent neighbouring intervals. This is not the case when lower bounds
based on derivative information are used.

3.3.2. New methods for dynamic Pareto point generation. Recently, four new iterative
strategies to select a new data point to be evaluated have been suggested by Siem et al (2006a).
In the current paper, we apply three of these strategies to iteratively add a new Pareto optimal
solution to the PEF calculated so far:

(i) maximal maximum error measure with the interval bisection rule, where the new data
point is selected exactly in the middle of the interval-of-interest,
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(ii) maximal Hausdorff distance measure with the interval bisection rule, where the new data
point is selected exactly in the middle of the interval-of-interest,

(iii) maximal total uncertainty area measure with the maximum error rule, where the new data
point is selected to minimize the maximal total area of uncertainty.

In the next section, we apply these methods to a convex bi-objective FMO problem using a
simplified clinical test case and show proof of principle.

3.4. Approximation of a high-dimensional Pareto efficient frontier

Convexity bounds. The upper and lower bounds as presented in section 3.2 can be extended to
the higher dimensional case with more than two convex objective functions. Some ingredients
have already been developed by Siem et al (2006b).

Suppose that n PO solutions p(ε1), . . . , p(εn) of the ε-constraint problem (5) are given
for the points ε1, . . . , εn ∈ E l−1 ⊆ Rl−1, where

E := {
ε ∈ Rl−1 : ∃x ∈ X : Fj (x) � εi

j ,∀j = 2, . . . , l
}

is the set of feasible constraint values. For any value of ε in the convex hull of the points
ε1, . . . , εn, we can calculate upper and lower bounds for p(ε). For ε ∈ conv{ε1, . . . , εn} the
upper bound can be found by solving the linear program (LP):

u(ε) := min
α1,...,αn

n∑
i=1

αip(εi)

s.t. ε =
n∑

i=1

αiε
i 0 � αi � 1

n∑
i=1

αi = 1.

(8)

For the lower bound, we can distinguish between the case that no derivative information is
available and the case that this is available. If no derivative information is available, the lower
bound can be found by solving

�0(ε) := max
k=1,...,n




max
zk,zk

i ,t
k

t ky(εk) − ∑
i �=k

zk
i y(εi)

s.t. εktk =
∑
i �=k

zk
i ε

i + zkε

∑
i �=k

zk
i + zk = t k

zk
i � 0

zk = 1.




. (9)

In (9), we take the maximum of n solutions of LPs. Note that not necessarily all of these LPs
are feasible. If an LP is infeasible, we take −∞ as optimal value. The complete derivation of
(8) and (9) can be found in Siem et al (2006b). So to obtain the upper and lower bounds of p(ε),
for ε ∈ E , we must solve n + 1 LPs, which can be solved quickly compared to the ε-constraint
problem (5). It can be shown that u : conv{ε1, . . . , εn} �→ R and �0 : conv{ε1, . . . , εn} �→ R
are piecewise linear on their domain.

Furthermore, if derivative (or subdifferential) information is available by either using
the WS method or by calculating the Lagrange multipliers associated with the ε-constraint
method, we can generalize (7). Then, we obtain

p(ε) � p(εi) + s(εi)T (ε − εi),

where s(εi) is a subdifferential of p in the point εi . So,

�1(ε) = p(εi) + s(εi)T (ε − εi)

is a lower bound of p(ε).
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Since we also know that the Pareto surface p(ε) is decreasing, i.e., for all ε̃, ε̄ ∈ E with
ε̃ � ε̄, p(ε̃) � p(ε̄), we obtain another lower bound:

p(ε) � p(εi), ∀(ε ∈ E|ε � εi), ∀i = 1, . . . , n.

Iterative strategy. Extension of the Sandwich algorithms as presented in section 3.3 to the
multivariate case is not straightforward, since there are no intervals to be considered anymore.

However, a suitable value for ε ∈ E to evaluate can be found by constructing a grid
G ⊆ R�−1, calculating the values of u(ε) and �0(ε) on G ∩ conv{ε1, . . . , εn}, and taking the
value of ε for which the uncertainty is maximal, i.e., we determine

max
ε∈G∩conv{ε1,...,εn}

(u(ε) − �0(ε)). (10)

Let us denote the value of ε, which maximizes (10) by ε0. Next, we calculate p(ε0) by
solving the ε-constraint problem (5), and again calculate the values of the new upper and lower
bounds. We repeat the procedure until we find a sufficiently good approximation of the Pareto
surface. In case we have derivative information we take �1(ε), instead of �0(ε).

Note that the new values of ε0, to evaluate, always lie inside the convex hull of the already
evaluated values ε1, . . . , εn. Therefore, the initial set of values ε1, . . . , εn should be chosen
such that its convex hull conv{ε1, . . . , εn} is sufficiently large.

3.5. Fluence map interpolation

The process to dynamically generate a new PO treatment plan can be accelerated by exploiting
the convexity property of the PEF. Initial fluence maps for the new PO plan can be obtained by
linear interpolation of the fluence maps of neighbouring PO plans. This was first postulated by
Thieke (2003), and is now further developed in the present paper. The interpolated solution lies
in the feasible region and is a first-order approximation of the true intermediate PO solution.
The piecewise-linear upper and lower bounds that were derived in section 3.2 provide limits
for the true objective function values.

In case a new PO treatment plan w∗ has to be generated for a constraint F2(d(w∗)) � ε̃, a
good initial solution can be obtained by interpolation of two neighbouring PO plans, w∗

i and
w∗

i+1, for which F2(d(w∗
i )) = εi and F2(d(w∗

i+1)) = εi+1 and εi � ε̃ � εi+1. Clearly, there
exists a λ ∈ [0, 1] such that ε̃ = λεi + (1 − λ)εi+1. It is straightforward to show that the
interpolated plan, w̃ := λw∗

i + (1 − λ)w∗
i+1, is mapped into the shaded region of the objective

space that is schematically depicted in figure 4.
The interpolated fluence maps can advantageously be used as an initial solution that is

close to the set of PO plans. Starting an optimization run from the interpolated solution will
drastically reduce the computation time in comparison to a new optimization run that starts
from scratch.

4. Clinical case study

4.1. Description of the case study

A simplified clinical head-and-neck case is used to test the approximation algorithms on a
bi-objective FMO problem. The case is represented by an oropharynx tumour (i.e., clinically
T3N2bM0 squamous cell carcinoma originating from the left tonsil) with a planning target
volume (PTV) comprising the gross tumour volume plus unilaterally affected regional lymph
nodes with margins and the elective treatment volume of bilateral cervical lymph nodes
(regions II−V and retropharyngeal nodes). Both parotid salivary glands, the spinal cord and
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F1(d(w ))
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Figure 4. The plan w̃ interpolated from neighbouring Pareto optimal plans w∗
i and w∗

i+1 is mapped
to the shaded region in the objective space. Hence, w̃ is a good initial estimate for the true
intermediate Pareto optimal plan w∗.

PTV

SC

PGPGPG

(a)

PTV

SC

PG

PG

(b)

Figure 5. Delineation of planning target volume (PTV) and organs at risk (PG = parotid glands,
SC = spinal cord + brainstem) on a transversal CT slice (a) and the corresponding three-dimensional
model (b) of the delineated structures for the tested clinical head-and-neck case with oropharyngeal
cancer in posterior oblique view.

the brainstem are organs at risk (see figure 5). For the sake of simplicity, the spinal cord and
brainstem are considered to be one OAR, as is also the case for both the left and right parotids.

The optimization geometry consists of seven equiangular co-planar 6 MV photon beams
containing 5800 bixels of 5 × 5 mm2 each. The dose matrix comprises 60 × 60 × 40 voxels of
4 × 4 × 4 mm3 each. As optimization objective, the mean dose to the parotids is minimized
subject to different constraint values for the target dose heterogeneity (measured in terms of
the relative standard deviation of the dose distribution in the PTV). Minimizing the parotid
gland mean dose is a radiobiologically relevant planning goal if substantial sparing of the gland
function is required (Eisbruch et al 1999), while striving for a homogeneous dose distribution
in the PTV is a clinically relevant but conflicting objective, because of the partial overlap
between the two volumes (see figure 5(a)). In order to generate plans that are clinically
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recognizable, additional constraints were imposed to prevent hot spots in the surrounding of
the PTV and achieve conformality. Plans were normalized to a mean PTV dose of 46 Gy.
Boosting of the gross tumour volume up to 70 Gy was omitted for simplicity of the proof of
principle pursued in this paper.

The objective function for mean parotid dose (MPD) was calculated by the generalized
equivalent uniform dose (gEUDa) function of Niemierko (1999) with a = 1:

F1(d(w)) := gEUD1(d(w)) =
∑
i∈PG

di(w)�vi, (11)

where �vi is the voxel volume relative to the total volume of the organ. The constraint function
for target dose heterogeneity (TDH) is defined as the squared ratio of the PTV dose variance
against the PTV mean dose, d̄PTV, expressed by

F2(d(w)) :=
∑

i∈PTV

(
di(w) − d̄PTV

d̄PTV

)2

�vi. (12)

With regard to the convexity of both functions used in the optimization, Choi and Deasy (2002)
have proven that the gEUDa function is convex for a � 1 and concave for a � 1. Hence, the
MPD is a convex (and linear) function of dose and bixel weight. The TDH function is convex
as well, because its second derivative is constant, provided that d̄PTV is constant.

We used a beta version of the Pinnacle3 Radiation Therapy Planning software
(Version 7.7a, not for clinical use) from Philips Medical Systems (Madison, USA) with
the Research Interface facility (Version 1.0) from RaySearch Laboratories AB (Stockholm,
Sweden) to the inverse treatment planning module P3 IMRT (Release 2.0). This module is
coupled to the quasi-Newton sequential quadratic programming solver NPSOL from Stanford
University (Stanford, USA).

The three strategies mentioned in section 3.3.2 are applied to iteratively add nine new
Pareto optimal solutions to the PEF calculated so far. For comparison, we also consider the
case in which 12 data points have been chosen equidistantly. An initial set of three Pareto
optimal plans was determined by generating the two anchor points that bound the extent of
the PEF in the two objective dimensions and a single interior point. The two anchor points
were found by individually optimizing the two objective functions F1 and F2 of (11) and (12),
respectively.

4.2. Results of the case study

The two anchor points found are (6.2%, 33.4 Gy) and (58.6%, 1.9 Gy), indicating a wide
interval-of-interest in the feasible objective space. Both objective intervals are considered
not to be clinically relevant over the whole range of feasible objective values. It reflects the
extreme sparing of the parotids at the interface with the target volume. Nevertheless, the case is
used to show proof of principle. Solving the constrained optimization problem (6) for TDH �
11.3% yielded a third point (11.3%, 12.7 Gy) in the initial set of Pareto optimal solutions.
The computational times required to solve the constrained optimization problem on a SunFire
250 workstation ranged from 45 to 135 min with an average of 100 ± 10 (1 SD) min, when a
stopping tolerance of 10−5 was applied.

Two-dimensional dose distributions of the three corresponding Pareto optimal plans are
shown in figure 6. From this figure, it can be easily appreciated that an improved sparing
of both parotid glands can be accomplished by reducing dose in the target volume near the
interface with the glands. This comes at the cost of an increased heterogeneity of the dose
distribution in the remaining target volume, causing an increased overall TDH. This effect is
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(a) (b)

(c)

Figure 6. Two-dimensional dose distribution of Pareto optimal plans corresponding to (a) the
leftmost anchor point, (b) the rightmost anchor point and (c) the interior point having a target dose
heterogeneity of 11.3%. All plans have been normalized to a mean target dose of 46 Gy.

most dominantly present in those regions where the PTV and parotid glands overlap. More
caudally, the target dose heterogeneity is significantly smaller.

Starting from the initial set of three Pareto optimal solutions, we constructed upper and
lower bounds to determine a new coordinate for solving another constrained optimization
problem with a new TDH constraint value ε. The results for the three PEF-generating
strategies are shown in table 1. For each of the three strategies, the error measures of
section 3.3.2 are tabulated for each iteration. The equidistant approach gave 15.3, 43.7 and
3.5 as error measures for the maximum error, total uncertainty area and Hausdorff distance
PEF-generating strategies, respectively. As expected, all three iterative strategies give better
results than the equidistant approach. Strategies based on the Hausdorff distance and the total
uncertainty area have an almost equal performance.
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Figure 7. Estimated PEF with upper (red) and lower (black) bounds for (a) the maximum error,
(b) the total uncertainty area and (c) the Hausdorff distance criterion after nine iterations, and
(d) for the 12 equidistant points.

Table 1. Error measures after each iteration for the maximum error (ME), total uncertainty area
(MA) and Hausdorff distance (MH) PEF-generating strategies.

ME MA MH

Iteration ME MA MH ME MA MH ME MA MH

0 19.6 290.5 9.9 19.6 290.5 9.9 19.6 290.5 9.9
1 11.4 241.7 9.2 17.6 121.8 6.2 18.5 157.8 8.3
2 9.5 231.7 9.2 15.8 78.8 3.8 17.1 87.8 4.4
3 8.4 103.6 7.1 9.1 51.3 1.9 15.9 61.7 3.8
4 8.3 100.1 7.1 9.1 36.1 1.8 11.4 36.4 1.8
5 7.7 98.6 7.1 9.1 27.8 1.5 8.4 27.3 1.3
6 6.1 40.6 3.5 8.3 22.1 1.0 8.4 22.8 1.2
7 4.3 39.8 3.5 6.8 17.4 0.9 8.4 17.2 0.9
8 1.8 21.6 1.3 6.8 14.0 0.9 8.3 13.8 0.8
9 1.7 21.4 1.3 6.8 11.2 0.7 8.3 11.7 0.6

In figure 7, the piecewise-linear upper and lower bounds after nine iterations are shown
for the PEFs generated with the three iterative strategies. From this figure, it can be seen that
a PEF-generating strategy based on either the Hausdorff distance or the total uncertainty area
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is to be preferred over the maximum error criterion. After all, the latter criterion tends to add
new data points to the steepest part of the PEF, where the difference between the upper and
lower bounds is likely to be largest. The former two criteria are not biased towards any of
the two coordinate directions and will thus populate the PEF with points that are better spread
according to the curvature of the underlying graph.

5. Discussion and conclusion

Formulating the fluence map optimization model in inverse treatment planning for IMRT as
a multi-objective optimization problem eliminates the a priori selection of weighting factors
(Thieke 2003) and facilitates the understanding of trade-offs between conflicting treatment
plan evaluation criteria (Craft et al 2005). The quantification of these trade-offs comes down
to finding the Pareto efficient frontier in the objective space. However, no closed form of the
PEF exists in general, the set of Pareto optimal solutions is infinitely large and each solution
requires a separate single-objective optimization problem to be solved. Therefore, it is most
practical to generate a discrete subset of representative solutions that characterizes the full
PEF.

In this paper, we present an algorithm to dynamically compute a small set of globally
Pareto optimal treatment plans that approximates the PEF up to some predefined error by
solutions that are well distributed over the PEF and take its curvature into account. This
method relies on the convexity of treatment plan evaluation criteria that are used as objective
functions to steer the optimization process. Previously, it has been shown that many treatment
plan evaluation criteria commonly used in existing inverse treatment planning systems are
convex or can be transformed into convex criteria (Romeijn et al 2004).

The current paper is mainly restricted to a bi-objective FMO problem and describes a
method to extend to higher dimensions. Nevertheless, it is our experience that in practice the
clinically relevant trade-offs are often limited to two or three objectives at most. Physicians
lower the dimensionality of the problem by handling objectives as constraints.

Solutions were found by using a constraint-based method that minimizes one of the
objectives while the other objective is handled as constraint by setting an upper bound value.
We exploit the property that the resulting univariate PEF is convex to approximate it by
constructing improvingly tighter piecewise-linear upper and lower bounds as new points on
the PEF are generated according to an iterative strategy. We have applied the method for
different error measures and partitioning rules on a simplified clinical case. By applying
different iterative strategies, three estimates for the Pareto curve have been obtained and
compared. Strategies based on error measures that are unbiased with respect to the coordinate
directions were found to have the best performance. Normalizing the objective dimensions
into the interval [0, 1] such that error measures are not dominated by the large-magnitude
objective function(s) might be applied to overcome the bias.

A non-Sandwich algorithm based approach was explored in a recent paper by Craft et al
(2005) considering two-dimensional trade-offs between tumour dose homogeneity versus
OAR sparing. To populate the PEF with individual points, these authors applied the standard
method of altering weighting factors in a weighted-sum (WS) objective scalarization approach
as well as the normalized normal constraint (NC) method (Messac et al 2003). For the WS
method the challenge is to systematically choose the weights such that a representative set of
Pareto optimal solutions is obtained. The NC method is designed to resolve this problem by
using constraints and thus an even spread of points over the PEF can be guaranteed. However,
both the WS and NC method do not exploit the convexity of the PEF to compute the next Pareto
optimal point, and hence ignore the accumulated curvature information that is contained in
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the set of points computed so far. Our algorithm overcomes this drawback by adding a new
point to the PEF where the uncertainty between the lower and upper bound approximation is
maximally reduced. This guarantees an efficient and effective placement of points on the PEF.

Others have recently developed a multi-dimensional PEF-generating recursive Sandwich
algorithm (called PGEN) that can be applied in combination with any WS-method-based
inverse treatment planning system (Craft et al 2006). The rationale behind this algorithm is in
essence the same as for our method, except that it exploits the mean value theorem in addition
to convexity properties. This facilitates a systematic choice of weighting factors and the use
of derivative information to construct upper and lower bounds of the PEF.

In the present paper, we proved that lower bounds resulting from the combination of
function evaluation and derivative information are tighter than those derived from function
evaluation information only. In that respect, the WS-method-based Sandwich algorithm
developed by Craft et al (2006) has a clear advantage over our EC-method-based Sandwich
algorithm. Another advantage of the WS method is that it is suitable for use with existing
single-objective solvers. Comparison of the weighted-sum approach versus the constrained-
based approach remains to be established in a future study. In the first step of the PGEN
algorithm, anchor points are found by individually optimizing the objective functions. It
is highly plausible that these anchor points fall beyond the limits of the clinical interval-
of-interest. Because weighting factors that correspond to the extreme points of the clinical
interval-of-interest are unknown beforehand, constraints should be added to obtain clinically
feasible solutions. In this regard, our EC method is cleaner.

Our method has at least three unique advantages over the other PEF-generating methods,
which speed up the process to generate a representative set of Pareto optimal plans. In the first
place, our derivative-free Sandwich algorithm also reduces the error in neighbouring intervals
when adding a new point to the Pareto curve. Secondly, fluence map interpolation can be
used to provide an initial solution for a new Pareto point to be added to the PEF. Thirdly, our
method allows us to restrict to a clinically relevant subregion of the PEF by optimizing on the
upper and lower limit of the interval-of-interest of a criterion as set by the constraint.

Our findings have shown that a PEF can be generated efficiently and effectively with
a derivative-free Sandwich algorithm that is based on the ε-constraint method. Trade-offs
between tumour coverage and critical organ sparing have been quantified and mapped for a
clinical case with two objectives. The automatic generation of a set of representative Pareto
plans avoids the human iteration loop in current inverse treatment planning and facilitates
a posteriori decision making in treatment planning.
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1. Introduction
In the field of discrete approximation, we are inter-
ested in approximating a function given a certain
discrete data set. We sometimes know beforehand
that the function that is to be approximated has
some characteristics. It could be known, for example,
that it is a nonnegative, increasing, or convex func-
tion. However, the approximation does not necessar-
ily inherit these characteristics. In Siem et al. (2008a),
e.g., nonnegativity preserving (trigonometric) polyno-
mials and rational functions are studied. In that paper,
monotonicity preserving polynomials are also stud-
ied. In Burkard et al. (1991), Fruhwirth et al. (1989),
Rote (1992), and Yang and Goh (1997) the so-called
sandwich algorithms are proposed for univariate
approximation of convex functions. In these algo-
rithms, upper and lower bounds of the convex func-
tion are constructed. The methods in Burkard et al.
(1991), Fruhwirth et al. (1989), and Rote (1992) make
use of derivative information, which is not always
available, especially in case of black-box functions. In
Yang and Goh (1997), a derivative-free optimization
problem has to be solved in case there is no deriva-
tive information. This requires many function value
evaluations, which may be time consuming. In §3 we
treat these sandwich algorithms in more detail.

In this paper we present a methodology to find
approximations of univariate convex functions via
upper and lower bounds. Besides convexity, we

assume that the function value can be calculated
accurately for each point in the interval of inter-
est. The methods proposed in this paper are espe-
cially valuable for those applications for which one
function evaluation is time consuming (say, minutes
or even hours per evaluation). An important dif-
ference with the methods studied in Burkard et al.
(1991), Fruhwirth et al. (1989), and Rote (1992) is that
our methodology uses only function value evalua-
tions. Based on convexity, we construct upper and
lower bounds of a convex univariate function y2 � 7→

�, which is only known on a finite set of points
x11 0 0 0 1 xn ∈ U ⊆ � with values y4x151 0 0 0 1 y4xn5 ∈ �,
and for which no derivative information is known. In
den Boef and den Hertog (2007), this kind of bound
is used for efficient line searching of convex func-
tions. We show that if derivative information is avail-
able, tighter lower bounds can be obtained than if this
information is not available. In our previous paper
(Siem et al. 2008b), it is shown that under certain
conditions, these upper and lower bounds can be
improved by using suitable transformations. Further-
more, we present iterative strategies that determine
in each iteration which new input data point is best
to be evaluated next, until a desired accuracy is met.
Different criteria can be used to select this new input
data point. The iterative strategies that we use also
belong to the class of sandwich algorithms. However,
these sandwich algorithms are based on derivative
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information. Therefore, in §3 we introduce a version
of the sandwich algorithm that can be used when only
function value information is available. Moreover,
we introduce two other iterative strategies, based on
function value information only. For these two strate-
gies, we do not give convergence proofs. In §4 we
give convergence proofs for our new sandwich algo-
rithms. Under certain conditions on the derivatives
of y4x5, we can show quadratic convergence for differ-
ent variants of our sandwich algorithms. Under other
conditions, linear convergence can be shown for our
sandwich algorithms. With some numerical examples,
we compare different variants of our new iterative
strategies and show that our methods give better
results than choosing the input data equidistantly.
Also, we apply these methods to approximate the
convex optimal value function of a strategic invest-
ment model.

The methods described in this paper can be used in
several ways.

• First, our method can be used for optimizing a
black-box function that is time consuming to evaluate
and for which no derivative information is available.
This function, for example, could be represented by
a deterministic computer simulation. As described by
Zabinsky et al. (2003), in engineering and science it is
often necessary to estimate univariate black-box func-
tions based on a small number of function value eval-
uations (without getting derivative or subgradient
information). In that paper, a derivative-free approx-
imation method is developed for Lipschitz functions.
The approximation of the black-box function can, for
example, be used for optimization. See, e.g., Baran
(2004) and Hansen et al. (1991) for univariate appli-
cations. Our approximation method can also be used
for integration. In Baran et al. (2008), an approxima-
tion method is developed for integration of univariate
black-box functions for which no derivative informa-
tion is available. As in Zabinsky et al. (2003), they
assume that the function is Lipschitz continuous and
that the Lipschtitz constant is known.

• Second, our methods can be used for obtain-
ing parametric curves in an efficient way. Mathemat-
ical modeling packages (e.g., AIMMS) often offer the
possibility of approximating parametric curves and
are often based on optimization runs for parame-
ter values on an equidistant grid for the parame-
ter range. Especially when an optimization run is
time consuming, our method may reduce the time
needed significantly. Note that for our methods it is
necessary to know that the parametric curve is con-
vex. For many classes of problems, convexity of the
parametric curves can indeed be proven. In Slack
and Lewis (2002), it is shown that many paramet-
ric curves in the area of operations strategy are con-
vex; see also Bitran and Morabito (1999) for (convex)

parametric curve analysis of manufacturing system
designs. In Demeulemeester et al. (1998), the approxi-
mation of convex time/cost trade-off curves in project
networks is discussed. Many engineering problems
also lead to convex parametric curves. The paramet-
ric curve example in den Boef and den Hertog (2007)
stemming from resource management in an in-home
network is a specific example in this area. In this
application the so-called buffer device costs should be
approximated as a function of the data transportation
capacity. Approximations for convex buffer-bandwith
parametric curves are also developed in Kumaran
and Mandjes (2001). It is well known that parametric
curves are often nondifferentiable.

• The third possible application concerns the ap-
proximation of a convex Pareto frontier, resulting
from, for example, a biobjective optimization prob-
lem. In particular, if calculating one Pareto point
is already time consuming, our methods may sig-
nificantly reduce the time needed. For example, in
intensity-modulated radiation therapy (IMRT), the
efficient approximation of convex Pareto frontiers is
a very important topic. The aim is to deliver the
right radiation dose to the tumour while sparing the
healthy organs. This leads to (convex) multiobjective
optimization problems; see, e.g., Kufer et al. (2003),
Craft et al. (2006), and Hoffmann et al. (2006). Again,
we note that to apply our methods, we should know
that the Pareto frontier is convex. In general, this can-
not be guaranteed. However, for several important
classes of problems, convexity is guaranteed. More-
over, in certain cases, transformations of the objective
functions are possible such that the functions become
convex, and consequently, the resulting Pareto fron-
tier is convex. For example, see Romeijn et al. (2004)
and Hoffmann et al. (2008), in which it is shown
that most of the biological objectives used in IMRT
can be made convex using appropriate transforma-
tions. Another nontrivial example of convex Pareto
frontiers are the exchange curves in inventory man-
agement; see, e.g., Silver et al. (1998). In Diakonikolas
and Yannakakis (2009), many other biobjective Pareto
examples are given. It is well known that parametric
curves are often nondifferentiable.

• The fourth possible application concerns the effi-
cient approximation of convex (or concave) functions
in optimization problems. A well-known method is to
linearize such convex functions, such that the prob-
lem gets a simpler format, e.g., network program-
ming or mixed-integer linear programming. The aim
is to find an accurate linearization with minimal num-
ber of linear pieces. This is also the aim in Guérin
et al. (2006). Moreover, as will be explained later
in this paper, our method also yields a piecewise-
linear convex underestimator that may be used in
many optimization algorithms, especially in global
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optimization. Our new approximation method may,
for example, be used in the DIRECT global optimiza-
tion algorithm (see Chiter 2006) as an alternative for
the selecting and dividing strategy of hyperrectangles.

The remainder of this paper is organized as follows.
In §2, we show how we can obtain upper and lower
bounds to approximate univariate convex functions
and show that if derivative information is available,
we can obtain even tighter bounds. In §3, we discuss
iterative strategies for determining new data points to
be evaluated. In §4, we consider convergence results.
In §5, we study numerical examples. Finally, in §6, we
give our conclusions and discuss possible directions
for further research.

2. Approximating Convex Functions
2.1. Bounds Based on Function Value Evaluations
Let y2 � → � be a convex function. Suppose that
n input data points x11 0 0 0 1 xn ∈ 6x11xn7⊆�, are given,
together with the n corresponding output data points
y4x151 0 0 0 1 y4xn5 ∈�. It is well known that the straight
line through the points 4xi1y4xi55 and 4xi+11y4xi+155,
for 1 ≤ i ≤ n − 1, is an upper bound of the curve
y4x5, for x ∈ 6xi1xi+17; see Figure 1. Furthermore, it
is known that the straight lines through the points
4xi−11y4xi−155 and 4xi1y4xi55, for 2 ≤ i ≤ n − 1, and
4xi+11y4xi+155 and 4xi+21y4xi+255, for 1 ≤ i ≤ n− 2, are
lower bounds of the curve y4x5, for x ∈ 6xi1xi+17; again
see Figure 1. We summarize this in the following the-
orem. In the following, we define

yi4x5 2=
xi+1 − x

xi+1 − xi
y4xi5+

x− xi

xi+1 − xi
y4xi+15

for 1 ≤ i ≤ n− 10 (1)

x i–1 x i x i+1 x i+2

y

Figure 1 Upper and Lower Bounds for a Convex Function on the
Interval 6x i 1 x i+17 Using Only Function Value Evaluations

Theorem 1. Let n input/output data points 4x11y4x1551
0 0 0 1 4xn1y4xn55, with x1 < x2 < · · · < xn be given, and let
y4x5 be convex. Suppose furthermore that xi ≤ x ≤ xi+1, for
some 1 ≤ i ≤ n− 1. Then

y4x5≤ yi4x51 (2)

and

y4x5≥ yj4x5 for 1 ≤ j < i and i < j ≤ n− 10 (3)

2.2. Bounds Based on Derivatives
In addition to the bounds described in §2.1, we
can also use derivative information (if present) to
obtain lower bounds. Suppose that y4x5 is con-
vex and differentiable, and that not only are the n
data points 4x11y4x1551 0 0 0 1 4xn1y4xn55 given, but also
the derivative information 4x11y′4x1551 0 0 0 1 4xn1y′4xn55.
Then we have

y4x5≥ y4xi5+ y′4xi54x− xi5 ∀x ∈ 6x11xn71

∀ i = 11 0 0 0 1n0 (4)

This lower bound is schematically shown in Figure 2.
The following theorem states that these lower bounds
are tighter than the lower bounds derived in the pre-
vious subsection, which do not use derivative infor-
mation. We define the functions

ti4x5 2= y4xi5+ y′4xi54x− xi5 for 1 ≤ i ≤ n− 10 (5)

Theorem 2. Let n input/output data points 4x11y4x1551
0 0 0 1 4xn1y4xn55, with x1 < x2 < · · · < xn be given, and let
y4x5 be differentiable and convex. Suppose furthermore that
xi ≤ x ≤ xi+1, for some 1 ≤ i ≤ n− 1. Then

ti4x5≥ yi−14x51 if i ≥ 21 (6)

and
ti+14x5≥ yi+14x51 if i ≤ n− 20 (7)

y

x i x i+1

Figure 2 Upper and Lower Bounds for a Convex Function on the
Interval 6x i 1 x i+17, Using Derivative Information
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3. Iterative Strategies
In this section, we deal with iterative strategies to
approximate univariate convex functions. These
methods select a new input data point to evaluate in
every iteration, until a desired accuracy is met. In §3.1,
we consider the so-called sandwich algorithms that
are already known from literature. These sandwich
algorithms can be used in combination with the lower
bound based on derivative information (4). In §3.2,
we introduce a version of the sandwich algorithm that
can be used in combination with the lower bounds
based on function value evaluations only (3). Further-
more, we propose two other iterative strategies to add
new input data points.

