Search for a Higgs boson in diphoton final states with the D0 detector in 9.6 fb$^{-1}$ of pp collisions at $\sqrt{s} = 1.96$ TeV

(The D0 Collaboration*)

1 LAFEX, Centro Brasileiro de Pesquisas Físicas, Rio de Janeiro, Brazil
2 Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil
3 Universidade Federal do ABC, Santo André, Brazil
4 University of Science and Technology of China, Hefei, People’s Republic of China
5 Universidad de los Andes, Bogotá, Colombia
6 Charles University, Faculty of Mathematics and Physics, Center for Particle Physics, Prague, Czech Republic
7 Czech Technical University in Prague, Prague, Czech Republic
8 Center for Particle Physics, Institute of Physics, Academy of Sciences of the Czech Republic, Prague, Czech Republic
9 Universidad San Francisco de Quito, Quito, Ecuador
10 LPC, Université Blaise Pascal, CNRS/IN2P3, Clermont, France
11 LFSC, Université Joseph Fourier Grenoble 1, CNRS/IN2P3, Institut National Polytechnique de Grenoble, Grenoble, France
12 CPPM, Aix-Marseille Université, CNRS/IN2P3, Marseille, France
13 LAL, Université Paris-Sud, CNRS/IN2P3, Orsay, France
14 LPNHE, Universités Paris VI and VII, CNRS/IN2P3, Paris, France
15 CEA, Ifsa, SPP, Saclay, France
16 IPHC, Université de Strasbourg, CNRS/IN2P3, Strasbourg, France
17 IPNL, Université Lyon 1, CNRS/IN2P3, Villeurbanne, France and Université de Lyon, Lyon, France
18 III. Physikalisches Institut A, RWTH Aachen University, Aachen, Germany
19 Physikalisches Institut, Universität Freiburg, Freiburg, Germany
20 II. Physikalisches Institut, Georg-August-Universität Göttingen, Göttingen, Germany
21 Institut für Physik, Universität Mainz, Mainz, Germany
22 Ludwig-Maximilians-Universität München, München, Germany
23 Fachbereich Physik, Bergische Universität Wuppertal, Wuppertal, Germany
24 Panjab University, Chandigarh, India
25 Delhi University, Delhi, India
26 Tata Institute of Fundamental Research, Mumbai, India
27 University College Dublin, Dublin, Ireland
28 Korea Detector Laboratory, Korea University, Seoul, Korea
29 CINVESTAV, Mexico City, Mexico
30 Nikhef, Science Park, Amsterdam, the Netherlands
31 Radboud University Nijmegen, Nijmegen, the Netherlands
32 Joint Institute for Nuclear Research, Dubna, Russia
33 Institute for Theoretical and Experimental Physics, Moscow, Russia
34 Moscow State University, Moscow, Russia
35 Institute for High Energy Physics, Protvino, Russia
36 Petersburg Nuclear Physics Institute, St. Petersburg, Russia
37 Institució Catalana de Recerca i Estudis Avançats (ICREA) and Institut de Física d’Altes Energies (IFAE), Barcelona, Spain
38 Uppsala University, Uppsala, Sweden
39 Lancaster University, Lancaster LA1 4YB, United Kingdom
40 Imperial College London, London SW7 2AZ, United Kingdom
41 The University of Manchester, Manchester M13 9PL, United Kingdom
42 University of Arizona, Tucson, Arizona 85721, USA
43 University of California Riverside, Riverside, California 92521, USA
44 Florida State University, Tallahassee, Florida 32306, USA
45 Fermi National Accelerator Laboratory, Batavia, Illinois 60510, USA
46 University of Illinois at Chicago, Chicago, Illinois 60607, USA
47 Northern Illinois University, DeKalb, Illinois 60115, USA
48 Northwestern University, Evanston, Illinois 60208, USA
49 Indiana University, Bloomington, Indiana 47405, USA
50 Purdue University Calumet, Hammond, Indiana 46323, USA
51 University of Notre Dame, Notre Dame, Indiana 46556, USA
52 Iowa State University, Ames, Iowa 50011, USA
53 University of Kansas, Lawrence, Kansas 66045, USA
54 Louisiana Tech University, Ruston, Louisiana 71272, USA
55 Northeastern University, Boston, Massachusetts 02115, USA
56 University of Michigan, Ann Arbor, Michigan 48109, USA
57 Michigan State University, East Lansing, Michigan 48824, USA

The D0 Collaboration
We present a search for a Higgs boson decaying into a pair of photons based on 9.6 fb⁻¹ of \(p\bar{p} \) collisions at \(\sqrt{s} = 1.96 \) TeV collected with the D0 detector at the Fermilab Tevatron Collider. The search employs multivariate techniques to discriminate signal from the non-resonant background and is separately optimized for a standard model and a fermiophobic Higgs boson. No significant excess of data above the background prediction is observed and upper limits on the product of the cross section and branching fraction are derived at the 95% confidence level as a function of Higgs boson mass. For a standard model Higgs boson with mass of 125 GeV, the observed (expected) upper limits are a factor of 12.8 (8.7) above the standard model prediction. The existence of a fermiophobic Higgs boson with mass in the 100–113 GeV range is excluded at the 95% confidence level.

