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ABSTRACT. We introduce a non-commutative Walsh system and prove that
it forms a Schauder basis in the LP-spaces (1 < p < oo) associated with the
hyperfinite IITy-factors (0 < A < 1).

1. INTRODUCTION

In the present paper we study the non-commutative LP-spaces associated with
the hyperfinite factors of type I, where 0 < A < 1. In particular, we are interested
in the decomposition of this space in terms of LP-spaces of matrix algebras and the
construction of a very classical Schauder basis, namely the Walsh system.

Recall that the classical Walsh system is defined as follows. One firstly defines
the Rademacher functions:

rj(z) = sign (sin (2/7z)), jeN,z e€l0,1].

The classical Walsh system, see e.g. [14], is defined as the sequence of functions
given by:

(1.1) Wy = H i where n = Z%Qi,%- € {0,1}.
7i#0 i=0

It is a classical result that the sequence (wp)nen forms a Schauder basis in the
spaces LP([0,1], ) for every 1 < p < o0, see [14, Theorem IV.15]. Here p denotes
the Lebesgue measure.

Proper non-commutative generalizations of the Walsh system have been found
for the LP-spaces associated with the hyperfinite II; and II,, factor [6]. Also,
related problems have been studied in [3], [5], where non-commutative trigonometric
systems and non-commutative Vilenkin systems where constructed. Furthermore,
in [17] a non-commutative Haar system was built for hyperfinite type III, factors,
0< A< 1.

Here, we continue this line by constructing a Walsh system for the hyperfinite
III\-factors, where 0 < A < 1. We elaborate on the special commutative case
LP([0,1], po). Here, g is the Lebesgue measure in case o = % In case o # %,
the measure p,, is a biased measure which is singular to the Lebesgue measure and

appears naturally in the construction of III, factors, c.f. [12].

The structure of the paper is as follows. Section 2 recalls the necessary results
on general non-commutative LP-spaces. In Section 3 we introduce the hyperfinite
III, factors and fix notation. Section 4 contains our main result, which is the
construction of a non-commutative Walsh system as a Schauder basis in the LP-
spaces associated with the hyperfinite IIIy factors, 1 < p < 00,0 < A < 1. In
Section 5 we construct a Walsh system for the hyperfinite III; factor. Finally, we
make remarks on the classical case in Section 6.
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2. PRELIMINARIES ON NON-COMMUTATIVE LP-SPACES

Let M be a von Neumann algebra with predual M,. For w € M, ,z € M, we
write zw € M, for the functional given by (zw)(y) = w(yz),y € M. Similarly,
wx € M, denotes the functional (wz)(y) = w(zy),y € M.

2.1. Non-commutative LP-spaces. Non-commutative LP-spaces appear in dif-
ferent guises. Haagerup [8] as well as Connes and Hilsum [10] gave different, but
equivalent definitions of LP-spaces associated with an arbitary von Neumann alge-
bra. In [15] Kosaki showed that for a von Neumann algebra with a faithful, normal
state, the LP-spaces are isometrically isomorphic to complex interpolation spaces
between a von Neumann algebra and its predual. This is the point of view that
is most suitable for our purposes. We recall the necessary definitions and notation
here.

For the details on the complex interpolation method, we refer to [1]. Let M be
a von Neumann algebra with faithful, normal state w. We consider the non-dotted
part of the (commutative) diagram:

(2.1) \
4

,,/\/l,k)[l]L - >M

m»—)zw

This turns the pair (M, M.) into a compatible couple of Banach spaces [1, Section
2.3]. The complex interpolation method at parameter % gives by definition a Banach

space (M, M*)[;] which is a subset of M, where the inclusion is a norm-decreasing
P
map. Moreover, the complex interpolation method gives an embedding:

M= (M,M*)[%]

See also the dotted part of (2.1). It is proved in [15] that the Banach space
(M,M*)[ 17 is isometrically isomorphic to the non-commutative LP-spaces asso-
P

ciated with M as were defined by Haagerup and Connnes/Hilsum. In particular,

the construction is up to an isometric isomorphism independent of the choice of w.

We simply set LP(M) = (M, M.)1) as the non-commutative LP-space associated
P

with M. The norm on £P(M) will be denoted by || - ||,.

Remark 2.1. We have an equality of Banach spaces £!(M) = M., see [1, Theorem
4.2.2]. By the same argument M is isometrically isomorpic to £°(M) via the
embedding >

Remark 2.2. The LP-spaces we defined are also called LP-spaces with respect
to the left injection. If one changes both the embeddings M < M, in (2.1) by
r — wz, the interpolated spaces are isometrically isomorphic to the present LP-
spaces and we refer to this construction as LP-spaces with respect to the right
injection. Other injections have been given in [15]. However, the constructions in
the present paper only work for the left injection and in slightly different form also
for the right injection. We comment on this when it feels appropriate. Unless stated
otherwise, every LP-space should be understood with respect to the left injection.