3.1. Sandwich Algorithms Using
Derivative Information

In this section, we consider sandwich algorithms
based on derivative information to construct approx-
imations that satisfy a prescribed accuracy �. There
is a vast literature on these sandwich algorithms; see
Burkard et al. (1991), Fruhwirth et al. (1989), Rote
(1992), and Yang and Goh (1997). In these sandwich
algorithms, upper and lower bounds are generated in
an iterative way. We start with evaluating the func-
tion that is to be approximated at a “small” num-
ber of input data points, x11 0 0 0 1 xn ∈ 6x11xn7 ⊆ �; i.e.,
we calculate y4x151 0 0 0 1 y4xn5 ∈ �, and the derivative
values y′4x151 0 0 0 1 y′4xn5 ∈ �. Then we calculate the
associated upper and lower bounds (2) and (4). The
input data points x11 0 0 0 1 xn, with x1 < · · · < xn define
a set of intervals I = 86x11x271 6x21x371 0 0 0 1 6xn−11xn79.
Let �j denote the error for interval j , and let J ⊆ I
denote the set of intervals for which the error �j > �.
We can use different kinds of error measures, which
we mention below. Next, we partition an arbitrary
interval in the set J according to some of the par-
tition rules, which we mention below, and calculate
the output value y and its derivative y′ at the input
value x0, where the interval is partitioned; i.e., we cal-
culate y4x05 and y′4x05. Then we determine the new
upper and lower bounds. Whenever the error of any
of the two subintervals is greater than �, we add this
interval to the set J . We repeat this procedure until all
intervals in J have an error smaller than �, i.e., until
J = �. This procedure is summarized in Algorithm 1.

Algorithm 1 (Sandwich algorithm with derivative
information)

INPUT:
An initial set of intervals J, for which
�j >�, for all j ∈ J.

WHILE J 6= � DO
Select interval 6a1 b7 ∈ J.
J 2= J\86a1 b79.
Partition 6a1 b7 into two subintervals

6a1 c7 and 6c1 b7.
Calculate y4c5 and y′4c5.
Calculate the new upper and lower bounds.

IF �6a1 c7 >�
J 2= J ∪ 86a1 c79.

ENDIF
IF �6c1 b7 >�
J 2= J ∪ 86c1 b79.

ENDIF
ENDWHILE

Different error measures and different partition
rules have been proposed in literature. The error mea-
sures as mentioned in Rote (1992) are as follows:

1. Maximum error on interval (�-norm): ��

6a1 b7 =

max
x∈6a1 b7

8u4x5− l4x59;

2. Uncertainty area enclosed by bounds on interval
(1-norm): �1

6a1 b7 =
∫

6a1 b7
4u4x5− l4x55 dx;

3. Hausdorff distance on interval:

�H
6a1 b7 = max

{

sup
v∈L

inf
w∈U

�w− v�1 sup
w∈U

inf
v∈L

�w− v�

}

1

where 6a1 b7 is the interval of interest, u4x5 is the upper
bound, l4x5 is the lower bound, L = 84x1 l4x55 � x ∈

6a1 b79, and U = 84x1u4x55 � x ∈ 6a1 b79. An advantage of
the last two error measures is that they do not dis-
criminate between the two coordinate directions.

The partition rules as mentioned in Rote (1992) are
as follows:

1. Interval bisection: Interval is partitioned into two
equal parts.

2. Maximum error: Interval is partitioned at the
point where the maximum error is attained.

3. Slope bisection: Find the supporting line whose
slope is the mean value of the slopes of the tangent
lines at the endpoints. Partition the interval at the
point where this line is tangent to the graph of the
function.

4. Chord rule: Find the supporting tangent line
whose slope is equal to the slope of the line connect-
ing the two endpoints. Partition the interval at the
point where this line is tangent to the graph of the
function.

3.2. Iterative Strategies Using Only Function
Value Information

We cannot use the sandwich algorithms as described
in §3.1 in combination with the lower bounds based
on function value evaluations only as described in (3)
because we do not have derivative information. If we
use the lower bounds from (3), adding a new point
reduces the error not only in the interval where the
point is added, but most possibly also in the neigh-
bouring intervals. This is not the case if we use lower
bounds based on derivative information. Therefore,
in this section we adjust Algorithm 1 such that it
can be applied in combination with the lower bounds
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(3) based on function value evaluations only. The
adjusted procedure is summarized in Algorithm 2. An
important difference is that in Algorithm 2, we have
to update the set J in a different way. We have to
check whether the neighbouring intervals still belong
to J . Furthermore, another difference is that we select
the new input data point in the interval in which the
error measure is largest instead of selecting an arbi-
trary interval. This may cause the error to decrease
faster. Note that for the sandwich algorithm in §3.1,
by selecting the interval where the error is maximal,
the accuracy � is not reached earlier than an arbitrary
interval J is selected.

Algorithm 2 (Sandwich algorithm with only function
value information)

INPUT:
An initial set of intervals J, for which
�j >�, for all j ∈ J.

WHILE J 6= � DO
Select interval 6a1 b7 ∈ J for which �6a1 b7 is
maximal.

J 2= J \ 86a1 b79
Partition 6a1 b7 into two subintervals 6a1 c7
and 6c1 b7.

Calculate y4c5.
Calculate the new upper and lower bounds.
IF �6a1 c7 >�
J 2= J ∪ 86a1 c79

ENDIF
IF �6c1 b7 >�
J 2= J ∪ 86c1 b79

ENDIF
Check if the errors of neighbouring
intervals are still larger than �, and
if not, remove them from the set J.

ENDWHILE

Note that we use all three error measures, as men-
tioned in §3.1. With respect to the four partition rules
mentioned in §3.1, we will only use the interval bisec-
tion rule because we focus on cases for which there
is function value information only (no derivative or
subgradient information).

Finally, we introduce two other iterative strategies.
These add a new input data point such that the uncer-
tainty area after adding that input data point is min-
imized until the uncertainty area is below a certain
level �. However, we do not know the uncertainty
area after adding a new data point, because we do not
know the output value y of that input data point. We
solve this problem as follows. Suppose we have the
input/output data points 4x11y4x1551 0 0 0 1 4xn1y4xn55,
with the corresponding upper and lower bounds; see
Figure 3.

Then, if we locate the 4n + 15st point at 4x01y05,
the uncertainty area after adding this point to our
data reduces. A new data point must be located on

x

y

Figure 3 Upper and Lower Bounds for a Convex Function, Based on
Function Value Evaluations

the line segment between 4x01 l4x055 and 4x01u4x055,
but it needs not to be identified now. Locating a test
point on the segment, namely, at the point 4x01y05
where l4x05 ≤ y0 ≤ u4x05, we can estimate the uncer-
tainty area as a function of x0 and y0. Therefore, a first
approach is that by taking the average with respect
to y0 in the range 6l4x051u4x057, we calculate the aver-
age uncertainty area as a function of x0. A second
approach is that we calculate the worst case with
respect to y0 in the range 6l4x051u4x057, which is again
a function of x0.

Thus, we can evaluate the next data point x0,
according to the following rules:

• Average area rule: We take the value of x0, where
the average uncertainty area after the addition is
minimal.

• Worst-case area rule: We take the value of x0,
where the maximal uncertainty area after the addition
is minimal.

Let us now describe this more mathematically.
Let us denote the upper bound after adding the
point 4x01y05 as u4x3 4x01y055 and the lower bound as
l4x3 4x01y055. Then the area between the upper bound
and the lower bound is given by

A4x01y05=

∫

X

[

u4x3 4x01y055− l4x3 4x01y055
]

dx1 (8)

where X = 6x11xn7 is the total interval. As mentioned
above, we define the average uncertainty area by

°A4x05 =
1

u4x05− l4x05

·

∫

Y 4x05

∫

X

[

u4x3 4x01y055− l4x3 4x01y055
]

dx dy01

(9)

where Y 4x05= 8y ∈� � l4x05≤ y ≤ u4x059, and u4x05 and
l4x05 are the bounds, based on the original data, before
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adding a new point. The maximal uncertainty area is
defined by

Amax4x
05

= max
y0∈Y 4x05

∫

X

[

u4x3 4x01y055− l4x3 4x01y055
]

dx0 (10)

We are now interested in finding the value of x0 ∈X
for which °A4x05 or Amax4x

05 is minimal. This means
that we solve the following problem

min
x0∈X

°A4x051 (11)

or
min
x0∈X

Amax4x
050 (12)

We repeat this until the error is below a desired
accuracy level �. In Figure 4, the optimal choices for
the average area and the worst-case area rules are
illustrated. The “x” denotes the next point that is
evaluated.

Note that the use of barycentric coordinates simpli-
fies the computation of the integrals in (9) and (10)

0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

x

y

0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

x

x

x

y

(a) Average area rule
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Figure 4 Illustration of Average Area Rule and Worst-Case Area Rule

a lot. For a description of how to use barycentric coor-
dinates, we refer to the proof of Theorem 6. The min-
imization problem in (11) and (12) is solved using
a brute-force method, i.e., an exhaustive search on a
fine grid.

In §4, we present convergence results for the
(sandwich) Algorithm 2, and in §5, we show some
numerical examples to illustrate and compare the dif-
ferent iterative strategies.

4. Convergence
In this section, we consider the convergence of Algo-
rithm 1 and present new convergence results of
Algorithm 2.

4.1. Sandwich Algorithms
Concerning convergence proofs for sandwich algo-
rithms, Fruhwirth et al. (1989) proved that (sandwich)
Algorithm 1 in the case of Hausdorff distance is of
order O41/n25, where n denotes the number of evalu-
ation points. Burkard et al. (1991) obtained the same
order for the maximum error (�-norm). All these
convergence results require that the right derivative
in the left endpoint and the left derivative in the
right endpoint of the interval are finite. Guérin et al.
(2006) derived an optimal adaptive sandwich algo-
rithm for which they proved O41/n25 convergence
without assuming bounded right and left derivatives
at the left and right endpoints, respectively. Note that
these sandwich algorithms use derivative information
in each evaluation point. Yang and Goh (1997) pro-
pose a sandwich algorithm that uses only function
evaluations. In each major iteration they have to min-
imize y4x5 − kix for each interval i, in which ki is a
certain constant. They correctly claim that there are
derivative-free methods for such problems, but these
problems require many function evaluations. Because
Yang and Goh (1997) assume that y4x5 is easy to com-
pute, these many extra function evaluations are no
problem. However, as indicated in §1, we focus on sit-
uations in which y4x5 is time consuming to compute
(say, minutes or even hours per evaluation).

In this section, we prove that our upper and lower
bounds that do not use derivative information for
equidistant input data points are of order O41/n25
for the maximum error (�-norm), for the uncertainty
area (1-norm), and for the Hausdorff distance. These
results also require bounded right and left derivatives
at the left and right endpoints, respectively. Notice
that in the case of approximating a convex Pareto
frontier in particular, this assumption may be vio-
lated; see, e.g., Example 5.2. When this assumption
does not hold, we prove an O41/n5 convergence for
our upper and lower bounds for equidistant input
data points in the case of Hausdorff distance and the
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uncertainty area (1-norm). Note that such a conver-
gence result certainly does not hold for the maximum
error (�-norm). From these results it will follow in
this section that (sandwich) Algorithm 2, using the
interval bisection partitioning rule, converges at least
at the same rate as in the equidistant case for all error
measures.

4.2. Approximation Theory
In approximation theory, error bounds are usually
given for the �-norm and involve some global prop-
erty of the function. The following results are taken
from the book by Szabados and Vértesi (1990), which
contains a detailed survey on error bounds for uni-
variate interpolation. The best error bound (in the
�-norm) known is O41/

√
n5 for Lipschitz f for n

function evaluations, obtained by Bernstein approxi-
mation. This improves to O41/n5 if f ′ is Lipschitz. If
the approximation is allowed to be nonconvex, then
an O44logn5/n5 error bound is obtained for Lipschitz
f by Lagrange interpolation at the Chebyschev nodes
and O41/n25 if f ′ is continuous. Note that our conver-
gence results improve Bernstein’s convergence results
for convex approximation.

4.3. Convergence Rates
In Theorems 3, 4, and 5, we give convergence results
for equidistant input data points for three different
error measures. For simplicity, we write yi = y4xi5.

Theorem 3. Suppose that y 2 6x11xn7 7→ � is con-
vex and is known on the equidistant input data points
x11 0 0 0 1 xn. Furthermore, suppose that the right derivative
y′

+
in x1 and the left derivative y′

−
in xn exist. Then, we

have for the maximum error ��

6x11xn7
between the upper and

lower bounds u4x5 and l4x5 of Theorem 1 that

��

6x11xn7 ≤
xn − x1

n− 1
4y′

−
4xn5− y′

+
4x1550

Furthermore, suppose that y is C26x11xn7. Then, we have
for the maximum error ��

6x11xn7
between the upper and lower

bounds u4x5 and l4x5 of Theorem 1 that

��

6x11xn7 ≤
4xn − x152

4n− 152
�y′′

��0

Proof. Let �i4x5 = 4xi+1 − x5/h, where h is the
length of the interval 6xi1xi+17. For the intervals
6xi1xi+17, with i = 11 0 0 0 1n−2, we subtract the “right”
lower bound (3) from the upper bound (2):

ãyi4x5= �i4x54yi
− 2yi+1

+ yi+250 (13)

Assuming that the right derivative y′
+

in x1 exists, the
left derivative y′

−
in xn exists, and using the convexity

of y4x5, we obtain yi+2 −yi+1 ≤ yn −yn−1 ≤ hy′
−
4xn5 and

yi − yi+1 ≤ y1 − y2 ≤ −hy′
+
4x15. Substituting these into

(13) gives

ãyi4x5≤ ��

6x11xn7 ≤ h4y′

−
4xn5− y′

+
4x155

≤
xn − x1

n− 1
4y′

−
4xn5− y′

+
4x1550 (14)

For the interval 6xn−11xn7, we can also obtain (14) by
subtracting the “left” lower bound (3) from the upper
bound (2).

If we assume that y is C26x11xn7, using Taylor’s
remainder formula, we have that yi+2 = yi+1 +

hy′4xi+15 + 1
2h

2y′′4�15, where �1 ∈ 6xi+11xi+27, and yi =

yi+1 − hy′4xi+15 + 1
2h

2y′′4�25, where �2 ∈ 6xi1xi+17. Sub-
stituting these into (13) gives

ãyi4x5 ≤ ��

6x11xn7 ≤
1
2h

24y′′4�15+ y′′4�255

≤
4xn − x152

4n− 152
�y′′

��0 (15)

For the interval 6xn−11xn7, we can also obtain (15) by
subtracting the left lower bound (3) from the upper
bound (2). �

Theorem 4. Suppose that y2 6x11xn7 7→ � is con-
vex and is known on the equidistant input data points
x11 0 0 0 1 xn. Then, we have for the total uncertainty area
�1
6x11xn7

between the upper and lower bounds u4x5 and l4x5
of Theorem 1 that

�1
6x11xn7 ≤

xn − x1

n− 1
4ymax

− ymin51 (16)

in which ymax = maxx∈6x11xn7 y4x5 and ymin = minx∈6x11xn7

y4x5. Furthermore, suppose that the right derivative y′
+
in

x1 exists and that the left derivative y′
−
in xn exists. Then,

we have for the total area �1
6x11xn7

between the upper and
lower bounds u4x5 and l4x5 of Theorem 1 that

�1
6x11xn7 ≤

4xn − x152

24n− 152
4y′

−
4xn5− y′

+
4x1550 (17)

Proof. As in the proof of Theorem 3, let �i4x5 =

4xi+1 − x5/h, where h is the length of the interval
6xi1xi+17. For the intervals 6xi1xi+17, with i = 11 0 0 0 1
n− 2, by (13) we have

Ai ≤

∫ xi+1

xi
�i4x54yi

− 2yi+1
+ yi+25 dx

= 1
2h4y

i
− 2yi+1

+ yi+251 (18)

where Ai denotes the uncertainty area on 6xi1xi+17.
In the derivation of inequality (18), we only used the
right lower bound. For the interval 6xn−11xn7, we do
the same, but then with the left lower bound. We then
obtain

An−1 =

∫ xn

xn−1
�n−14x54yn−2

− 2yn−1
+ yn5 dx

= 1
2h4y

n−2
− 2yn−1

+ yn50
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Then the total uncertainty area is given by

�1
6x11xn7 =

n−1
∑

i=1

Ai ≤
1
2h4y

1
− y2

− yn−1
+ yn5

≤ h4ymax
− ymin51 (19)

which shows (16).
Now we assume that the right derivative y′

+
in x1

exists and that the left derivative y′
−

in xn exists. Using
the convexity of y4x5, we have yn − yn−1 ≤ hy′

−
4xn5,

and y1 − y2 ≤ −hy′
+
4x15.

Then, instead of (19), we obtain

�1
6x11xn7 ≤

1
2
h24y′

−
4xn5− y′

+
4x155

≤
4xn − x152

24n− 152
4y′

−
4xn5− y′

+
4x1551

which shows (17). �

Theorem 5. Suppose that y 2 6x11xn7 7→ � is con-
vex and is known on the equidistant input data points
x11 0 0 0 1 xn. Furthermore, suppose that the right deriva-
tive y′

+
in x1 exists and that the left derivative y′

−
in xn

exists. Then, we have for the Hausdorff distance �H
6xi1xi+17

between the upper and lower bounds u4x5 and l4x5 of The-
orem 1 on the interval 6xi1xi+17 that

�H
6xi1xi+17 ≤

xn − x1

n− 1
4y′

−
4xn5− y′

+
4x1550 (20)

Furthermore, suppose that y is C26x11xn7. Then, we have
for the Hausdorff distance �H

6xi1xi+17
between the upper and

lower bounds u4x5 and l4x5 of Theorem 1 on the interval
6xi1xi+17 that

�H
6xi1xi+17 ≤

4xn − x152

4n− 152
�y′′

��0 (21)

Proof. It is well known (see Fruhwirth et al. 1989)
that the Hausdorff distance is always less than or
equal to the maximum error. Therefore, (20) and (21)
follow immediately from Theorem 3. �

In the following corollary, we show that the results
of Theorems 3, 4, and 5 imply that (sandwich) Algo-
rithm 2 with the interval bisection rule converges
at least at the same rate.

Corollary 1. If we apply Algorithm 2 in combination
with the interval bisection rule instead of equidistant input
data points, it will converge at least at the same rate as in
the results in Theorems 3, 4, or 5, if, respectively, ��, �1,
or �H is used.

Proof. Let us first concentrate on the �� measure.
Suppose that we want to obtain an approximation
with level of uncertainty �; i.e., the sandwich algo-
rithm stops when �� ≤ �. Then, Theorem 3 gives us

the number (say, N ) of equidistant points that are
required to achieve that uncertainty.

Let us now define the equidistant grid of Nk = 2k+1
points, with k ∈ �; i.e., these Nk equidistant points
define a grid obtained by consecutively halving each
interval k times. Now define °k as the smallest value
for k, such that Nk ≥ N . The claim is now that the
points that are generated by (sandwich) Algorithm 2
are a subset of the equidistant grid of N°k points. To
see this, first observe that the points generated by
our sandwich algorithm are a subset of the equidis-
tant grid defined by Nl points, for sufficiently large l,
because interval bisection is used. Let l̄ be the small-
est value for l such that the points generated by the
sandwich algorithm are a subset of the Nl points. We
have to show that l̄ ≤ °k. Suppose on the contrary that
l̄ > °k. This means that the set of evaluated points con-
tains at least three points (say, z1, z2, and z3) that are
neighbours in the N°k equidistant grid, and a point w
in-between z1 and z2 or in-between z2 and z3. In the
first case (w is in-between z1 and z2), we use the right
lower and upper bounds as in the proof of Theo-
rem 3, especially for the result in (14), to show that
��

6z11 z27
≤ �, which contradicts the fact that the sand-

wich algorithm continued to evaluate w. For the sec-
ond case (w is in-between z2 and z3), we can use
the left lower and upper bounds to obtain the same
contradiction. This proves that l̄ ≤ °k. This means that
the sandwich algorithm needs at most Nl̄ ≤N°k ≤ 2N
points to obtain a � accurate solution. Hence, the
sandwich algorithm converges at the same rate as in
the equidistant case of Theorem 3. The proofs for �1
and �H are similar. �

4.4. Area Reduction per Iteration
Next, we consider Algorithm 2 using the uncertainty
area as error measure and the interval bisection parti-
tioning rule. We give a more precise result on the area
reduction per iteration. By adding a point in Algo-
rithm 2, the triangle in which the data point is added
is divided into two triangles. In the following lemma,
we show that the total area of the two “new” triangles
is at most half the area of the “original” triangle. We
denote the area of the original triangle by At , and we
denote the area of the new triangles by A1 and A2.

Theorem 6. Let y4x5 be convex. Suppose we use Algo-
rithm 2 to approximate y4x5 and that we use the interval
bisection partitioning rule and the uncertainty area as error
measure. Then, we have that

A1 +A2

At

≤
1
2
0

Proof. First, we construct a parameterization for a
general triangle, which captures all possible triangles
that can occur in the algorithm. The chosen parame-
terization is shown in Figure 5. In this figure, the tri-
angle ãOAB represents the original triangle. Suppose
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Figure 5 Parameterization for a General Triangle Occurring in
Algorithm 2

that Algorithm 2 is applied for the approximation of a
univariate convex and decreasing function y4x5. Then,
the line OA is an upper bound of the function y4x5 on
the interval 6xA107. Suppose that there is a data point
P on the left-hand side of data point A, and that there
is a data point Q on the right-hand side of the data
point O. Then, both PA and OQ are lower bounds for
the function y4x5 on the interval 6xA107. We denote
the point where both lines intersect by B.

Using barycentric coordinates 4�1�1�5 with respect
to the triangle BOA (or OBA depending on the slope
of the line OB), it can be verified that

� 2=
A1 +A2

At

= �

(

�

1 −�
+

�

1 −�

)

0 (22)

Furthermore, C is on the line

4�1�1�5= 4011/211/25+u41 − v1v− 1/21−1/251

with 41 − v1v105 being the barycentric coordinates of
the intersection point of the vertical line through C
and the edge BO. Then 0 ≤ u ≤ 1 and 0 ≤ v ≤ 1/2.
Substituting this into the formula for � yields a ratio-
nal function in u and v. The global extrema of this
function can easily be calculated. From those it can be
seen that the maximal value for � is 1/2 for u= 1 and
v = 1/2. �

Using Theorem 6, we can also show that Algo-
rithm 2 converges at least linearly using the uncer-
tainty area as error measure and the interval bisection
partitioning rule. Suppose that we add the data
points such that we halve the areas of all triangles
instead of choosing the interval with the largest area
of uncertainty. In this way, the rate of convergence

can only become smaller. Suppose that we need k
halvings to make the total area smaller than the pre-
scribed �; then,

Ak
t ≤

(

1
2

)k
A0

t <�1 (23)

where Ak
t is the area of uncertainty after k halv-

ings, and A0
t is the initial area of uncertainty. Note

that k halvings require N =
∑k

i=1 2i−1 = 2k − 1 func-
tion value evaluations. Substituting this into (23), we
obtain

A0
t

�
− 1 <N0

Therefore, at most

N =
A0

t

�
− 1

iterations are needed to obtain a total uncertainty area
smaller than �.

5. Numerical Examples
In this section, we treat some numerical examples to
illustrate the methodology proposed in this paper.

Example 5.1 (Artificial Data). In this example,
we apply four different iterative methods that we dis-
cussed in §3.2, and we compare them with the case
that we choose the input variables equidistantly. In
the first method, we use the interval bisection rule in
combination with the maximum error measure. In the
second method, we use the interval bisection rule in
combination with the Hausdorff distance error mea-
sure. In the third method, we select the new point
such that the average uncertainty area after addition
is minimized, i.e., the value of x that solves optimiza-
tion problem (11); and in the fourth method we select
the new point such that the worst-case uncertainty
area is minimized, i.e., the value of x that solves opti-
mization problem (12).

We consider the approximation of the function
y4x5 = 1/x on the interval 6002157. As the initial
data set we take two data points: 4002155 and 4510025.
In Figure 6, the upper and lower bounds after sev-
eral iterations for the worst-case area method are
given. We measure the maximum error (ME), the
uncertainty area (UA), and the Hausdorff distance (H)
after each iteration. The results are shown in Table 1.
As expected, all four new methods give better results
than when we use the equidistant approach. Further-
more, as expected, if we use the maximum error or the
Hausdorff distance as a measure to select a new point,
the maximum error or the Hausdorff distance, respec-
tively, in general decreases quicker than if we use the
other criteria. Also, if we use the average area rule
or the worst-case area rule, the total area decreases
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Figure 6 Upper and Lower Bounds of the Function y = 1/x on the Interval 6002157 After Several Iterations of the Iterative Strategy Selecting a New
Input Point According to the Worst-Case Area Rule

quicker than if we use the maximum error measure.
In Figure 7, the upper and lower bounds after 10 iter-
ations for all strategies are compared.

Next, we again approximate this function on the
same interval, but now using derivative information,
which is in fact Rote’s algorithm. This was done

Table 1 Maximum Error, Total Uncertainty Area, and Hausdorff Distance After Each Iteration in Example 5.1 on Interval 6002157 Using the Maximum
Error with Interval Bisection (ME/IB), Hausdorff Distance with Interval Bisection (H/IB), Minimal Average Area (MAA), Minimal Maximal Area
(MMA), and Equidistant Iterative Strategies for Upper and Lower Bounds Based on Function Value Information

ME/IB H/IB MAA MMA Equidistant

It. ME UA H ME UA H ME UA H ME UA H ME UA H

0 4080 11052 3039 4080 11052 3039 4080 11052 3039 4080 11052 3039 4080 11052 3039
1 4043 5053 2004 4043 5053 2004 4023 3077 1035 4020 3062 1027 4043 5053 2004
2 3096 2067 1007 3096 2067 1007 3011 1065 0051 2099 1064 0053 4018 3052 1042
3 3021 1033 0051 3021 1033 0051 2062 1035 0035 1043 1017 0048 3096 2054 1007
4 2025 0074 0022 2025 0074 0022 2062 1003 0035 1043 0072 0043 3075 1095 0085
5 1029 0052 0020 1029 0052 0020 1048 0061 0025 1043 0050 0015 3056 1057 0070
6 0058 0045 0020 1029 0044 0015 1048 0046 0025 1043 0040 0015 3038 1030 0059
7 0032 0043 0020 1029 0035 0011 1003 0037 0025 1014 0031 0013 3021 1009 0051
8 0025 0038 0017 1029 0026 0011 1003 0028 0011 0041 0025 0013 3006 0094 0044
9 0023 0037 0017 1029 0023 0009 1003 0023 0011 0041 0020 0013 2092 0082 0039

to compare the performance of our algorithm with
this conventional algorithm. The results are shown in
Table 2. The results for the algorithm that uses deriva-
tives are better than when no derivative information
is available. This is easy to understand, because Theo-
rem 2 tells us that using derivative information (when
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Figure 7 Upper and Lower Bounds of the Function y = 1/x on the Interval 6002157 After 10 Iterations of Different Sandwich Algorithms and
Iterative Strategies

available) leads to better lower and upper bounds. It
is also interesting to observe that if one evaluation in
Rote’s algorithm counts for two evaluations (function
value and derivative), then the results of our algo-
rithm are (much) better. This can be seen by com-
paring the results of Tables 1 and 2 with the same

Table 2 Maximum Error, Total Uncertainty Area, and Hausdorff Distance After Each Iteration in Example 5.1 on Interval 6002157
Using the Maximum Error with Interval Bisection (ME/IB), Hausdorff Distance with Interval Bisection (H/IB), and
Equidistant Iterative Strategies for Upper and Lower Bounds Based on Function Value and Derivative Information

ME/IB H/IB Equidistant

It. ME UA H ME UA H ME UA H

0 4043 10063 3013 4043 10063 3013 4043 10063 3013
1 3096 4082 1083 3096 4082 1083 3096 4082 1083
2 3021 2006 0087 3021 2006 0087 3056 2092 1020
3 2025 0085 0036 2025 0085 0036 3021 2001 0087
4 1029 0039 0013 1029 0039 0013 2092 1048 0066
5 0058 0025 0011 0058 0025 0011 2067 1014 0052
6 0022 0022 0011 0058 0022 0010 2044 0091 0043
7 0017 0022 0011 0058 0018 0006 2025 0074 0036
8 0015 0020 0011 0058 0016 0006 2008 0062 0030
9 0015 0019 0011 0058 0011 0004 1093 0052 0026

number of “evaluations,” which is 2 + it and 242 + it5,
respectively.

