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Abstract. We introduce a non-commutative Walsh system and prove that
it forms a Schauder basis in the Lp-spaces (1 < p < ∞) associated with the

hyperfinite IIIλ-factors (0 < λ ≤ 1).

1. Introduction

In the present paper we study the non-commutative Lp-spaces associated with
the hyperfinite factors of type IIIλ, where 0 < λ ≤ 1. In particular, we are interested
in the decomposition of this space in terms of Lp-spaces of matrix algebras and the
construction of a very classical Schauder basis, namely the Walsh system.

Recall that the classical Walsh system is defined as follows. One firstly defines
the Rademacher functions:

rj(x) = sign
(
sin
(
2jπx

))
, j ∈ N, x ∈ [0, 1].

The classical Walsh system, see e.g. [14], is defined as the sequence of functions
given by:

(1.1) wn =
∏
γi 6=0

ri, where n =

∞∑
i=0

γi2
i, γi ∈ {0, 1}.

It is a classical result that the sequence (wn)n∈N forms a Schauder basis in the
spaces Lp([0, 1], µ) for every 1 < p < ∞, see [14, Theorem IV.15]. Here µ denotes
the Lebesgue measure.

Proper non-commutative generalizations of the Walsh system have been found
for the Lp-spaces associated with the hyperfinite II1 and II∞ factor [6]. Also,
related problems have been studied in [3], [5], where non-commutative trigonometric
systems and non-commutative Vilenkin systems where constructed. Furthermore,
in [17] a non-commutative Haar system was built for hyperfinite type IIIλ factors,
0 < λ ≤ 1.

Here, we continue this line by constructing a Walsh system for the hyperfinite
IIIλ-factors, where 0 < λ ≤ 1. We elaborate on the special commutative case
Lp([0, 1], µα). Here, µα is the Lebesgue measure in case α = 1

2 . In case α 6= 1
2 ,

the measure µα is a biased measure which is singular to the Lebesgue measure and
appears naturally in the construction of IIIλ factors, c.f. [12].

The structure of the paper is as follows. Section 2 recalls the necessary results
on general non-commutative Lp-spaces. In Section 3 we introduce the hyperfinite
IIIλ factors and fix notation. Section 4 contains our main result, which is the
construction of a non-commutative Walsh system as a Schauder basis in the Lp-
spaces associated with the hyperfinite IIIλ factors, 1 < p < ∞, 0 < λ < 1. In
Section 5 we construct a Walsh system for the hyperfinite III1 factor. Finally, we
make remarks on the classical case in Section 6.
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2. Preliminaries on non-commutative Lp-spaces

Let M be a von Neumann algebra with predual M∗. For ω ∈ M∗, x ∈ M, we
write xω ∈ M∗ for the functional given by (xω)(y) = ω(yx), y ∈ M. Similarly,
ωx ∈M∗ denotes the functional (ωx)(y) = ω(xy), y ∈M.

2.1. Non-commutative Lp-spaces. Non-commutative Lp-spaces appear in dif-
ferent guises. Haagerup [8] as well as Connes and Hilsum [10] gave different, but
equivalent definitions of Lp-spaces associated with an arbitary von Neumann alge-
bra. In [15] Kosaki showed that for a von Neumann algebra with a faithful, normal
state, the Lp-spaces are isometrically isomorphic to complex interpolation spaces
between a von Neumann algebra and its predual. This is the point of view that
is most suitable for our purposes. We recall the necessary definitions and notation
here.

For the details on the complex interpolation method, we refer to [1]. Let M be
a von Neumann algebra with faithful, normal state ω. We consider the non-dotted
part of the (commutative) diagram:

(2.1) M∗ � s
ω 7→ω

%%
M
, �

x 7→xω
::

� r

x 7→x
%%

� � ip// (M,M∗)[ 1p ]
� � //M∗.

M
+ �

x 7→xω

99

This turns the pair (M,M∗) into a compatible couple of Banach spaces [1, Section
2.3]. The complex interpolation method at parameter 1

p gives by definition a Banach

space (M,M∗)[ 1p ] which is a subset ofM∗, where the inclusion is a norm-decreasing

map. Moreover, the complex interpolation method gives an embedding:

ip :M→ (M,M∗)[ 1p ].

See also the dotted part of (2.1). It is proved in [15] that the Banach space
(M,M∗)[ 1p ] is isometrically isomorphic to the non-commutative Lp-spaces asso-

ciated with M as were defined by Haagerup and Connnes/Hilsum. In particular,
the construction is up to an isometric isomorphism independent of the choice of ω.
We simply set Lp(M) = (M,M∗)[ 1p ] as the non-commutative Lp-space associated

with M. The norm on Lp(M) will be denoted by ‖ · ‖p.

Remark 2.1. We have an equality of Banach spaces L1(M) =M∗, see [1, Theorem
4.2.2]. By the same argument M is isometrically isomorpic to L∞(M) via the
embedding i∞.