Suppose that A is a von Neumann subalgebra of M such that there exists a
w-preserving conditional expectation value E : M — N [18, Definition 1X.4.1].
Denote the inclusion by j : NN = M. Let E' : M, — N, : w — w|y be the
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restriction map and also consider the extension map j' : Ny — M, : w— woE.
Note that,

(2.2) (E(z)w)(y) = w(yE(z)) = w(yz) = (2w)(y), reMyeN,
(2.3) (zw)(y) = w(yz) = w(E(y)r) = (2w)(E(y)), reN,ye M.

It follows from (2.2) that the pair given by E and E’ forms a morphism in the
category of compatible couples of Banach spaces [1, Section 2.3] (which means by
definition that i}, o E = E’ o4}, where i}, and i}, denote the map i' of (2.1) for
respectively A/ and M, see also Remark 2.1). By complex interpolation, we obtain
a norm-decreasing map:

(2.4) E? : LP(M) — LP(N), 1<p< 0.

It follows from (2.3) that the pair given by j and j' forms a morphism in the category
of compatible couples of Banach spaces [1, Section 2.3]. Complex interpolation
yields a norm-decreasing map:

g7 LP(N) — LP(M).
In fact, 5P is isometric, since
2]l = IE” o 57 (@)llp < 1177 (@)l < ll2llp, @ € LPN).
Hence, we may identify LP(N) as a 1-complemented closed subspace of LP(M).
Remark 2.3. Also left multiplication is compatible with respect to (2.1), i.e.
z(yw) = (2y)w, z,y € M.

Therefore, for every x € M, we can interpolate left multiplication with = to give a
bounded map m? determined by

(2.5) mb . LP(M) = LP(M) : P (y) — P (zy), y € M.
For z € M and y € LP(M), we conveniently write zy for m2(y).

2.2. Martingales. Let M be a von Neumann algebra with faithful, normal state
w as in Section 2.1. Let (Mg)seny be an increasing filtration of von Neumann
subalgebras of M such that their union is o-weakly dense in M. Suppose that
there exist w-preserving conditional expectation values E; : M — M. Define D, =
Es —Es_1. As explained, we get a sequence of 1-complemented closed subspaces of
LP(M),
LP(Mg) C LP(My) C LP( M) C ... C LP(M),

with projections E? : £P(M) — LP(M,) and differences D? = E? — E?_,.

A LP-martingale with respect to (M) sen is a sequence (x5)seny with 2, € LP(M)
and EP(xs41) = x5. In particular z; € LP(M,) and x5 — z5_1 = D2(zs). A LP-
maringale (z4)sen 18 finite if there is a n € N such that for all s > n we have
DP(xzs) = 0. If x € LP(M), then the sequence (EP(z))sen is a LP-martingale. Such
sequences are called bounded LP-martingales. Note that the original definition of
bounded is different, see [9, Remark 6.1]. It follows that finite LP-martingales are
bounded.

The following theorem follows from the Burkholder-Gundy inequalities, as first
proved in the present setting in [11]. The theorem also appears in [9], where the
notation is closer to ours.

Theorem 2.4 (Theorem 6.3 of [9]). Let 1 < p < oco. There exists a constant
Cp, such that for every finite LP-martingale (x5)sen and every choice of signs €5 €

{_17 1}’
1Y D2 )l < Cpll Y D2 ()]l
5=0 s=0
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It follows directly that the statement holds for every bounded LP-martingale.

3. THE SETUP: NON-COMMUTATIVE LP-SPACES ASSOCIATED WITH THE
HYPERFINITE FACTORS

In this section, we fix the notation for the rest of this paper. We introduce
hyperfinite factors as the direct limit of matrix algebras.

3.1. Hyperfinite factors. The results in this section can be found in [18] and
[19]. Let N denote the natural numbers including 0. We define the following matrix

algebras:
s+1

My (C)®™ for s € 2N+ 1,

M(C)®: ® ( (O: ((C) ) for s € 2N.

For s € 2N+ 1, we consider N, as a subalgebra of NV, 1 by means of the embedding
z+— z® 1. For s € 2N, there is a natural inclusion Ny C M,;1. Fix 0 < a < % and
let:

N =

_ « 0 _ A®n
Al_(o 1_a>, A= AP neN,

Define a state ps on N, by setting
ps(x) = Tr(zApep1y), z e Ns.
Here [#£1] is the smallest integer that is greater than or equal to L.