We also analyzed whether the proved convergence
rates for the sandwich algorithm can be observed
from the numerical results. First of all, we indeed
observed that the upper bounds for the errors given
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in Theorems 3, 4, and 5 were really valid in this case.
Moreover, we have run the methods up to 6,000 iter-
ations and indeed observed that ��4n−152, �14n−152,
and �H 4n−152 are more or less constant for large val-
ues of n. This illustrates the validity of the proved
convergence rates; see also Figure 8.

Next, we again approximate the function y4x5 =

1/x, but now only on the interval 61127 with the points
41115 and 4210055 as initial data set. The results are
given in Table 3. We can see from this table that
in this case, if we look to the area, choosing the
inputs equidistantly does not perform significantly
worse than the four more sophisticated methods. This
could be explained by the shape of the two differ-
ent functions that are to be approximated. On the
interval 6002157, the function has much more curva-
ture than on the interval 61127. However, if we look at
the maximum error and the Hausdorff distance, our
four new methods perform better than the equidistant
approach.

Example 5.2 (Strategic Investment Model). In
this example we consider a strategic investment

Table 3 Maximum Error, Total Uncertainty Area, and Hausdorff Distance After Each Iteration in Example 5.1 on Interval 61127 Using the Maximum
Error with Interval Bisection (ME/IB), Hausdorff Distance with Interval Bisection (H/IB), Minimal Average Area (MAA), Minimal Maximal Area
(MMA), and Equidistant Iterative Strategies for Upper and Lower Bounds Based on Function Value Information

ME/IB H/IB MAA MMA Equidistant

It. ME UA H ME UA H ME UA H ME UA H ME UA H

0 0.5000 0.2500 0.4472 0.5000 0.2500 0.4472 0.5000 0.2500 0.4472 0.5000 0.2500 0.4472 0.5000 0.2500 0.4472
1 0.1667 0.0625 0.1387 0.1667 0.0625 0.1387 0.1317 0.0638 0.1230 0.1376 0.0651 0.1283 0.1667 0.0625 0.1387
2 0.0667 0.0275 0.0593 0.0667 0.0275 0.0593 0.0932 0.0269 0.0741 0.0852 0.0263 0.0673 0.1000 0.0278 0.0800
3 0.0625 0.0206 0.0593 0.0667 0.0154 0.0521 0.0712 0.0182 0.0566 0.0430 0.0161 0.0411 0.0667 0.0154 0.0521
4 0.0222 0.0087 0.0181 0.0222 0.0087 0.0181 0.0302 0.0103 0.0289 0.0263 0.0091 0.0237 0.0476 0.0097 0.0366
5 0.0205 0.0075 0.0181 0.0222 0.0066 0.0172 0.0215 0.0062 0.0159 0.0241 0.0059 0.0180 0.0357 0.0066 0.0271
6 0.0179 0.0054 0.0172 0.0222 0.0046 0.0166 0.0145 0.0044 0.0108 0.0124 0.0046 0.0110 0.0278 0.0048 0.0209
7 0.0110 0.0035 0.0103 0.0110 0.0035 0.0103 0.0145 0.0033 0.0107 0.0124 0.0036 0.0102 0.0222 0.0036 0.0166
8 0.0080 0.0025 0.0065 0.0080 0.0025 0.0065 0.0145 0.0026 0.0107 0.0087 0.0027 0.0080 0.0182 0.0028 0.0135
9 0.0065 0.0020 0.0051 0.0065 0.0020 0.0051 0.0112 0.0022 0.0083 0.0070 0.0021 0.0054 0.0152 0.0023 0.0112

model. There exist many sorts of investment cat-
egories, such as deposits, saving accounts, bonds,
stocks, real estate, commodities, foreign currencies,
and derivatives. Each category has its own expected
return, and its own risk characteristic. The strategic
investment model models how top management could
spread an overall budget over several investment cat-
egories. The objective is to minimize the portfolio risk
(measured by the variance of the return), such that a
certain minimal desired expected return is achieved.
The model was introduced by Markowitz (1952) and
is given by

y4M5 2= min
x

xTVx

s.t. rT x ≥M1 (24)

eTp x = 11

x ∈�p
+1

where V is a positive semidefinite covariance matrix
consisting of elements Vij of covariances between
investment categories i and j , r is the vector consist-
ing of elements ri of expected return of investment
category i, M is the desired expected portfolio return,
ep is the p-dimensional all-one vector, x is the vector
with elements xi of fractions of the budget invested in
each category, and p is the number of investment cat-
egories. Note that, in general, optimal value functions
are nondifferentiable. In this strategic investment case,
we are interested in the optimal value as a function
of M , which can indeed be shown to be nondifferen-
tiable for several values of M .

In Table 4, some data are given, which we took
from Bisschop (2000). It contains three investment cat-
egories: stocks, bonds, and real estate.

The optimum in (24), can be seen as a func-
tion y4M5. It can be shown that y is convex and
increasing. We carried out the same experiment as
in Example 5.1. We applied the same four different
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Table 4 Expected Returns and Covariances

Vij

j

Category i ri 1 2 3

Stocks 1 1008 20250 −00120 00450
Bonds 2 70600 −00120 00640 00336
Real estate 3 90500 00450 00336 10440

iterative strategies and calculated the maximum error,
the uncertainty area, and the Hausdorff distance
after each iteration. We compared the results with
the case in which we choose the input data points
equidistantly. The results are given in Table 5. As we
expected, in Table 5 all of the four iterative strategies
perform better than when we choose the input data
points equidistantly. In Figure 9, the upper and lower
bounds are shown after iteration 9 of the sandwich
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Figure 9 Upper and Lower Bounds of the Function y 4M5 on the Interval
6706110087 After Iteration 9 of the Sandwich Algorithm of
Using the Hausdorff Distance for Example 5.2

Table 5 Maximum Error, Uncertainty Area, and Hausdorff Distance After Each Iteration in Example 5.2 Using the Maximum Error with Interval Bisection
(ME/IB), Hausdorff Distance with Interval Bisection (H/IB), Minimal Average Area (MAA), Minimal Maximal Area (MMA), and Equidistant
Iterative Strategies for Upper and Lower Bounds Based on Function Value Information

ME/IB H/IB MAA MMA Equidistant

It. ME UA H ME UA H ME UA H ME UA H ME UA H

0 1.8018 2.8828 1.5700 1.8018 2.8828 1.5700 1.8018 2.8828 1.5700 1.8018 2.8828 1.5700 1.8018 2.8828 1.5700
1 1.5347 1.3261 1.0624 1.5348 1.3261 1.0624 1.1625 0.9926 0.6849 1.1203 0.9870 0.6450 1.5347 1.3261 1.0624
2 0.7847 0.5060 0.4287 0.7847 0.5060 0.4287 0.7899 0.5915 0.4654 0.4994 0.5771 0.3590 1.0251 0.6979 0.6190
3 0.4606 0.2763 0.1974 0.4606 0.2763 0.1974 0.4108 0.3279 0.1944 0.4994 0.2672 0.2162 0.7847 0.4397 0.4287
4 0.1738 0.2024 0.1522 0.1738 0.2024 0.1522 0.4108 0.2011 0.1674 0.1792 0.1824 0.1618 0.6734 0.3064 0.3384
5 0.1321 0.1454 0.1087 0.1321 0.1454 0.1087 0.2538 0.1350 0.1034 0.1137 0.1192 0.0852 0.6065 0.2298 0.2838
6 0.1090 0.1337 0.1087 0.1321 0.0911 0.0835 0.2538 0.1003 0.1034 0.1137 0.0835 0.0852 0.5334 0.1779 0.2371
7 0.0897 0.0794 0.0835 0.1321 0.0675 0.0648 0.0865 0.0689 0.0674 0.1100 0.0609 0.0492 0.4606 0.1407 0.1974
8 0.0846 0.0644 0.0835 0.1321 0.0524 0.0501 0.0646 0.0531 0.0361 0.0676 0.0494 0.0492 0.3935 0.1127 0.1639
9 0.0565 0.0409 0.0372 0.0565 0.0409 0.0372 0.0646 0.0392 0.0361 0.0676 0.0384 0.0377 0.3332 0.0911 0.1358

algorithm using the Hausdorff distance as the error
measure.

6. Conclusions and Further Research
In this paper we proposed piecewise-linear upper and
lower bounds for approximation of univariate convex
functions. For the approximation of univariate convex
functions, we can construct piecewise-linear upper
and lower bounds, based on function value evalua-
tions only. These bounds can be given explicitly. The
difference between the upper and lower bounds can
be seen as a measure of accuracy. We may use the so-
called sandwich algorithms to select new input values
to be evaluated and obtain good approximations. We
introduced a new variant of the sandwich algorithm,
and we also introduced two new iterative strategies
that minimize the area of uncertainty of the approxi-
mation. It can be shown that our new sandwich algo-
rithms that do not use derivative information are of
order O41/n25 for the 1-norm, the �-norm, and the
Hausdorff distance. These results require assumptions
on the derivatives of y4x5. If these assumptions do
not hold, it can be shown that under other condi-
tions, we have O41/n5 convergence for these sand-
wich algorithms. We applied these new algorithms
to an artificial example and a practical example. It
turned out that our algorithms perform better than
when we choose the input data points equidistantly.
This is especially the case if the function to be approx-
imated has large curvature.

For further research, we are interested in gener-
alizing this methodology to more dimensions, i.e.,
approximating functions of two or more variables.
This is partly done in Siem et al. (2006). In this paper
we also assume that the function value evaluations
are accurate. An idea for further research may be to
use the convexifying methods described in Siem et al.
(2008a) and then apply the approximation methods
described in this paper. In §1, we also mentioned the
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use of the obtained piecewise-linear convex underes-
timator in (global) optimization. Note that this under-
estimator can be obtained by connecting the tips of
the underestimating triangles. With respect to ��, the
approximation is not worse than the one presented in
this paper because the worst approximation is always
at the tips of the triangles. It is a subject of further
research to investigate the effect of using this convex
underestimator in global optimization methods.
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a b s t r a c t

Background and purpose: To investigate the tradeoffs between organ at risk sparing and tumour coverage
for IMRT treatment of lung tumours, and to develop a tool for clinical use to graphically represent these
tradeoffs.
Material and methods: For 5 patients with inoperable non-small cell lung cancer (NSCLC) different IMRT
plans were generated using a standard TPS. The plans were automatically generated for a range of IMRT
settings (weights and dose levels of the objective functions) and were systematically evaluated, focusing
on the tradeoffs between organ at risk (OAR) dose and target coverage. A method to analyze and visualize
planning tradeoffs was developed and evaluated.
Results: Lung and oesophagus were identified as the critical organs at risk for NSCLC, the sparing of which
strongly influences PTV coverage. Systematically analyzing the tradeoffs between these organs revealed
that the sparing of these organs was approximately linearly related to PTV coverage parameters. Using
this property, a tool was developed to graphically present the tradeoffs between the sparing of these
organs at risk and the PTV coverage. The tool is an effective method to visualize the tradeoffs.
Conclusions: A tool was developed to assist IMRT plan design and selection. The clear presentation of the
tradeoffs between OAR dose and coverage facilitates the optimization process and offers additional infor-
mation to the clinician for a patient specific choice of the optimal IMRT plan.

� 2010 Elsevier Ireland Ltd. All rights reserved. Radiotherapy and Oncology 97 (2010) 561–566

In many radiotherapy institutions, an increasing number of
treatments are performed using intensity modulated radiation
therapy (IMRT). Even though IMRT functionality has been available
in treatment planning systems (TPS) for many years, the method
for designing and optimizing an IMRT plan has changed only mar-
ginally. Generally, the implementation of IMRT for new tumour
sites starts with the design of one or a few ‘class solutions’. This
‘class solution’ consists of beam parameters (the number of beams,
beam angles, beam energy, etc.), and mathematically formulated
criteria for the dose distribution. These criteria consist of objective
or constraint functions with associated parameters such as the
weights and dose levels (further referred to as ‘IMRT parameters’).
The inverse planning module of the TPS uses the mathematical
functions to design IMRT beams that result in a dose distribution
that is a compromise between the different objectives. In most
cases the result of such a class solution is not considered to be
an optimum for individual patients, and the IMRT parameters need
to be ‘tuned’ to produce a clinically acceptable solution. The rela-

tionship between the IMRT parameters and the resulting dose dis-
tribution is complicated and a priori it is not clear what tradeoffs
are between e.g., coverage of the planning target volume (PTV)
and sparing of organs at risk. Several approaches have been sug-
gested to make the planning procedure more time-efficient and
intuitive. One solution is to improve the ‘input’ side of the optimi-
zation algorithm, i.e., to add additional (clinical) a priori informa-
tion to the optimizer to arrive at a clinically acceptable solution
[1–3]. The disadvantage of these methods is that the exact nature
of the tradeoffs between the objectives is not known beforehand,
which may influence the prioritization.

An alternative approach is to explore many feasible (usually
Pareto optimal) plans by building a library of so called ‘best com-
promise’ or Pareto optimal plans [4–10]. The advantage of this
method is that the user gains insight in the quantitative tradeoffs
that are inherent to the optimization problem, and can make deci-
sions based on clinical grounds. For the characterization of the full
range of possible IMRT solutions a vast number of optimizations
are needed, although algorithms have been developed to limit
the number of necessary optimizations by systematically choosing
the IMRT parameters for each simulation [4,11,12]. Also it was
recently found that surprisingly few plans are needed to obtain
an accurate description of the Pareto efficient frontier [9].
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The aim of this study is to bring these concepts closer to clinical
practice. Firstly we recognise that only the properties of the
planned dose distributions are clinically interesting for plan evalu-
ation. Therefore the focus in this paper is not on the Pareto surface
in classical sense as others [3–7,15], but on the surface created in
the space of plan evaluation parameters. Assessing the plan evalu-
ation criteria has strong advantages since some evaluation param-
eters are not available as objective functions. Secondly the plans
are generated including segmentation of the fluence into deliver-
able IMRT fields. Therefore, the plans compared are representative
for the treatment, and any selected plan can directly be used to
treat the patient. Thirdly the complexity of the analysis is limited
by focussing on the two most important regions of interest only.
For the example site studied in this paper (NSCLC), the mathemat-
ical relationship between the evaluation criteria turns out to be
simple and enables a clear and intuitive presentation of the clinical
tradeoffs on a patient specific basis.

Material and methods

Patients and clinical objectives

Five patients diagnosed with stage II to III non-small cell lung
cancer (NSCLC) were selected for this study. These patients were
treated with concomitant radiotherapy (66 Gy in fractions of
2 Gy) and chemotherapy (Cisplatin plus Etoposide). The gross tu-
mour volume (GTV) was delineated using contrast enhanced CT
scans. An isotropic margin of 1.5 cm in the lung and 1 cm in the
mediastinum was used to expand the GTV to the PTV. The PTV
was located in the caudal right lung for patients 1 and 2, cranial
right for patient 3, caudally left for patient 4 and cranially left for
patient 5. The oesophagus was delineated from the hypopharynx
to the diaphragm. Absolute planning constraints to the organs at
risk were: a maximum dose of 50 Gy to the spinal cord, a V20 of
the lungs below 35% and for the heart a V40 of less than 60%. The
lung evaluation criteria were calculated from the healthy lung vol-
ume (both lungs minus the GTV).

IMRT optimization and database generation

IMRT planning was done with the Pinnacle3 TPS (Version 8.0h
Philips Medical Systems, Fitchburg, USA) using direct machine
parameter optimization (DMPO) which produces deliverable plans
with multiple beam segments. Plans were limited to less than 80
segments with a minimum segment size of 4 cm2. An IMRT class
solution was designed to get adequate coverage of the PTV, a spinal
cord dose constrained to less than 50 Gy and objective functions
that limit the dose to the heart, both lungs and the oesophagus.
A software system using Pinnacle3 scripting and Matlab was imple-
mented to automatically generate, save and analyze the dose–
volume histogram (DVH) data of multiple IMRT plans. Using this
application it was possible to view all individual DVHs and to ana-
lyze and compare different plan evaluation criteria for all plans in
the library.

The starting point for building the library of plans was the plan
of the initial IMRT class solution. Subsequently, the IMRT parame-
ters (weights and dose levels) of all objective functions, including
the PTV, were kept constant and only parameters of the objective
functions of the lungs and the oesophagus were varied. The range
in which the parameters were varied was chosen such that a broad,
but clinically relevant range of IMRT plans was generated.

The objective function for each lung was a DVH objective (10%
volume, 20 Gy), of which the weights were varied simultaneously
from 0 to 100. For the oesophagus an objective function was used
aiming to keep the equivalent uniform dose (a = 17) below a pre-
scribed dose level. The dose level was varied between 12 and

42 Gy. For the cord a maximum dose constraint of 45 Gy was taken.
For the heart (minus PTV + 18 mm margin) a maximum mean dose
of 25 Gy was used.

Plan evaluation

The plans were evaluated based on criteria derived from the
DVH. In the analysis software, the user can choose from several
plan evaluation criteria for both quantification of the PTV coverage
and the organ at risk dose. Only the criteria used in this paper are
discussed below. Target coverage is measured using the D99,
defined as the minimum dose received by 99% of the volume of
the PTV (99% of the volume was chosen instead of 100% to make
the calculation more robust). For adequate coverage of the PTV
we require that D99 is larger than 95% of the prescribed dose level.

For the oesophagus, a recent meta-analysis by Rose et al. [13]
shows that there is little consistency in the literature on parame-
ters correlated with acute esophagitis. In the current study we con-
sider the mean oesophagus dose (MDE) as a surrogate parameter
for toxicity of the oesophagus. However the principle of the meth-
od used in this study is equally valid when using for instance V35.
There are a large number of studies on the complication probabil-
ity of the lung [14–16], with usually radiation pneumonitis as end-
point. Generally either dose or dose–volume based parameters
have been used. In agreement with our clinical practice, we esti-
mate the toxicity using the V20 as a surrogate parameter.

Results

The class solution for IMRT of NSCLC consisted of 6 equidistant
coplanar photon beams (10 MV), arranged on the ipsilateral side.
The objective functions and parameters of the IMRT plan were
optimized iteratively to generate a clinically acceptable dose distri-
bution. In Fig. 1 (solid line) the DVHs are shown for one of the
patients. The D99 of the PTV is equal to 64.5 Gy, which is well above
95% of the prescribed dose of 66 Gy, and shows the excellent
coverage that can be achieved using IMRT.

Fig. 1. DVH curves for three different IMRT plans of the same patient (see legend).
For the plan optimized for lung sparing, the weight of the lung objective was
increased from 1 to 50. For the plan optimized for oesophagus sparing, the dose
level of the oesophagus objective function was lowered from 42 to 18 Gy (see text).
The inset shows the DVH enlarged around 62.7 Gy (95% of the prescribed dose).
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For all five patients in this study the dosimetric constraints to
the heart and the spinal cord were easily met, indicating that the
objective functions of these OARs are sufficient to achieve the plan-
ning criteria. Furthermore, changing the spinal cord and heart
IMRT parameters by moderate amounts did not significantly
change the results in terms of PTV coverage and dose to the
oesophagus or lung. This indicates that for these cases the spinal
cord and heart objectives are not strongly competing with the cov-
erage of the PTV and with other OARs. We, therefore, focussed on
the trade-off between the coverage of the PTV, the dose to the
lungs, and the dose to the oesophagus.

To illustrate the tradeoffs and to show that the initial plan is
only one of many possible solutions, the IMRT parameters were
changed (see Fig. 1). The two plans have almost identical coverage
of the PTV (D99 = 62.5 Gy and 63.1 Gy) but have either reduced
dose to the lung (V20 = 0.19) or reduced dose to the oesophagus
(MDE = 10.9 Gy). Using the software described above, a series of
36 optimizations were done for this case and DVH parameters
were extracted. Total computation time for this series was approx-
imately 3 h.

In Fig. 2 the D99 of the PTV is plotted versus the weight of the
lung objective that was used to generate the plan. We see that
D99 is reduced with increasing the weight of the lung objective
due to the competition of the coverage of the PTV with the sparing
of the OAR. Reducing the dose level of the oesophagus objective
function has a negative effect on the D99 of the PTV for the same
reason. It is also clear that the dependence is not continuous and
appears ‘noisy’ (see Discussion).

From a clinical point of view the relationship between the D99

and the weights of the OAR objective functions is not relevant. More
interesting are the relationships between plan evaluation criteria, as
shown in Fig. 3A, where the relationship between D99 of the PTV and
V20 of the lung is shown for the same dataset as in Fig. 2.

In contrast to Fig. 2, the relationship between the coverage
parameter D99 and the V20 appears to be approximately linear. A
similar graph for the mean dose to the oesophagus is shown in
Fig. 3B, also showing an approximately linear relationship between
MDE and D99.

Given the observed relationship between the PTV and OAR eval-
uation criteria, D99 was approximated using the following (first or-
der) function:

Dð99Þ ¼ a �MDE þ b � V20 þ c ð1Þ

Here D99 is the minimum dose received by 99% of the PTV volume,
MDE is the mean dose to the oesophagus and V20 is the volume frac-
tion of the lung receiving 20 Gy. The coefficients a, b and c are
parameters that define a linear relationship between the plan eval-
uation criteria for a particular case. Eq. (1) was used to fit the ‘sur-
face’ of the D99 versus V20 and MDE using a standard non weighted
linear least square fit. Residuals show a deviation smaller than
0.8 Gy (1r) for D99 for all patients. Given the approximation in Eq.
(1) it is possible to generate a figure that presents the relationship
between the plan evaluation criteria in a clear and intuitive way.

Fig. 2. DVH data for 36 different IMRT plans with different parameters for the lung
and oesophagus objectives (see text). Plotted is the D99 of the PTV as a function of
the weight of the lung objective. Calculations were done for six different MaxEUD
values of the oesophagus objective function, ranging from 12 Gy to 42 Gy in
intervals of 6 Gy.

Fig. 3. Based on the same data as Fig. 2. Each data point represents an IMRT plan
with different settings of the lung and oesophagus objectives (see text). (A) The D99

of the PTV versus the V20 of the total lung-GTV. (B) The D99 of the PTV versus the
mean dose to the oesophagus.
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In Fig. 4, each dot represents a plan from the library. The coor-
dinates of a dot indicate the OAR evaluation criteria of the plan.
The diagonal lines are ‘iso-coverage’ lines, indicating the approxi-
mate value of D99 of the PTV based on the fit using Eq. (1). From
this graph we can directly identify the region of OAR plan evalua-
tion criteria that can be realized while maintaining a certain min-
imum coverage criterion. For instance, all plans where 99% of the
volume receives a minimum of 95% of the prescribed dose are
located in the triangle in the top right corner above the diagonal
dashed line that describes the 62.7 Gy iso-coverage line. A number
of plans have a D99 > 62.7 Gy, and within that group of acceptable
plans, the trade-off between the oesophagus mean dose and the
lung V20 can be varied.

Fig. 5 shows that the observed graphs are strongly patient
dependent. For some patients the region of plans with
D99 > 62.7 Gy can be very small (patient 3) whereas for other pa-
tients the choice is much larger (patient 4). The slope of the lines
indicates the ‘balance’ in the trade-off between both OAR evalua-
tion criteria. For patient 5 for instance, the PTV coverage competes
stronger with the lung V20 than with the oesophagus mean dose.
Associated with each dot in the graph is a set of IMRT parameters
(weight and dose level of the lung and oesophagus objective func-
tions) that can be directly used in the TPS to yield the associated
plan. This makes clinical implementation of the selected treatment
plan straightforward. As a reference the plan evaluation parame-
ters of the original plans are shown in the graph. In general the
clinical plans are better than the ‘lower limit’ for coverage. Based
on the graphs, the clinician could decide to trade some coverage
for sparing of the OAR.

Discussion

In the design of a radiotherapy treatment plan, there is an inev-
itable conflict between the proper treatment of the designated
target volume and sparing of the surrounding normal tissue and
critical organs. For inverse planning of IMRT, the clinical aims

and restrictions for the plan are formulated in the form of mathe-
matical objective functions and their parameters (weights and
dose levels). These functions reflect how well the treatment goals
and restrictions are satisfied. The optimization module of the treat-
ment planning system subsequently finds a single optimal com-
promise between the different objectives. Due to the complex
nature of the optimization problem no clear relationship exists be-
tween these mathematically formulated objective functions and
the actual plan it results in. This makes it difficult to gain insight
in the (quantitative) tradeoffs that are inherent to the IMRT prob-
lem. Therefore the subsequent manual optimization of the IMRT
plan to achieve a more clinically acceptable solution can be time
consuming. This problem has been recognized by others [1–3,5–
9,17] and one of the most attractive solutions is to investigate a
large range of possible IMRT plans by building an offline ‘library’
of possible IMRT plans.

In this paper a practical tool has been developed to investigate
and represent the tradeoffs. To achieve this, the IMRT planning
problem was simplified by limiting it to one tumour site only
and by focusing on the two most relevant organs at risk. Note that
this does not imply that the other organs at risk are not a part of
the set of objective functions, however, the ‘weight’ with which
they contribute to the multi-objective optimization is kept con-
stant. For the patients in this study this resulted in satisfactory
dose levels for all other organs at risk. Furthermore, the library
generation is done using a standard, clinically used TPS including
segmentation of the fluence into deliverable beam segments.
Therefore, the IMRT plan chosen from the library can directly be
used to treat the patient.

The multi-objective treatment planning concept for IMRT has
been studied from a more mathematical point of view by several
other investigators in the past few years [4,7,12]. The emphasis
of these studies is on the Pareto surface in objective space. Gener-
ally these objectives do not coincide with the parameters that are
used to evaluate the plan. For example, minimum, maximum and
uniformity objective functions are used as objective functions dur-
ing IMRT optimization to ensure proper coverage of the PTV, but
subsequently the plan evaluation is conducted in terms of the
D99, which is considered a clinically relevant criterion for the
PTV. Therefore in this study we focussed on the Pareto surface in
the plan evaluation space. A drawback is that the plan is not guar-
anteed to be Pareto optimal with respect to the plan evaluation
parameters. The latter could be solved by having objective func-
tions that are identical to the evaluation parameters. However, in
practice, this is not always possible, either because multiple objec-
tives are used for one ‘goal’ or because the objective functions are
not present in the optimizer software. For the simplified two-
dimensional analysis of the IMRT plans in this paper, the relation-
ship between the clinically relevant plan evaluation criteria was
found to be close to linear (see Eq. (1)). Based on this linear rela-
tionship, a very simple and intuitive way of presenting the trade-
offs between the plan evaluation criteria in the form of a simple
graph was developed (Figs. 4 and 5). In this way, the tradeoffs
can be clearly presented to the user. The graphs in Fig. 5 show that
the tradeoffs between the OAR dose and the PTV coverage are
strongly patient dependent. Using this type of graph, an individu-
alized choice for the clinically optimal treatment plan can be made
by the clinician. It is evident that for the final selection of a treat-
ment plan, the associated DVH and 3D dose distribution are taken
into account.