Remark 2.2. The Lp-spaces we defined are also called Lp-spaces with respect
to the left injection. If one changes both the embeddings M ↪→ M∗ in (2.1) by
x 7→ ωx, the interpolated spaces are isometrically isomorphic to the present Lp-
spaces and we refer to this construction as Lp-spaces with respect to the right
injection. Other injections have been given in [15]. However, the constructions in
the present paper only work for the left injection and in slightly different form also
for the right injection. We comment on this when it feels appropriate. Unless stated
otherwise, every Lp-space should be understood with respect to the left injection.

Suppose that N is a von Neumann subalgebra of M such that there exists a
ω-preserving conditional expectation value E : M → N [18, Definition IX.4.1].
Denote the inclusion by j : N → M. Let E′ : M∗ → N∗ : ω 7→ ω|N be the
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restriction map and also consider the extension map j′ : N∗ → M∗ : ω 7→ ω ◦ E.
Note that,

(E(x)ω)(y) = ω(yE(x)) = ω(yx) = (xω)(y), x ∈M, y ∈ N ,(2.2)

(xω)(y) = ω(yx) = ω(E(y)x) = (xω)(E(y)), x ∈ N , y ∈M.(2.3)

It follows from (2.2) that the pair given by E and E′ forms a morphism in the
category of compatible couples of Banach spaces [1, Section 2.3] (which means by
definition that i1N ◦ E = E′ ◦ i1M, where i1N and i1M denote the map i1 of (2.1) for
respectively N andM, see also Remark 2.1). By complex interpolation, we obtain
a norm-decreasing map:

(2.4) Ep : Lp(M)→ Lp(N ), 1 ≤ p ≤ ∞.
It follows from (2.3) that the pair given by j and j′ forms a morphism in the category
of compatible couples of Banach spaces [1, Section 2.3]. Complex interpolation
yields a norm-decreasing map:

jp : Lp(N )→ Lp(M).

In fact, jp is isometric, since

‖x‖p = ‖Ep ◦ jp(x)‖p ≤ ‖jp(x)‖p ≤ ‖x‖p, x ∈ Lp(N ).

Hence, we may identify Lp(N ) as a 1-complemented closed subspace of Lp(M).

Remark 2.3. Also left multiplication is compatible with respect to (2.1), i.e.

x(yω) = (xy)ω, x, y ∈M.

Therefore, for every x ∈M, we can interpolate left multiplication with x to give a
bounded map mp

x determined by

(2.5) mp
x : Lp(M)→ Lp(M) : ip(y) 7→ ip(xy), y ∈M.

For x ∈M and y ∈ Lp(M), we conveniently write xy for mp
x(y).

2.2. Martingales. Let M be a von Neumann algebra with faithful, normal state
ω as in Section 2.1. Let (Ms)s∈N be an increasing filtration of von Neumann
subalgebras of M such that their union is σ-weakly dense in M. Suppose that
there exist ω-preserving conditional expectation values Es :M→Ms. Define Ds =
Es−Es−1. As explained, we get a sequence of 1-complemented closed subspaces of
Lp(M),

Lp(M0) ⊆ Lp(M1) ⊆ Lp(M2) ⊆ . . . ⊆ Lp(M),

with projections Eps : Lp(M)→ Lp(Ms) and differences Dps = Eps − Eps−1.
A Lp-martingale with respect to (Ms)s∈N is a sequence (xs)s∈N with xs ∈ Lp(M)

and Eps(xs+1) = xs. In particular xs ∈ Lp(Ms) and xs − xs−1 = Dps(xs). A Lp-
maringale (xs)s∈N is finite if there is a n ∈ N such that for all s ≥ n we have
Dps(xs) = 0. If x ∈ Lp(M), then the sequence (Eps(x))s∈N is a Lp-martingale. Such
sequences are called bounded Lp-martingales. Note that the original definition of
bounded is different, see [9, Remark 6.1]. It follows that finite Lp-martingales are
bounded.

The following theorem follows from the Burkholder-Gundy inequalities, as first
proved in the present setting in [11]. The theorem also appears in [9], where the
notation is closer to ours.

Theorem 2.4 (Theorem 6.3 of [9]). Let 1 < p < ∞. There exists a constant
Cp, such that for every finite Lp-martingale (xs)s∈N and every choice of signs εs ∈
{−1, 1},

‖
∞∑
s=0

εsDps(xs)‖p ≤ Cp‖
∞∑
s=0

Dps(xs)‖p.
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It follows directly that the statement holds for every bounded Lp-martingale.

3. The setup: non-commutative Lp-spaces associated with the
hyperfinite factors

In this section, we fix the notation for the rest of this paper. We introduce
hyperfinite factors as the direct limit of matrix algebras.