We let R, be the von Neumann algebra given by the infinite tensor product of
M5 (C) equipped with the states pi, see [19, Section XVIIL.1]. Then, R, is a type
[Ty factor where A = 7%~ in case 0 < o < % and R, is factor of type II; in case
o= % We have natural injective *-homomorphisms

s : Ny = Ra, seN.

Furthermore, there is a distinguished faithful normal state p, on R, which is
characterized by the property:

(3.1) pal(ms(z)) = pola),  sEN, z €N,
Moreover, we have the following lemma, which is well known.

Lemma 3.1. For every s € N the following holds.

(1) The embedding Ns — Nsi1 carries to the inclusion ms3(Ny) C msi1(Nsg1)-

(2) The modular automorphism group o’ leaves ws(Ns) globally invariant, i.e.
o (s (Ns)) = ms(No).

(8) The union Usenms(N5) is o-weakly dense in R.

For convenience of notation, we will identify N with its image under 7, so that
N5 is a von Neumann subalgebra of R,. By (3.1) we see that ps is the restriction
of po to N;. Property (2) of Lemma 3.1 implies that there is a p,-preserving
conditional expectation value, c.f. [18, Theorem IX.4.2]. From now on, we use the
following notation for this map:

(3.2) E, : Ra — N,

In addition, we set N_; = C1, the one-dimensional subalgebra generated by the
unit of Ry Weset E_; : R, — N_1 as the corresponding p,-preserving conditional
expectation value, which in fact is given by the map p,.
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3.2. LP-spaces associated with hyperfinite factors. It follows from the prelim-
inaries in Section 2.1 that we get non-commutative LP-spaces LP(N), with respect
to the faithful, normal state ps, with s € N. Similarly, we will use the notation
LP(R,) for the LP-space associated with R, with respect to p,. As explained,
we identify LP(Ns) as a closed subspace of LP(N;y1). Similarly, we may identify
LP(Ns) as a closed subspace of LP(R,) and we get a chain of closed subspaces,

(3.3) LP(Ng) C LP(N7) C LP(N2) C ... C LP(Ra), 1<p<oo.
As a vector space N is isomorphic to £P(N;) by means of the mapping ?, see
(2.1). For & € N, the norm of i?(z) € LP(N;) may be directly computed as
) 5y L

17 ()|l = Tr(|zAs |7)7,

see [17, Remark 3.1].
Interpolating the conditional expectation values E, we find projections

EP : LP(Rea) — LP(NG).

We will need the following approximation result.

Proposition 3.2 (Theorem 8 of [7]). For 1 <p < oo and z € LP(R,),
(3.4) |z — EE(x)||, — O, as s — o0.
In particular, for 1 < p < oo, the union UsenLP(N5) is dense in LP(Ro,).

4. NON-COMMUTATIVE WALSH SYSTEM

Let X be a (complex) Banach space. Recall that a sequence x = (2;);en in X is
called a Schauder basis if for every z € X there are unique scalars a; € C such that
T = Z;’io a;x;. In fact, x will form a Schauder basis of X if and only if the linear
span of x;,7 € N is dense in X and there is a constant C' such that for every choice
of scalars a; € C and every n,m € N with n > m,

(4.1) 1Y " ciwilla < CIY il 2
1=0 1=0

The constant C' is also called the basis constant [16, Section 1.a].
In [6], a non-commutative Walsh system was given for the LP-spaces associated
with the hyperfinite IT;-factor R% for 1 < p < oo. Recall that the system is

constructed as follows. Consider the matrices:
(4.2)

1 0 1 0 0 1 0 1
0,0) _ (1,0) _ 0,1) _ (1,1) _
=L v)een=(o b )= (0o )= (G o)

For n € N we consider the binary decomposition n = ;= 7;2¢, where ~; € {0,1}.
We define:

00
(4.3) w, = ®T("/27‘,7’Y2i+1).
=0

The sequence W = (wp,)nen is called the Walsh system. For o = 1, the state p1
is a trace and R% is the hyperfinite II;-factor. In that case, it is well-known that
LP(R 1 ) is isometrically isomorphic to the semi-finite LP-spaces with respect to the
trace p1, see also [8, Section 2]. Recall that the latter space can be defined as the

completion of Ry with respect to the norm |[z([, = p1 (|x|p)%

Theorem 4.1 (Proposition 5 of [6]). For 1 < p < oo, the Walsh system w forms
a Schauder basis in the semi-finite LP-spaces associated with the trace pL on R%,
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In the present paper, we extend the result to the hyperfinite factors R,. Con-
sidering the interpolation structure as described in Section 2.1, we can consider the
Walsh system w as a sequence in £P(R,,) by means of the embedding i?, see (2.1).
We prove that w is a Schauder basis in £P(R,) for 1 < p < cc.