PACS numbers: 14.80.Bn, 13.85.Rm, 14.80.Ec, 12.60.Fr

I. INTRODUCTION

Unraveling the mechanism for electroweak symmetry breaking and the generation of mass of elementary particles has been a priority in experimental particle physics research during the last decades. In the standard model (SM) \([1] \) this is accomplished by introducing a SU(2) doublet of self-interacting elementary scalars, the “Higgs field”, whose non-zero vacuum expectation value breaks the electroweak symmetry and generates the mass of the W and Z bosons \([2] \). The postulated Yukawa interactions between the fermions and the Higgs field also gives mass to fermions upon the breaking of the electroweak symmetry. Furthermore, a physical scalar particle appears in the spectrum, the Higgs boson \((H)\), whose mass is not predicted and must be determined experimentally.

Within the SM, indirect constraints from precision electroweak observables \([3] \) limit the allowed range for the Higgs boson mass \((M_H)\) to \(M_H < 152 \) GeV at the 95% confidence level (CL). Direct searches at the CERN \(e^+ e^- \) Collider (LEP) \([4] \) set a lower limit of \(M_H > 114.4 \) GeV at 95% CL. At hadron colliders the dominant production mechanisms for a SM Higgs boson are gluon fusion (GF) \((gg \rightarrow H)\), associated production with a W or Z boson \((qq' \rightarrow VH, V = W, Z)\), and vector boson fusion (VBF) \((VV \rightarrow H)\). However, the search strategies for a light SM Higgs boson are different at the Fermilab Tevatron pp Collider and at CERN’s Large Hadron pp Collider (LHC).

At the Tevatron, the most sensitive SM Higgs boson searches for \(M_H < 130 \) GeV rely on the \(VH \) production mode, with \(H \rightarrow b\bar{b} \), while for \(M_H > 130 \) GeV the main search mode is \(gg \rightarrow H \rightarrow W^+W^- \). The combination of searches at the Tevatron \([5] \) have resulted in the mass ranges \(100 < M_H < 130 \) GeV and \(147 < M_H < 180 \) GeV being excluded at the 95% CL. In the allowed intermediate mass range an excess is found with a maximum local significance of 3.1 standard deviations (s.d.) at \(M_H = 125 \) GeV, primarily originating from the \(VH \) \((H \rightarrow b\bar{b})\) searches \([6] \).

At the LHC, the search strategy for \(M_H > 140 \) GeV also capitalizes on the GF production mode, exploiting primarily the \(H \rightarrow W^+W^- \) and \(H \rightarrow ZZ \) decay modes with leptonic W and Z boson decays. The \(H \rightarrow \gamma\gamma \) decay mode becomes one of the most promising discovery channels at lower \(M_H \), despite its small branching fraction.
of \(B(H \to \gamma \gamma) \approx 0.2\% \), owing to its clean experimental signature of a narrow resonance on top of a smoothly-falling background in the diphoton mass \((M_{\gamma \gamma})\) spectrum. Searches for \(H \to ZZ^{(*)} \to \ell^+\ell^-\ell'^+\ell'^- \) \((\ell, \ell' = e, \mu)\) are also sensitive due to the small background and excellent four-lepton invariant mass resolution. The most recent searches for the SM Higgs boson at the LHC \cite{14, 15} exclude a SM Higgs boson with \(M_H \leq 600 \text{ GeV} \), except for the narrow mass range \(\approx 122 - 127 \text{ GeV} \). In this mass range both the ATLAS and the CMS Collaborations observe a significant excess of events in data at \(M_H \approx 125 \text{ GeV} \) with local significances of 5.9 and 5.0 s.d., respectively. These excesses are formed by smaller exclusions than those predicted by the SM. For example, alternative models of electroweak symmetry breaking \(\text{B} \) can involve suppressed couplings of the Higgs boson to fermions, with the extreme case being the fermiophobic Higgs boson \((H_f)\) scenario, in which \(H_f \) has no tree-level couplings to fermions but has SM coupling to weak gauge bosons. In this scenario the GF production mechanism is absent, decays into fermions are heavily suppressed, and \(B(H \to \gamma \gamma) \) is significantly enhanced. The best-fit cross sections to the signal-like excesses in the \(H \to \gamma \gamma \) searches at the LHC show small deviations of about 1.5 s.d. above the SM prediction \cite{7, 8}. A more detailed global fit to Higgs boson couplings \cite{10} shows no significant deviations. Hence, the analysis of more data is needed for more definitive conclusions. Searches for a fermiophobic Higgs boson were performed by the LEP Collaborations \cite{11}, the CDF \cite{12} and D0 \cite{13} Collaborations and, most recently, by the ATLAS \cite{14} and CMS \cite{15} Collaborations. The most restrictive limits result from the combination of \(H \to \gamma \gamma, H \to W^+W^- \) and \(H \to ZZ \) searches by the CMS Collaboration, excluding the mass range \(110 < M_{H_f} < 194 \text{ GeV} \).

In this Article, we present the result from the search for a Higgs boson decaying into \(\gamma \gamma \) using the complete dataset collected with the D0 detector in \(p\bar{p} \) collisions at \(\sqrt{s} = 1.96 \text{ TeV} \) during Run II of the Tevatron Collider. This search employs multivariate techniques to improve the signal-to-background discrimination, and is separately optimized for a SM Higgs boson and for a fermiophobic Higgs boson. Compared to the previous D0 publication \cite{13}, the sensitivity for the SM Higgs boson is improved by about 40\%, resulting in the most restrictive limits to date from the Tevatron in this decay mode. The search for a fermiophobic Higgs boson has comparable sensitivity with the most recent result from the CDF Collaboration \cite{12}. This result constitutes an important input for the upcoming publications on combinations of Higgs boson searches by the D0 experiment, as well as by both Tevatron experiments, using the complete Run II dataset.