3.1. Hyperfinite factors. The results in this section can be found in [18] and
[19]. Let N denote the natural numbers including 0. We define the following matrix
algebras:

Ns =

 M2(C)⊗
s+1
2 for s ∈ 2N + 1,

M2(C)⊗
s
2

⊗(
C 0
0 C

)
for s ∈ 2N.

For s ∈ 2N+1, we consider Ns as a subalgebra of Ns+1 by means of the embedding
x 7→ x⊗ 1. For s ∈ 2N, there is a natural inclusion Ns ⊆ Ns+1. Fix 0 < α ≤ 1

2 and
let:

A1 =

(
α 0
0 1− α

)
, An = A⊗n1 , n ∈ N.

Define a state ρs on Ns by setting

ρs(x) = Tr(xAd s+1
2 e

), x ∈ Ns.

Here d s+1
2 e is the smallest integer that is greater than or equal to s+1

2 .
We let Rα be the von Neumann algebra given by the infinite tensor product of

M2(C) equipped with the states ρ1, see [19, Section XVIII.1]. Then, Rα is a type
IIIλ factor where λ = α

1−α in case 0 < α < 1
2 and Rα is factor of type II1 in case

α = 1
2 . We have natural injective ∗-homomorphisms

πs : Ns → Rα, s ∈ N.

Furthermore, there is a distinguished faithful normal state ρα on Rα, which is
characterized by the property:

(3.1) ρα(πs(x)) = ρs(x), s ∈ N, x ∈ Ns.

Moreover, we have the following lemma, which is well known.

Lemma 3.1. For every s ∈ N the following holds.

(1) The embedding Ns → Ns+1 carries to the inclusion πs(Ns) ⊆ πs+1(Ns+1).
(2) The modular automorphism group σρα leaves πs(Ns) globally invariant, i.e.

σρα(πs(Ns)) = πs(Ns).
(3) The union ∪s∈Nπs(Ns) is σ-weakly dense in Rα.

For convenience of notation, we will identify Ns with its image under πs, so that
Ns is a von Neumann subalgebra of Rα. By (3.1) we see that ρs is the restriction
of ρα to Ns. Property (2) of Lemma 3.1 implies that there is a ρα-preserving
conditional expectation value, c.f. [18, Theorem IX.4.2]. From now on, we use the
following notation for this map:

(3.2) Es : Rα → Ns.

In addition, we set N−1 = C1, the one-dimensional subalgebra generated by the
unit ofRα. We set E−1 : Rα → N−1 as the corresponding ρα-preserving conditional
expectation value, which in fact is given by the map ρα.
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3.2. Lp-spaces associated with hyperfinite factors. It follows from the prelim-
inaries in Section 2.1 that we get non-commutative Lp-spaces Lp(Ns), with respect
to the faithful, normal state ρs, with s ∈ N. Similarly, we will use the notation
Lp(Rα) for the Lp-space associated with Rα with respect to ρα. As explained,
we identify Lp(Ns) as a closed subspace of Lp(Ns+1). Similarly, we may identify
Lp(Ns) as a closed subspace of Lp(Rα) and we get a chain of closed subspaces,

(3.3) Lp(N0) ⊆ Lp(N1) ⊆ Lp(N2) ⊆ . . . ⊆ Lp(Rα), 1 ≤ p ≤ ∞.
As a vector space Ns is isomorphic to Lp(Ns) by means of the mapping ip, see
(2.1). For x ∈ Ns, the norm of ip(x) ∈ Lp(Ns) may be directly computed as

‖ip(x)‖p = Tr(|xA
1
p
s |p)

1
p ,

see [17, Remark 3.1].
Interpolating the conditional expectation values Es, we find projections

Eps : Lp(Rα)→ Lp(Ns).
We will need the following approximation result.

Proposition 3.2 (Theorem 8 of [7]). For 1 ≤ p <∞ and x ∈ Lp(Rα),

(3.4) ‖x− Eps(x)‖p → 0, as s→∞.
In particular, for 1 ≤ p <∞, the union ∪s∈NLp(Ns) is dense in Lp(Rα).

4. Non-commutative Walsh system

Let X be a (complex) Banach space. Recall that a sequence x = (xi)i∈N in X is
called a Schauder basis if for every x ∈ X there are unique scalars αi ∈ C such that
x =

∑∞
i=0 αixi. In fact, x will form a Schauder basis of X if and only if the linear

span of xi, i ∈ N is dense in X and there is a constant C such that for every choice
of scalars αi ∈ C and every n,m ∈ N with n > m,

(4.1) ‖
m∑
i=0

αixi‖X ≤ C‖
n∑
i=0

αixi‖X .