Remark 4.2. Note that we do not incorporate p explicitly in the notation of our
basis w. To justify this, note that by definition £P(R,,) is as a set a subset of (R, ),
though their norms are different of course. Also R, =~ i®°(R,) is identified as a
subset of (R4 )« by means of (2.1). As an element of (R, ), the definition of w does
not depend on p. The principle of this slight abuse of notation is comparable to the
fact that one does not distinguish a classical Walsh function (1.1) as an element of
LP([0,1], p) for different p.

We fix some auxiliary notation. Let s € N. Recall that E; : R, — N, was
defined in (3.2). Put
D& ::Es'_]Esfla
and set Us; = Ds(R4). Note that Us C N;. Moreover,
U, = span {wn |2° <m< 25“}

~f span{M(C)®% @ r(1.0}, if s € 2N,

~ | span{Mz(C)®° T @r®D My(C)® T @r(tD},  if s € 2N+ 1.
Define the Rademacher matrices:

( 13 1) @r0 e N, if s € 2N,

s—

1
<®i;“1 1) @rOD e N,, ifse2N+1.

Ts =

In particular, ry € Us.

Lemma 4.3. Forn € N and k € N such that 2 < n < 21 we have
(4.4) Wyy_ok = WpTk = € TEWn.

Here, € € {—1,1} is positive, unless k is odd and 2% 4 2F—1 < n < 2F+1,

Proof. Suppose that k& € 2N. Then,

kE_1q kE_1
2 2

W, = ® pOzizi) | @ p(1,0) and TR = ® 1] @rd0,
i=0 i=0

Hence, w,r, = ryw, = ®§;01 r(12072i41) - Taking into account that the binary
decomposition of n and n — 2* are the same except for the k-th digit, we see that
WnTr = TEWp = Wy _9k.

Now, consider the case k € 2N 4 1. If 28 < n < 2F 4 2k=1 then

k—3 k=3
2 2

Wy = ®r(7”’72“1) @ rO and rE = ®1 @ r®,
i=0 i=0

It follows again that w,ry = rpw, = w, _ox. If 2F +2F=1 < < 25+1 then
k=3 k=3
2 2
Wy, = ®r(72’“72”1) @ rbb and rE = ®1 @ rOD,
=0 =0

Using the fact that rLDp0.1) = (0,111 = (1,0) we now get w,rr = —rEw, =
Wy 9k . O



THE WALSH BASIS IN THE LP-SPACES OF HYPERFINITE III, FACTORS, 0<A<1 7

Let P, : U2 N; — R, be the projection determined by

m n
P, (Z aiwi> = Zam;h m>n,q; € C.
i=0 i=0

Note that directly after the next proposition we extend the domain of P,, to R,
c.f. Remark 4.5.

Theorem 4.4. Fiz x = Z;lo a;w; € Ry with a; € C. For every n < m:
(4.5) WP () =E_1(wpz) + Y Di(wnz),

i with v;=1
where v; € {0,1} are such that n = .2 72"

Proof. The proof proceeds by induction to n. For n = 0, note that the summation
on the right hand side of (4.5) vanishes. We find:

’LUQPQ(JJ) = QoW = E_l(’on.r).

Now, suppose that (4.5) holds for all numbers stricly smaller than n. Let k be
such that 28 < n < 251 50 that w,, € Uy. Write n’ = n — 2%, Then, by (4.4) we
find,

n 2k_1 n
(4.6) wpPp(z) = wy, Zaiwi = W' Tk Z ow; | 4w Tk (Z oziwi) .
i=0 i=0

i=2k
For the left summation on the right hand side, the appearance of the Rademacher
k
71, ensures that w, 7. (Zf:gl aiwi) € Uy,. Hence,

2k 1

2k 1
(47) Wn'TE E QL W; :]D)k Wn' Tk E ;W5
=0

1=0

By (4.4) we have ryw; € Uy for 28 < i < m. Thus, we can continue (4.7) to get,

2k 1 m
(4.8) Wy T Z a;w; | =Dy (wnfrk (Z aiwi>> = Dg(wpx).
i=0 =0

Next, consider the the right summation on the right hand side of (4.6). Using
(4.4), we find that

n ’I'L’ n/
Wy Tk (Z aiwi> = Wy Biwi | = wnPp | Y Biws |
i=2k 1=0 =0
for certain 3; € C, where in fact 8; = £, or, with the sign depending on n (the
precise equality is irrelevant for the rest of the proof). Since n’ < n, we continue this
equation by induction. Taking into account the binary decomposition of n/ = n—2F

we find,

(4.9)