The linear fit used to model the output parameters (i.e., the plan
evaluation criteria) constitutes a first-order approximation and can
be seen as a meta-model for visualization and optimization of an
individualized treatment plan. The linear relation found is related
to the fact that only a small region of the solution space is de-
scribed, and that generally the Pareto surface is relatively smooth

Fig. 4. Plot showing the OAR plan properties of all plans generated during the
simulation (dots). The diagonal lines are iso-coverage lines connecting the points
with equal D99 based on the linear model given in Eq. (1). The dashed line represents
the 62.7 Gy iso-coverage that satisfies the norm that D99 > 95% of the prescribed
dose. The x in the top right corner denotes the original (clinical) plan parameters.
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[9,10]. To test whether the found linear relation is specific for lung
tumors, simulations were done for prostate cases as well. The D99

of the PTV was fitted as a function of the mean dose to the rec-
tal-wall and the mean dose to the bladder. These simulations show
that for all patients the relationship is again roughly linear (stan-
dard deviation of about 0.5 Gy of the D99, indicating that the linear
relationship is not specific for lung tumors, although for each
tumor site and patient the quality of the fit should be verified.

Different from work by others [4,6–9,11], we used a treatment
planning optimization algorithm that includes segmentation of
the beam into deliverable segments as well as use of non-convex
objective functions. The use of non-convex objective functions is
commonly avoided in multi-objective optimization, since the opti-
mization algorithm is not guaranteed to reach the global optimum.
However, non-convex functions were used in this paper, since we

find that for our TPS this results in better IMRT plans. Segmenta-
tion of the beam into deliverable segments is used since in that
case the calculated dose distribution is representative of the clini-
cal situation. The consequence of this choice is shown in Figs. 2 and
3 illustrating the noise-like behaviour of the plan evaluation crite-
ria. The noise like behaviour is caused by the fact that segmenta-
tion of the fluence and the use of non-convex objective functions
can cause the optimizer to get stuck in local minima [18]. There-
fore, the prediction by the linear model is only accurate to within
�1 Gy, and much more than the minimum of 3 generated plans
is necessary to properly estimate the coefficients of the linear fit
presented in Eq. (1). However, we believe that the gain in plan
quality and ease of integration in the clinic justifies this choice.
Furthermore, these effects are not specifically related to the meth-
od described in this paper and are inherent to the use of this TPS

Fig. 5. Graphs showing the trade-off between the OAR plan evaluation criteria and the coverage of the PTV for patients 2–5 (see Fig. 4 and the text for details). Clearly the
graphs are strongly dependent on the patient and tumour geometry.
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also when using the normal planning procedure. To limit the com-
putation time, the library generation was limited to only two
dimensions. Since the actual parameter space has more than 20
dimensions, care should be taken to start the analysis with a plan
which is already close to optimal. The library can be seen as an
exploration of the (two dimensional) region ‘around’ this plan,
where actually Eq. (1) constitutes a two-dimensional sensitivity
analysis of the region surrounding this point.

The work in this paper is related to work by Ottoson et al. [10]
and Hunt et al. [19]. In their work a (commercial) TPS is used to
systematically review the relationship between the objective space
and the final plan criteria to evaluate class solutions, but also for
instance the influence of segmentation on the resulting plans.
The method presented in this paper, however, is specifically aimed
at providing a method to aid the planner and clinician on a patient
specific basis with choosing the optimal IMRT plan.

The analysis presented was limited to one type of tumour (tu-
mour site) and to only two OARs, enabling the straightforward
graphical representation of the tradeoffs as shown in Figs. 4 and
5. Since only a limited region of the solution space is scanned,
the initial class solution should be chosen correctly. For the lung
tumors we find that the same class solution can be applied in most
cases. For more complex cases (such as head and neck cancer) this
might be different, and in this case the two dimensional ‘scan’ is
insufficient. This will be subject of further study.

Conclusion

A method was developed where a standard TPS is used to gen-
erate a library of deliverable IMRT plans that are used to present
the inherent tradeoffs to the user in terms of clinically relevant
plan evaluation criteria. Furthermore, for the two dimensional case
studied in this paper, the relationship between the plan evaluation
criteria is close to linear, making it possible to present the trade-off
in a clear and intuitive manner.
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Abstract

Finding fluence maps for intensity-modulated radiation therapy (IMRT) can be
formulated as a multi-criteria optimization problem for which Pareto optimal
treatment plans exist. To account for the dose-per-fraction effect of fractionated
IMRT, it is desirable to exploit radiobiological treatment plan evaluation criteria
based on the linear-quadratic (LQ) cell survival model as a means to balance the
radiation benefits and risks in terms of biologic response. Unfortunately, the
LQ-model-based radiobiological criteria are nonconvex functions, which make
the optimization problem hard to solve. We apply the framework proposed by
Romeijn et al (2004 Phys. Med. Biol. 49 1991–2013) to find transformations
of LQ-model-based radiobiological functions and establish conditions under
which transformed functions result in equivalent convex criteria that do not
change the set of Pareto optimal treatment plans. The functions analysed are:
the LQ-Poisson-based model for tumour control probability (TCP) with and
without inter-patient heterogeneity in radiation sensitivity, the LQ-Poisson-
based relative seriality s-model for normal tissue complication probability
(NTCP), the equivalent uniform dose (EUD) under the LQ-Poisson model
and the fractionation-corrected Probit-based model for NTCP according to
Lyman, Kutcher and Burman. These functions differ from those analysed
before in that they cannot be decomposed into elementary EUD or generalized-
EUD functions. In addition, we show that applying increasing and concave
transformations to the convexified functions is beneficial for the piecewise
approximation of the Pareto efficient frontier.
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1. Introduction

It is generally acknowledged that designing fluence maps for high-energy photon beams in
intensity-modulated radiation therapy (IMRT) can be posed as a constrained optimization
problem (Börgers 1997, Küfer et al 2003, Reemtsen and Alber 2006). The aim of the
optimization problem is to find beam fluence maps that deposit a sufficiently high dose to the
target volume and simultaneously spare organs at risk (OARs) and other surrounding normal
tissue as much as possible. A mathematical fluence map optimization (FMO) model is required
to guide the inverse treatment planning process through the search space of possible solutions.
Such models are typically based on a set of conflicting treatment plan evaluation criteria that
reflect how well the treatment goals and restrictions are satisfied.

These criteria can either be formulated as physical criteria, i.e. on measurable physical
quantities like doses and volumes, or as biological criteria that reflect the responses of the
different tissues to dose distributions (Brahme 1995). Physical criteria are often implemented
as a dose-dependent function calculating the mean-squared deviation from a prescribed target
dose level. The radiobiological rationale of these criteria is questionable since positive
and negative deviations from the target dose have different biological consequences, but
are weighted equally using a quadratic penalty function. In this paper, we focus on
biological criteria only, because they have been shown to predict the response of tumours
and healthy tissues more adequately than physical criteria by taking the underlying radiation
biology into account. The relevance of biological treatment goals, leading to nonlinear
criteria as tumour control probability (TCP), normal tissue complication probability (NTCP),
(generalized) equivalent uniform dose ((g)EUD) or dose–volume based criteria, has generally
been acknowledged during the past years (Niemierko 2005). Formulation of clinically relevant
radiobiological FMO problems often requires the inequality constraints to be formulated in
terms of clinically prescribed tolerance bounds, e.g., NTCP � ε, where ε is an acceptable
probability of injury.

Direct application of such nonlinear and nonconvex biological criteria as objective and
constraint functions can make the FMO problem very hard to solve, especially when the
number of optimization variables (i.e., the beamlet weight intensities) is large. According to
Hindi (2004) various sources exist for the difficulties encountered in large-scale nonconvex
optimization. First, the search space may be riddled with multiple local optima. Second, the
feasible set could be empty. Third, stopping criteria used in general optimization algorithms
are often arbitrary. Fourth, the problem may be degenerate, in which case the same optimal
value is attained for multiple solutions (see, e.g., Alber et al (2002)). Fifth, optimization
algorithms might have poor convergence rates. Sixth, numerical problems could cause the
optimization algorithm to stop or roam.

Fortunately, in the case of minimization, it is known that if all objective functions and
upperbound-inequality constraint functions are convex, the first three difficulties disappear:
any local minimum is necessarily a global minimum; the solution set is convex and therefore
comprises either a single solution or is infinite; and very precise stopping criteria are available
using duality (see, e.g., Bertsekas (1999)). However, convergence rate and numerical stability
remain a potential problem. If, in addition to convexity, the objective and constraint functions
allow for self-concordant barriers, the issues of convergence and numerical sensitivity could
be avoided using interior point methods (Nesterov and Nemirovski 1994). Hence, it is possible
to solve a large class of convex optimization problems with great efficiency using local solvers
like gradient-based algorithms. Convexity of the criteria is also sufficient to guarantee that
the Pareto efficient frontier is convex in case the FMO model is multi-criteria (Romeijn et al
2004). This is of particular interest in case piecewise linear approximation techniques like
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Sandwich-type algorithms are used to estimate the Pareto efficient frontier (Craft et al 2006,
Hoffmann et al 2006).

Radiobiological criteria like TCP and NTCP are often sigmoidal functions of dose and
hence are inherently nonlinear and nonconvex. Consequently, their direct implementation
necessarily leads to nonconvex optimization problems. Recently, Romeijn et al (2004)
presented a unifying framework for multi-criteria fluence map optimization problems that
establishes conditions under which well-known nonconvex radiobiological treatment plan
evaluation criteria can be transformed into convex criteria while preserving the set of Pareto
efficient solutions. In particular, they showed that transformations of criteria such as TCP,
NTCP and sigmoidal functions of (g)EUD exist that are equivalent to criteria formulated
in terms of (g)EUD only, concluding that only two distinct Pareto efficient frontiers exist.
Others have explored the convexity properties of transformed radiobiological treatment plan
evaluation criteria as well (Deasy 1997, Choi and Deasy 2002). However, to the best of our
knowledge the majority of convexity analyses reported so far are limited to simple, single-hit
linear cell survival models that do not take into account fractionation effects, whereas in
clinical practice almost all radiation treatments are delivered over multiple fractions.

As an extension of the work by Romeijn et al (2004) we explicitly include the dose-
per-fraction effect in the convexity analysis of commonly occurring radiobiological criterion
functions by using the linear-quadratic (LQ) cell survival model (see, e.g., Fowler (1989)).
We analyse TCP, NTCP and EUD criteria that are not related to the elementary (linear-Poisson)
EUD or (power-law) gEUD model, and thus yield different Pareto efficient frontiers from the
criteria analysed by Romeijn et al (2004). More specifically, we establish transformations of
the following criterion functions and investigate the conditions under which these criteria are
strictly convex/concave depending on the criterion to be minimized/maximized, respectively:
the LQ-Poisson model based TCP function, LQ-Poisson model based relative seriality
NTCP function, LQ-Poisson model based EUD function and the fractionation-corrected
Probit-model-based NTCP function according to Lyman, Kutcher and Burman. Strict
convexity/concavity of the objective function is an interesting property, as it is a sufficient
condition for the existence of a unique solution (i.e., minimizer/maximizer) that rules out the
possibility of multiple local optima (i.e., minima/maxima) (see, e.g., Bertsekas (1999)).
Furthermore, we present a detailed convexity analysis of the (transformed) population-
averaged TCP function that incorporates inter-patient radiosensitivity heterogeneity, for which
Choi and Deasy (2002) could not rule out the possibility of multiple local minima.

2. Mathematical definitions

2.1. Multi-criteria optimization for IMRT

To introduce the problem, we confine to the essential mathematics and refer to Hoffmann
et al (2006) for a more comprehensive enunciation. In IMRT optimization, the dose distribution
D = (D1, . . . , DM) is a linear mapping of the bixel weights w = (w1, . . . , wN) by the dose
deposition operator P,

D(w) = P · w.

Hence, the dose in voxel i can be denoted as a weighted sum over all N bixel weights

Di(w) =
N∑

j=1

Pijwj ,

where Pij is the dose deposited in voxel i from bixel j at unit intensity. This represents
the discretized form of the Fredholm integral equation of the first kind that is commonly
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encountered in solving the inverse problem of radiation treatment planning (Lind 1990). The
elements of P describe the physics of the beam–tissue interaction, and can be pre-calculated
using various dose calculation algorithms.

Given the matrix P, it is the aim of the optimizer to find a suitable vector w that satisfies
the optimization goals. Typically, the goals are formulated by a set of objective functions
Fk : RM

+ �→ R+, k = 1, . . . , K , where K is the number of objective functions. The constraint
functions Bl : RM

+ �→ R+, l = 1, . . . , L, where L is the number of constraint functions, define
certain equalities and inequalities that the design variable w and the dose distribution D(w)

must satisfy. Each criterion function quantifies the plan-evaluation score as a function of
the dose distribution D(w). Without loss of generality, it is assumed that lower values are
preferred to higher values for each of the criterion functions.

Typically, the constrained multi-criteria optimization problem in IMRT is formulated as

min
w

F(D(w)) =

⎛
⎜⎜⎜⎝

F1(D(w))

F2(D(w))

...

FK(D(w))

⎞
⎟⎟⎟⎠

s.t. Bl(D(w)) � 0, l = 1, . . . , L
D(w) = P · w

w � 0.

(1)

Since problem (1) is associated with multiple solutions, the concept of Pareto efficiency (see,
e.g., Miettinen (1999)) is applied to restrict to solutions that have the property that no single
objective value can be improved without deteriorating at least one other objective value.
Solutions that comply with this definition are called Pareto optimal (also called Edgeworth–
Pareto optimal, efficient, nondominated or noninferior). In the objective space, the set of
Pareto optimal plans is mapped to the Pareto efficient frontier. Since the dimension of the
objective space is much less than that of the solution space, this frontier is used by the decision
maker to navigate efficiently through the set of solutions and select a compromise solution
that best meets with his/her approval. Therefore, it is important to have an algorithm that
generates a discrete subset of Pareto optimal solutions that forms a representative estimate of
the true Pareto efficient frontier (Craft et al 2006, Hoffmann et al 2006).

2.2. Commonly used radiobiological treatment plan evaluation criteria

Several mathematical models have been developed to describe the dose–response relationship
for tumours and normal tissues. We analyse a commonly used mechanistic TCP model and
two well-known NTCP models; a mechanistic and a phenomenological one.

2.2.1. Mechanistic dose–response relationship based on Poisson model. To calculate the
dose response to a heterogeneous dose distribution, the internal infrastructural organization
(i.e., volume dependence) of the irradiated tissue is taken into account.

For eradication of all clonogenic cells of a tumour, every individual tumour element
has to be eradicated. Hence, the tumour control probability (TCP) is the product of all
individual responses. Based on the well-known linear-quadratic (LQ) Poisson model without
cell repopulation in time (Fowler 1989), the TCP function is denoted as

TCPLQ(D) = exp

[
−N0

N∑
k=1

vkSFLQ(Dk)

]
, (2)
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where SFLQ(Dk) = e−αDk−βDk
2/n is the surviving fraction of cells exposed to dose Dk in voxel

k, vk is the relative volume of voxel k,N0 is the total initial number of clonogenic cells, α is
the intrinsic radiosensitivity representing the nonrepairable radiation damage, β represents a
repairable type of injury that is responsible for the dose-per-fraction effect and n is the number
of treatment fractions. The α/β ratio of the LQ-model then determines the tissue’s sensitivity
to alterations in radiation fraction size (Barendsen 1982).

The relative seriality s-model is the most well-known mechanistic normal tissue dose–
response model that is based on the LQ-Poisson survival function (Källman et al 1992). For
an OAR irradiated with a heterogeneous dose distribution the model is expressed as

NTCPRS(D) =
[

1 −
N∏

k=1

[1 − PLQ(Dk)
s]vk

] 1
s

, (3)

where PLQ(Dk) = exp(−N0 · SFLQ(Dk)) is the Poisson approximation of the binomial
probability that no cells survive the dose Dk , and s is the relative seriality parameter that
characterizes the internal organization of a tissue. A value of s ≈ 0 represents a largely
parallel organ (e.g., lung, parotid or liver), whereas s ≈ 1 corresponds to a serial organ (e.g.,
spinal cord or oesophagus).

Response for patient population with inter-tumoural variation of radiation sensitivity. The LQ-
Poisson-based TCP function of (2) describes the tumour response for an individual patient.
However, the clinically measured dose response is a population-averaged dose response,
which differs from the individual response due to inter-individual variability in radiobiological
characteristics. A population-averaged TCP function, TCPpop, can be constructed by averaging
an individual TCP function, TCPind, over the range of parameters found in a population (see,
e.g., Roberts and Hendry (1998)). Assuming that only the radiosensitivity α is subject to
variations, the population TCP function can be expressed as

TCPpop(D) =
∫ ∞

0
φ(α)TCPind(D, α) dα, (4)

where φ(α) is the probability density function of the parameter α.
For φ(α) often a normal probability density function has been used, assuming the variation

of β to be correlated by a constant value of α/β (e.g., Sanchez-Nieto and Nahum (2000)).
Others have applied the log–normal distribution to limit the parameter range of α to biologically
meaningful values (Keall and Webb 2007). We analyse both the normal and log–normal
averaged TCPpop function for log-concavity.

LQ-model-based equivalent uniform dose. The concept of equivalent uniform dose (EUD) was
first introduced by Niemierko (1997) by equating the TCP of (2) to the TCP of an equivalent
homogeneous distribution, i.e., TCPLQ(D) ≡ TCP(EUDLQ(D)), and solving for EUDLQ(D).
It is easy to show (see, e.g., McGary et al (2000)) that EUD under the LQ-Poisson model can
be expressed as

EUDLQ(D) = −1

2

α

β
n

[
1 −

√
1 − 4β

α2n
ln SFLQ(D)

]
, (5)

with

SFLQ(D) =
N∑

k=1

vk e−αDk−βDk
2/n.

Others have shown that the EUD under the (single-hit) linear-Poisson model is concave (Choi
and Deasy 2002, Romeijn et al 2004). We analyse the concavity of (5) using a direct approach
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and compare the result to (Bortfeld et al 2008), which has been established under an indirect
approach using Hardy et al (1952, theorem 106, p 88).

2.2.2. Phenomenological dose–response relationship based on the Probit model. Assuming
a normal distribution of intrinsic radiosensitivities, Lyman (1985) and Kutcher and Burman
(1989) applied the Probit model to calculate the response of an OAR to a heterogeneous dose
distribution according to

NTCPLKB(D) = �

(
gEUDa(D) − D50

mD50

)
, (6)

where �(z) = 1/
√

2π
∫ z

−∞ e−t2/2 dt is the standard normal cumulative distribution function,
D50 denotes the uniform dose where a 50% complication probability occurs, m determines the
slope of the sigmoidal function � and gEUDa(D) is the generalized equivalent uniform dose
(Niemierko 1999) of the dose distribution D,

gEUDa(D) =
[

N∑
k=1

vkDk
a

] 1
a

, (7)

and a � 1 is a tissue-dependent parameter that describes the volume dependence.
To account for the dose-per-fraction effect of a multi-fraction treatment, the dose to each

voxel is converted into an iso-effective biologically effective dose (BED) (Fowler 1989) prior
to calculation of the gEUD,

BED(Di) = Di

(
1 +

Di/n

α/β

)
.

Subsequent calculation of the gEUD from the BED-converted dose distribution yields the
generalized equivalent uniform biologically effective dose (gEUBED) function,

gEUBEDa(D) = gEUDa(BED(D))

=
[

N∑
k=1

vkBED(Dk)
a

] 1
a

. (8)

The fractionation-corrected LKB model then becomes

NTCPLKB(D) = �

(
gEUBEDa(D) − BED50

mBED50

)
, (9)

where BED50 = BED(D50).

2.2.3. Composite evaluation functions. For multiple targets and vital organs, the overall
probability of benefit and injury is respectively given by

TCP(D) =
T∏

j=1

TCPj (D)ηj , (10)

and

NTCP(D) = 1 −
S∏

j=1

[1 − NTCPj (D)]ξj , (11)

where T and S are the number of targets and vital organs, respectively, TCPj (D) is the
control probability for target j, ηj is the fractional volume of the j th target, NTCPj (D) is the
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complication probability in organ j and ξj is the relative weight of the j th complication, such
that

∑T
j ηj = ∑S

j ξj = 1. Here, TCPj (D) and NTCPj (D) can be any of the fractionation-
corrected dose–response models from the preceding subsections.

Another composite objective function is the probability of uncomplicated tumour control,
P+, which is a measure to a priori balance between treatment benefit and injuries (see, e.g.,
Brahme (1995)). In generalized form it is defined as

P δ
+ (D) = (1 − δ)P 0

+ (D) + δP 1
+ (D),

where P 0
+ (D) ≡ TCP(D) − NTCP(D), P 1

+ (D) ≡ TCP(D)[1 − NTCP(D)] and δ is the
fraction of patients for which tumour and normal tissue responses are statistically independent
(0 � δ � 1). δ = 0 corresponds to the case that the events of tumour control and severe injury
are totally correlated (i.e., no complications without achieving tumour control). For δ = 1 it
is assumed that tumour control is independent of complications. Note that P δ

+ (D) is a convex
combination of P 0

+ (D) and P 1
+ (D).

3. Methods

3.1. Convex multi-criteria optimization

A general convex multi-criteria optimization problem is formulated in standard form as

min
x

G(x) =

⎛
⎜⎜⎜⎝

G1(x)

G2(x)

...

GK(x)

⎞
⎟⎟⎟⎠

s.t. Cl(x) � 0, l = 1, . . . , L

El(x) = 0, l ∈ E .

(12)

Here x ∈ RM is the optimization variable, Gk : RM �→ R are convex objective functions,
Cl : RM �→ R are convex inequality constraint functions, Ei : RM �→ R are affine equality
constraint functions and E is the set of indices for equality constraints.

In the case of the FMO problem in IMRT (1), the optimization variable x is obtained from
the dose deposition operator by a linear mapping of the design variable w, which we control
to generate fluence maps. If the only constraint on the treatment plan is the non-negativity
of bixel weights, then the set A of allowed bixel weights is convex. Therefore, the set R of
realizable dose distributions (being the image of A under the linear dose deposition operator
P) is convex. For the multi-criteria FMO problem to be cast as a convex problem (12), the
objective and constraint functions of (1) should all be convex or transformed into equivalent
convex functions.

Equivalence of optimization problem for transformed criterion functions. Direct application
of the (nonconvex) criterion functions as objective and constraint functions would result in a
nonconvex problem. Romeijn et al (2004) have shown that transforming any or all criterion
functions of the general (nonconvex) minimization problem (1) via strictly increasing functions
leads to an equivalent Pareto efficient frontier. This property can be used to convexify problem
(1) such that it can be formulated as a convex problem (12). A sufficient condition is that strictly
increasing transformations hk : R �→ R (k = 1, . . . , K) and h̃l : R �→ R (l = 1, . . . , L) exist,
such that compositions

Gk(x) = (hk ◦ Fk)(x) ≡ hk(Fk(x))

145



Treatment planning optimisation for individualised dose prescription

6352 A L Hoffmann et al

and

Cl(x) = (h̃l ◦ Bl)(x) ≡ h̃l(Bl(x))

are convex functions.
In the following section, we find transformations for the radiobiological criterion functions

described in section 2.2 and analyse the conditions under which the transformed criteria are
(strictly) convex.

Although the criterion functions have been cast as a function of the dose distribution D,
rather than as a function of the bixel weights w, the analysis is conducted in terms of D.
Formally, the objective functions Gk(D) and Gk(w) = Gk(D(w)) = Gk(P · w) are different,
but since D is a linear mapping of w, the convexity properties of the functions remain invariant.
This is due to the fact that the composition of a convex function with an affine mapping is
convex (see, e.g., Boyd and Vandenberghe (2004, p 79)). However, for Gk to be strictly convex
with respect to w, the mapping P should be full rank (and thus have an empty nullspace). This
can be derived from the Hessian of Gk with respect to w,

∇2
wwGk(D(w)) = PT · ∇2

DDGk(D) · P,

and using proper statements of positive semidefiniteness from linear algebra. Using the
properties of positive (semi)definite symmetric products (see, e.g., Horn and Johnson (1987,
p 399)) it can be shown that if ∇2

DDGk(D) is positive definite (and thus Gk is strictly convex in
D), and P is any particular dimensionally compatible matrix that has an empty nullspace, then
∇2

wwGk(D(w)) is positive definite (and thus Gk is strictly convex in w). It also follows that, if
P is of compatible dimension but rank deficient, then ∇2

wwGk(D(w)) is positive semidefinite
(and thus Gk is convex in w). Clearly, this also holds for the constraint functions Cl . In
practice, the dose grid is finer than the bixel grid, i.e., M � N and thus P has full column
rank (Carlsson 2008).

3.2. Convexity analysis of transformed radiobiological criterion functions

In general, convexity of a criterion function G : RM �→ R can be analysed via different
approaches. A direct approach is to check the conditions on its Hessian, ∇2G. A necessary
and sufficient condition for convexity of G is that its Hessian is positive semidefinite. Without
proof, we state the conditions for convexity and concavity more formally:

Definition 1. A matrix A ∈ RM×M is positive (negative) semidefinite on a set S if
xT Ax � (�)0 for all x ∈ S, and positive (negative) definite on S if xT Ax > (<) 0 for
x �= 0 and x ∈ S.

Lemma 1. A real-valued, twice differentiable function G is convex (concave) on a set S if and
only if its Hessian, ∇2G, is positive (negative) semidefinite on S. The function G is strictly
convex (concave) on the set S if and only if ∇2G is positive (negative) definite on S.

An indirect approach is to exploit the rules of composition to deduce convexity/concavity
of differentiable functions by means of the chain rule. The following composition rules for
convexity and concavity can be derived (see, e.g., Boyd and Vandenberghe (2004, p 83–7)).

Lemma 2. Consider the functions F : Rp �→ Rq and h : Rq �→ R with their composition
G = h ◦ F : Rp �→ R, defined by

G(x) = h(F(x)) = h(F1(x), . . . , Fq(x)),

where Fi : Rp �→ R, p � 1 and q � 1. Then,
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G is convex if h is convex and nondecreasing (nonincreasing) in each argument, and
Fi are convex (concave),

G is concave if h is concave and nondecreasing (nonincreasing) in each argument,
and Fi are concave (convex).

Depending on the mathematical form of the function, a transformation of the radiobiological
criteria functions presented in section 2.2 is suggested, and one of the two approaches is
applied to analyse the convexity of the transformed criterion functions.

4. Results

4.1. TCP function using the LQ-Poisson cell survival model

The concavity of the logarithmically transformed linear-Poisson model based TCP function has
been investigated by others (Choi and Deasy 2002, Romeijn et al 2004). These authors have
applied the strictly increasing transformation h(z) = ln z to show that the linear-Poisson-based
TCP function is log-concave.

Here, the same transformation has been applied to the LQ-Poisson-based TCP function
of (2). In appendix A, we show that −ln TCPLQ(D) is strictly convex under the condition that

Dk >

√
1

2

(α/β)n

α
− 1

2
(α/β)n. (13)

Since dose is a non-negative quantity, constraint (13) is satisfied if α2n > 2β. In the opposite
case, where α2n < 2β, SFLQ(D) is sigmoidal for D � 0, and its curvature is only strictly
positive if (13) is satisfied. For typical clinical values of α, α/β and n (e.g., for prostate cancer,
α = 0.15 ± 0.04 Gy−1, α/β = 3.1 ± 0.5 Gy, n = 30 (Wang et al 2003)), the right-hand side
of (13) is negative, and therefore −ln T CPLQ(D) is a strictly convex function. Consequently,
ln TCPLQ(D) is a strictly concave function.

4.2. TCP function using the linear-Poisson cell survival model

In the case of either a large α/β ratio (i.e., β ≈ 0) or small dose inhomogeneities and a
dose-per-fraction close to the reference dose for which the underlying dose–response model
was derived, the LQ-Poisson-based TCP function of (2) reduces to the linear-Poisson-based
TCP model,

TCPL(D) = exp

[
−N0

N∑
k=1

vk e−αDk

]
. (14)

Others have shown that TCPL(D) is a log-concave function (Choi and Deasy 2002, Romeijn
et al 2004).

In appendix B, we apply a concave and strictly increasing transformation of the (already)
convex function −ln TCPL(D) and show that it is still convex. In particular, we conclude that
the function ln(−ln TCPL(D)) is ‘less convex’ than −ln TCPL(D). Hence, the former double-
logarithmic transformation will produce tighter bounds in the piecewise linear approximation
of the Pareto efficient frontier than the single-logarithmic transformation of TCPL(D) (Siem
et al 2008).

4.3. Population-averaged TCP function using the LQ-Poisson cell survival model

Assuming that the inter-patient intrinsic radiosensitivity of a certain tumour type is normally
distributed over the population, we show in appendix C that −ln TCPpop(D) is strictly convex
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for the LQ-Poisson-based TCP function, provided that the dose in each voxel satisfies the
condition

Dk >

√[
1

2
(α/β)n

]2

+
1

2

(α/β)n

α
− 1

2
(α/β)n. (15)

For typical clinical values of α, α/β and n, the right-hand side of (15) is a small positive value,
and thus the inequality is easily satisfied for tumours.