II. D0 DETECTOR AND DATA SET

The D0 detector is described in detail elsewhere \cite{16}. The subdetectors most relevant to this analysis are the central tracking system, composed of a silicon microstrip tracker (SMT) and a central fiber tracker (CFT) in a 2 T solenoidal magnetic field, the central preshower (CPS), and the liquid-argon and uranium sampling calorimeter. The SMT has about 800,000 individual strips, with typical pitch of 50–80 \(\mu \text{m} \), and a design optimized for tracking and vertexing capability at pseudorapidities of \(|\eta| < 2.5 \) \cite{17}. The system has a six-barrel longitudinal structure, each with a set of four layers arranged axially around the beam pipe, and interspersed with 16 radial disks. In the summer of 2006 an additional layer of silicon sensors was inserted at a radial distance of \(\approx 16 \text{ mm} \) from the beam axis, and the two outermost radial disks were removed. The CFT has eight thin coaxial barrels, each supporting two doublets of overlapping scintillating fibers of 0.835 mm diameter, one doublet being parallel to the collision axis, and the other alternating by \(\pm 3^\circ \) relative to the axis. Light signals are transferred via clear fibers to visible light photon counters (VLPC) that have about 80\% quantum efficiency.

The CPS is located just outside of the superconducting magnet coil (in front of the calorimetry) and is formed by one radiation length of absorber followed by several layers of extruded triangular scintillator strips that are read out using wavelength-shifting fibers and VLPCs. The calorimeter consists of three sections housed in separate cryostats: a central calorimeter covering up to \(|\eta| \approx 1.1 \), and two end calorimeters extending the coverage up to \(|\eta| \approx 4.2 \). Each section is divided into electromagnetic (EM) layers on the inside and hadronic layers on the outside. The EM part of the calorimeter is segmented into four longitudinal layers with transverse segmentation of \(\Delta \eta \times \Delta \phi = 0.1 \times 0.1 \) \cite{17}, except in the third layer (EM3), where it is \(0.05 \times 0.05 \). The calorimeter is well suited for a precise measurement of electron and photon energies, providing a resolution of \(\approx 3.6\% \) at energies of \(\approx 50 \text{ GeV} \).

Luminosity is measured using plastic scintillator arrays located in front of the end calorimeter cryostats, covering \(2.7 < |\eta| < 4.4 \). Trigger and data acquisition systems are designed to accommodate the high luminosities of Run II. Based on preliminary information from tracking, calorimetry, and muon systems, the output of the first level of the trigger is used to limit the rate for accepted events to about 2 kHz. At the next trigger stage, with more refined information, the rate is reduced further to about 1 kHz. These first two levels of triggering rely mainly on hardware and firmware. The third and final
level of the trigger, with access to all the event information, uses software algorithms and a computing farm, and reduces the output rate to about 100 Hz, which is written to tape.

This analysis uses the complete dataset of $p\bar{p}$ collisions at $\sqrt{s} = 1.96$ TeV recorded with the D0 detector during Run II of the Tevatron Collider. The data are acquired using triggers requiring at least two clusters of energy in the EM calorimeter with loose shower shape requirements and varying transverse momentum (p_T) thresholds between 15 GeV and 25 GeV. The trigger efficiency is close to 100% for final states containing two photon candidates with $p_T > 25$ GeV. Only events for which all subdetector systems are fully operational are considered. The analyzed dataset corresponds to an integrated luminosity of 9.6 fb$^{-1}$ [18].

III. EVENT SIMULATION

Monte Carlo (MC) samples of Higgs boson signal are generated separately for the GF, VH and VBF processes using the PYTHIA [19] leading-order (LO) event generator with the CTEQ6L1 [20] parton distribution functions (PDFs). Signal samples are generated for $100 \leq M_H \leq 150$ GeV, in increments of 5 GeV. Signal samples are normalized using the next-to-next-to-leading order (NNLO) plus next-to-next-to-leading-logarithm (NNLL) cross sections for GF [21] and NNLO for VH and VBF processes [22, 23], computed with the MSTW 2008 PDF set [24]. The Higgs boson’s branching fraction predictions are from HDECAY [25]. To improve the signal modeling for the GF process, the p_T of the Higgs boson is corrected to match the prediction at NNLO+NNLL accuracy by the HQT program [26]. In the case of the fermiophobic model, where the GF process is absent, the VH background is modeled using SHERPA [27] with the CTEQ6L1 PDF set. Recent measurements of DPP differential cross sections [28] have shown that SHERPA provides an adequate model of this process in the kinematic region of interest for this search. The $Z/\gamma^* \to e^+e^-$ process is modeled using ALPGEN [29] with the CTEQ6L1 PDF set, interfaced to PYTHIA for parton showering and hadronization, with a subsequent correction to the p_T spectrum of the Z boson to match measurements in data [30]. The $Z/\gamma^* \to e^+e^-$ MC sample is normalized to the NNLO theoretical cross section [31].

All MC samples are processed through a GEANT-based simulation of the D0 detector. To accurately model the effects of multiple $p\bar{p}$ interactions and detector noise, data events from random $p\bar{p}$ crossings that have an instantaneous luminosity spectrum similar to the events in this analysis are overlaid on the MC events. These MC events are then processed using the same reconstruction algorithms as used on the data. Simulated events are corrected so that the physics object identification efficiencies, energy scales and energy resolutions match those determined in data control samples.