Wy T <iaiwi> =E_1 | wnr RZBiwi + > D | we iﬁiwi
=0 =0

=2k s with vs=1,s#£k

=E_; (wn (i aiwi>> + Z D, (wn (i aiwz’>> .
i=9k s with vs=1,s#k i=92k

Now, note that E_;(w,w;) # 0 if and only if ¢ = n. Furthermore, let i > n and
let i = >0 €s2%, with e, € {0,1}. Looking back at (4.3), we see that w,w; € Uj,
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where j is the largest number such that v; # €;. Morever, since 7 > n we have in
fact 7; = 0 and €¢; = 1. Hence, for i > n, we have >~ _ . am1.s 2k Ds(wpw;) = 0.
Using these observations, we continue (4.9),

(4.10)

Way Tk <i aiwi> =E_; <wn < Y aiwl-)) + Z D, (wn (i aiwi>>
i=2F =0 s with vs=1,s#£k =0

=E_; (wnx) + Z Ds (wpz) .

s with ys=1,s#k

It is now clear that filling in (4.8) and (4.10) into (4.6) yields the induction hy-
potheses. O

Remark 4.5. In particular, it follows that for a fixed n € N the map P,, has a
unique extension to R, which is both bounded and normal. We replace the notation
P,, by its normal extension

P, :Ra — Ra-

Note that we do not claim yet that the bound of P, is uniform in n. In fact, this
is true as we prove in the remainder of this section.

Recall from Remark 2.3 that left multiplication of an element x € R,, on LP(R,)
can be obtained by complex interpolation. We can also interpolate the maps
D, Es, Ps to get maps

D2 : LP(Rq) — LP(N),
E? : LP(Ra) — LP(Ns),
P?: LP(Ra) = LP(Ra),

where 1 < p < 0o. Now, by functoriality of the complex interpolation method, we
find the following corollary.

Corollary 4.6. Let 1 <p < oco. For every x € LP(Ry),n € N:

(4.11) w, PP (z) = EP | (w,x) + Z D? (w,x),
s with vs7#0

where s € {0,1} are such that n = o ;7525
At this point it is usefull to recall the definition of a Schauder decomposition.

Definition 4.7 (Section 1.g of [16]). Let X’ be a Banach space and let X = (X;)sen
be a sequence of closed subspaces of X'. Then, X is called a Schauder decomposition
if every x € X has a unique decomposition

o0
(4.12) T = sz, where x, € Xj.
s=0

Lemma 4.8 (Section 1.g of [16]). A sequence X = (Xs)sen of closed subspaces
of X is a Schauder decomposition if the linear span of UsenXs is dense in X and
furthermore, there is a constant C such that

n m
1S wlle < OIS il
s=0 5=0

for every x5y € X5 and n < m.
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We also need the notion of an unconditional Schauder basis. Let X = (Xs)sen
be a Schauder decomposition of X. For A C N, consider the projection:

oo
TA:X—>X:x22$S»—>Z$S,
s=0 sEA

where, of course, we mean that xs € Xj.

Lemma 4.9 (Proposition 1.c.6 and its subsequent remarks in [16]). The following
are equivalent:

(1) For every A CN, the map T 4 is bounded.
(2) For every x € X with x = Y~ x,, where s € Xy and for every choice
€s € {—1,1},s €N, the sum Y .2 €sxs, is convergent.
Moreover, if these conditions are satisfied, then there is a constant C' such that for
every A C N, we have | T4l < C.

If (Xs)sen satisfies the equivalent conditions of Lemma 4.9, then this sequence
is called an unconditional Schauder decomposition.

Note that (N)sen is an increasing filtration of von Neumann algebras such that
its union is o-weakly dense in R,. Moreover, R, is equipped with the faithful,
normal state p,. Therefore, Theorem 2.4 may be applied and we see that (2) of
Lemma 4.9 holds for the decomposition (D2(LP(R4)))sen-

Proposition 4.10. Let 1 < p < co. Then, (D2(LP(R4)))sen s an unconditional
Schauder decomposition of LP(Ry,).

We are now in a position to prove the main theorem of this section.
Theorem 4.11. For 1 < p < oo, the Walsh system w forms a Schauder basis in
LP(Ra).