In case the inter-patient radiosensitivity has a log-normal probability density function,
φ(α), the population-averaged LQ-Poisson-based TCP function is not necessarily logarithmic
concave since φ(α) is not logarithmic concave (Bagnoli and Bergstrom 2005).

4.4. NTCP function using the relative seriality s-model

For both the (nonfractionation-corrected) gEUD-based reformulation of Lyman’s
phenomenological NTCP model (6) and the gEUD-based phenomenological NTCP function
due to Alber and Nüsslin (2001), Romeijn et al (2004) have proven convexity under the strictly
increasing transformation h(z) = −ln(1 − z).

Here, we apply the same transformation to the relative seriality s-model of (3), and analyse
its convexity properties. Since the relative seriality s-model can neither be formulated as a
function of EUD nor as a function of gEUD, the application of the model in multi-criteria
optimization of IMRT will yield a Pareto frontier that is different from the two aforementioned
gEUD-based NTCP models.

The result comprises two steps (see appendix D). In theorem 4, it is shown that applying
the strictly increasing transformation h(z) = −ln(1−zs) to (3) yields a strictly convex function
for s � 0. In theorem 5, this result is used to prove that −ln(1 − NTCPRS(D)) is a strictly
convex function, provided that 0 < s < 1. For most normal tissues this condition is satisfied.

Note that −ln(1 − NTCPRS(D)) is a ‘more convex’ transformation of NTCPRS(D)

than −ln(1 − NTCPRS(D)s). Therefore, the latter transformation is more efficient for the
approximation of the Pareto efficient frontier than the former (Siem et al 2008). Nevertheless,
the convexity of −ln(1 − NTCPRS(D)) is used in the convexity analysis of the composite
NTCP function (11).

4.5. EUD function using the LQ-Poisson cell survival model

Note that EUDLQ(D) is concave if and only if its Hessian is negative semidefinite.
Unfortunately, the formulae for the second partial derivatives become so complex that
we were unable to analytically derive conditions under which the Hessian is negative
semidefinite. Nevertheless, numerical evaluation of the Hessian for the two-dimensional
case D = (50 Gy, 40 Gy) with equally-sized voxel volumes and realistic clinical values
α = 0.30 Gy−1, α/β = 10 Gy, n = 30 showed that the determinant of the 2 × 2 Hessian is
negative, which implies that the Hessian is indefinite. Hence, EUDLQ(D) is neither convex
nor concave in this point. The same result is obtained for other values of D. This contradicts
the results of Bortfeld et al (2008), although their concavity criterion α2n > 2β is fulfilled.
Our counter example requires the criterion to be re-evaluated.

4.6. gEUBED function for normal tissues using the LQ-model

By noting that gEUBEDa(D) can be obtained from (7) via a simple vector transformation, we
prove that gEUBEDa(D) is convex for a � 1 in theorem 6 of appendix E.
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4.7. NTCP function using the fractionation-corrected LKB model

In a similar way, Romeijn et al (2004) applied the transformation h(z) = −ln(1 − z) to the
(nonfractionation-corrected) gEUD-based LKB model of (6), we apply it to the (fractionation-
corrected) gEUBED-based LKB model of (9). Using the result of section 4.6, we show in
theorem 7 of appendix E that −ln(1 − NTCPLKB(D)) is a convex function.

4.8. Composite TCP and NTCP functions

In appendix F, it is shown that −ln TCP(D) and −ln(1 − NTCP(D)) are convex functions
for the relevant fractionation-corrected dose–response models presented in section 2.2. This
extends the results obtained by Romeijn et al (2004) to include TCP and NTCP models that
incorporate fractionation effects.

4.9. Uncomplicated tumour control probability

Without proof, we echo the notion of Romeijn et al (2004) that from theorems 8 and 9 (see
appendix F) it immediately follows that −ln P 1

+ (D) is a strictly convex function, provided
that the convexity conditions of the constituent TCP and NTCP functions are satisfied. The
analysis gets complicated when the transformation h(z) = −ln z is applied to P 0

+ (D). No
guarantee for the convexity of −ln P 0

+ (D) can be derived.
Whether this result also rules out convexity of −ln P δ

+ (D) for 0 < δ < 1 remains to
be shown. Little impact of the δ value on P δ

+ (D) has been reported (Kim and Tomé 2006).
Another argument would be that P 1

+ (D) − P 0
+ (D) = NTCP(D)[1 − TCP(D)] is small in the

optimum. Therefore, it seems reasonable to use P 1
+ (D) instead of P δ

+ (D), since the former
criterion is guaranteed to be log-concave.

Nevertheless, for biologically-based multi-criteria optimization the more elementary
composite TCP and NTCP functions are preferred, since they do not impose an a priori
balance between them.

5. Discussion and conclusions

We have identified transformations of commonly used nonconvex radiobiological treatment
plan evaluation criteria that account for the dose-per-fraction effect and analysed conditions
under which the transformed criteria are convex functions that do not change the set of Pareto
efficient treatment plans of a multi-criteria FMO problem. The dose-per-fraction effect is
accounted for by exploiting the well-known log-linear-quadratic cell survival model that has
often been applied in fractionated radiotherapy. By using the transformations, we were able
to reformulate clinically relevant multi-criteria optimization problems being cast in terms of
TCP and NTCP endpoints as convex problems.

In contrast to the work conducted by Romeijn et al (2004), our analysis comprised
radiobiological criteria that cannot be cast as a transformation of the elementary EUD or
gEUD functions. This implies that the treatment plan evaluation criteria analysed in the
current work are truly different from those that were analysed before. Therefore, the criteria
analysed will yield different Pareto efficient frontiers.

We have shown that the convexity conditions of transformed criterion functions that are
based on the mechanistic LQ-Poisson-based dose–response model are directly related to the
form of the log-linear-quadratic cell survival function underlying it. In this respect, it should
be mentioned that the log-linear cell survival model underlying the criterion functions analysed
by Romeijn et al (2004) is a limit of the log-linear-quadratic model for either a large α/β
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ratio or for small dose inhomogeneities and a dose-per-fraction close to the reference dose for
which the dose–response model was derived. Although Bortfeld et al (2008) have claimed the
LQ-Poisson-based EUD function to be concave under certain conditions, we have provided a
numerical counter example that shows that this function is neither convex nor concave.

Another aspect that was introduced as an extension to the work of Romeijn et al (2004)
is the type of transformation applied. Apart from being strictly increasing, we have noted that
transformations of different quality exist. Certain transformations exist that yield transformed
criterion functions that are ‘less convex’ than other transformations. This is particularly useful
for the approximation of the Pareto efficient frontier by piecewise linear upper and lower
bounds (Siem et al 2008). These authors have shown that if the criterion function is already
convex, an increasing and concave transformation yields a less convex function, for which
tighter upper and lower bounds can be obtained than for the original bounds of the Pareto
efficient frontier that is to be approximated. We note that for the transformed criteria analysed
by Romeijn et al (2004) increasing and concave transformations may exist that are more
efficient.

Future research will address the application of convex biologically-based multi-criteria
optimization to assess the effect of different radiobiological models on the Pareto efficient
frontier and associated dose distributions for a given treatment technique (i.e., beam modality,
beam energy, beam configuration and machine characteristics).
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Appendix A

The following theorem shows that the log-transformed LQ-Poisson-based TCP function is
concave under certain conditions.

Theorem 1. Consider the function TCPLQ(D) of (2). Let h(z) = ln z, which is a strictly
increasing function. Then the composition

−h(TCPLQ(D)) = −ln TCPLQ(D) = N0

N∑
k=1

vkSFLQ(Dk) (A.1)

is a strictly convex function on the set of dose distributions{
D | Dk >

√
1

2

(α/β)n

α
− 1

2
(α/β)n, k = 1, . . . , M

}
.

Proof. Since the non-negative sum of strictly convex functions is strictly convex, it suffices to
prove that SFLQ(D) is strictly convex for −ln TCPLQ(D) to be strictly convex. The curvature
of SFLQ(D) is the second derivative with respect to D,

SF′′
LQ(D) = [(α + 2βD/n)2 − 2β/n]SFLQ(D). (A.2)
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From (A.2), it is easy to see that the curvature is strictly positive if

D >

√
1

2

(α/β)n

α
− 1

2
(α/β)n. �

Appendix B

The following theorem shows that ln(−ln TCPL(D)) is a convex function of D.

Theorem 2. Consider the function −ln TCPL(D) with TCPL(D) according to (14). Let
h(z) = ln z, which is a concave and strictly increasing function. Then the composition

h(−ln TCPL(D)) = ln(−ln TCPL(D)) = ln N0 + ln

(
N∑

k=1

vk e−αDk

)
(B.1)

is a convex function on the set of dose distributions {D | Dk � 0, k = 1, . . . ,M}.
Proof. It is easy to verify that e−αD is a log-convex function of D. Since the sum of log-convex
functions is log-convex, ln

(∑N
k=1 vk e−αDk

)
is convex (Boyd and Vandenberghe 2004, p 105).

Hence, ln(−ln TCPL(D)) is a convex function of D. �

Appendix C

The following theorem shows that in case the inter-patient distribution of intrinsic
radiosensitivities is Gaussian the log-transformed population-averaged LQ-Poisson-based
TCP function is concave under certain conditions.

Theorem 3. Consider the function TCPpop(D) of (4). Let TCPind(D, α) = TCPLQ(D, α) and
let φ(α) be the standard normal probability density function. Furthermore, let β be correlated
to α by a constant value of α/β. Let h(z) = ln z, which is a strictly increasing function. Then
the composition

h(TCPpop(D)) = ln TCPpop(D) = ln

[∫ ∞

0
φ(α)TCPind(D, α) dα

]
is a strictly concave function on the set of dose distributions⎧⎨

⎩D | Dk >

√[
1

2
(α/β)n

]2

+
1

2

(α/β)n

α
− 1

2
(α/β)n, k = 1, . . . , M

⎫⎬
⎭ .

Proof. We use theorem 6 from Prékopa (1973), which states that the function

F(D) =
∫

Iα

f (D, α) dα,

with Iα ⊆ R a convex set, is logarithmic concave in D if f (D, α) is a logarithmic concave
function of D and α. In our case, f (D, α) = φ(α)TCPind(D, α) and Iα = R+. Note that

ln[φ(α)TCPind(D, α)] = ln φ(α) + ln TCPind(D, α).

It is easy to see that φ(α) is strictly logarithmic concave (see, e.g., Bagnoli and Bergstrom
(2005)). Since the non-negative sum of strictly concave functions is strictly concave, it remains
to prove that ln TCPind(D, α) is a strictly concave function of D and α. Note that since

−ln TCPind(D, α) = N0

N∑
k=1

vkSFLQ(Dk, α)
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is separable in the doses to individual voxels, it suffices to show that SFLQ(D, α) is a strictly
convex function of D and α. Therefore, we analyse the Hessian of SFLQ(D, α),

∇2SFLQ(D, α) = SFLQ(D, α)

(
a b

b c

)
, (C.1)

with a = (α + 2βD/n)2 − 2β/n, b = 2βD2/n + αD − 1 and c = D2. The Hessian (C.1)
is positive definite if and only if a > 0 and its determinant, ac − b2, is positive. It is easy to
show that these two conditions are satisfied if

D >

√[
1

2
(α/β)n

]2

+
1

2

(α/β)n

α
− 1

2
(α/β)n.

�

Appendix D

The following theorem shows that −ln(1 − NTCPRS(D)s) is a strictly convex function on the
set of physically meaningful dose distributions.

Theorem 4. Consider the function NTCPRS(D) of (3) with s � 0. Let h(z) = −ln(1 − zs),
which is a strictly increasing function. Then the composition

h(NTCPRS(D)) = −ln(1 − NTCPRS(D)s)

= −
N∑

k=1

vk ln(1 − PLQ(Dk)
s) (D.1)

is a strictly convex function on the set of dose distributions {D | Dk � 0, k = 1, . . . , M}.
Proof. Note that h(NTCPRS(D)) is separable in doses to individual voxels. Hence, it suffices
to show that g(D) = −ln(1 − PLQ(D)s) is a strictly convex function of D. By calculating the
second derivative of g with respect to D, it can be shown that g′′(D) is strictly positive if

(α + 2βD/n)2

(
sN0SFLQ(D)

1 − PLQ(D)s
− 1

)
+ 2β/n > 0. (D.2)

Note that the left-hand side of (D.2) can only be nonpositive if

sN0SFLQ(D) < 1 − PLQ(D)s. (D.3)

By substituting x = sN0SFLQ(D) and noting that PLQ(D)s = e−x , it follows that (D.3) is
equivalent with

x < 1 − e−x,

which is not true for x ∈ R. Hence, it follows that (D.2) holds for any D � 0, which implies
that −ln(1 − NTCPRS(D)s) is a convex function. �

The following theorem shows that −ln(1 − NTCPRS(D)) is a strictly convex function of
the dose distribution, provided that 0 < s < 1.

Theorem 5. Let F(D) = −ln(1 − NTCPRS(D)s) be the convex function from (D.1) and let
h(z) = −ln(1 − (1 − e−z)1/s). Then the composition

h(F (D)) = −ln(1 − NTCPRS(D))

is a strictly convex function on the set of dose distributions {D | Dk � 0, k = 1, . . . , M} if
0 < s < 1.
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Proof. From lemma 2 it is known that G(D) = h(F (D)) is convex if F is convex and h is convex
and nondecreasing. Therefore, we only have to prove that h is convex and nondecreasing.

Let t = 1/s, with 0 < s < 1. Then t > 1. Differentiating h with respect to z yields

h′(z) = t (1 − e−z)t−1 e−z

1 − (1 − e−z)t
.

Since 0 < NTCPRS(D) < 1, it follows that z > 0, from which it is easy to see that h′(z) > 0
and thus h is nondecreasing. For the second derivative of h to be strictly positive, it can be
derived that the inequality

t e−z − 1 + (1 − e−z)t > 0

should hold. By substituting x = e−z, and noting that 0 < x < 1, we obtain

p(x) = tx − 1 + (1 − x)t ,

for which we have to show that p(x) > 0 for 0 < x < 1. Note that p(0) = 0 and that the
first derivative of p with respect to x is given by p′(x) = t (1 − (1 − x)t−1). Since p′(x) > 0
for 0 < x < 1 and t > 1, p is an increasing function of x. From p(0) = 0 and p′(x) > 0 for
0 < x < 1, it follows that p(x) > 0 for t > 1 on the interval 0 < x < 1, which implies that h
is strictly convex. �

Using similar arguments, it can be shown that p(x) is negative for 0 < x < 1 in the case s > 1,
which implies that h is concave. However, this does not imply that −ln(1 − NTCPRS(D))

is not convex in D. Unfortunately, the composition rules cannot be used to prove that
−ln(1 − NTCPRS(D)) is indeed a convex function, provided that s > 1.

Appendix E

The following theorem shows that gEUBEDa(D) is a convex function of the set of physically
meaningful dose distributions.

Theorem 6. The function gEUBEDa(D) of (8) is convex on the set of dose distributions
{D | Dk � 0, k = 1, . . . ,M} for a � 1.

Proof. From its definition, it is clear that (8) is obtained from (7) by a vector transformation
of its argument, i.e., gEUBEDa(D) = gEUDa(h(D)) with h(z) = (h1(z), . . . , hN(z)) and
hk(z) = BED(zk) = zk

(
1 + zk/n

α/β

)
, where k = 1, . . . , N . The convexity of gEUBEDa(D)

follows from the fact that for a � 1 the function gEUDa(D) is convex and nondecreasing in
each argument (Choi and Deasy 2002), and hk are strictly convex. �

The following theorem shows that −ln(1 − NTCPLKB(D)) is a convex function of D.

Theorem 7. Consider the function NTCPLKB(D) of (9) with a � 1. Let h(z) = −ln(1 − z),
which is a strictly increasing function. Then the composition

h(NTCPLKB(D)) = −ln(1 − NTCPLKB(D))

is a convex function on the set of dose distributions {D | Dk � 0, k = 1, . . . ,M}.
Proof. Note that −ln(1 − NTCPLKB(D)) is a transformation of gEUBEDa(D),

−ln(1 − NTCPLKB(D)) = �

(
gEUBEDa(D) − BED50

mBED50

)
,
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where �(t) = −ln(1 − �(t)), and �(t) is the standard normal cumulative distribution
function. For lemma 2 to be applicable, we use theorem 6 and only have to show that �(t) is
an increasing and convex function of t. Since h and � are strictly increasing functions, �(t) is
strictly increasing in t. To investigate whether �(t) is convex, the first derivative with respect
to t is calculated,

� ′(t) = �′(t)
1 − �(t)

.

From Bagnoli and Bergstrom (2005) it is known that if �′(t) is logarithmic concave, � ′(t) is
increasing. Note that it is easy to show that �′(t) is log-concave, since

ln(�′(t)) = ln

(
1√

2πσ

)
− 1

2

(
t − μ

σ

)2

is a parabola with strictly negative curvature. Since � ′(t) is increasing, the second derivative
of � with respect to t is positive, which implies that �(t) is convex. �

Appendix F

The following theorems show that the log-transformed composite TCP and NTCP functions
are concave and convex, respectively, on the set of physically meaningful dose distributions
for the relevant dose–response models defined in section 2 of this paper.

Theorem 8. Consider the function TCP(D) of (10), with TCPj (D) according to TCPLQ(D) of
(2). Let h(z) = ln z, which is a strictly increasing function. Then the composition

−h(TCP(D)) = −ln TCP(D) = −
T∑

j=1

ξj ln TCPj (D)

is a strictly convex function on the set of dose distributions{
D | Dk >

√
1

2

(α/β)n

α
− 1

2
(α/β)n, k = 1, . . . , M

}
.

Proof. As shown in theorem 1, the function −ln TCPLQ(D) is strictly convex if (13) is satisfied.
By noting that the non-negative weighted sum of strictly convex functions is strictly convex,
it is evident that −ln TCP(D) is strictly convex in D. �

Theorem 9. Consider the function NTCP(D) of (11) with NTCPj (D) according to NTCPRS(D)

of (3) or NTCPLKB(D) of (9). Let h(z) = −ln(1 − z), which is a strictly increasing function.
Then the composition

h(NTCP(D)) = −ln(1 − NTCP(D)) = −
T∑

j=1

ξj ln(1 − NTCPj (D))

is a strictly convex function on the set of dose distributions {D | Dk � 0, k = 1, . . . , M}.
Proof. According to theorems 5 and 7, the functions −ln(1 − NTCPRS(D)) and −ln(1 −
NTCPLKB(D)) are strictly convex, respectively. By noting that the non-negative weighted sum
of strictly convex functions is strictly convex, it is evident that −ln(1 − NTCP(D)) is strictly
convex in D. �
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Abstract

In the literature, methods for the construction of piecewise linear upper and lower bounds for the approximation of
univariate convex functions have been proposed. We study the effect of the use of transformations on the approximation
of univariate (convex) functions. In this paper, we show that these transformations can be used to construct upper and
lower bounds for nonconvex functions. Moreover, we show that by using such transformations of the input variable or
the output variable, we obtain tighter upper and lower bounds for the approximation of convex functions than without
these approximations. We show that these transformations can be applied to the approximation of a (convex) Pareto curve
that is associated with a (convex) bi-objective optimization problem.
� 2007 Elsevier B.V. All rights reserved.

Keywords: Approximation; Convex programming; Convex/concave transformation; Multiple objective programming; Pareto curve

1. Introduction

We consider the approximation of a univariate convex function y : R 7! R, which is only known in a finite
set of points x1; . . . ; xn 2 R with values yðx1Þ; . . . ; yðxnÞ 2 R. In Burkard et al. (1991), Fruhwirth et al. (1989),
Rote (1992), Yang and Goh (1997) and Siem et al. (2007), this is done by iteratively constructing piecewise
linear upper and lower bounds. For the construction of the bounds discussed in Siem et al. (2007) and Yang
and Goh (1997), only function value information, and no derivative information is needed. However, for the
construction of the bounds in Burkard et al. (1991), Fruhwirth et al. (1989) and Rote (1992), also derivative
information is necessary.
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For the approximation of a nonconvex function, these piecewise linear upper and lower bounds cannot be
used. However, in this paper, we show that if we can find a transformation of the input variable or an increas-
ing transformation of the output variable such that the nonconvex function becomes convex, we can also
obtain upper and lower bounds for this nonconvex function.

Moreover, if the function that is to be approximated is already convex, we show in this paper that by using
increasing and concave transformations of the output variable y, we can obtain tighter upper and lower
bounds. Furthermore, we show that by using certain transformations of the input variable x, we can also
obtain tighter upper and lower bounds. These transformations can be applied in combination with the lower
bounds based on only function value information as well as in combination with the lower bounds based on
derivative information.

Furthermore, we show the relevance of our methodology for the approximation of a univariate (convex)
Pareto curve that is associated with (convex) bi-objective optimization problems. The construction of a Pareto
curve may be time-consuming, since the underlying optimization problems may be very large in size; see e.g.
Küfer et al. (2003) and Ehrgott and Johnston (2003). The methodology in this paper accelerates the construc-
tion of an accurate Pareto curve.

The remainder of this paper is organized as follows. In Section 2, we repeat the expressions for the upper
and lower bounds as presented in Siem et al. (2007). In Section 3 we study the effect of transformations of
the output variables. In Section 4, we discuss the effect of transformations of the input variables. In Section
5, we show the relevance of the transformations for the approximation of a (convex) Pareto curve for (convex)
bi-objective optimization problems, and consider some examples. Finally, in Section 6 we give our
conclusions.

2. Approximating convex functions

In this section we summarize some results on piecewise linear upper and lower bounds for approximating
convex functions from Siem et al. (2007). We suppose that n input data points x1 < � � � < xn 2 R are given
together with the associated output data points yðx1Þ; . . . ; yðxnÞ 2 R. Then, it can be shown (see Siem et al.,
2007) that the straight line through the points ðxi; yðxiÞÞ and ðxiþ1; yðxiþ1ÞÞ, for 1 6 i 6 n � 1, is an upper bound
of the convex function y(x), for x 2 ½xi; xiþ1�. Furthermore, it can be shown that the straight lines through
ðxi�1; yðxi�1ÞÞ and (xi,y(xi)), for 2 6 i 6 n � 1 and through ðxiþ1; yðxiþ1ÞÞ and ðxiþ2; yðxiþ2ÞÞ, for 1 6 i 6 n� 2,
are lower bounds of the convex function y(x), for x 2 ½xi; xiþ1�. In the rest of the paper we define

kiðxÞ ¼ xiþ1 � x
xiþ1 � xi

:

Theorem 1. Let n input/output data points ðx1; yðx1ÞÞ; . . . ; ðxn; yðxnÞÞ, with x1 < x2 < � � � < xn be given, and let

y(x) be convex. Suppose furthermore that xi
6 x 6 xi+1, then

yðxÞ 6 kiðxÞyðxiÞ þ ð1� kiðxÞÞyðxiþ1Þ 8x 2 ½xi; xiþ1� 81 6 i 6 n� 1; ð1Þ
yðxÞP ð1� ki�1ðxÞÞyðxiÞ þ ki�1ðxÞyðxi�1Þ 8x 2 ½xi; xiþ1�; 2 6 i 6 n� 1; ð2Þ

and

yðxÞP ð1� kiþ1ðxÞÞyðxiþ2Þ þ kiþ1ðxÞyðxiþ1Þ 8x 2 ½xi; xiþ1�; 1 6 i 6 n� 2: ð3Þ
Furthermore, if we also have derivative information, i.e., we also have the values y0ðx1Þ; . . . ; y 0ðxnÞ, then the
tangent lines through the data points are also lower bounds. More mathematically we have:

yðxÞP yðxiÞ þ y0ðxiÞðx� xiÞ 8x 2 ½x1; xn� 8i ¼ 1; . . . ; n: ð4Þ
If y is not differentiable, y 0 can also be a subgradient. It is shown in Siem et al. (2007), that these lower bounds
are tighter than the lower bounds that are only based on function value information as given in Theorem 1.
The bounds mentioned in this section are illustrated in Fig. 1.

348 A.Y.D. Siem et al. / European Journal of Operational Research 189 (2008) 347–362
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3. The effect of transformations of the output variable

In this section we study the effect of transformations of the output variable on the upper and lower bounds
based on only function evaluations, but also on the lower bounds based on derivative information.

Suppose that we want to construct upper and lower bounds for a function y(x), that is not necessarily con-
vex, and that we know an increasing function h : R 7! R such that the function h(y(x)) is convex. Then, instead
of constructing upper and lower bounds for the function y(x), we can construct upper and lower bounds for
h(y(x)) as mentioned in Section 2. In this section, we show that by applying the inverse transformation h�1 to
these upper and lower bounds of h(y(x)), we obtain bounds for y(x). In this way, we are able to construct
upper and lower bounds for nonconvex functions.

Moreover, suppose that y(x) is convex, and that we know an increasing concave function h : R 7! R such
that the function h(y(x)) is still convex. In this section, we also show that the bounds that we obtain, after
applying the inverse transformation h�1 to the upper and lower bounds of h(y(x)), are even tighter than
the bounds in (1)–(4). Without proof we first give the following well-known result.

Lemma 1. If h : R 7! R is strictly increasing and concave, then h�1 : R 7! R exists, and is strictly increasing and

convex.

If h : R 7! R is strictly decreasing and convex, then h�1 : R 7! R exists, and is also strictly decreasing and convex.

If h : R 7! R is strictly increasing and convex, then h�1 : R 7! R exists, and is strictly increasing and concave.

Finally, if h : R 7! R is strictly decreasing and concave, then h�1 : R 7! R exists, and is also strictly decreasing

and concave.

Now we can show our main results. First, we consider the upper bounds, second, we consider the lower
bounds based on only function value information, and third, we consider the lower bounds based on deriva-
tive information.

Theorem 2. Let h : R 7! R be strictly increasing and let y : R 7! R be such that h(y(x)) is convex. Then

yðxÞ 6 h�1½kiðxÞhðyðxiÞÞ þ ð1� kiðxÞÞhðyðxiþ1ÞÞ� 8x 2 ½xi; xiþ1� 8i ¼ 1; . . . ; n� 1; ð5Þ
i.e., the transformed upper bound is also an upper bound for the (not necessarily convex) function y(x).

In addition, let h be concave and y be convex. Then

yðxÞ 6 h�1½kiðxÞhðyðxiÞÞ þ ð1� kiðxÞÞhðyðxiþ1ÞÞ� 6 kiðxÞyðxiÞ þ ð1� kiðxÞÞyðxiþ1Þ
8x 2 ½xi; xiþ1� 8i ¼ 1; . . . ; n� 1; ð6Þ

i.e., the transformed upper bound is tighter than the original upper bound (1).

Fig. 1. Upper and lower bounds for a convex function on the interval [xi,xi+1], using only function value information and using also
derivative information.

A.Y.D. Siem et al. / European Journal of Operational Research 189 (2008) 347–362 349
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Proof. From Theorem 1 and the convexity of h(y(x)) it follows that

hðyðxÞÞ 6 kiðxÞhðyðxiÞÞ þ ð1� kiðxÞÞhðyðxiþ1ÞÞ 8x 2 ½xi; xiþ1� 8i ¼ 1; . . . ; n� 1: ð7Þ
Note that from Lemma 1, we know that h�1 is increasing. Applying h�1 on both sides of (7) gives (5). Next, we
show (6):

yðxÞ ¼ h�1ðhðyðxÞÞÞ 6 h�1½kiðxÞhðyðxiÞÞ þ ð1� kiðxÞÞhðyðxiþ1ÞÞ� 6 kiðxÞyðxiÞ þ ð1� kiðxÞÞyðxiþ1Þ;
where in the first inequality we used (7) and the fact that h�1 is increasing, and in the second inequality that
h�1 is convex. h

Theorem 3. Let h : R 7! R be strictly increasing and let y : R 7! R be such that h(y(x)) is convex, then

yðxÞP h�1½ki�1ðxÞhðyðxi�1ÞÞ þ ð1� ki�1ðxÞÞhðyðxiÞÞ� 8x 2 ½xi; xiþ1� 8i ¼ 2; . . . ; n� 1; ð8Þ
yðxÞP h�1½kiþ1ðxÞhðyðxiþ1ÞÞ þ ð1� kiþ1ðxÞÞhðyðxiþ2ÞÞ� 8x 2 ½xi; xiþ1� 8i ¼ 1; . . . ; n� 2; ð9Þ

i.e., the transformed lower bound is also a lower bound for the (not necessarily convex) function y(x).