The constant C is also called the basis constant [16, Section 1.a].
In [6], a non-commutative Walsh system was given for the Lp-spaces associated

with the hyperfinite II1-factor R 1
2

for 1 < p < ∞. Recall that the system is

constructed as follows. Consider the matrices:
(4.2)

r(0,0) =

(
1 0
0 1

)
, r(1,0) =

(
1 0
0 −1

)
, r(0,1) =

(
0 1
1 0

)
, r(1,1) =

(
0 1
−1 0

)
.

For n ∈ N we consider the binary decomposition n =
∑∞
i=0 γi2

i, where γi ∈ {0, 1}.
We define:

(4.3) wn =

∞⊗
i=0

r(γ2i,γ2i+1).

The sequence w = (wn)n∈N is called the Walsh system. For α = 1
2 , the state ρ 1

2

is a trace and R 1
2

is the hyperfinite II1-factor. In that case, it is well-known that

Lp(R 1
2
) is isometrically isomorphic to the semi-finite Lp-spaces with respect to the

trace ρ 1
2
, see also [8, Section 2]. Recall that the latter space can be defined as the

completion of R 1
2

with respect to the norm ‖x‖p = ρ 1
2
(|x|p)

1
p .

Theorem 4.1 (Proposition 5 of [6]). For 1 < p < ∞, the Walsh system w forms
a Schauder basis in the semi-finite Lp-spaces associated with the trace ρ 1

2
on R 1

2
.
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In the present paper, we extend the result to the hyperfinite factors Rα. Con-
sidering the interpolation structure as described in Section 2.1, we can consider the
Walsh system w as a sequence in Lp(Rα) by means of the embedding ip, see (2.1).
We prove that w is a Schauder basis in Lp(Rα) for 1 < p <∞.

Remark 4.2. Note that we do not incorporate p explicitly in the notation of our
basis w. To justify this, note that by definition Lp(Rα) is as a set a subset of (Rα)∗,
though their norms are different of course. Also Rα ' i∞(Rα) is identified as a
subset of (Rα)∗ by means of (2.1). As an element of (Rα)∗, the definition of w does
not depend on p. The principle of this slight abuse of notation is comparable to the
fact that one does not distinguish a classical Walsh function (1.1) as an element of
Lp([0, 1], µ) for different p.

We fix some auxiliary notation. Let s ∈ N. Recall that Es : Rα → Ns was
defined in (3.2). Put

Ds = Es − Es−1,
and set Us = Ds(Rα). Note that Us ⊆ Ns. Moreover,

Us = span
{
wn | 2s ≤ n < 2s+1

}
=

{
span{M2(C)⊗

s
2 ⊗ r(1,0)}, if s ∈ 2N,

span{M2(C)⊗
s−1
2 ⊗ r(0,1),M2(C)⊗

s−1
2 ⊗ r(1,1)}, if s ∈ 2N + 1.

Define the Rademacher matrices:

rs =


(⊗ s

2
i=1 1

)
⊗ r(1,0) ∈ Ns, if s ∈ 2N,(⊗ s−1

2
i=1 1

)
⊗ r(0,1) ∈ Ns, if s ∈ 2N + 1.

In particular, rs ∈ Us.

Lemma 4.3. For n ∈ N and k ∈ N such that 2k ≤ n < 2k+1, we have

(4.4) wn−2k = wnrk = ε rkwn.

Here, ε ∈ {−1, 1} is positive, unless k is odd and 2k + 2k−1 ≤ n < 2k+1.

Proof. Suppose that k ∈ 2N. Then,

wn =

 k
2−1⊗
i=0

r(γ2i,γ2i+1)

⊗ r(1,0) and rk =

 k
2−1⊗
i=0

1

⊗ r(1,0).
Hence, wnrk = rkwn =

⊗ k
2−1
i=0 r(γ2i,γ2i+1). Taking into account that the binary

decomposition of n and n− 2k are the same except for the k-th digit, we see that
wnrk = rkwn = wn−2k .

Now, consider the case k ∈ 2N + 1. If 2k ≤ n < 2k + 2k−1, then

wn =

 k−3
2⊗
i=0

r(γ2i,γ2i+1)

⊗ r(0,1) and rk =

 k−3
2⊗
i=0

1

⊗ r(0,1).
It follows again that wnrk = rkwn = wn−2k . If 2k + 2k−1 ≤ n < 2k+1, then

wn =

 k−3
2⊗
i=0

r(γ2i,γ2i+1)

⊗ r(1,1) and rk =

 k−3
2⊗
i=0

1

⊗ r(0,1).
Using the fact that r(1,1)r(0,1) = −r(0,1)r(1,1) = r(1,0) we now get wnrk = −rkwn =
wn−2k . �
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Let Pn : ∪∞i=0Ni → Rα be the projection determined by

Pn

(
m∑
i=0

αiwi

)
=

n∑
i=0

αiwi, m > n, αi ∈ C.

Note that directly after the next proposition we extend the domain of Pn to Rα,
c.f. Remark 4.5.