Proof. 1t follows from Proposition 3.2 that the linear span of the Walsh system is
dense in £P(R,). We have to prove that (4.1) with X = LP(R,,) holds for a certain
C. Equivalently, we must prove that the projections P? are uniformly bounded in
n. Recall that by Theorem 4.4 for x € LP(R,),n € N:

(4.13) PP (z) = w,E? | (wx) + wy, Z D2 (wyx),
s with vs7#0

where v, € {0,1} are such that n = > oo, 7s2°. Now, left multiplication with w,
is an isometric map on £LP(R,). Hence,

(4.14) P2l = B2, + > DEI<|EZ | +| > DI,

s with vy57#0 s with vs#0
Since we assumed that 1 < p < oo, the decomposition (D?(LP(R,)))sen is uncon-
ditional. Hence, it follows from Lemma 4.9 that the right hand side of (4.14) is
uniformly bounded in n. O

Remark 4.12. We would like to emphasize that the fact that left multiplication is
compatible with the left injection forms an essential step in the proof of Theorem
4.11. If one considers LP-spaces with respect to the right injection, one can prove
that for 1 < p < oo,z € LP(R,) and n € N:

(4.15) Phi(@)w, = EP (ew,) + D0 DR (awn),

s with vy5#0
where v, € {0,1} are such that n = >~/ 72°. Here, the maps D24 EPE PPE are
the interpolated maps of Dy, Eg, Ps with respect to the right injection. Completely
analogously, one can now prove that w forms a Schauder basis in the right LP-
spaces.
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5. THE WALSH BASIS IN THE HYPERFINITE FACTOR OF TYPE III;

Here, we construct a Walsh basis in the LP-spaces associated with the hyperfinite
factor of type III;. The construction follows the line of [17, Section 7], however the
arguments are different as they rely on Section 4.

Consider arbitrary von Neumann algebras A/ and M with with faithful, normal
states ¢ and 1. For the modular automorphism group of ¢ ® 1, we have

0f®w:0f®azp, teR.

Therefore, N ® 1 is a von Neumann subalgebra of N'® M that is globally invariant
under o?®¥. There exists a ¢ @ 1)-preserving conditional expectation value Epr :
N@M — N @1, [18, Theorem IX.4.2]. Suppose that v = (v;);en is a sequence in
M with viv; equal to a multiple of the identity. We define maps:

Fnvj(@) = (10v)Ex((l®v])z), zeNaM.

Since F v ; is the composition of left multiplications and E s, we can use the complex
interpolation method to get a bounded map:

(5.1) FR o PN ® M) = L2V ® 1) = LP(N).

Similarly, we can consider a ¢ ® ¥-preserving conditional expectation value E :
NOM — 1@ M. If u= (u;)en is a sequence in N with u}u; equal to a multiple
of the identity, then we set:

Fai(z) = (u; @ DEp((uf @ 1)), reN QM.

Interpolating this map, yields a map Fy ; : LP/(N @ M) — LP(1 @ M) = LP(M).

The following theorem can be proved similarly as [17, Theorem 7.1]. For com-
pleteness and convenience of the reader, we give the proof. Recall that the shell
enumeration is an enumeration of N x N, which assigns to a pair (¢, j) the number

.2 . . . .
R B i o if 1 <,
‘p(“”_{(iﬂ)?—j—l if i > j.

Theorem 5.1. Let 1 < p < oo. Suppose that u = (u;)ien and v = (v;)jen
are sequences of linearly independent unitaries in N and respectively M. Denote
the corresponding projections by F}.  and F%, ; and suppose that (Fy ;(LP(N @
M)))jen and (FR(LP(N @ M)))ien are Schauder decompositions of N @ M.
Then, u®@v = (u; ® vj); jen taken in the shell enumeration is a Schauder basis for

LP(N @ M).

Proof. Let z=u®v and write z = (2 )ren. Let n,m € N be such that n < m and
consider the sum Y ;" ; o;z;, where o; € C. Let | € N be such that 12 <n < (I+1)%.
There are two cases: either 2 <n <[> +lorI?+1<n < (I+1)% We treat the
first case, since the second case can be handled similarly. First, we compute:

n 1?2—1 n
1Y~ ozelly < 1Y anzelly + 11 cwzillp
k=0 k=0 k=12
n—12

=ll Z (i, )i @ Vjlp + || Z QUi @ vip
0<ij<l =
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For the two terms on the right hand side, we find:

m
1D aptiayui @ sl = 1P -1 PRy (Z aka) -

0<i,j<l k=0
n—I2 m
| Z g (inti @ villp = [Fl PR, <Z akzk) [
1=0 k=0

where PR, = 377 (FY,, and Pi, = = >2° (F%, .. Since we assumed that the
sequences (F}, (LP(N ®@ M)))jen and (F ,(LP(N ® M)))ien are Schauder de-
compositions of LP (N ® M), the projections P}, , and P4, _ are uniformly bounded

in s, c.f. Lemma 4.8. It follows that there is a constant C' such that relation (4.1)
is holds. 0