IV. OBJECT IDENTIFICATION AND EVENT SELECTION

A. Photon reconstruction and energy scale

Photon candidates are formed from clusters of calorimeter cells within a cone of radius $R = \sqrt{(\Delta \eta)^2 + (\Delta \phi)^2} = 0.4$ around a seed tower [16]. The final cluster energy is then recalculated from the inner core with $R = 0.2$. The photon candidates are selected by requiring: (i) at least 95% of the cluster energy is deposited in the EM calorimeter layers, (ii) the calorimeter isolation $I = |E_{\text{tot}}(0.4) - E_{\text{EM}}(0.2)|/E_{\text{EM}}(0.2) < 0.1$, where $E_{\text{tot}}(0.4)$ is the total energy in a cone of radius $R = 0.4$ and $E_{\text{EM}}(0.2)$ is the EM energy in a cone of radius $R = 0.2$, (iii) the scalar sum of the p_T of all tracks ($p_{T,\text{trk}}^{\text{sum}}$) originating from the hard-scatter $p\bar{p}$ collision vertex (see Sect. IVB) in an annulus of $0.05 < R < 0.4$ around the EM cluster is less than 2 GeV, and (iv) the energy-weighted EM shower width is required to be consistent with that expected for an electromagnetic shower. This analysis only considers photon candidates with pseudorapidity $|\eta| < 1.1$.

To suppress electrons misidentified as photons, the EM clusters are required not to be spatially matched to significant tracker activity, either a track, or a pattern of hits in the SMT and CFT consistent with that of an electron or positron trajectory [33]. In the following, this requirement will be referred to as a “track-match” veto.

To suppress jets misidentified as photons, an artificial neural network (NN) discriminant, which exploits differences in tracker activity and energy deposits in the calorimeter and CPS between photons and jets, is defined [34]. The photon NN is trained using diphoton and dijet MC samples generated using PYTHIA, using the following discriminating variables: $p_{T,\text{trk}}^{\text{sum}}$, the numbers of cells above a certain threshold requirement in the first EM calorimeter layer within $R < 0.2$ and within $0.2 < R < 0.4$ of the EM cluster, the number of associated CPS clusters within $R < 0.1$ of the EM cluster, and a measure of the width of the energy deposition in
and photons with and without a matched CPS cluster. The
\[\eta_0 \]
derived as a function of photon transverse momentum
translation of the D0 detector response. These corrections are
central calorimeter using a detailed
energy which depends on
stream of the calorimeter, the application of this first set
trons suffering from a larger energy loss in material up-
Since electrons and photons shower differently, with elec-
ctions are then applied to all electromagnetic clusters.

FIG. 1: Comparison of the normalized \(\Omega_{NN} \) spectra for pho-
tons from DPP MC simulations and \(Z \rightarrow \ell^+\ell^-\gamma \) data events
(points with statistical error bars), and for misidentified jets
from simulated dijet events.

the CPS. The performance of the photon NN is verified
using a data event sample consisting of photons radiated
from charged leptons in Z boson decays (\(Z \rightarrow \ell^+\ell^-\gamma \),
\(\ell = e, \mu \)) [23]. Figure 1 compares the NN output (\(\Omega_{NN} \))
distributions of photons and jets. The shape of the \(\Omega_{NN} \)
distribution for photons is found to be in good agreement
between data and the MC simulation and is significantly
different from the shape for misidentified jets. The latter
is validated using a sample enriched in jets misidentified
as photons as discussed in Sect. VII. Photon candidates
are required to have a \(\Omega_{NN} \) value larger than 0.1, which
is close to 100% efficient for photons while rejecting ap-
proximately 40% of the remaining misidentified jets.

The measured photon energies are calibrated using a
two-step correction procedure. In the first step, the
energy response of the calorimeter to photons is calibrated
using electrons from Z boson decays. The resulting cor-
rections are then applied to all electromagnetic clusters.
Since electrons and photons shower differently, with elec-
trons suffering from a larger energy loss in material up-
stream of the calorimeter, the application of this first set
of corrections results in an overestimate of the photon
energy which depends on \(\eta^\gamma \). In the second step, additional
corrections are derived for photons reconstructed in the
central calorimeter using a detailed GEANT-based simu-
lution of the D0 detector response. These corrections are
derived as a function of photon transverse momentum
(\(p_T^\gamma \)) in seven intervals of \(\eta^\gamma \):

\[\begin{align*}
|\eta^\gamma| &< 0.4, 0.4 \leq |\eta^\gamma| < 0.6, \\
0.6 \leq |\eta^\gamma| < 0.7, 0.7 \leq |\eta^\gamma| < 0.8, 0.8 \leq |\eta^\gamma| < 0.9, \\
0.9 \leq |\eta^\gamma| < 1.0, \text{ and } 1.0 \leq |\eta^\gamma| < 1.1,
\end{align*} \]

and separately for photons with and without a matched CPS cluster. The
per-photon probability to have a matched CPS cluster is
measured using photons radiated from charged leptons
in Z boson decays (\(Z \rightarrow \ell^+\ell^-\gamma \), \(\ell = e, \mu \)) and is \(\approx 73\% \).

The finer binning at higher \(\eta \) is motivated by the strong
dependence of the energy-loss corrections for electrons on \(\eta \). The resulting corrections for photons with (without)
a matched CPS cluster are largest at low \(p_T^\gamma \approx 20 \text{ GeV} \)
and range from about \(-1.5\% \) in the \(|\eta^\gamma| < 0.4 \) interval,
to about \(-6\% \) \((-10\%) \) in the \(|\eta^\gamma| \geq 1.0 \) interval.