Theorem 4.4. Fix x =
∑m
i=0 αiwi ∈ Rα with αi ∈ C. For every n < m:

(4.5) wnPn(x) = E−1(wnx) +
∑

i with γi=1

Di(wnx),

where γi ∈ {0, 1} are such that n =
∑∞
i=0 γi2

i.

Proof. The proof proceeds by induction to n. For n = 0, note that the summation
on the right hand side of (4.5) vanishes. We find:

w0P0(x) = α0w0 = E−1(w0x).

Now, suppose that (4.5) holds for all numbers stricly smaller than n. Let k be
such that 2k ≤ n < 2k+1, so that wn ∈ Uk. Write n′ = n − 2k. Then, by (4.4) we
find,

(4.6) wnPn(x) = wn

n∑
i=0

αiwi = wn′rk

2k−1∑
i=0

αiwi

+ wn′rk

(
n∑

i=2k

αiwi

)
.

For the left summation on the right hand side, the appearance of the Rademacher

rk ensures that wn′rk

(∑2k−1
i=0 αiwi

)
∈ Uk. Hence,

wn′rk

2k−1∑
i=0

αiwi

 =Dk

wn′rk
2k−1∑

i=0

αiwi

 .(4.7)

By (4.4) we have rkwi 6∈ Uk for 2k ≤ i < m. Thus, we can continue (4.7) to get,

wn′rk

2k−1∑
i=0

αiwi

 =Dk

(
wn′rk

(
m∑
i=0

αiwi

))
= Dk(wnx).(4.8)

Next, consider the the right summation on the right hand side of (4.6). Using
(4.4), we find that

wn′rk

(
n∑

i=2k

αiwi

)
= wn′

 n′∑
i=0

βiwi

 = wn′Pn′

 n′∑
i=0

βiwi

 ,

for certain βi ∈ C, where in fact βi = ±αi+2k , with the sign depending on n (the
precise equality is irrelevant for the rest of the proof). Since n′ < n, we continue this
equation by induction. Taking into account the binary decomposition of n′ = n−2k

we find,

wn′rk

(
n∑

i=2k

αiwi

)
=E−1

wn′
 n′∑
i=0

βiwi

+
∑

s with γs=1,s6=k

Ds

wn′
 n′∑
i=0

βiwi


=E−1

(
wn

(
n∑

i=2k

αiwi

))
+

∑
s with γs=1,s6=k

Ds

(
wn

(
n∑

i=2k

αiwi

))
.

(4.9)

Now, note that E−1(wnwi) 6= 0 if and only if i = n. Furthermore, let i > n and
let i =

∑∞
s=0 εs2

s, with εs ∈ {0, 1}. Looking back at (4.3), we see that wnwi ∈ Uj ,
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where j is the largest number such that γj 6= εj . Morever, since i > n we have in
fact γj = 0 and εj = 1. Hence, for i > n, we have

∑
s with γs=1,s6=k Ds(wnwi) = 0.

Using these observations, we continue (4.9),

wn′rk

(
n∑

i=2k

αiwi

)
=E−1

(
wn

(
m∑
i=0

αiwi

))
+

∑
s with γs=1,s 6=k

Ds

(
wn

(
m∑
i=0

αiwi

))
=E−1 (wnx) +

∑
s with γs=1,s6=k

Ds (wnx) .

(4.10)

It is now clear that filling in (4.8) and (4.10) into (4.6) yields the induction hy-
potheses. �

Remark 4.5. In particular, it follows that for a fixed n ∈ N the map Pn has a
unique extension toRα which is both bounded and normal. We replace the notation
Pn by its normal extension

Pn : Rα → Rα.

Note that we do not claim yet that the bound of Pn is uniform in n. In fact, this
is true as we prove in the remainder of this section.

Recall from Remark 2.3 that left multiplication of an element x ∈ Rα on Lp(Rα)
can be obtained by complex interpolation. We can also interpolate the maps
Ds,Es,Ps to get maps

Dps : Lp(Rα)→ Lp(Ns),
Eps : Lp(Rα)→ Lp(Ns),
Pps : Lp(Rα)→ Lp(Rα),

where 1 ≤ p ≤ ∞. Now, by functoriality of the complex interpolation method, we
find the following corollary.

Corollary 4.6. Let 1 ≤ p ≤ ∞. For every x ∈ Lp(Rα), n ∈ N:

(4.11) wnPpn(x) = Ep−1(wnx) +
∑

s with γs 6=0

Dps(wnx),

where γs ∈ {0, 1} are such that n =
∑∞
s=0 γs2

s.

At this point it is usefull to recall the definition of a Schauder decomposition.

Definition 4.7 (Section 1.g of [16]). Let X be a Banach space and let X = (Xs)s∈N
be a sequence of closed subspaces of X . Then, X is called a Schauder decomposition
if every x ∈ X has a unique decomposition

(4.12) x =

∞∑
s=0

xs, where xs ∈ Xs.