Choose 0 < a,d’ < % such that R, and R, are factors of type III and III,/
with 1282 ¢ Q and \ = =N = @’ Tn that case, the tensor product Ry @ R/

log A/ a’ 1—a’"
is isomorphic to the hyperfinite factor of type III;, see [2], [4]. Consider the Walsh
basis w in LP(R,) and let w’ be the Walsh basis in LP(Rq/). Let Ff, (= Fy_ ;)

be the projection constructed in (5.1) and similarly consider F,, (= IE"%&,J-).

Proposition 5.2. Let 1 < p < oo. The decomposition (Fy, ;(LP(Ra ® Ra)))jen is
a Schauder decomposition of LP(Ro @ Rar). Similarly, (Fy, ;(LP(Ra ® Rar)))jen
is a Schauder decomposition of LP(Rs ® Rea).

Proof. We only proof the first statement, since the second one can be proved simi-
larly. Set Py, = >27_Fa,j and PE , = 377 (F7 .. In view of Lemma 4.8, we must
prove that PL  is uniformly bounded in n.

Let m > n. Consider an element x = Zogz‘,jgm oy Wi @ w; with oy ; € C. We

find

’ ’
Pam E Q; Wi & w; | = E Q; jW; & w;

0<i,j<m 0<i<m, 0<j<n

=L®P,) Z i jw; @ W}

0<i,j<m

In particular, the normality of P, , implies that P, , = (¢ ® P,,), where ¢ is the
identity on R,

Note that R, ® Ny is a von Neumann subalgebra of R, ® R, that is globally
invariant under the modular automorphism group of po ® po. Let Eq s 1 Ro ®
Ror — Ra ® N be the associated p, ® pas-preserving conditional expectation
value. Consider also the p,/-preserving conditional expection value E; : Ry — N.
Clearly, the uniqueness of (p, ® pos)-preserving conditional expectations implies
that:

Eas =t QE,.

Recall that we defined Dy, = E; —E;_;. Similarly, set Dy s = Eqs — Eq 5-1.
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Now, we obtain the following equalities from Theorem 4.4.

(1@ w;)Pa,n(x) = (L@ wy,)(t ®Py)(2)

t@ | By + Z Dy (1 ®wy,)x)

i with v;=1

Eq, -1+ Z Do, | (L@ w),)z),

i with v;=1

where n = >°°° ;2" with v; € {0,1}. Interpolating this equation, and observing
that left multiplication with (1 ® w],) is an isometric map on L£P(R, ® Ry ), We
find that:

(5:2) B2l =BG s+ > Dol <IEC o+ > Dil

i with v;=1 i with v;=1
By remarks similar to the ones preceeding Proposition 4.10, it follows from Theorem
2.4 that the decomposition (D}, ;(£P(Ra ® Ra))ien is an unconditional Schauder

decomposition of LP(R, ® Ryo). Hence, Lemma 4.9 implies that the right hand
side of (5.2) is uniformly bounded in n. O

Proposition 5.2 implies that we may apply Theorem 5.1.

Theorem 5.3. Let 1 < p < oo. The Walsh system w @ w' = (w; @ w}); jen
taken in the shell enumeration is a Schauder basis in LP(Ry @ Rar); the LP-space
associated with the hyperfinite I1L; factor.

Remark 5.4. In general a tensor product of two LP-spaces, each with unconditional
decomposition, does not produce a LP-space where the tensor product of the given
decompositions is unconditional. The simplest example is a couple of Schatten
classes with row and column decompositions.

6. CLASSICAL LP-SPACES

For s € N, consider the diagonal subalgebra A; C N,;. The weak closure of
UsenAs in R, forms an abelian von Neumann algebra A, which is isomorphic to
L*>([0,1], te). Here, pi is the measure determined by:

o ([ 521]) = T 00000

=0

where 0 < k < 2™ and 7; € {0,1} are such that k = Z?;Ol 7;2%, see [13, Section
12.3]. In particular, A, is isomorphic to L>*([0,1], 1), where p is the Lebesgue
measure.