B. Primary vertex reconstruction

At the Tevatron the distribution of \(p\bar{p} \) collision vertices
has a Gaussian width of about 25 cm. The proper recon-
struction of the event kinematics, in particular \(p_T^\gamma \) and
thus \(M_{\gamma\gamma} \), requires the reconstruction and then correct
selection of the hard-scatter \(p\bar{p} \) collision primary vertex
(PV) among the various candidate PVs originating from
additional \(p\bar{p} \) interactions.

The algorithm used for PV reconstruction is described
in detail elsewhere [39]. In a first step, tracks with two
or more associated SMT hits and \(p_T > 0.5 \text{ GeV} \) are
clustered along the \(z \) direction. This is followed by a Kalman
Filter fit [37] to a common vertex of the tracks in each of
the different vertices. Events are required to have at least
one reconstructed PV with a \(z \) coordinate (\(z_{\text{PV}} \)) within
60 cm from the center of detector, a requirement that is
\(\approx 98\% \) efficient.

The selection of the hard-scatter PV from the list of
PV candidates with \(|z_{\text{PV}}| < 60 \text{ cm} \) is based on an algo-
rithm exploiting both the track multiplicity of the different
vertices and the transverse and longitudinal energy
distributions in the EM calorimeter and the CPS. These
energy distributions allow the estimation of the photon
direction and thus the \(z \) coordinate of its production ver-
tex along the beam direction. When one or both photons
reconstructed in the EM calorimeter also deposit part of
their energy in the CPS, the algorithm chooses the PV
whose \(z_{\text{PV}} \) is closest to the extrapolation of the photon
trajectory determined from the calorimeter and the CPS
information [38], provided the distance between the co-
ordinates of the vertex and of the photon trajectory is
smaller than 3 s.d. The uncertainty on this distance is
dominated by the uncertainty on the extrapolation of the
photonic direction, which ranges from \(\approx 2.5 \text{ cm} \) for photons
with \(|\eta^\gamma| < 0.4 \) to \(\approx 4.3 \text{ cm} \) for photons with \(|\eta^\gamma| > 0.8 \).
Otherwise, the algorithm chooses the PV with the largest
multiplicity of associated tracks.

This algorithm is optimized using \(Z/\gamma^* \rightarrow e^+e^- \) data
events, where the correct hard-scatter PV associated with
the reconstructed tracks is treated as corresponding to a
diphoton event by ignoring the track information from the
\(e^+e^- \) pair, and added to the list of PV candidates
to which the selection algorithm will be applied. The
fraction of \(Z/\gamma^* \rightarrow e^+e^- \) events for which the selected
PV agrees with the known hard-scatter PV is shown in
Fig. 2 as a function of diphoton transverse momentum
(\(p_T^\gamma \)) for two different hard-scatter PV selection algo-
rithms. For an algorithm selecting the hard-scatter PV
as the one with the highest track multiplicity, the average
selection probability is only \(\approx 65\% \) and shows a signifi-
significant dependence on p_T^γ. The improved algorithm used in this analysis, including also photon pointing information, achieves an average selection probability of $\approx 95\%$, almost constant as a function of p_T^γ.

C. Event selection

At least two photon candidates satisfying the requirements listed in Sect. [IV A] and having $p_T^\gamma > 25$ GeV and $|\eta^\gamma| < 1.1$ are required. If more than two photon candidates are identified, only the two photon candidates with highest p_T^γ are considered. At least one of the photon candidates in each event is required to have a matched CPS cluster. The photon kinematic variables are computed with respect to the vertex selected using the algorithm described in Sect. [IV B]. A requirement of $M_{\gamma\gamma} > 60$ GeV is made to ensure a trigger efficiency close to 100%.

The acceptance of the kinematic requirements is $\approx 42\%$, as estimated by applying the p_T^γ and η^γ requirements to generated photons in a $gg \rightarrow H \rightarrow \gamma\gamma$ MC sample assuming $M_H = 125$ GeV. At the same assumed M_H, the overall event selection efficiency, taking into account acceptance and reconstruction, identification and selection efficiencies, is $\approx 22\%$, almost independent on the signal production mechanism.

To improve the sensitivity to signal, events are categorized into two statistically independent samples with different signal-to-background ratios. Events where both photon candidates satisfy $O_{\gamma\gamma} > 0.75$ ("photon-enriched" sample) and events where at least one photon candidate satisfies $0.1 < O_{\gamma\gamma} < 0.75$ ("jet-enriched" sample) are analyzed separately. The corresponding sample compositions are discussed in Sect. [IV A].

D. Invariant mass reconstruction

After the selection of the $p\bar{p}$ collision vertex and the photon energy scale corrections, the $M_{\gamma\gamma}$ distribution for a Higgs boson signal follows a Gaussian distribution peaking at the generated Higgs boson mass, with small non-Gaussian tails. This distribution can be modeled by the sum of a Crystal Ball function [39], describing a narrow Gaussian core and a power-law tail toward lower masses, and a wider Gaussian distribution, describing tails from misvertexing or imperfect photon energy scale corrections. Figure [3] shows such a fit to the inclusive $M_{\gamma\gamma}$ spectrum for signal MC with $M_H = 125$ GeV. The resolution of the Gaussian core is found to be ≈ 3.1 GeV, and varies by $\pm 13\%$ when varying M_H by ± 25 GeV.