Lemma 4.8 (Section 1.g of [16]). A sequence X = (Xs)s∈N of closed subspaces
of X is a Schauder decomposition if the linear span of ∪s∈NXs is dense in X and
furthermore, there is a constant C such that

‖
n∑
s=0

xs‖X ≤ C‖
m∑
s=0

xs‖X ,

for every xs ∈ Xs and n < m.
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We also need the notion of an unconditional Schauder basis. Let X = (Xs)s∈N
be a Schauder decomposition of X . For A ⊆ N, consider the projection:

TA : X → X : x =

∞∑
s=0

xs 7→
∑
s∈A

xs,

where, of course, we mean that xs ∈ Xs.
Lemma 4.9 (Proposition 1.c.6 and its subsequent remarks in [16]). The following
are equivalent:

(1) For every A ⊆ N, the map TA is bounded.
(2) For every x ∈ X with x =

∑∞
s=0 xs, where xs ∈ Xs and for every choice

εs ∈ {−1, 1}, s ∈ N, the sum
∑∞
s=0 εsxs, is convergent.

Moreover, if these conditions are satisfied, then there is a constant C such that for
every A ⊆ N, we have ‖TA‖ ≤ C.

If (Xs)s∈N satisfies the equivalent conditions of Lemma 4.9, then this sequence
is called an unconditional Schauder decomposition.

Note that (Ns)s∈N is an increasing filtration of von Neumann algebras such that
its union is σ-weakly dense in Rα. Moreover, Rα is equipped with the faithful,
normal state ρα. Therefore, Theorem 2.4 may be applied and we see that (2) of
Lemma 4.9 holds for the decomposition (Dps(Lp(Rα)))s∈N.

Proposition 4.10. Let 1 < p < ∞. Then, (Dps(Lp(Rα)))s∈N is an unconditional
Schauder decomposition of Lp(Rα).

We are now in a position to prove the main theorem of this section.

Theorem 4.11. For 1 < p < ∞, the Walsh system w forms a Schauder basis in
Lp(Rα).

Proof. It follows from Proposition 3.2 that the linear span of the Walsh system is
dense in Lp(Rα). We have to prove that (4.1) with X = Lp(Rα) holds for a certain
C. Equivalently, we must prove that the projections Ppn are uniformly bounded in
n. Recall that by Theorem 4.4 for x ∈ Lp(Rα), n ∈ N:

(4.13) Ppn(x) = wnEp−1(wnx) + wn
∑

s with γs 6=0

Dps(wnx),

where γs ∈ {0, 1} are such that n =
∑∞
s=0 γs2

s. Now, left multiplication with wn
is an isometric map on Lp(Rα). Hence,

(4.14) ‖Ppn‖ = ‖Ep−1 +
∑

s with γs 6=0

Dps‖ ≤ ‖E
p
−1‖+ ‖

∑
s with γs 6=0

Dps‖,

Since we assumed that 1 < p < ∞, the decomposition (Dps(Lp(Rα)))s∈N is uncon-
ditional. Hence, it follows from Lemma 4.9 that the right hand side of (4.14) is
uniformly bounded in n. �

Remark 4.12. We would like to emphasize that the fact that left multiplication is
compatible with the left injection forms an essential step in the proof of Theorem
4.11. If one considers Lp-spaces with respect to the right injection, one can prove
that for 1 ≤ p ≤ ∞, x ∈ Lp(Rα) and n ∈ N:

(4.15) Pp,]n (x)wn = Ep,]−1(xwn) +
∑

s with γs 6=0

Dp,]s (xwn),

where γs ∈ {0, 1} are such that n =
∑∞
s=0 γs2

s. Here, the maps Dp,]s ,Ep,]s ,Pp,]s are
the interpolated maps of Ds,Es,Ps with respect to the right injection. Completely
analogously, one can now prove that w forms a Schauder basis in the right Lp-
spaces.
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5. The Walsh basis in the hyperfinite factor of type III1

Here, we construct a Walsh basis in the Lp-spaces associated with the hyperfinite
factor of type III1. The construction follows the line of [17, Section 7], however the
arguments are different as they rely on Section 4.

Consider arbitrary von Neumann algebras N and M with with faithful, normal
states φ and ψ. For the modular automorphism group of φ⊗ ψ, we have

σφ⊗ψt = σφt ⊗ σ
ψ
t , t ∈ R.

Therefore, N ⊗1 is a von Neumann subalgebra of N ⊗M that is globally invariant
under σφ⊗ψ. There exists a φ ⊗ ψ-preserving conditional expectation value EN :
N ⊗M→ N ⊗ 1, [18, Theorem IX.4.2]. Suppose that v = (vj)j∈N is a sequence in
M with v∗j vj equal to a multiple of the identity. We define maps:

FN ,j(x) = (1⊗ vj)EN ((1⊗ v∗j )x), x ∈ N ⊗M.