The modular automorphism group o leaves UgenAs and hence A, invariant.
From Section 2.1, it follows that £P(A,) is a closed subspace of LP(R,,). Moreover,
there exists a conditional expectation value E4, : Ry — Ay. Since E 4, projects
on the diagonal matrices, we find that it acts on the Walsh system w by:

wy,  ifn =377 72" with y9;41 = 0 for every i,
B, (wn) = { 0 else. im0 ’

Indeed, it follows from (4.3) that w, is diagonal if and only if the odd digits in the
binary decomposition of n vanish. Let z be the subsequence of w of vectors in the
range of the projection E 4,,. Clearly, it follows from Theorem 4.11 that z forms a
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Schauder basis in £P(A,) for 1 < p < co. Explicitly, this system is constructed as
follows. Recall that we defined the Rademacher matrices in (4.2). Set:

2 = ér(wxo)’ n= i7i2i7 ~v; € {0,1}.
=0 1=0

Then, z = (2, )nen-

Corollary 6.1. Let 1 < p < co. The system z forms a Schauder basis in LP(Ay).
Under the isomorphism LP(A,) ~ LP([0,1], pa), we obtain the classical Walsh
system (1.1).

REFERENCES

[1] J. Bergh, J. Lofstrom, Interpolation spaces, Springer 1976.

[2] A. Connes, Classification of injective factors. Cases II1, I, IIIy, X # 1., Ann. of Math. 104
(1976), 73-115.

[3] P. G. Dodds, S. V. Ferleger, B. de Pagter, F. A. Sukochev, Vilenkin systems and generalized
triangular truncation operator, Integral Equations Operator Theory 40 (2001), 403-435.

[4] U. Haagerup, Connes’ bicentralizer problem and uniqueness of the injective factor of type 1111,
Acta Math. 158 (1987), 95-148.

[5] S. V. Ferleger, F. A. Sukochev, Harmonic analysis in symmetric spaces of measurable opera-
tors, (Russian) Dokl. Akad. Nauk 339 (1994), 307-310.

[6] S.V. Ferleger, F.A. Sukochev, Harmonic Analysis in (UMD )-Spaces: Applications to the The-
ory of Bases, Mathematical Notes 58 (1995), 1315-1326.

[7] S. Goldstein, Conditional expectations in Lp-spaces over von Neumann algebras, In: Quantum
probability and applications, II (Heidelberg, 1984), Lecture Notes in Math., 1136, Springer,
Berlin, 1985, 233-239.

[8] U. Haagerup, LP-spaces associated with an arbitrary von Neumann algebra, Algebres
d’opérateurs et leurs applications en physique mathématique, Proc. Colloq., Marseille 1977,
175-184.

[9] U. Haagerup, M. Junge, Q. Xu, A reduction method for noncommutative Lp-spaces and ap-
plications, Trans. Amer. Math. Soc. 362 (2010), 2125-2165.

[10] M. Hilsum, Les espaces LP d’une algébre de von Neumann définies par la derivée spatiale,
J. Funct. Anal. 40 (1981), 151-169.

[11] M. Junge, Q. Xu, Noncommutative Burkholder/Rosenthal inequalities, Ann. Probab. 31
(2003), 948-995.

[12] S. Kakutani, On equivalence of infinite product measures, Ann. of Math. 49 (1948), 214-224.

[13] R.V. Kadison, J.R. Ringrose, Fundamentals of the theory of operator algebras II, AMS, 1997.

[14] B.S. Kashin, A. A. Saakyan, Orthogonal series, Translations of Mathematical Monographs,
AMS, 1989.

[15] H. Kosaki, Applications of the complex interpolation method to a von Neumann algebra:
noncommutative LP-spaces, J. Funct. Anal. 56 (1984), 29-78.

[16] J. Lindenstrauss, L. Tzafriri, Classical Banach spaces. I. Sequence spaces. Springer-Verlag,
Berlin-New York, 1977.

[17] D. Potapov, F. Sukochev, The Haar system in the preduals of hyperfinite factors, Canad.
Math. Bull. 54 (2011), 347-363.

[18] M. Takesaki, Theory of operator algebras II, Springer-Verlag, Berlin, 2003.

[19] M. Takesaki, Theory of operator algebras III, Springer-Verlag, Berlin, 2003.

M. CASPERS, RADBOUD UNIVERSITEIT NIJMEGEN, IMAPP, FNWI, HEYENDAALSEWEG 135,
6525 AJ NIJMEGEN, THE NETHERLANDS
E-mail address: caspers@math.ru.nl

D. Porapov, F. SUKOCHEV, SCHOOL OF MATHEMATICS AND STATISTICS, UNSW, KENSINGTON
2052, NSW, AUSTRALIA

E-mail address: d.potapov@unsw.edu.au

E-mail address: f.sukochev@unsw.edu.au