V. BACKGROUND MODELING AND SAMPLE COMPOSITION

The normalization and shape of the $Z/\gamma^* \rightarrow e^+e^-$ background are estimated using simulation. Electrons are misidentified as photons at a rate of about 2% due to track reconstruction inefficiencies. Such tracking inefficiency is measured in data using a "tag-and-probe" method, where $Z \rightarrow e^+e^-$ events are selected with one of the electrons ("tag") passing all identification criteria, including matching of the track to the calorimeter cluster, while only calorimeter requirements are applied to the other electron ("probe"). The electron misidentification rate is computed as the fraction of events where the probe electron satisfies the "track-match" veto requirement defined in Sect. [IV A]. The misidentification rate measured in data in this way is applied to the simulated
$Z/\gamma^* \rightarrow e^+e^-$ sample.

The γj and jj yields are estimated using a data-driven method [40] ("matrix method"). For selected events, the two photons are separated into two types: those with $O_{NN} > 0.75$ (well-identified photon, "p") and those with $0.1 < O_{NN} < 0.75$ (likely fake photon, "f"). Events are then classified in four categories: (i) two type-p photons, (ii) the higher p_T^γ (leading) photon is type p and the lower p_T^γ (trailing) photon is type f, (iii) the leading photon is type f and the trailing photon is type p, and (iv) two type-f photons. The corresponding numbers of events, after subtracting the $Z/\gamma^* \rightarrow e^+e^-$ contribution, are denoted as N_{pp}, N_{pf}, N_{fp} and N_{ff}. The different efficiencies of the $O_{NN} > 0.75$ requirement for photons (ϵ_γ) and jets (ϵ_j) are used to estimate the sample composition by solving a system of linear equations:

\[
(N_{\gamma\gamma}, N_{\gamma j}, N_{jj}, N_{jj}) = (N_{pp}, N_{pf}, N_{fp}, N_{ff}) \times E^{-1},
\]

where $N_{\gamma\gamma}$ (N_{jj}) is the number of $\gamma\gamma$ (jj) events and $N_{\gamma j}$ (N_{jj}) is the number of γj events with the leading (trailing) cluster as the photon. The 4×4 matrix E is constructed with the efficiency terms ϵ_γ and ϵ_j, parameterized as a function of $|\eta^\gamma|$ for each photon candidate as determined from photon and jet MC samples, respectively. The ϵ_γ and ϵ_j efficiencies averaged over $|\eta^\gamma|$ are $\approx 76\%$ and $\approx 35\%$, respectively. The efficiency ϵ_γ is validated with a data sample of photons radiated from charged leptons in Z boson decays ($Z \rightarrow ll^*$ γ, $l = e, \mu$). The efficiency ϵ_j is validated using two independent control data samples enriched in jets misidentified as photons, either by inverting the photon isolation variable ($I > 0.1$), or by requiring at least one track in a cone of $R < 0.05$ around the photon [41]. In the following, the sum of γj and γj contributions will be denoted as γj for simplicity. The shapes of kinematic distributions for γj (jj) background are obtained from independent control samples by requiring one (two) photon candidate(s) to satisfy $O_{NN} < 0.1$. The $O_{NN} < 0.1$ requirement leads to a mis-modeling of the η^γ spectrum, due to the $|\eta^\gamma|$ dependence of ϵ_j. This is corrected by assigning a weight factor defined as $\epsilon_j(|\eta^\gamma|)/(1-\epsilon_j(|\eta^\gamma|))$ for each of the photon candidates with $O_{NN} < 0.1$.

As discussed in Sect. III the kinematics of the DPP background are predicted using SHERPA. Since the estimated $N_{\gamma\gamma}$ from solving Eq. II could include a contribution from signal events, it is only used as a prior normalization for the DPP background to compare between data and background prediction. The normalization of the DPP background is ultimately determined from an unconstrained fit to the final discriminants used for hypothesis testing in both the photon-enriched and jet-enriched samples. For each of these samples, two distributions are considered: a multivariate discriminant (see Sect. V) constructed to maximize the separation between signal and background for events with $M_{\gamma\gamma}$ falling in the interval $M_{H} \leq 30\ GeV$ ("search region"), and the $M_{\gamma\gamma}$ spectrum for events outside this interval ("sideband region") that provide a high-statistics background-dominated sample. A comparison between data and the background prediction for the $M_{\gamma\gamma}$ spectrum, separately in the photon-enriched and the jet-enriched samples, is shown in Fig. II.

Tables II and III summarize the number of data events, expected backgrounds, and expected SM and fermiophobic Higgs boson masses, for the photon-enriched and jet-enriched samples, respectively. For $M_{H} = 125\ GeV$, the estimated background composition for the photon-enriched sample in the $M_{\gamma\gamma}$ interval of $[95\ GeV, 155\ GeV]$ is about 80% (DPP), $14\% (\gamma j)$, $3\% (jj)$ and $3\% (Z/\gamma^* \rightarrow e^+e^-)$. The corresponding composition for the jet-enriched sample is about $48\% (DPP)$, $31\% (\gamma j)$, $18\% (jj)$ and $3\% (Z/\gamma^* \rightarrow e^+e^-)$.

![FIG. 4: (color online). Distribution of $M_{\gamma\gamma}$ in (a) the photon-enriched sample and (b) the jet-enriched sample. The data (points with statistical error bars) are compared to the expected backgrounds, and expected SM and fermiophobic Higgs boson signals, resulting from the fit for each of the five hypothesized Higgs boson masses.](image-url)
TABLE II: Signal, backgrounds and data yields for the jet-enriched sample within the $M_H = 105$ GeV mass window, for $M_H = 105$ GeV to $M_H = 145$ GeV in 10 GeV intervals. The background yields are from a fit to the data. The uncertainties include both statistical and systematic contributions added in quadrature and take into account correlations among processes. The uncertainty on the total background is smaller than the sum in quadrature of the uncertainties in the individual background sources due to the anti-correlation resulting from the fit.