In addition, let h be differentiable and concave, and let y be convex. Then

yðxÞP h�1 ki�1ðxÞhðyðxi�1ÞÞ þ ð1� ki�1ðxÞÞhðyðxiÞÞ� �
P ki�1ðxÞyðxi�1Þ þ ð1� ki�1ðxÞÞyðxiÞ

8x 2 ½xi; xiþ1� 8i ¼ 2; . . . ; n� 1; ð10Þ
yðxÞP h�1½kiþ1ðxÞhðyðxiþ1ÞÞ þ ð1� kiþ1ðxÞÞhðyðxiþ2ÞÞ�P kiþ1ðxÞyðxiþ1Þ þ ð1� kiþ1ðxÞÞyðxiþ2Þ
8x 2 ½xi; xiþ1� 8i ¼ 1; . . . ; n� 2; ð11Þ

i.e., the transformed lower bounds are tighter than the original lower bounds (2) and (3).

Proof. From Theorem 1 and the convexity of h(y(x)) it follows that

hðyðxÞÞP ki�1ðxÞhðyðxi�1ÞÞ þ ð1� ki�1ðxÞÞhðyðxiÞÞ 8x P xi 8i ¼ 2; . . . ; n� 1:

Since h�1 is increasing (see Lemma 1), we have that

yðxÞ ¼ h�1ðhðyðxÞÞÞP h�1½ki�1ðxÞhðyðxi�1ÞÞ þ ð1� ki�1ðxÞÞhðyðxiÞÞ� 8x P xi 8i ¼ 2; . . . ; n� 1;

which shows (8) and the first inequality of (10).
To show the second inequality of (10) we define

gi
1ðxÞ ¼ h�1½ki�1ðxÞhðyðxi�1ÞÞ þ ð1� ki�1ðxÞÞhðyðxiÞÞ� 8i ¼ 2; . . . ; n� 1;

and

gi
2ðxÞ ¼ ki�1ðxÞyðxi�1Þ þ ð1� ki�1ðxÞÞyðxiÞ 8i ¼ 2; . . . ; n� 1:

Note that gi
1 is convex since h�1 is a convex function with a linear function as argument. Now define

giðxÞ :¼ gi
1ðxÞ � gi

2ðxÞ. Then gi(x) is a convex function with zeros for x = xi�1 and x = xi. From Theorem 2
we may conclude that

h�1½ki�1ðxÞhðyðxi�1ÞÞ þ ð1� ki�1ðxÞÞhðyðxiÞÞ� 6 ki�1ðxÞyðxi�1Þ þ ð1� ki�1ðxÞÞyðxiÞ
for x 2 ½xi�1; xi�, which means that gi(x) 6 0 for x 2 ½xi�1; xi�. From the mean value theorem it follows that there
exists a n 2 ½xi�1; xi�, for which (gi) 0(n) = 0. Since g is convex, we may conclude that (gi) 0(x) P 0, for all x P xi,
so also gi(x) P 0 for all x P xi, which shows the second inequality. The inequalities in (9) and (11) follow in a
similar way. h

Next, we show a similar result for the lower bounds based on derivative information.

Theorem 4. Let h : R 7! R be continuously differentiable, and strictly increasing. Furthermore, suppose that

y : R 7! R, such that h(y(x)) is convex. Then
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yðxÞP h�1½hðyðxiÞÞ þ h0ðyðxiÞÞy 0ðxiÞðx� xiÞ� 8x 2 ½x1; xn� 8i ¼ 1; . . . ; n; ð12Þ
i.e., the transformed lower bound is also a lower bound for the (not necessarily convex) function y(x).

In addition, let h be concave and let y be convex. Then

yðxÞP h�1½hðyðxiÞÞ þ h0ðyðxiÞÞy 0ðxiÞðx� xiÞ�P yðxiÞ þ y 0ðxiÞðx� xiÞ 8x 2 ½x1; xn� 8i ¼ 1; . . . ; n; ð13Þ

i.e., the transformed lower bound is tighter than the original lower bound (4).

Proof. From (4) and the convexity of h(y(x)) it follows that

hðyðxÞÞP hðyðxiÞÞ þ h0ðyðxiÞÞy0ðxiÞðx� xiÞ 8x 2 ½x1; xn� 8i ¼ 1; . . . ; n:

Since we know from Lemma 1 that h�1 is increasing, we have that

yðxÞ ¼ h�1ðhðyðxÞÞÞP h�1½hðyðxiÞÞ þ h0ðyðxiÞÞy 0ðxiÞðx� xiÞ� 8x 2 ½x1; xn� 8i ¼ 1; . . . ; n;

which shows (12) and the first inequality of (13). To show the second inequality of (13) we define

gi
1ðxÞ ¼ h�1½hðyðxiÞÞ þ h0ðyðxiÞÞy0ðxiÞðx� xiÞ� 8i ¼ 1; . . . ; n;

and

gi
2ðxÞ ¼ yðxiÞ þ y0ðxiÞðx� xiÞ 8i ¼ 1; . . . ; n:

Note that gi
1 is convex since h�1 is a convex function (see Lemma 1) with a linear function as argument. Now

define giðxÞ :¼ gi
1ðxÞ � gi

2ðxÞ. Then gi(x) is a convex function, which is zero for x = xi. Differentiating gi
1ðxÞ

gives:

ðgi
1Þ0ðxÞ ¼ ðh�1Þ0½hðyðxiÞÞ þ h0ðyðxiÞÞy0ðxiÞðx� xiÞ�h0ðyðxiÞÞy0ðxiÞ

¼ 1

h0½h�1½hðyðxiÞÞ þ h0ðyðxiÞÞy0ðxiÞðx� xiÞ�� h
0ðyðxiÞÞy0ðxiÞ;

where we used the inverse function theorem. This means that

ðgi
1Þ0ðxiÞ ¼ ðgi

1Þ0ðxiÞ � ðgi
2Þ0ðxiÞ ¼ y0ðxiÞ � y 0ðxiÞ ¼ 0:

Since gi(x) is convex, we have that (gi) 0(x) P 0, for all x P xi, and (gi) 0(x) 6 0, for all x 6 xi. This implies that
gi(x) P 0 for all x 2 ½x1; xn�, which shows the second inequality of (13). h

In a similar way it can be shown that if h : R 7! R is strictly increasing and convex, and h(y(x)) is convex,
the upper and lower bounds that we obtain by applying the inverse transformation h�1 to the upper and lower
bounds of h(y(x)) are looser than the original upper and lower bounds of y(x).

4. The effect of transformations of the input variable

In this section we study the effect of transformations of the input variable on the upper and lower bounds
based on only function evaluations, but also on the lower bounds based on derivative information.

Suppose we want to construct upper and lower bounds for a function y(x) that is not necessarily convex. If
we know a function h : R 7! R such that the function y(h(x)) is convex, we can construct upper and lower
bounds for y(h(x)) as mentioned in Section 2. In this section, we show that by applying the inverse transfor-
mation h�1 to these upper and lower bounds of y(h(x)), we obtain bounds for y(x). In this way, we are able to
construct upper and lower bounds for nonconvex functions.

If y(x) is convex, and we know a function h : R 7! R such that the function y(h(x)) is still convex, we can
also show that under certain conditions, the bounds that we obtain after applying the inverse transformation
h�1 to the upper and lower bounds of y(h(x)), are tighter than the bounds in (1)–(4).

We have to distinguish between the case that y(x) is decreasing and the case that y(x) is increasing. If y(x) is
decreasing, then h has to be either strictly increasing and convex, or strictly decreasing and concave to obtain
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tighter bounds. If y(x) is increasing, then h has to be either strictly increasing and concave, or strictly decreas-
ing and convex to obtain tighter bounds.

4.1. Decreasing output

In the rest of this paper we define

liðxÞ ¼ h�1ðxiþ1Þ � h�1ðxÞ
h�1ðxiþ1Þ � h�1ðxiÞ :

Theorem 5. Let h : R 7! R and y : R 7! R be such that y(h(x)) is convex. Then

yðxÞ 6 liðxÞyðxiÞ þ ð1� liðxÞÞyðxiþ1Þ 8x 2 ½xi; xiþ1� 8i ¼ 1; . . . ; n� 1; ð14Þ
i.e., the transformed upper bound is also an upper bound for the (not necessarily convex) function y(x).

In addition, let h be strictly increasing and convex, or strictly decreasing and concave. Let y be convex and let

yðxiÞP yðxiþ1Þ 8i ¼ 1; . . . ; n� 1. Then

yðxÞ 6 liðxÞyðxiÞ þ ð1� liðxÞÞyðxiþ1Þ 6 kiðxÞyðxiÞ þ ð1� kiðxÞÞyðxiþ1Þ 8x 2 ½xi; xiþ1� 8i ¼ 1; . . . ; n� 1;

ð15Þ
i.e., the transformed upper bounds are tighter than the original upper bounds.

Proof. Since the original dataset is given by ðxi; yðxiÞÞ, for all i ¼ 1; . . . ; n, the transformed dataset is given by
ðh�1ðxiÞ; yðhðh�1ðxiÞÞÞÞ. Note that it is not given by ðxi; yðhðxiÞÞÞ, since the value of y(x) is not known in
x ¼ hðxiÞ, but in x = xi = h(h�1(xi)). From Theorem 1 and the convexity of y(h(x)) it follows that

yðhðxÞÞ 6 h�1ðxiþ1Þ � x

h�1ðxiþ1Þ � h�1ðxiÞ yðhðh
�1ðxiÞÞÞ þ x� h�1ðxiÞ

h�1ðxiþ1Þ � h�1ðxiÞ yðhðh
�1ðxiþ1ÞÞÞ 8x 2 ½h�1ðxiÞ; h�1ðxiþ1Þ�:

Applying the transformation h�1 to the variable x yields

yðxÞ 6 liðxÞyðxiÞ þ ð1� liðxÞÞyðxiþ1Þ 8x 2 ½xi; xiþ1�;
which shows (14) and the first inequality of (15). The second inequality in (15) is equivalent with

liðxÞðyðxiÞ � yðxiþ1ÞÞ 6 kiðxÞðyðxiÞ � yðxiþ1ÞÞ:
Since we assumed that y(xi) P y(xi+1) we only have to show that li(x) 6 ki(x), i.e.,

h�1ðxiþ1Þ � h�1ðxÞ
h�1ðxiþ1Þ � h�1ðxiÞ 6

xiþ1 � x
xiþ1 � xi

: ð16Þ

From Lemma 1, it follows that h�1 is concave. Let ‘i(x) be the straight line through the points ðxi; h�1ðxiÞÞ and
ðxiþ1; h�1ðxiþ1ÞÞ, i.e.,

‘iðxÞ ¼ h�1ðxiÞ þ h�1ðxiþ1Þ � h�1ðxiÞ
xiþ1 � xi

ðx� xiÞ:

We can now write for x 2 ½xi; xiþ1�
xiþ1 � x
xiþ1 � xi

¼ ‘iðxiþ1Þ � ‘iðxÞ
‘iðxiþ1Þ � ‘iðxiÞP

h�1ðxiþ1Þ � h�1ðxÞ
h�1ðxiþ1Þ � h�1ðxiÞ ;

where in the inequality we used the concavity of h�1, the fact that ‘i(x) is linear and that ‘i(x
i) = h�1(xi) and

‘i(x
i+1) = h�1(xi+1), which implies ‘iðxÞ 6 h�1ðxÞ 8x 2 ½xi; xiþ1�. h
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Theorem 6. Let h : R 7! R and y : R 7! R be such that y(h(x)) is convex. Then

yðxÞP li�1ðxÞyðxi�1Þ þ ð1� li�1ðxÞÞyðxiÞ; ð17Þ
yðxÞP liþ1ðxÞyðxiþ1Þ þ ð1� liþ1ðxÞÞyðxiþ2Þ; ð18Þ

i.e., the transformed lower bound is also a lower bound for the (not necessarily convex) function y(x).
In addition, let h be differentiable, and either strictly increasing and convex, or strictly decreasing and concave.

Let y be convex and let yðxiÞP yðxiþ1Þ 8i ¼ 1; . . . ; n� 1. Then

yðxÞP li�1ðxÞyðxi�1Þ þ ð1� li�1ðxÞÞyðxiÞ
P ki�1ðxÞyðxi�1Þ þ ð1� ki�1ðxÞÞyðxiÞ 8x 2 ½xi; xiþ1� 8i ¼ 2; . . . ; n� 1; ð19Þ

yðxÞP liþ1ðxÞyðxiþ1Þ þ ð1� liþ1ðxÞÞyðxiþ2Þ
P kiþ1ðxÞyðxiþ1Þ þ ð1� kiþ1ðxÞÞyðxiþ2Þ 8x 2 ½xi; xiþ1� 8i ¼ 1; . . . ; n� 2; ð20Þ

i.e., the transformed lower bounds are tighter than the original lower bounds.

Proof. From Theorem 1 and the convexity of y(h(x)) it follows that

yðhðxÞÞP h�1ðxiÞ � x

h�1ðxiÞ � h�1ðxi�1Þ yðhðh
�1ðxi�1ÞÞÞ þ x� h�1ðxi�1Þ

h�1ðxiÞ � h�1ðxi�1Þ yðhðh
�1ðxiÞÞÞ 8x P h�1ðxiÞ:

Applying the transformation h�1(x) yields

yðxÞP li�1ðxÞyðxi�1Þ þ ð1� li�1ðxÞÞyðxiÞ 8x P h�1ðxiÞ;
which shows (17) and the first inequality in (19). To show the second inequality in (19), we first define

gi
1ðxÞ ¼ li�1ðxÞyðxi�1Þ þ ð1� li�1ðxÞÞyðxiÞ 8i ¼ 2; . . . ; n� 1;

and

gi
2ðxÞ ¼ ki�1ðxÞyðxi�1Þ þ ð1� ki�1ðxÞÞyðxiÞ 8i ¼ 2; . . . ; n� 1:

Note that gi
1ðxÞ is a convex function, since h�1 is concave (see Lemma 1) and y(xi�1) P y(xi). Now, define

giðxÞ :¼ gi
1ðxÞ � gi

2ðxÞ. Then gi(x) is a convex function with zeros in x = xi�1 and x = xi. From Theorem 5
we may conclude that

li�1ðxÞyðxi�1Þ þ ð1� li�1ðxÞÞyðxiÞ 6 ki�1ðxÞyðxi�1Þ þ ð1� ki�1ðxÞÞyðxiÞ
for x 2 ½xi�1; xi�, with y(xi�1) P y(xi), which means that giðxÞ 6 0 8x 2 ½xi�1; xi�. From the mean value theorem
it follows that there exists a n 2 ½xi�1; xi�, for which (gi)

0
(n) = 0. Since g is convex, we may conclude that

(gi)
0
(x) P 0, for all x P xi, so also gi(x) P 0 for all x P xi, which shows the second inequality. The inequalities

in (18) and (20) follow in a similar way. h

Next, we show a similar result for the lower bound based on derivative information.

Theorem 7. Let h : R 7! R and y : R 7! R be such that y(h(x)) is convex. Then

yðxÞP yðxiÞ þ y0ðxiÞh0ðh�1ðxiÞÞðh�1ðxÞ � h�1ðxiÞÞ 8x 2 ½x1; xn� 8i ¼ 1; . . . ; n; ð21Þ
i.e., the transformed lower bound is also a lower bound for the (not necessarily convex) function y(x).

Let h be continuously differentiable, and either strictly increasing and convex, or strictly decreasing and

concave. Let y : R 7! R be convex, and let y0ðxÞ 6 0 8x 2 ½x1; xn�. Then

yðxÞP yðxiÞ þ y0ðxiÞh0ðh�1ðxiÞÞðh�1ðxÞ � h�1ðxiÞÞP yðxiÞ þ y0ðxiÞðx� xiÞ 8x 2 ½x1; xn� 8i ¼ 1; . . . ; n;

ð22Þ
i.e., the transformed lower bound is tighter than the original lower bound.
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Proof. We first consider (21) and the first inequality of (22). From (4) and the convexity of y(h(x)) it follows
that

yðhðxÞÞP yðhðh�1ðxiÞÞÞ þ y0ðhðh�1ðxiÞÞÞh0ðh�1ðxiÞÞðx� h�1ðxiÞÞ 8x 2 ½h�1ðx1Þ; h�1ðxnÞ� 8i ¼ 1; . . . ; n:

By applying the transformation h�1, we obtain

yðxÞ ¼ yðhðh�1ðxÞÞÞP yðxiÞ þ y0ðxiÞh0ðh�1ðxiÞÞðh�1ðxÞ � h�1ðxiÞÞ 8x 2 ½x1; xn� 8i ¼ 1; . . . ; n:

We now prove the second inequality in (22). Since y 0(x) 6 0 we only have to show that

h0ðh�1ðxiÞÞðh�1ðxÞ � h�1ðxiÞÞ 6 x� xi:

Now define

giðxÞ ¼ h0ðh�1ðxiÞÞðh�1ðxÞ � h�1ðxiÞÞ � ðx� xiÞ:
Note that gi(x) is concave, since it follows from Lemma 1 that h�1 is concave. Also note that gi(xi) = 0. With
the inverse function theorem it follows that

ðgiÞ0ðxiÞ ¼ h0ðh�1ðxiÞÞ 1

h0ðh�1ðxiÞÞ � 1 ¼ 0:

Since gi(x) is concave, it follows that gi(x) 6 0. This shows the second inequality in (22). h

In a similar way it can be shown for the case that y(xi) P y(xi+1), for i = 1, . . . ,n � 1, that if h : R 7! R is
either strictly increasing and concave, or strictly decreasing and convex, the upper and lower bounds that we
obtain by applying the inverse transformation h�1 to the upper and lower bounds of y(h(x)) are looser than the
original upper and lower bounds of y(x).

4.2. Increasing output

We have similar theorems for the case that y(xi) 6 y(xi+1). However, to obtain tighter bounds, we now need
h(x) to be strictly increasing and concave. We give the theorems without proofs, since they follow in a similar
way as Theorems 5–7.

Theorem 8. Let h : R 7! R and y : R 7! R be such that y(h(x)) is convex. Then

yðxÞ 6 liðxÞyðxiÞ þ ð1� liðxÞÞyðxiþ1Þ 8x 2 ½xi; xiþ1� 8i ¼ 1; . . . ; n� 1; ð23Þ
i.e., the transformed upper bound is also an upper bound for the (not necessarily convex) function y(x).

In addition, let h be strictly increasing and concave, or strictly decreasing and convex. Let y be convex and let

yðxiÞ 6 yðxiþ1Þ 8i ¼ 1; . . . ; n� 1. Then

yðxÞ 6 liðxÞyðxiÞ þ ð1� liðxÞÞyðxiþ1Þ 6 kiðxÞyðxiÞ þ ð1� kiðxÞÞyðxiþ1Þ 8x 2 ½xi; xiþ1� 8i ¼ 1; . . . ; n� 1;

ð24Þ
i.e., the transformed upper bounds are tighter than the original upper bounds.

Theorem 9. Let h : R 7! R and y : R 7! R be such that y(h(x)) is convex. Then

yðxÞP li�1ðxÞyðxi�1Þ þ ð1� li�1ðxÞÞyðxiÞ;
yðxÞP liþ1ðxÞyðxiþ1Þ þ ð1� liþ1ðxÞÞyðxiþ2Þ;

i.e., the transformed lower bound is also a lower bound for the (not necessarily convex) function y(x).

In addition, let h be differentiable, and either strictly increasing and concave, or strictly decreasing and convex.

Let y be convex and let yðxiÞ 6 yðxiþ1Þ 8i ¼ 1; . . . ; n� 1. Then

yðxÞP li�1ðxÞyðxi�1Þ þ ð1� li�1ðxÞÞyðxiÞ
P ki�1ðxÞyðxi�1Þ þ ð1� ki�1ðxÞÞyðxiÞ 8x 2 ½xi; xiþ1� 8i ¼ 2; . . . ; n� 1; ð25Þ
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yðxÞP liþ1ðxÞyðxiþ1Þ þ ð1� liþ1ðxÞÞyðxiþ2Þ
P kiþ1ðxÞyðxiþ1Þ þ ð1� kiþ1ðxÞÞyðxiþ2Þ 8x 2 ½xi; xiþ1� 8i ¼ 1; . . . ; n� 2; ð26Þ

i.e., the transformed lower bounds are tighter than the original lower bounds.

Theorem 10. Let h : R 7! R and y : R 7! R be such that y(h(x)) is convex. Then

yðxÞP yðxiÞ þ y0ðxiÞh0ðh�1ðxiÞÞðh�1ðxÞ � h�1ðxiÞÞ 8x 2 ½x1; xn� 8i ¼ 1; . . . ; n; ð27Þ
i.e., the transformed lower bound is also a lower bound for the (not necessarily convex) function y(x).

In addition, let h be continuously differentiable, and either strictly increasing and concave, or strictly

decreasing and convex. Let y be convex, and let y0ðxÞP 0 8x 2 ½x1; xn�. Then

yðxÞP yðxiÞþ y0ðxiÞh0ðh�1ðxiÞÞðh�1ðxÞ�h�1ðxiÞÞP yðxiÞþ y0ðxiÞðx� xiÞ 8x2 ½x1;xn� 8i¼ 1; . . . ;n; ð28Þ
i.e., the transformed lower bound is tighter than the original lower bound.

It can be shown in a similar way for the case that yðxiÞ 6 yðxiþ1Þ, for i ¼ 1; . . . ; n� 1, that if h : R 7! R is
either strictly increasing and convex, or strictly decreasing and concave, the upper and lower bounds that we
obtain by applying the inverse transformation h�1 to the upper and lower bounds of y(h(x)), are looser than
the original upper and lower bounds of y(x).

In the following example of the approximation of y(x) = x2, we show that it is also possible to find trans-
formations for general convex functions by dividing the function into a decreasing part and an increasing part,
provided that it is known for which value of x the function changes from decreasing to increasing.

Example 1. We consider the approximation of the function y(x) = x2 on the interval [�1,1]. Given are the
data points ð�1; 1Þ; ð0; 0Þ, and ð1; 1Þ. Note that we can use the transformation h1ðuÞ ¼

ffiffiffi
u
p

on x, for the
interval [0, 1], and use the transformation h2ðuÞ ¼

ffiffiffiffiffiffiffi�u
p

on x, for the interval [�1,0], to obtain tighter bounds.
For this function we exactly know the value for x, in which the function changes from decreasing to
increasing. In practice, such a point is often unknown.

We have summarized a part of the results of Sections 3 and 4 in Table 1.

5. Application to the approximation of the Pareto efficient frontier

An application of the methodology presented in this paper is the approximation of a convex Pareto curve
(or Pareto efficient frontier) associated with a bi-objective optimization problem. First, in Section 5.1 we
repeat some theory on bi-objective optimization. In Section 5.2, we show how we can apply the theory dis-
cussed in Sections 3 and 4 to obtain tighter upper and lower bounds of convex Pareto curves, and also to
obtain upper and lower bounds of nonconvex Pareto curves.

5.1. Bi-objective optimization

Bi-objective optimization problems can in general be written in the form

min
v

f ðvÞ ¼ ½f1ðvÞ f 2ðvÞ�T

s:t: v 2 S;
ð29Þ

Table 1
The effect of transformations h on the upper and lower bounds for different scenarios of the input variable x and output variable y together
with the corresponding numbers of the theorems

h h Strictly increasing h Strictly decreasing

y x x

y Increasing y Decreasing y Increasing y Decreasing

Convex Looser Looser Tighter 5–7 Tighter 8–10 Looser

Concave Tighter 2–4 Tighter 8–10 Looser Looser Tighter 5–7
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where f1 and f2 are objective functions, and S � Rp is the feasible decision space. We want to minimize both
functions f1 and f2 simultaneously. However, if there is a conflict between the objectives, this is not possible. In
general, this optimization problem does not have a unique solution, since usually there is no solution that min-
imizes both objectives simultaneously. Actually, we are interested in those objective vectors, of which none of
the components can be improved without worsening the other component, i.e., we are interested in the so-
called Pareto optimal points.

Definition 1 (Pareto optimality of a decision vector). A decision vector v* 2 S is Pareto optimal if there does
not exist another decision vector v 2 S such that fi(v) 6 fi(v*), for all i = 1, 2 and fj(v) < fj(v*) for at least one
index j.

The set of Pareto optimal points is called the Pareto optimal set and will be denoted by S*. Let Z := f(S) be
the feasible objective space. Now we can define Pareto optimality in the objective space.

Definition 2 (Pareto optimality of an objective vector). An objective vector z* 2 Z is Pareto optimal if there
does not exist another objective vector z 2 Z such that zi 6 z�i for all i = 1,2 and zj < z�j for at least one index j.

This means that the vector z* is Pareto optimal if the corresponding decision vector v* for which z* = f(v*) is
Pareto optimal. The image of the Pareto optimal set f(S*) is called the Pareto curve (or Pareto efficient
frontier).

Two common methods to find Pareto optimal points are the weighting method and the e-constraint
method; see e.g. Miettinen (1999). In the latter method, we need to solve the following convex optimization
problem for ‘ ¼ 1; 2:

min
v

f ‘ðvÞ
s:t: f jðvÞ 6 ej 8j ¼ 1; 2; j 6¼ ‘;

v 2 S:

ð30Þ

We now give the following theorem, which can be found in Miettinen (1999).

Theorem 11. A decision vector v* 2 S is Pareto optimal if and only if it is a solution of the e-constraint problem

(30) for every ‘ ¼ 1; 2, where ej = fj(v*) for j ¼ 1; 2; j 6¼ ‘.

Proof. See Miettinen (1999), p. 85. h

Let E ¼ fe2 2 R : 9v 2 S : f2ðvÞ 6 e2g. Now define the function p : E 7! R as p(e2) = f1(v*(e2)), where v*(e2)
is the solution of (30) for ‘ ¼ 1; 2. The following theorem states that the Pareto curve p(e2) is convex, provided
that both f1 and f2 are convex, and S is a convex set.

Theorem 12. Suppose that f1 and f2 are convex functions and S is a convex set, then the Pareto curve p : E 7! R

corresponding with bi-objective optimization problem (29) is convex.

Proof. Let 0 6 k 6 1; e1; e2 2 E. We then have f2(v*(e1)) 6 e1, and f2(v*(e2)) 6 e2. Let v0 = k v*(e1) +
(1 � k)v*(e2), and e0 = ke1 + (1 � k)e2. Then, f2(v0) = f2(k v*(e1) + (1 � k)v*(e2)) 6 k f2(v*(e1)) + (1 � k)
f2(v*(e2)) 6 ke1 + (1 � k)e2 = e0. Also, v0 2 S. Therefore, v0 is a feasible point for optimization problem (30)
with e = e0 and ‘ = 1. Furthermore

pðe0Þ ¼ pðke1 þ ð1� kÞe2Þ ¼ f1ðv�ðke1 þ ð1� kÞe2ÞÞ 6 f1ðv0Þ ¼ f1ðkv�ðe1Þ þ ð1� kÞv�ðe2ÞÞ
6 kf1ðv�ðe1ÞÞ þ ð1� kÞf1ðv�ðe2ÞÞ ¼ kpðe1Þ þ ð1� kÞpðe2Þ;

where we used in the first inequality that v0 is feasible, and in the second inequality that f1 is convex. Therefore
p is convex. h

If the objective functions are not convex, the Pareto curve p(e) is not necessarily convex. In Fig. 2 the fea-
sible objective region is shown with both convex and nonconvex Pareto curves. There is a vast literature on
methods to find Pareto optimal points; see e.g. Miettinen (1999).
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Given a set of Pareto optimal points, we can now use the upper and lower bounds, given in Section 2, to
approximate a convex Pareto curve p(e). However, Pareto curves are decreasing by definition. As a conse-
quence of this, we can add the additional lower bound p(en) 6 p(e), for en�1

6 e 6 en. This is illustrated in
Fig. 3.

5.2. Approximation of the Pareto efficient frontier

We can use the results of Sections 3 and 4 to obtain tighter bounds of the Pareto curve, by transforming one
or both of the objectives. Suppose we want to minimize f1 and f2 simultaneously, and that f1 and f2 are convex.
If we know an increasing and concave function h, such that h(f1(v)) is convex, then also

hðpðeÞÞ ¼min
v

hðf1ðvÞÞ
s:t: f 2ðvÞ 6 e;

v 2 S

ð31Þ

is convex, and by applying Theorems 2–4, we can obtain tighter bounds for p(e).
Furthermore, if we can find a function ~h : R 7! R, which is either strictly increasing and concave, or strictly

decreasing and concave, such that ~hðf2ðvÞÞ is convex, then the function

Fig. 2. The sets Z representing the feasible objective region with both nonconvex and convex Pareto curves.

Fig. 3. Upper and lower bounds for a convex and decreasing function, based on function value information.
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~pðeÞ ¼min
v

f1ðvÞ
s:t: ~hðf2ðvÞÞ 6 e;

v 2 S

ð32Þ

is convex. We can rewrite this into

pð~h�1ðeÞÞ ¼min
v

f1ðvÞ
s:t: f 2ðvÞ 6 ~h�1ðeÞ;

v 2 S:

Since ~h�1 is either strictly increasing and convex, or strictly decreasing and concave, pð~h�1ðeÞÞ is still convex,
and p(ei) P p(ei+1), for i ¼ 1; . . . ; n� 1, by applying Theorems 5–7, we can obtain tighter upper and lower
bounds for p(e).