Since FN ,j is the composition of left multiplications and EN , we can use the complex
interpolation method to get a bounded map:

(5.1) FpN ,j : Lp(N ⊗M)→ Lp(N ⊗ 1) = Lp(N ).

Similarly, we can consider a φ⊗ψ-preserving conditional expectation value EM :
N ⊗M→ 1⊗M. If u = (ui)i∈N is a sequence in N with u∗i ui equal to a multiple
of the identity, then we set:

FM,i(x) = (ui ⊗ 1)EM((u∗i ⊗ 1)x), x ∈ N ⊗M.

Interpolating this map, yields a map FpM,i : Lp(N ⊗M)→ Lp(1⊗M) = Lp(M).

The following theorem can be proved similarly as [17, Theorem 7.1]. For com-
pleteness and convenience of the reader, we give the proof. Recall that the shell
enumeration is an enumeration of N× N, which assigns to a pair (i, j) the number

ϕ(i, j) =

{
j2 + i if i ≤ j,
(i+ 1)2 − j − 1 if i > j.

Theorem 5.1. Let 1 ≤ p ≤ ∞. Suppose that u = (ui)i∈N and v = (vj)j∈N
are sequences of linearly independent unitaries in N and respectively M. Denote
the corresponding projections by FpN ,j and FpM,i and suppose that (FpN ,j(Lp(N ⊗
M)))j∈N and (FpM,i(Lp(N ⊗ M)))i∈N are Schauder decompositions of N ⊗ M.

Then, u⊗v = (ui⊗ vj)i,j∈N taken in the shell enumeration is a Schauder basis for
Lp(N ⊗M).

Proof. Let z = u⊗v and write z = (zk)k∈N. Let n,m ∈ N be such that n < m and
consider the sum

∑m
i=0 αizi, where αi ∈ C. Let l ∈ N be such that l2 ≤ n < (l+1)2.

There are two cases: either l2 ≤ n ≤ l2 + l or l2 + l < n < (l + 1)2. We treat the
first case, since the second case can be handled similarly. First, we compute:

‖
n∑
k=0

αkzk‖p ≤ ‖
l2−1∑
k=0

αkzk‖p + ‖
n∑

k=l2

αkzk‖p

=‖
∑

0≤i,j<l

αϕ(i,j)ui ⊗ vj‖p + ‖
n−l2∑
i=0

αϕ(i,l)ui ⊗ vl‖p
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For the two terms on the right hand side, we find:

‖
∑

0≤i,j<l

αϕ(i,j)ui ⊗ vj‖p = ‖PpM,l−1P
p
N ,l−1

(
m∑
k=0

αkzk

)
‖p,

‖
n−l2∑
i=0

αϕ(i,l)ui ⊗ vl‖p = ‖FpM,lP
p
N ,n−l2

(
m∑
k=0

αkzk

)
‖p,

where PpN ,s =
∑s
i=0 F

p
N ,i and PpM,s =

∑s
j=0 F

p
M,j . Since we assumed that the

sequences (FpN ,j(Lp(N ⊗M)))j∈N and (FpM,i(Lp(N ⊗M)))i∈N are Schauder de-

compositions of Lp(N ⊗M), the projections PpN ,s and PpM,s are uniformly bounded

in s, c.f. Lemma 4.8. It follows that there is a constant C such that relation (4.1)
is holds. �

Choose 0 < α,α′ < 1
2 such that Rα and Rα′ are factors of type IIIλ and IIIλ′

with log λ
log λ′ 6∈ Q and λ = α

1−α , λ
′ = α′

1−α′ . In that case, the tensor product Rα⊗Rα′
is isomorphic to the hyperfinite factor of type III1, see [2], [4]. Consider the Walsh
basis w in Lp(Rα) and let w′ be the Walsh basis in Lp(Rα′). Let Fpα,j(= FpRα,j)
be the projection constructed in (5.1) and similarly consider Fpα′,i(= FpRα′ ,j).

Proposition 5.2. Let 1 < p <∞. The decomposition (Fpα,j(Lp(Rα⊗Rα′)))j∈N is

a Schauder decomposition of Lp(Rα ⊗Rα′). Similarly, (Fpα′,j(Lp(Rα ⊗Rα′)))j∈N
is a Schauder decomposition of Lp(Rα ⊗Rα′).

Proof. We only proof the first statement, since the second one can be proved simi-
larly. Set Pα,n =

∑n
j=0 Fα,j and Ppα,n =

∑n
j=0 F

p
α,j . In view of Lemma 4.8, we must

prove that Ppα,n is uniformly bounded in n.
Let m > n. Consider an element x =

∑
0≤i,j≤m αi,jwi ⊗ w′j with αi,j ∈ C. We

find

Pα,n

 ∑
0≤i,j≤m

αi,jwi ⊗ w′j

 =
∑

0≤i≤m, 0≤j≤n

αi,jwi ⊗ w′j

= (ι⊗ Pn)

 ∑
0≤i,j≤m

αi,jwi ⊗ w′j


In particular, the normality of Pα,n implies that Pα,n = (ι ⊗ Pn), where ι is the
identity on Rα.