<table>
<thead>
<tr>
<th>M_H (GeV)</th>
<th>105</th>
<th>115</th>
<th>125</th>
<th>135</th>
<th>145</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\gamma\gamma$ (DPP)</td>
<td>2777 ± 65</td>
<td>1928 ± 44</td>
<td>1355 ± 31</td>
<td>980 ± 22</td>
<td>721 ± 17</td>
</tr>
<tr>
<td>γj</td>
<td>704 ± 40</td>
<td>407 ± 24</td>
<td>238 ± 14</td>
<td>144 ± 9</td>
<td>88 ± 6</td>
</tr>
<tr>
<td>jj</td>
<td>183 ± 16</td>
<td>93 ± 9</td>
<td>54 ± 6</td>
<td>34 ± 4</td>
<td>19 ± 2</td>
</tr>
<tr>
<td>$Z/\gamma^* \rightarrow e^+e^-$</td>
<td>219 ± 40</td>
<td>149 ± 30</td>
<td>51 ± 11</td>
<td>22 ± 5</td>
<td>11 ± 3</td>
</tr>
<tr>
<td>Total background</td>
<td>3883 ± 61</td>
<td>2577 ± 45</td>
<td>1698 ± 30</td>
<td>1180 ± 21</td>
<td>839 ± 16</td>
</tr>
<tr>
<td>Data</td>
<td>3777</td>
<td>2475</td>
<td>1664</td>
<td>1147</td>
<td>813</td>
</tr>
<tr>
<td>H signal</td>
<td>3.6 ± 0.4</td>
<td>3.5 ± 0.4</td>
<td>3.0 ± 0.4</td>
<td>2.2 ± 0.3</td>
<td>1.4 ± 0.2</td>
</tr>
<tr>
<td>H_t signal</td>
<td>49.8 ± 0.1</td>
<td>14.0 ± 0.3</td>
<td>4.8 ± 0.1</td>
<td>1.9 ± 0.1</td>
<td>0.79 ± 0.03</td>
</tr>
</tbody>
</table>

TABLE I: Signal, backgrounds and data yields for the photon-enriched sample within the $M_H = 30$ GeV mass window, for $M_H = 105$ GeV to $M_H = 145$ GeV in 10 GeV intervals. The background yields are from a fit to the data. The uncertainties include both statistical and systematic contributions added in quadrature and take into account correlations among processes. The uncertainty on the total background is smaller than the sum in quadrature of the uncertainties in the individual background sources due to the anti-correlation resulting from the fit.

<table>
<thead>
<tr>
<th>M_H (GeV)</th>
<th>105</th>
<th>115</th>
<th>125</th>
<th>135</th>
<th>145</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\gamma\gamma$ (DPP)</td>
<td>1989 ± 47</td>
<td>1406 ± 33</td>
<td>1012 ± 24</td>
<td>734 ± 17</td>
<td>545 ± 13</td>
</tr>
<tr>
<td>γj</td>
<td>1852 ± 100</td>
<td>1101 ± 60</td>
<td>653 ± 36</td>
<td>391 ± 22</td>
<td>251 ± 15</td>
</tr>
<tr>
<td>jj</td>
<td>1188 ± 94</td>
<td>647 ± 54</td>
<td>365 ± 31</td>
<td>219 ± 19</td>
<td>135 ± 12</td>
</tr>
<tr>
<td>$Z/\gamma^* \rightarrow e^+e^-$</td>
<td>227 ± 39</td>
<td>152 ± 28</td>
<td>61 ± 11</td>
<td>30 ± 7</td>
<td>20 ± 5</td>
</tr>
<tr>
<td>Total background</td>
<td>5236 ± 67</td>
<td>3306 ± 45</td>
<td>2091 ± 29</td>
<td>1374 ± 21</td>
<td>991 ± 17</td>
</tr>
<tr>
<td>Data</td>
<td>5287</td>
<td>3384</td>
<td>2156</td>
<td>1422</td>
<td>989</td>
</tr>
<tr>
<td>H signal</td>
<td>2.7 ± 0.3</td>
<td>2.6 ± 0.3</td>
<td>2.2 ± 0.3</td>
<td>1.7 ± 0.2</td>
<td>1.1 ± 0.1</td>
</tr>
<tr>
<td>H_t signal</td>
<td>34.8 ± 0.8</td>
<td>9.8 ± 0.3</td>
<td>3.4 ± 0.1</td>
<td>1.34 ± 0.04</td>
<td>0.56 ± 0.02</td>
</tr>
</tbody>
</table>

VI. SIGNAL-TO-BACKGROUND DISCRIMINATION

The diphoton mass $M_{\gamma\gamma}$ is the most effective discriminating variable between the Higgs boson signal and the background. However, further discrimination can be achieved by exploiting additional kinematic variables as well as photon quality variables. A total of ten well-modeled discriminating variables are considered in this search. Two of these variables correspond to kinematic properties of the photons: leading photon transverse momentum ($p_T^{\gamma_1}$) and trailing photon transverse momentum ($p_T^{\gamma_2}$) which, as illustrated in Fig. 5, follow a harder spectrum in signal than in background, as expected for the decay of a heavy resonance. Three of the variables are related to the kinematics of the diphoton system: $M_{\gamma\gamma}$, $p_T^{\gamma_1}$ and azimuthal angle separation between the photons ($\Delta \phi_{\gamma\gamma}$). The two latter variables give discrimination due to the large p_T of the Higgs boson in VH and VBF production. Therefore, as illustrated in Fig. 6, $p_T^{\gamma_1}$ and $\Delta \phi_{\gamma\gamma}$ are particularly sensitive variables in the search for a fermiophobic Higgs boson.