Furthermore, if f1 in (31) is not convex, h is increasing and such that h(f1(v)) is convex, then by applying
Theorems 2–4, we can obtain upper and lower bounds for the nonconvex Pareto curve. If in (32) f2 is not con-
vex and h is such that h(f2(x)) is convex, then by applying Theorems 5–7, we can obtain upper and lower
bounds for the nonconvex Pareto curve.

Example 2 (p-norm). For example, let f1(v) = vTAv and f2(v) = vTBv, with A and B positive semi-definite, both
be convex quadratic functions, we can choose hðuÞ ¼ ~hðuÞ ¼ ffiffiffi

u
p

. Note that both h(f1(v)) and ~hðf2ðvÞÞ are

convex, since hðf1ðvÞÞ ¼
ffiffiffiffiffiffiffiffiffiffi
vT Av
p

and hðf2ðvÞÞ ¼
ffiffiffiffiffiffiffiffiffiffi
vT Bv
p

are norms. Then, the Pareto curve, associated with
optimization problem

min
v

ffiffiffiffiffiffiffiffiffiffi
vT Av
p

s:t:
ffiffiffiffiffiffiffiffiffiffi
vT Bv
p

6 e;

v 2 S

is convex. After applying the inverse transformation to the constructed bounds, we obtain tighter bounds,
than without the transformations h(x) and ~hðxÞ. More generally we can apply this to convex functions of
the form f ðvÞ ¼PiðaT

i vÞp, where aT
i is the ith row of a squared matrix A. We can apply the transformation

hðuÞ ¼ ffiffiffi
up
p

. Since hðf ðvÞÞ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
iðaT

i vÞpp
p

is a norm (known as the p-norm), h(f(v)) is convex. The family of func-
tions f ðvÞ ¼PiðaT

i vÞp plays an important role in lp-programming; see Terlaky (1985).

Example 3 (Strategic investment model). In this example we consider a strategic investment model. There exist
many sorts of investment categories, such as deposits, saving accounts, bonds, stocks, real estate, commodi-
ties, foreign currencies, and derivatives. Each category has its own expected return, and its own risk charac-
teristic. The strategic investment model can be used to model how top management could spread an overall
budget over several investment categories. The objective is to minimize the portfolio risk (measured by the
variance of the return), such that a certain minimal desired expected return is achieved. The model was intro-
duced by Markowitz (1952), and is given by

min
v

vT Rv

s:t: rT v P M ;

eT
p v ¼ 1;

v 2 Rp
þ;

ð33Þ

where R is a positive semi-definite covariance matrix consisting of elements Rij of covariances between invest-
ment categories i and j, r is the vector consisting of elements ri of expected return of investment category i, M is
the desired expected portfolio return, ep is the p-dimensional all-one vector, v is the vector with elements vi of
fractions of the budget invested in each category, and p is the number of investment categories.
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In Table 2, a simple problem instance is given, which we took from Bisschop (2000), Chapter 18. It contains
three investment categories: stocks, bonds, and real estate. The stochastic variable Ri denotes the expected
return of investment category i. Based on four equidistant data points, we calculate the upper and lower
bounds (1)–(4). Then, we apply the concave and increasing transformation hðuÞ ¼ ffiffiffi

u
p

to the objective in (33).
Note that since the function f ðvÞ ¼

ffiffiffiffiffiffiffiffiffiffi
vT Rv
p

is convex (it is a norm), the conditions of Theorems 2–4 are
satisfied. Then, we calculate the transformed upper and lower bounds from (6), (10), (11), and (13). The
transformed and nontransformed bounds are shown in Fig. 4. Indeed, as we can see in Fig. 4, the transformed
bounds are tighter than the nontransformed bounds, as we showed in Theorems 2–4.

Next, we exchange the objective and the first constraint in (33):

min
v

� rT v

s:t: vT Rv 6 M ;

eT
p v ¼ 1;

v 2 Rp
þ:

ð34Þ

We calculate the upper and lower bounds (1)–(4). Again, we apply the transformation h(u) to the portfolio
risk, i.e., the first constraint in (34). By calculating the transformed bounds as given in (15), (19), (20), and
(22), we obtain tighter bounds of the Pareto efficient frontier. The transformed and nontransformed upper
and lower bounds are shown in Fig. 5.

Example 4 (Nonconvex Pareto efficient frontier). In this example we consider the estimation of a nonconvex
Pareto efficient frontier. The objective is to minimize

f1ðvÞ ¼ 1�
Yn

i¼1

½1� ðe� expð�avi�bv2
i =nÞÞs�Dci

" #1=s

;

Table 2
Expected returns and covariances

Category i ERi Cov[Ri,Rj]
j

1 2 3

Stocks 1 10.8 2.250 �0.120 0.450
Bonds 2 7.600 �0.120 0.640 0.336
Real estate 3 9.500 0.450 0.336 1.440

7.5 8 8.5 9 9.5 10 10.5 11
expected desired return M expected desired return M 

not transformed
transformed

not transformed
transformed
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Fig. 4. Transformed and not transformed upper and lower bounds of Pareto efficient frontier associated with (33).
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where a; b; s, Dci ¼ ci=
Pn

i¼1ci, and ci are constants, and at the same time maximize

f2ðvÞ ¼
Xn

i¼1

vi:

The use of f1(v) in Intensity Modulated Radiation Therapy can be found in Brahme and Agren (1987). The
associated e-constraint optimization problem is given as

min
v

1�
Yn

i¼1

½1� ðe� expð�avi�bv2
i =nÞÞs�Dci

" #1=s

s:t:
Xn

i¼1

vi P e;

v 2 Rn
þ:

ð35Þ

It can be shown that f1(v) is not convex. This implies that the Pareto efficient frontier that is associated with
(35) is not necessarily convex. However, by applying the convex and increasing transformation
h(u) = �log(1 � us) to f1 we obtain a convex function h(f1(v)); see Hoffmann et al. (2007). We take
n ¼ 5; a ¼ 1; b ¼ 5; s ¼ 2; c1 ¼ 5; c2 ¼ 6; c3 ¼ 4; c4 ¼ 3, and c5 = 8. Now, we can construct the trans-
formed upper and lower bounds both using only function value information and using also derivative infor-
mation as given in (5), (8), (9), and (12). The bounds are shown in Fig. 6.
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Fig. 5. Transformed and not transformed upper and lower bounds of Pareto efficient frontier associated with (34).
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Fig. 6. Upper and lower bounds of Pareto efficient frontier associated with (35).
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Next, we consider the e-constraint problem with f1 as a constraint and f2 as objective:

min
v

�
Xn

i¼1

vi

s:t: 1�
Yn

i¼1

½1� ðe� expð�avi�bv2
i =nÞÞs�Dci

" #1=s

6 e;

v 2 Rn
þ:

ð36Þ

Again, we apply the transformation h(u) to f1, and construct the transformed upper and lower bounds using
only function value information and using also derivative information as given in (14), (17), (18) and (21).
These bounds are shown in Fig. 7.

6. Conclusions

In this paper, we studied the effect of transformations on the approximation of univariate (convex) func-
tions. By using transformations on the input or the output variables, we can transform nonconvex functions
into convex functions, for which upper and lower bounds are given. We showed that applying the inverse
transformation to these upper and lower bounds gives us bounds for the original nonconvex function.

Moreover, we showed that if the function that is to be approximated is convex, we can obtain tighter upper
and lower bounds than the original piecewise linear upper and lower bounds. We can achieve this by using
increasing and concave transformations of the output variable y and concave or convex transformations of
the input variable x.

Furthermore, we applied the developed theory to the approximation of a convex Pareto curve and a non-
convex Pareto curve, associated with bi-objective optimization problems. Finally, we gave some examples of
these applications.
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Purpose
Radiation dose escalation reduces local relapse and improves overall survival in advanced

stage non-small-cell lung cancer (NSCLC) patients. Dose-enhancement of an existing

treatment plan can be achieved by re-normalisation until a pre-de�ned normal-tissue dose

constraint is reached, by re-optimisation using a trial-and-error approach or by physico-

biological optimisation (PBO) where the tumour control probability (TCP) and normal tissue

complication probability, e.g. Grade ≥ 2 radiation induced pneumonitis (NTCPRIP), drive the
inverse treatment planning process.

Methods and Materials
�is in silico study included ten randomly selected patients with stage III NSCLC.�e initial
treatment plans at �xed, unchanged number of fractions were re-normalised or re-optimised

using PBO for an iso-toxic (IT) or maximum tolerable (MT) approach to determine the high-

est achievable TCP as function of the NTCPRIP , with and without target dose homogeneity

constraint, while satisfying dose constraints for the oesophagus, spinal cord and heart.

Results
For the initial treatment plans, the mean TCP in the study cohort was 34% and NTCPRIP var-

ied between 6.4−16.4%. For the homogeneous approaches, IT re-optimisation yielded the least

bene�t, while MT re-optimisation resulted in a median [range] TCP of 53.5% [37.8−73.8%].

MT heterogeneous re-optimisation produced a median TCP of 72.8% [58.8−91.4%]. Mean

fractional doses ± relative standard deviation for the MT homogeneous and heterogeneous

re-optimised study arms were 2.2 [2.0−2.3] Gy ± 3.7% [2.4−5.2%] and 2.3 [2.1−2.7] Gy ± 8.8%

[7.4−13.1%], respectively.

Conclusions
PBO provides an individual trade-o� of TCP versus NTCPRIP as a means to generate opti-

mised treatment plans that are independent of the local institute’s dose-prescription protocol,

thus enabling ‘customised’ dose prescription. Substantial increases in local tumour control

may be achieved.

Introduction

Patients with advanced stage III non-small-cell lung cancer (NSCLC) treated with external

beam radiation therapy (EBRT) have unfavourable outcomes [1]. Failure at the primary tu-

mour site adversely in�uences progression-free and overall survival in NSCLC. To improve

outcome, concurrent chemo-radiotherapy is employed but with minor therapeutic gain at the

cost of increased acute toxicity [2]. Intensi�cation of the radiotherapy regimen by reducing
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the overall treatment has been shown to be bene�cial for local control and survival [1, 3, 4].

Escalating the prescribed dose has been proven promising in the phase I/II RTOG 0117 study

[5, 6]. However, the subsequent phase III RTOG 0617 clinical trial, comparing 60 Gy versus 74

Gy with concurrent chemotherapy, was prematurely stopped based on excess cardiac-related

deaths in the escalated dose arm [7]. Generally, dose escalation inNSCLCpatients is hampered

by organs at risk (OARs), with symptomatic Grade ≥ 2 radiation-induced pneumonitis (RIP)
being the most commonly reported dose-limiting side-e�ect [8]. Shrinking-�eld techniques

[10], highly conformal dose-delivery techniques, such as intensity-modulated radiation ther-

apy (IMRT) [11, 12], or inhomogeneous radiation beams [12, 13] enable the radiation treatment

plan to be tailored, with a possible increase of the tumour dose, depending on the location and

size of the target volume in relation to the organs at risk.

Escalation of the dose to the tumour in an existing treatment plan can be achieved by

di�erent approaches [14]. Firstly, by re-normalisation (RN; i.e. scaling the monitor units while
maintaining the beam con�guration, weights and intensity modulation pattern) of the plan

by altering the number of fractions at constant fraction dose [15] or by changing the dose

per fraction at constant number of fractions [16]. Hence, the original treatment plan can be

altered until it reaches pre-de�ned iso-toxic (IT; i.e. sustaining the OAR dose of the original
treatment plan) or maximum tolerable (MT; i.e. increasing the dose to the OARwhile keeping
within their tolerance dose level) normal tissue dose constraints. A recent in silico study in
38 stage IIIA/B NSCLC patients proved the latter approach to be bene�cial for IT or MT re-

normalisationwith an increase in tumour e�ective dose up to 8.3% and 36.6%, respectively [16].

A second strategy is re-optimisation (RO) of the initial treatment plan using a trial-and-error

approach to �nd the highest achievable tumour dose (HATD) in keeping with the normal-

tissue dose constraints [12, 13, 17].�is approach is neither time-e�cient, nor does it guarantee

the HATD to be reached. Dose-response relationships have become available from published

clinical data to serve as a basis for further dose trials [1, 8] and can potentially be exploited

not only to evaluate (existing) dose distributions, but also to create new ones. A third option is

physico-biological optimisation (PBO)where the tumour control probability (TCP) and normal
tissue complication probability (NTCP) are used as objective and constraint functions to drive

the inverse treatment planning process [14, 18]; a constraint regarding the homogeneity of the

tumour dose distribution is optional.

Available studies on dose escalation in NSCLC patients have explored the potential of a

shrinking �eld technique [10], beam inhomogeneity using a trial-and-error approach [12, 13],

or the bene�t of advanced treatment planning and delivery techniques [11, 12]. �ese studies

use physical dose for plan optimisation and some of them subsequently calculated TCP values.

Having ourselves studied the e�ects of IT and MT dose re-normalisation in a previous paper

[16], this in silico study aims to explore the potential of PBO to further escalate the target
dose on an individual patient level, both exploiting homogeneous and heterogeneous target

doses.�e HATD obtained by PBO and estimated TCP are studied in relation to the original

treatment plan as a function of the mean lung dose and associated NTCP, which are primary

constraints, with and without the target dose homogeneity constraint.
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Methods and materials

Study design
An in silico study was conducted with the aim of increasing local tumour control by individ-
ualised dose escalation, based on either an IT or an MT approach with Grade ≥ 2 RIP as the
toxicity endpoint of interest. For all patients the original treatment plan consisted of 66 Gy in

33 daily 2 Gy fractions delivered using IMRT. For this study, they were re-planned for both the

IT and MT study arms to determine the HATD for either constant or maximum allowed risk

of RIP, respectively. For both arms, the HATD a�er PBO was determined by homogeneous

and fully heterogeneous target dose escalation. See Figure X.1 for a schematic representation

of the study design.

Figure X.1: Schematic representation of the study design. (Abbreviations: ITROhom =
iso-toxic treatment plan derived by re-optimisation with uniformity constraint; IT

RO
het

= iso-toxic treatment plan derived by re-optimisation without uniformity constraint;

MT
RN
hom = maximum tolerable treatment plan derived by re-normalisation with uni-

formity constraint; MT
RO
hom = maximum tolerable treatment plan derived by re-

optimisation with uniformity constraint; MT
RO
het =maximum tolerable treatment plan

derived by re-optimisation without uniformity constraint.)

Patient characteristics
Ten randomly selected patients with Stage IIIA/B NSCLC treated at the Radboud University

Nijmegen Medical Centre with curative intent by sequential or concurrent chemoradiother-

apy were included in this retrospective study (Table X.1).

Target and normal tissue volume de�nition
Initial treatment plans were retrieved from the Pinnacle3 treatment planning system (TPS)

archive (version 8.0h; Philips Radiation Oncology Systems, Fitchburg, USA).�e gross tu-

mour volume of the primary tumour (GTVT) and of the metastatic hilar/mediastinal lymph

nodes (GTVN) was de�ned on simultaneously acquired contrast-enhanced and slow-CT scans
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Table X.1: Patient characteristics (N = 10). (Abbreviations: GTV = gross tumour vol-
ume; PTV = planning target volume; RT = radiation therapy; CHT = chemotherapy.)

Age (years; median [range]) 66.4 [47.5−76.1]

Tumour location (no. of patients)
le� upper lobe 3

le� lower lobe 3

le� lung 1

right upper lobe 1

right lower lobe 1

unknown∗ 1

Stage (no. of patients)
IIIA 6

IIIB 4

T-stage (no. of patients)
T0∗ 1

T1 3

T2 2

T3 0

T4 4

N-stage (no. of patients)
N0 1

N1 1

N2 6

N3 2

Tumour volumes (cm3 ; median [range])
GTV 104.0 [28−331]

PTV 460.5 [165−1020]

Treatment (no. of patients)
concurrent RT and CHT 6

sequential RT and CHT 4

∗
primary tumour not detected by CT, PET or pathology.

taking into account the metabolic tumour information of the 18F-�uorodeoxyglucose PET-

scan [19–21]. �e total GTV was the union of GTVT and GTVN. �e clinical target volumes

(CTVT and CTVN) were created by uniform expansion of the respective GTVs by 5 mm, cor-

recting for anatomical boundaries. �e planning target volume (PTV) was the union of the

CTVT expanded by 10 mm and the CTVN expanded by 5 mm.

�e contouring of the lungs and heart was done automatically by the TPS and manually

corrected if necessary. �e oesophagus was delineated from the lower border of the cricoid

cartilage to the gastro-oesophageal junction. For the spinal cord the inner border of the entire

bony thoracic spinal canal was delineated.

Treatment planning technique
An IMRT treatment plan was generated using a 3D convolution/superposition method for

dose calculation, and a standard radiation beam geometry not encompassing the contralateral

lung. Multi-segment �elds were generated for IMRT delivery on a step-and-shoot linear accel-

erator (Elekta SLi; Elekta AB, Stockholm, Sweden), using six co-planar 10 MV photon beams

and applying the direct machine parameter optimisation algorithm (DMPO, P3IMRT version

8.0h, Philips Radiation Oncology Systems). Plans were limited to 60 segments with a mini-
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mum segment area of 6 cm2 and at least 10 monitor units. All plans had been normalised

to a GTV mean total dose of 66 Gy satisfying the 95% and 107% criteria according to ICRU

50/62.�e PTVmean total dose was at least 98% of the prescribed tumour dose. A collapsed-

cone algorithmwith tissue heterogeneity correctionswas applied for accurate dose calculation.

Normal tissue dose constraints
�e 2 Gy normalised total dose (NTD) constraints for the relevant organs at risk were: non-

involved lung tissue (lungs minus GTVT): NTDmean ≤ 19 Gy for Grade ≥ 2 RIP (α/β = 4 Gy)
[8]; heart: NTDmean ≤ 26 Gy for pericarditis (α/β = 3 Gy) [8]; oesophagus: NTDmax ≤ 80 Gy
and NTDmean ≤ 34 Gy for late esophagitis/oesophageal stricture (α/β = 3 Gy) [9]; spinal cord:
NTDmax ≤ 50 Gy for myelopathy (α/β = 2 Gy) [22].

Plan re-normalisation
�e easiest method to homogeneously escalate the dose was to re-normalise the total monitor

units per fraction of the initial plan until the �rst normal tissue dose constraint was met [16].

�is only applies to the MT approach, indicated as MTRNhom in Figure X.1. All other approaches

require the plan to be re-optimised.

Plan re-optimisation
All initial plans from Pinnacle3 were imported into the non-clinical research so�ware OR-

BIT Workstation (version 1.5, RaySearch Laboratories AB, Stockholm, Sweden) [23]. As op-

posed to Pinnacle3, ORBIT Workstation is capable of physico-biological treatment plan opti-

misation using TCP/NTCP values. In order to validate the quality of the initial plan in OR-

BIT Workstation, the imported plans were �rst re-optimised in ORBIT Workstation main-

taining the initial settings (MLC, monitor units per segment) and the same objectives and

constraints used in Pinnacle3 (with identical MLC settings and minimum monitor units per

segment).�en, they were re-optimised with DMPO using constrained PBO, where the TCP

of the GTV was maximised subject to the above normal tissue NTD constraints and a user-

adjustable NTCPRIP constraint value for the non-involved lung tissue. �is value was varied

in steps of 1% between the one obtained for the initial plan and a pre-set maximum of 19%

that corresponds to NTDmean = 19 Gy for Grade ≥ 2 RIP [8], to implement the IT and MT ap-
proach, respectively, keeping within the prede�ned doses to the other organs at risk. For each

NTCPRIP constraint value, a new optimisation problem was solved, and the resulting TCP and

NTCPRIP were evaluated. Hence, a trade-o� relationship between TCP and NTCPRIP could be

obtained for every individual patient at each value of NTCPRIP up to the maximum of 19%.

For the homogeneous cases, a target dose uniformity constraint in the form of a maximum

allowable relative standard deviation for the PTV dose was added, equalling that of the initial

plan. For the heterogeneous cases, the target dose uniformity was unrestricted. A minimum

PTV dose constraint of 66 Gy was used to prevent ‘cold spots’.
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TCP and NTCP models
�e following dose-response models and parameters were taken from literature for plan eval-

uation and optimisation. For both TCP and NTCP, a voxel based NTDwas calculated in order

to account for fractionation e�ects. For TCP calculation a linear-quadratic Poisson model for

heterogeneous dose distributions [24], as available in ORBITWorkstation, was applied on the

GTV’s dose distributionDGTV:

TCP(DGTV) =∏
i
(exp(− exp(e ⋅ γ37 − (e ⋅ γ37 − ln(ln 2))

NTD10(DGTVi )
TD50

)
v i

,

whereNTD10 is the NTD function for α/β = 10 Gy, DGTVi and v i are the physical dose bins and
relative volumes of the GTVs dose-volume histogram (DVH), respectively. Model parameters

TD50 = 72.5 Gy and γ37 = 1.6 �tted the frequently applied logistic model of Martel et al. [25]
for local progression-free survival at 30 months [1]. No correction for overall treatment time

was applied, since the number of fractions was kept at 33 for all plans.

For the NTCP calculation, the Lyman-Kutcher-Burman model [26, 27] with fractionation

correction was applied to the dose distributionDNLT of the non-involved lung tissue (NLT):

NTCP(DNLT) = Φ(NTDmean(D
NLT) − TD50

m ⋅ TD50
) ,

where Φ(z) is the standard normal cumulative distribution function, and

NTDmean(DNLT) =∑
i
v iNTDα/β(DNLTi )

is themean-NTD function converting the physicalDVH into anNTD-equivalentDVH.Model

parameters for Grade ≥ 2 RIP (TD50 = 31.4 Gy, m = 0.45, α/β = 4 Gy) were adopted from
Marks et al. [8].

Statistical analysis
Results were analysed for every patient in the cohort individually and for the entire cohort.

Descriptive statistics of the HATD in terms of the mean target dose plus its relative standard

deviation were reported. Median values for these parameters were calculated and compared

between the study arms using the Wilcoxon signed rank test (GraphPad Prism, version 4.0,

GraphPad So�ware, La Jolla, USA) with p < 0.05 being considered a statistically signi�cant
di�erence.�e dominant dose-limiting constraint was also assessed.

Results

Individual risk-bene�t trade-o�
Byway of example, the trade-o� relationship betweenTCPandNTCPRIP is shown in FigureX.2

for patient 3 (cT4N1M0, le� lower lobe, GTV = 144 cm3). �is �gure shows the increase in

TCP by re-optimised dose escalation over the NTCPRIP interval that is considered clinically

acceptable.�e TCP and NTCPRIP of the initial plan is 34.5% and 12.9%, respectively.�e lung
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constraint is neither dose-limiting for the MTRNhom nor for the MT
RO

hom plan, but dose-limiting

for the MTROhet plan. Iso-toxic re-optimisation shows an increase in TCP of 11.6% and 34.5% for

the ITROhom and the IT
RO

het plan relative to the initial plan, respectively. �e TCP of the MT
RN

hom

plan can be improved by 9.7% and 26.6% for the MTROhom and the MT
RO

het plans, respectively, at

the cost of an increase in NTCPRIP of 2.0% and 2.4%. Corresponding DVHs and relevant dose

levels of these plans are reported in Figure X.4 and Table X.5 (see Supplementary Data).
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FigureX.2: Trade-o� relationships between TCP andNTCPRIP for patient 3, obtained
by re-normalisation (●) or re-optimisation (○, ◻) of the initial treatment plan. Data
points IT

RO
hom , IT

RO
het , MT

RN
hom , MT

RO
hom , MT

RO
hetcorrespond to outcome scores of the asso-

ciated treatment plans. (Abbreviations: see Figure X.1.)

Bene�t for individual patients
Figure X.3 shows the TCP and NTCPRIP for all individual patients and every study arm. For

the initial treatment plan, TCP was 34% and NTCPRIP varied between 6.4% and 16.4%. For

the homogeneous approaches, the ITROhom arm showed the least bene�t, with TCP ranging from

34−49.5%, with 4/10 patients having an increase less than 5%. ForMTRNhom andMTROhom, only one
patient had an increase less than 5%, while TCP ranged from 37.7−65.0% and 37.8−73.8%, re-
spectively. In both IT arms, NTCPRIP values were similar to the initial plan, independent of the

target dose uniformity constraint. �e MT arms showed two clusters of patients: in 7/10 pa-

tients dose escalation concurred with a signi�cant increase in NTCPRIP approaching themaxi-

mum tolerable level, and in 3/10 patients the increase was less than 3%. For the latter group,

evidently another constraint was dose limiting. Comparing the MTRNhom and MT
RO

hom arms, it

appears that re-optimisation yielded a higher TCP in 4/10 patients than for re-normalisation,

whereas for the remaining patients TCP was at least 5% lower with re-optimisation than with

re-normalisation. For NTCPRIP there was a statistically signi�cant, although clinically irrele-

vant, di�erence between these two arms in favour of MTRNhom(p = 0.037).�erefore, the bene�t
from re-optimisation for theMT approach under homogeneous conditions is questionable for
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the individual patient. �is does not hold for the heterogeneous arms. For all individual pa-

tients, omitting the target dose uniformity constraint resulted in a signi�cant increase in TCP.

Figure X.3: (a) Tumour control probability and (b) normal tissue complication prob-
ability related to Grade ≥ 2 radiation-induced pneumonitis for all individual patients
(1 to 10) over the 5 study arms, including the initial treatment plan. (Abbreviations:
see Figure X.1.)

Comparison of approaches for patient cohort
Tables X.2 and X.3 show the median increase in TCP and NTCPRIP for all study arms relative

to the initial treatment plan.�ere was a signi�cant increase in TCP for all study arms relative

to the initial plan, and also between the arms, except for MTRNhomand MT
RO

hom(p = 0.385). By
de�nition, there was no increase of NTCPRIP with the two IT arms, nor between the NTCPRIP

of these arms and that of the initial treatment plan.�e NTCPRIP increase was not statistically

signi�cant amongst the three MT arms (p = 0.371). However, it was signi�cant for all these
arms relative to the initial treatment plan.

Table X.2: Increase in tumour control probability (∆TCP) and normal tissue compli-
cation probability (∆NTCP) between the initial and the re-optimised (RO) treatment

plans of the iso-toxic approach (median [range]; in%). (Abbreviations: see Figure X.1.)

IT
RO
hom IT

RO
het

∆TCP 7.5 [0−15.5] 29.7
∗
[16.7−45.3]

∆NTCP 0.1 [-0.5−0.4] 0.1
n.s.
[-0.5−0.6]

∗p < 0.01; n.s. = non-signi�cant.

Table X.4 (see Supplementary Data) shows relevant dosimetric parameters for the target vol-

ume over all study arms. Evidently, there is no signi�cant di�erence in PTV uniformity be-

tween the initial plan and the ones in the homogeneous arms. �e median [range] of the

PTV mean fractional dose was 2.0 [2.0−2.1] Gy for ITROhom, 2.2 [2.0−2.4] Gy for MTRNhom, and 2.2
[2.0−2.3] Gy for MTROhom. Without homogeneity constraint, the PTV uniformity changed sig-
ni�cantly between the homo- and heterogeneous study arms, and so did the median [range]

of the PTV mean fractional doses: 2.2 [2.0−2.4] Gy for ITROhetand 2.3 [2.1−2.7] Gy for MTROhet .
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Table X.3: Increase in tumour control probability (∆TCP) and normal tissue com-
plication probability (∆NTCP) between the initial, the re-optimised (RO) and the

re-normalised (RN) treatment plans of the maximally-tolerable approach (median

[range]; in %). (Abbreviations: see Figure X.1.)

MT
RN
hom MT

RO
hom MT

RO
het

∆TCP 20.7 [3.7−31.0] 19.5
n.s.
[3.8−39.8] 38.8

∗
[24.8−57.4]

∆NTCP 3.7 [0.3−5.1] 4.4
∗∗
[0.3−7.3] 3.8

n.s.
[0.3−7.3]

∗p < 0.01; ∗∗p < 0.05; n.s. = non-signi�cant.

Dominant dose-limiting organ
For 4/10 patients, the dominant dose-limiting organ did not change over the study arms; this

was the lung tissue for three patients and the heart for one. For all ten patients, the dose-

limiting organ remained the same when the homogeneity constraint was omitted. For both

IT arms, in 8/10 patients the non-involved lung tissue was dose-limiting, whereas for the

other 2/10 patients, these were the heart and the oesophagus. For both MT arms that were

re-optimised, �ve, three, and two patients experienced dose limitation by the non-involved

lung tissue, the heart and the NTDmax of the oesophagus, respectively. For the re-normalised

MT arm, the dominant constraint was the NTDmax of the oesophagus (5/10 patients), followed

by 3/10 patients for who the non-involved lung tissue was dose-limiting. In the other two

patients, either the NTDmean for the heart or for the oesophagus impeded dose escalation.