Note that Rα ⊗Ns is a von Neumann subalgebra of Rα ⊗Rα′ that is globally
invariant under the modular automorphism group of ρα ⊗ ρα′ . Let Eα,s : Rα ⊗
Rα′ → Rα ⊗ Ns be the associated ρα ⊗ ρα′-preserving conditional expectation
value. Consider also the ρα′ -preserving conditional expection value Es : Rα′ → Ns.
Clearly, the uniqueness of (ρα ⊗ ρα′)-preserving conditional expectations implies
that:

Eα,s = ι⊗ Es.

Recall that we defined Ds = Es − Es−1. Similarly, set Dα,s = Eα,s − Eα,s−1.
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Now, we obtain the following equalities from Theorem 4.4.

(1⊗ w′n)Pα,n(x) = (ι⊗ w′n)(ι⊗ Pn)(x)

=

ι⊗
E−1 +

∑
i with γi=1

Di

 ((1⊗ w′n)x)

=

Eα,−1 +
∑

i with γi=1

Dα,i

 ((1⊗ w′n)x) ,

where n =
∑∞
i=0 γi2

i with γi ∈ {0, 1}. Interpolating this equation, and observing
that left multiplication with (1 ⊗ w′n) is an isometric map on Lp(Rα ⊗ Rα′), we
find that:

(5.2) ‖Ppα,n‖ = ‖Epα,−1 +
∑

i with γi=1

Dpα,i‖ ≤ ‖E
p
α,−1‖+ ‖

∑
i with γi=1

Dpα,i‖.

By remarks similar to the ones preceeding Proposition 4.10, it follows from Theorem
2.4 that the decomposition (Dpα,i(Lp(Rα ⊗ Rα′))i∈N is an unconditional Schauder

decomposition of Lp(Rα ⊗ Rα′). Hence, Lemma 4.9 implies that the right hand
side of (5.2) is uniformly bounded in n. �

Proposition 5.2 implies that we may apply Theorem 5.1.

Theorem 5.3. Let 1 < p < ∞. The Walsh system w ⊗ w′ = (wi ⊗ w′j)i,j∈N
taken in the shell enumeration is a Schauder basis in Lp(Rα ⊗Rα′); the Lp-space
associated with the hyperfinite III1 factor.

Remark 5.4. In general a tensor product of two Lp-spaces, each with unconditional
decomposition, does not produce a Lp-space where the tensor product of the given
decompositions is unconditional. The simplest example is a couple of Schatten
classes with row and column decompositions.

6. Classical Lp-spaces

For s ∈ N, consider the diagonal subalgebra As ⊆ Ns. The weak closure of
∪s∈NAs in Rα forms an abelian von Neumann algebra Aα, which is isomorphic to
L∞([0, 1], µα). Here, µα is the measure determined by:

µα

([
k

2n
,
k + 1

2n

])
=

n−1∏
i=0

[(1− γi)α+ γi(1− α)] ,

where 0 ≤ k < 2n and γi ∈ {0, 1} are such that k =
∑n−1
i=0 γi2

i, see [13, Section
12.3]. In particular, A 1

2
is isomorphic to L∞([0, 1], µ), where µ is the Lebesgue

measure.
The modular automorphism group σ leaves ∪s∈NAs and hence Aα invariant.

From Section 2.1, it follows that Lp(Aα) is a closed subspace of Lp(Rα). Moreover,
there exists a conditional expectation value EAα : Rα → Aα. Since EAα projects
on the diagonal matrices, we find that it acts on the Walsh system w by:

EAα(wn) =

{
wn if n =

∑∞
i=0 γi2

i with γ2i+1 = 0 for every i,
0 else.

Indeed, it follows from (4.3) that wn is diagonal if and only if the odd digits in the
binary decomposition of n vanish. Let z be the subsequence of w of vectors in the
range of the projection EAα . Clearly, it follows from Theorem 4.11 that z forms a
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Schauder basis in Lp(Aα) for 1 < p <∞. Explicitly, this system is constructed as
follows. Recall that we defined the Rademacher matrices in (4.2). Set:

zn =

∞⊗
i=0

r(γi,0), n =

∞∑
i=0

γi2
i, γi ∈ {0, 1}.

Then, z = (zn)n∈N.

Corollary 6.1. Let 1 < p <∞. The system z forms a Schauder basis in Lp(Aα).
Under the isomorphism Lp(Aα) ' Lp([0, 1], µα), we obtain the classical Walsh
system (1.1).
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