Discussion

Recently, a dose-response relationship for NSCLC based on clinical data has been established

from a systematic literature review [1], indicating that (even modest) increases in dose are

worthwhile.�e challenge, however, is along which path dose escalation can be best achieved,

taking into account the relevant dose-limiting organs. An easy to implement approach is the

re-normalisation of an existing treatment plan at standard fractionation. Another, more time-

consuming option is the re-optimisation of the plan for a di�erent dose prescription. How-

ever, for an individualised approach, it is a priori not clear what the tumour dose prescription
should be and whether this is feasible given the speci�c EBRT technique and normal-tissue

dose constraints.

�e traditional way is to escalate the prescription dose to the same level for every patient

in the speci�c patient population, also referred to as ‘Level nil’ radiobiological optimisation

[14]. However, despite the improved normal-tissue sparing and tumour-targeting ability of

modern highly-conformal EBRT techniques such a “one-size-�ts-all” strategy would hamper

the potential to ‘customise’ the dose prescription in relation to the individual anatomy, i.e. the
location and size of the target volume relative to the OARs.

So far, population-based dose escalation in clinical trials has been accomplished either by

increasing the fraction size [3, 16, 28] or by increasing the fraction number [15] in small incre-

ments uniformly over all patients within the study cohort, until a pre-set maximum tolerable
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dose limit for one of the OARs was reached. Such an approach has resulted in modest gains in

local control rates for an acceptable increase in side e�ects. �e question that remains unan-

swered is what HATD can be safely realised for an individual patient using a speci�c inverse

treatment planning and dose delivery technique. To answer this question, we have applied a

physico-biological inverse treatment planning method that allows a TCP function to be max-

imised subject to pre-set dosimetric criteria for the PTV andOARs. Since theHATD evidently

depends on the degree of target dose heterogeneity, we investigated this e�ect by varying an

adequate PTV uniformity measure between the two extremes: its value for the initial plan

that satis�es the ICRU-criteria and in�nity.�e HATD is also restricted by the NTDmean con-

straint for the non-involved healthy lung tissue, which is associated with Grade ≥ 2 RIP.�ere-
fore, we varied the NTDmean constraint value over a clinically relevant interval under invariant

maximum tolerable dose constraints for the other OARs. In order to compare the HATD for

the study arms, TCP scores were calculated and the NTDmean was converted into an NTCP

score. Consequently, we were able to construct the Pareto e�cient frontier (see e.g. [29]) in
the TCP/NTCP domain for individual patients, which shows the boundary between physically

realisable and non-realisable dose distributions.

Iso-toxic re-optimisation of the initial plan was sub-optimal in terms of HATD at re-

stricted target dose uniformity. PBO has the ability to provide a signi�cantly higher GTV and

PTV mean total dose, and guarantees the HATD to be achieved while respecting the relevant

constraints imposed. �is allows for a new dose prescription paradigm, where the optimal

dose level for every individual patient is determined by a protocol- and treatment-planner-

independent optimisationmethodology.�e HATDwill then be prescribed once the trade-o�

in terms of target dose homogeneity/heterogeneity and risk of potential side-e�ects has been

carefully balanced by the physician’s and patient’s preferences.

Our results suggest that the largest increase in TCP can be achieved by abandoning the

homogeneous target dose dogma but it remains to be proven that this yields improved local

control and survival. Maybe the maximum bene�t will ultimately be obtained if the high dose

is selectively steered to regions or voxels that coincide with spatio-temporal information on

tumour characteristics (e.g. distribution of hypoxia and clonogenic tumour cells) based on
functional imaging modalities (e.g. [17, 30]). Still, this has to be con�rmed.
Our study has some limitations. Firstly, the radiobiological models have uncertain param-

eter values. Hence, the TCP and NTCP predictions should not be taken as absolute values.

Instead, they should be used to compare the relative performance of competing dose distri-

butions. Clinical decision-making should therefore not solely be based on these values, but

should always include an evaluation of the 3D dose distribution. Nevertheless, a sensitivity

analysis (results not shown) indicated that the HATD is robust under uncertainties in the TCP

model parameters. Secondly, we did not investigate the e�ect of varying the number of frac-

tions on the TCP/NTCP trade-o� boundaries.�is could be added as an independent variable

in the physico-biological treatment planning procedure, which implies that one would need

to perform repeated series of optimisation runs, varying the number of fractions each time.

�irdly, we did not take tumour motion due to breathing or systematic/random errors into

account which may all in�uence the dose delivered to the primary tumour [31]. Employing
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anisotropic margins compensating for these e�ects, or implementing techniques controlling

the breathing cycle [32] may be ways to reduce the e�ects on TCP as well as NTCP.

Conclusions

Physico-biological optimisation, maximising a homogeneous or heterogeneous target dose

prescription provides a trade-o� of TCP versus NTCP as a means to generate optimised treat-

ment plans that are independent of the local institute’s dose-prescription protocol, and allows

for individualised balancing of treatment bene�t and injury. �is in silico trial suggests that
physico-biological optimisation has the ability to produce deliverable treatment plans with an

increased highest achievable ‘customised’ tumour dose that is within a clinically acceptable

range and yields a signi�cant increase in estimated TCP.
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Samenvatting (Summary in Dutch)

Moderne bestralingstechnieken zoals intensiteitsgemoduleerde radiotherapie (IMRT) hebben

het risico op beschadiging van gezonde, normale weefsels in vergelijkingmet conventionele en

drie-dimensionale conformale radiotherapie (3D-CRT) substantieel verkleind, door gebruik

te maken van computerintensieve ontwerpmethoden voor optimalisatie van de dosisverde-

ling. Desondanks is het dosisvoorschri� voor patiënten met een zelfde bestralingsindicatie

onveranderd uniform gebleven. Deze uniformiteit van het dosisvoorschri� impliceert echter

geen uniformiteit van de bijwerkingen. De huidige behandelprotocollenwaarin het dosisvoor-

schri� is ‘bevroren’ houden namelijk geen rekening met patiëntspeci�eke kenmerken, zoals

de anatomische variatie in tumorgrootte en -lokalisatie (ten opzichte van omliggende nor-

male weefsels). Deze variatie biedt thans onbenutte mogelijkheden om het dosisvoorschri� te

individualiseren. Verschillende strategieën kunnen daarvoor worden aangewend, zoals: maxi-
maal tolerabele, isotoxische en risico-geadapteerde benaderingen. Deze zijn a8ankelijk van

de rol die de behandelend radiotherapeut-oncoloog en de individuele patiënt spelen bij de

besluitvorming omtrent de afweging van voor- en nadelen die met de bestralingsbehande-

ling gepaard gaan. In de huidige computersystemen waarmee bestralingsplannen worden ont-

worpen ontbreken beslissingsondersteunende hulpmiddelen, die aangewend kunnen worden

voor een systematische verkenning van bovengenoemde strategieën. Geavanceerde metho-

den voor computerondersteunde optimalisatie van het individuele behandelplan dienen in

deze behoe�e te voorzien. Het werk in deze dissertatie beschrij� verschillende aspecten van

nieuwe rekenkundige methoden en hun toepassing voor klinisch relevante casuı̈stieken.

Het eerste artikel (Paper I) introduceert de rationale en het belang om het dogma van
uniforme dosisvoorschri�en voor patiënten met een zelfde bestralingsindicatie te doorbreken

door voorkeuren met betrekking tot individuele risico-afweging te betrekken bij de selectie

van een ‘optimaal’ behandelplan. Hiervoor worden op basis van verschillende dosisverdeling-

en schattingen gemaakt van kansen op tumorcontrole en complicaties van relevant geachte

normale weefsels. De navolgende drie artikelen (Papers II, III, IV) beschrijven verschil-
lende strategieën voor individualisering van het dosisvoorschri� teneinde de therapeutische

prestaties van een bestaand behandelplan te verbeteren door middel van renormalisatie; door
schaling van de relatieve dosisverdeling zonder deze opnieuw te ontwerpen. De laatste zes

artikelen hebben betrekking op verschillende strategieën voor individualisering van het do-

sisvoorschri�, waarbij dosisverdelingen opnieuw worden ontworpen met behulp van intelli-

gente methoden voor heroptimalisatie.
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Deze methoden omvatten zowel dosimetrische (Papers V, VI, VII) als radiobiologische
criteria (Papers VIII, IX, X), die respectievelijk de kwaliteit van de dosisverdeling en de te
verwachten behandeluitkomst trachten te kwanti�ceren. In het laatste artikel worden de con-

cepten uit de eerdere artikelen samengevoegd teneinde de renormalisatie en heroptimalisatie

benaderingenmet elkaar te vergelijken. Bij patiëntenmet een gevorderd stadiumniet-kleincel-

lig longcarcinoom (NSCLC) wordt individuele dosisescalatie middels IMRT toegepast onder

condities waarbij de heterogeniteit van de dosisverdeling in het te bestralen doelvolume wordt

beperkt, dan wel wordt losgelaten.

Inclusie van patiëntenvoorkeuren bij de bestralingsplanning van geı̈ndividualiseerde
radiotherapie

Een eerste strategie om een persoonlijk dosisvoorschri� te bewerkstelligen is risicovoorkeuren

van de individuele patiënt mee te wegen. In Paper I wordt voorgesteld de voorkeuren van de
patiënt in het proces van de bestralingsplanning te includerenmet als doel de balans tussen de

kans op tumorcontrole (TCP) en de kans op bijwerkingen in normale weefsels (NTCP), zoals

geschat op basis van de vooraf berekende dosisverdeling, te individualiseren. IMRTmaakt het

mogelijk bestralingsplannen met verschillende dosisvoorschri�en over een bereik van TCP-

en NTCP-waarden te genereren. Het klinisch acceptabele bereik van bestralingsplannen van

waaruit één ‘beste compromis’ gekozenmoet worden, kan in verschillendemate van complexi-

teit worden onderzocht. De evaluatie hiervan door middel van de therapeutic operating char-
acteristic (TOC) gra�ek en de Pareto e�cient frontier (PEF) lijkt geschikt voor respectievelijk
eerder en nieuw ontworpen bestralingsplannen. Vanuit deze weergave kan de radiotherapeut-

oncoloog behandelmogelijkheden kiezen en de risicovoorkeurenmet de patiënt bespreken. De

verschillen tussen deze behandelmogelijkheden kunnen in schattingen van de TCP en NTCP

worden beoordeeld. Dit maakt het noodzakelijk nieuwemethoden voor beslissingsondersteu-

ning te ontwikkelen en in bestaande bestralingsplanningssystemen te integreren.

Aanpassing van het dosisvoorschri� met behulp van de TOC-gra�ek

In Paper II wordt het concept van de TOC-gra�ek als keuzehulp toegepast om de afweging
tussen TCP en NTCP te kwanti�ceren door middel van een a posteriori optimalisatie van een
eerder ontworpen bestralingsplan. Voor dit bestralingsplan wordt het dosisvoorschri� nadien

gerenormaliseerd middels ‘Niveau I’ optimalisatie (zie pagina 17), hetzij door variatie van de

fractiegrootte (bij een constant aantal bestralingsfracties), hetzij door variatie van het aan-

tal bestralingsfracties (bij constante fractiegrootte), teneinde het gehele bereik van TCP- en

NTCP-waarden van de desbetre�ende dosisverdeling in kaart te brengen. In tegenstelling tot

het sterk bekritiseerde P+ concept voor de ‘complicatievrije tumorcontrolekans’ worden voor
het vinden van het ‘optimale’ dosisvoorschri� geen veronderstellingen gedaan betre�ende de

a priori voorkeuren voor TCP en NTCP. Het TOC-concept wordt voorgesteld aan de hand
van een klinisch voorbeeld van prostaatkanker, waarbij de afwegingen tussen biochemische

afwezigheid van tumorrecidief na 5 jaar, late gastro-intestinale en urogenitale morbiditeit voor

een patiëntencohort alsmede voor een individuele patiënt zijn onderzocht.
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De oppervlakte onder de TOC-gra�ek wordt als nieuwe, dosisona8ankelijke index voor

het therapeutische vermogen van een bestralingstechniek of -plan voorgesteld. Een vergelijk

tussen 3D-CRT en IMRT plannen demonstreert het e�ect van een verhoogde therapeutische

winst dat met moderne optimalisatie- en bestralingstechnieken kan worden bereikt. Voorts

suggereren de resultaten dat door toenemende dosisconformaliteit en -heterogeniteit binnen

het doelvolume het therapeutische venster zich opent en daarmee de therapeutische winst van

gëındividualiseerde radiotherapie wordt vergroot.

Aanpassing van fractiedosis en -aantal bij bestraling van het niet-kleincellig
longcarcinoom

Een alternatief om het dosisvoorschri� aan te passen is middels gëındividualiseerde dosis-

escalatie, waarbij verschillende strategieën kunnen worden gevolgd. Bij de maximaal tolera-

bele benadering de�nieert de radiotherapeut-oncoloog de limieten voormaximaal toelaatbare

dosis en/of complicatiekansen voor de relevante risico-organen, en wordt de voorgeschreven

dosis van een reeds bestaand bestralingsplan voor een individuele patiënt a posteriori ver-
hoogd totdat de meest kritische limiet wordt bereikt. Bij de isotoxische benadering wordt de

voorgeschreven dosis individueel verhoogd tot aan het niveau waarop de kans op een bepaalde

complicatie gelijk geacht wordt te zijn aan die van de rest van de patiëntengroep. Recentelijk

zijn dergelijke behandelstrategieën voor de bestraling van het gevorderd NSCLC met succes

in de kliniek gëıntroduceerd. In deze protocollen wordt ofwel het aantal bestralingsfracties

verhoogd met een gelijkblijvende fractiedosis, dan wel het tegenovergestelde, maar er vindt

geen simultane aanpassing van de fractiedosis en het aantal fracties plaats. Tot dusverre werd

bij dergelijke behandelstrategieën enkel rekening gehouden met de tolerantiedoses van het

niet-gëınvolveerde longweefsel en het myelum, doch niet met die van andere potentiële risico-

organen.

Paper III beschrij� de gëındividualiseerde dosisescalatie in een retrospectieve in silico
studie bij 38 patiënten met gevorderd stadium NSCLC, waarbij niet alleen dosislimieten voor

het niet-gëınvolveerde longweefsel en het myelum, maar ook die voor de oesophagus, de

plexus brachialis en het hart zijn opgenomen. Zogenaamde ‘Niveau II’ optimalisatie (zie pa-

gina 17) wordt toegepast door de fractiegrootte en het -aantal simultaan te variëren voor zowel

maximaal tolerabele als ook isotoxische dosisescalatie. Aangetoond wordt dat in 79% van de

patiënten een signi�cante dosisescalatie met therapeutische winst mogelijk zou zijn geweest.

De maximale dosis op de oesophagus blijkt bij de meeste patiënten het dominante dosisli-

miterende risico-orgaan te zijn.
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Het e�ectieve α/β concept verdisconteert dosisheterogeniteit en volume-e�ect bij de
fractioneringsgevoeligheid van normale weefsels

Door toenemend bewijs dat radiotherapiemet een hoge fractiedosismiddels hoog-conformale

bestralingstechnieken veilig kan worden toegepast, is hernieuwde interesse voor hypofrac-

tionering ontstaan. De gebruikelijkemethode omuitgaande van een bestaand dosisvoorschri�

een nieuw, iso-e�ectief bestralingsregime te berekenen maakt gebruik van de zogenaamde

Withers iso-e�ect formule (WIF), welke gebaseerd is op het bekende radiobiologische model
voor de lineair-kwadratische celoverlevingscurve. Dit model omvat maten voor de intrinsieke

fractioneringsgevoeligheid, α/β, van zowel de tumor als van het meest relevant geachte do-
sislimiterende normale weefsel. De ratio van deze maten dient thans als instrument om de

potentie van hypofractionering te beoordelen. Recente inzichten in de modellering sugge-

reren echter dat voor tumorlokalisaties waarbij de speci�eke anatomie een substantieel lagere

dosis op het dosis-limiterende normale weefsel toelaat dan op de tumor, in potentie geschikt

zijn voor hypofractionering ondanks dat voornoemde ratio onvoordelig lijkt te zijn.

In Paper IVwordt betoogd dat deWIF tot conservatieve hypofractionering leidt met niet-
exacte schattingen voor de kans op iso-e�ectiviteit van normale weefsels die een (quasi-)pa-

rallelle architectuur hebben en een relatief lage bestralingsdosis ontvangen. Wij presenteren

een gegeneraliseerdWIF (gWIF) concept voor de exacte berekening van deze iso-e�ectiviteit,
waarbij de voorgeschreven (tumor)dosis in de formule behouden blij� en enkel de conven-

tionele α/β als maat voor de fractioneringsgevoeligheid door een e�ectieve waarde, (α/β)eff,
wordt vervangen. Deze (α/β)eff verdisconteert de niet-triviale a8ankelijkheid van de dosis-
heterogeniteit en het volume-e�ect van het normale weefsel voor het desbetre�ende klinische

eindpunt. Met behulp van het nieuwe (α/β)eff concept kan voor complexe dosisverdelingen op
eenvoudige wijze worden beoordeeld of hypofractionering in potentie radiobiologisch voor-

delig is. Het (α/β)eff concept wordt gëıllustreerd aan de hand van voorbeeldenwaarbij gebruik
gemaakt wordt van dosis-volume histogram (DVH) gegevens van het niet-gëınvolveerde long-

weefsel van NSCLC-patiënten die hetzij met IMRT dan wel met stereotactische ablatieve ra-

diotherapie (SABR) werden bestraald.

E�ciënt genereren van Pareto-optimale IMRT plannen

Het ontwerp van bundel�uentieverdelingen ten behoeve van IMRT kan alsmulti-objective op-
timalisatieprobleem worden geformuleerd. Pareto optimalisatie is een methode om dit pro-

bleem met meerdere, veelal con�icterende doelfuncties (objectives) op te lossen. Dit betre�
een a posteriori optimalisatiemethode waarbij eerst de samenhang tussen de con�icterende
doelfuncties (van het bestralingsplan) wordt gekwanti�ceerd als een verzameling van beste

compromissen, en vervolgens aan de besluitvormer de mogelijkheid wordt geboden hieruit

een enkele ‘optimale’ oplossing te selecteren. Deze verzameling wordt door de PEF in de ob-
jective space afgebeeld en omvat een oneindig aantal elementen. In het algemeen bestaat er
geen gesloten vorm van de PEF. Een manier om de PEF te verkrijgen is middels discrete ap-

proximatie. Hierbij worden successievelijk multipele optimalisatieproblemen opgelost. Elke

oplossing is een element van de genoemde verzameling en representeert een punt op de PEF.
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Om de rekenintensiviteit te reduceren is het wenselijk methoden te gebruiken die garanderen

dat enkel globaal optimale Pareto-oplossingen worden gegenereerd.

In Paper V wordt een nieuw algoritme ontwikkeld voor iteratieve, discrete approximatie
van de PEF, gebruikmakend van de zogenaamde ε-constraint optimalisatiemethode. De con-
vexiteit van het optimalisatieprobleem wordt benut om stuksgewijs lineaire boven- en onder-

grenzen te construeren teneinde de PEF, uitgaande van een kleine verzameling van initiële

Pareto-optimale oplossingen, tot op een vooraf vastgestelde nauwkeurigheid te benaderen.

Een nieuw ‘sandwich algoritme’ wordt gepresenteerd (zie Paper VI) waarin deze grenzenmid-
dels drie iteratieve strategieën worden gebruikt omde lokatie van de volgende Pareto-optimale

oplossing te bepalen zodanig dat de onzekerheid van de geschatte PEF maximaal wordt gere-

duceerd. Aangetoond wordt dat een intelligente initiële oplossing voor een nieuw Pareto-

optimaal bestralingsplan kan worden verkregen door interpolatie van �uentieverdelingen van

twee bestaande naburige Pareto-optimale plannen. Deze methode wordt toegepast op een ge-

simpli�ceerde klinische hoofd-hals-casusmet twee doelfuncties, om de afweging te illustreren

tussen dosisheterogeniteit in het doelgebied en het vermogen om normale weefsels te sparen.

De resultaten tonen aan dat middels alle drie strategieën een e�ciënte en representatieve ap-

proximatie van de PEF is te realiseren.

E�ciënte approximatie van de convexe Pareto e�cient frontier

Voor het geval van een niet-lineair convex optimalisatieprobleem met twee doelfuncties is

de PEF een univariate convexe functie. Discrete approximatie is een bekende methode om

deze functie te reconstrueren. Eerder zijn sandwich algoritmen voorgesteld voor de univari-
ate approximatie van convexe functies. Door deze algoritmen worden stuksgewijs lineaire

boven- en ondergrenzen van de te approximeren convexe functie geconstrueerd op basis van

afgeleide-informatie. Dergelijke informatie kan echter ontbreken en uitsluitend informatie

met betrekking tot functie-evaluaties kan voorhanden zijn. Dit is het geval bij ε-constraint
optimalisatie.

In Paper VI wordt het wiskundig bewijs geleverd dat een univariate PEF een dalende
convexe functie is. Stuksgewijs lineaire boven- en ondergrenzen voor de univariate convexe

PEF worden afgeleid, enkel berustend op informatie met betrekking tot functie-evaluaties.

Volledige bewijzen voor deze grenzen worden gegeven. Tevens worden nieuwe sandwich algo-
ritmen voorgesteld, welke op een systematische wijze iteratief nieuwe Pareto-optimale punten

toevoegen totdat een gewenste nauwkeurigheid van de PEF-approximatie wordt bereikt. De

nieuwe algoritmen zijn lineaire convergent. Indien aanvullende afgeleide-informatie beschik-

baar is, dan kan onder speci�eke condities kwadratische convergentie worden aangetoond.

Bewezen wordt dat de ondergrenzen die resulteren uit de combinatie van functie-evaluatie

en afgeleide-informatie stringenter zijn dan die welke alleen met behulp van functie-evaluatie

informatie worden gegenereerd. De bruikbaarheid van deze algoritmen wordt middels nu-

merieke voorbeelden gëıllustreerd.

197



Treatment planning optimisation for individualised dose prescription

Praktische benadering voor afwegingen van IMRT planning bij de bestraling van het
niet-kleincellig longcarcinoom

In beschikbare computersystemen voor inverse planning van IMRT verschillen de doelfunc-

ties die het optimalisatiealgoritme sturen van de evaluatiefuncties die voor de beoordeling

van de resulterende dosisverdeling worden gebruikt. Klinisch afgeleide DVH-criteria worden

vaak gebruikt om de kwaliteit van een dosisverdeling te beoordelen. DVH-gebaseerde doel-

functies zijn doorgaans gëımplementeerd als kwadratische functies die de afwijking van een

voorgeschreven dosis-volumeniveau kwanti�ceren. De correlatie tussen de waarden van de

doel- en evaluatiefuncties in DVH-gebaseerde optimalisatiemodellen is zwak. Dit zou het ge-

bruik van Pareto optimalisatie nadelig kunnen bëınvloeden, omdat de PEFde kwantitatieve re-

latie tussen de doelfuncties a2eeldt in plaats van de relatie tussen de evaluatiefuncties. Verder

zijn deDVH-gebaseerde doelfuncties niet convex. In de praktijk is herhaaldelijke optimalisatie

doorgaans noodzakelijk om acceptabele oplossingen te verkrijgen die aan de klinisch relevant

geachte eisen van het bestralingsplan voldoen, hetgeen ine�ciënt is.

Om dit probleem te vermijden is in Paper VII een so�ware hulpmiddel beschreven dat
gekoppeld werd aan het bestralingsplanningssysteem om automatisch een reeks van klinisch

toepasbare IMRT plannen te genereren. Hiertoe werden de parameterwaarden van de doel-

functies op een systematische wijze gevarieerd. Tevens faciliteert dit hulpmiddel de analyse

van de afwegingen tussen klinisch relevant geachte parameters, zoals de dekkingsgraad van het

doelvolume en de sparing van normale weefsels. Om dergelijke afwegingen te onderzoeken

wordt dit hulpmiddel retrospectief toegepast bij vijf patiënten met gevorderd stadiumNSCLC

die middels IMRT zijn bestraald.

Er worden lineaire relaties gevonden tussen klinisch relevante dosimetrische parameters,

welke a8ankelijk zijn van de speci�eke casus. Dit wordt als meta-model gebruikt bij de on-

dersteuning voor de keuze van een individueel bestralingsplan.

Convexe herformulering van radiobiologische optimalisatie bij IMRT planning

Indien het wenselijk is radiobiologische evaluatiefuncties voor TCP en NTCP als doelfuncties

en/of restricties in ‘Niveau III’ optimalisatie (zie pagina 17) te gebruiken, is het noodzakelijk

geschikte wiskundige transformaties toe te passen om deze functies strikt convex/concaaf te

maken, a8ankelijk of de doelfunctie geminimaliseerd/gemaximaliseerd dient te worden. An-

ders is het optimalisatieprobleemmoeizaam op te lossen en kan niet worden gegarandeerd dat

de unieke, globaal beste oplossing wordt gevonden.

In Paper VIII worden wiskundige transformaties afgeleid voor een aantal bekende ra-
diobiologische modellen die fractioneringse�ecten verdisconteren. Tevens worden condities

bepaald waaronder getransformeerde functies in equivalente convexe criteria resulteren zon-

der de verzameling van Pareto-optimale oplossingen te wijzigen. Voorts wordt aangetoond

dat de toepassing van stijgende en concave transformaties op convexe doelfuncties gunstig is

voor de stuksgewijs lineaire approximatie van de convexe PEF.
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Samenvatting (Summary in Dutch)

Het e�ect van transformaties op de approximatie van het Pareto e�cient frontier

Zoals in de voorgaande sectie is beschreven vereist Pareto optimalisatie met radiobiologi-

sche doelfuncties en restricties dat wiskundige transformaties worden toegepast om bestaande

TCP- en NTCP-evaluatiefuncties strikt convex/concaaf te maken. Vastgesteld is echter dat

transformaties van verschillende kwaliteit bestaan. Bepaalde transformaties resulteren in ge-

transformeerde doelfuncties die minder convex zijn dan andere transformaties. Dit is vooral

voordelig voor de discrete approximatie van de PEF middels stuksgewijs lineaire boven- en

ondergrenzen.

In Paper IX wordt wiskundig bewezen dat indien de doelfunctie reeds convex is, een stij-
gende en concave transformatie die een minder convexe functie oplevert, resulteert in boven-

en ondergrenzen van de te approximeren PEF die stringenter zijn dan voor de originele func-

ties. Voor getransformeerde radiobiologische evaluatiefuncties die reeds door anderen zijn ge-

analyseerd, wordt aangetoond dat zulke stijgende en concave transformaties kunnen bestaan.

Fysico-biologische optimalisatie van IMRT plannen voor geı̈ndividualiseerde
dosisescalatie bij bestraling van het niet-kleincellig longcarcinoom

De ‘best’ haalbare dosisverdeling hangt af van de individuele anatomie van patiënt, de on-

derliggende biologische heterogeniteit, de fysische beperkingen van de bestralingstechniek en

de risico-afwegingen die de radiotherapeut-oncoloog en de patiënt samen maken. In de con-

text van dezemulti-factoriële ruimtemoet een ‘beste compromis’ oplossing worden gevonden,

waarvan wordt verwacht dat deze de best haalbare afweging tussen baat en bijwerkingen van

de bestralingsbehandeling representeert. Derhalve is het wenselijk dat het bestralingsplan-

ningssysteem een verzameling van Pareto-optimale bestralingsplannen kan genereren met de

hoogst mogelijke kans op tumorcontrole bij een vooraf acceptabel geachte kans op compli-

caties.

Paper X beschrij� een retrospectieve in silico dosisescalatiestudie waarbij maximalisatie
van de kans op tumorcontrole onder vooraf gestelde dosimetrische en/of NTCP-restricties

wordt toegepast bij patiënten met een gevorderd stadium NSCLC. Om het volledige poten-

tieel van ‘Niveau III’ optimalisatie voor IMRT te onderzoeken wordt een vergelijking uitge-

voerd tussen homogene en heterogene dosisescalatie in het doelvolume. Voor het homogene

geval wordt ‘Niveau III’ optimalisatie vergeleken met ‘Niveau I’ optimalisatie door toepassing

van renormalisatie van de fractiegrootte. De resultaten suggereren dat een substantiële toe-

name in lokale tumorcontrole bereikt kan worden over een interval van klinisch toelaatbare

risico’s voor alle patiënten in de studie, indien bij het dosisvoorschri� niet langer wordt vast-

gehouden aan stringente homogeniteitseisen voor de dosisverdeling in het doelvolume en het

dosisvoorschri� niet voor alle patiënten binnen de desbetre�ende groep uniform is.
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