The scalar nature of the Higgs boson affects the angular distributions of the photons in the diphoton rest frame. To minimize uncertainties from the transverse momentum of the colliding partons, the Collins-Soper frame [12] is used. In this frame, the z axis is defined as the bisector of the proton beam momentum and the negative of the antiproton beam momentum when they are boosted into the center-of-mass frame of the diphoton pair. The variable θ^+ is defined as the angle between the leading photon momentum and the z axis. The variable ϕ^* is defined as the angle between the diphoton plane and the p_T plane. Due to the restriction to photons with $|\eta^\gamma| < 1.1$ in this analysis, the $\cos \theta^+$ distribution has little discrimination between signal and background, although it is considered in the search. In contrast, the angle ϕ^* provides useful discrimination between signal and background, particularly for a fermiophobic Higgs boson, as illustrated in Fig. 7(a).

A significant fraction of W and Z boson decays in VH production involves neutrinos that result in large missing transverse energy (E_T) in the final state. In contrast, the E_T in background events is typically low, and mostly resulting from jet energy mismeasurements. The E_T distribution in the jet-enriched sample is shown in Figure 7(b). The E_T is reconstructed as the negative of the vectorial sum of the p_T of calorimeter cells, and is corrected for the p_T of identified muons and the energy corrections to reconstructed jets in the calorimeter [13].

Finally, the O_{NN} distributions for the leading photon ($O_{NN}^{\gamma_1}$) and the trailing photon ($O_{NN}^{\gamma_2}$) show discrimination between signal and the γj and jj backgrounds, in
Data and a fermiophobic Higgs boson with components. The expected distributions for a SM Higgs boson background prediction, broken down into its individual components. The expected distributions for a SM Higgs boson and a fermiophobic Higgs boson with $M_H = 125$ GeV are also shown scaled by a factor of 1000. These two BDT input variables are used in both the photon-enriched and jet-enriched samples, but are displayed here for only one of the samples for illustrative purposes.

FIG. 5: (color online). Distribution of (a) p_T^{1} in the photon-enriched sample and (b) p_T^{2} in the jet-enriched sample. The data (points with statistical error bars) are compared to the background prediction, broken down into its individual components. The expected distributions for a SM Higgs boson and a fermiophobic Higgs boson with $M_H = 125$ GeV are also shown scaled by a factor of 1000. These two BDT input variables are used in both the photon-enriched and jet-enriched samples, but are displayed here for only one of the samples for illustrative purposes.

FIG. 6: (color online). Distribution of (a) p_T^{1} in the photon-enriched sample and (b) $\Delta \phi_{\gamma\gamma}$ in the jet-enriched sample. The data (points with statistical error bars) are compared to the background prediction, broken down into its individual components. The expected distributions for a SM Higgs boson and a fermiophobic Higgs boson with $M_H = 125$ GeV are also shown scaled by a factor of 1000. These two BDT input variables are used in both the photon-enriched and jet-enriched samples, but are displayed here for only one of the samples for illustrative purposes.

particular in the jet-enriched sample, as illustrated in Fig. 5. The observed discrepancies between the data and the total prediction in the shape of the distribution are partly covered by the combination of statistical uncertainties on the templates and the systematic uncertainties, and they have been checked to have a negligible impact on the final result.

To improve the sensitivity of the search, a boosted-decision-tree (BDT) technique is used to build a single discriminating variable combining the information from the ten variables. A different BDT is trained, for each M_H hypothesis, for events selected in the search region, corresponding to $M_{\gamma\gamma}$ falling in the interval of $M_H \pm 30$ GeV. The training is performed separately for the SM and the fermiophobic Higgs bosons models, considering in each case the sum of all relevant signals against the sum of all backgrounds. A separate BDT is trained in the photon-enriched and jet-enriched samples, respectively. The resulting BDT output distributions assuming a SM and a fermiophobic Higgs boson with $M_H = 125$ GeV are shown in Figs. 6 and 10, respectively. Prior to fitting the background yields to the data, these distributions are well modeled by the simulation and no significant excess above the background.
prediction is observed at high values of the BDT output.

VII. SYSTEMATIC UNCERTAINTIES

Systematic uncertainties affecting the normalization and shape of the BDT output distributions are estimated for both signal and backgrounds, taking into account correlations. Experimental uncertainties affecting the normalization of the signal and the \(Z/\gamma^* \rightarrow e^+e^-\) background include the integrated luminosity (6.1%), tracking system live-time correction (2.0%), trigger efficiency (0.1%), PV reconstruction efficiency (0.2%), and photon identification efficiency for signal (3.9%) or electron misidentification rate for \(Z/\gamma^* \rightarrow e^+e^-\) (12.7%). The impact from PDF uncertainties on the signal acceptance is 1.7%–2.2% depending on \(M_H\). Additional sources of uncertainty affecting the normalization result from uncertainties on the theoretical cross section (including variations of the renormalization and factorization scales) and the PDFs for signal (GF (14.1%), VH (6.2%) and VBF (4.9%)) and \(Z/\gamma^* \rightarrow e^+e^-\) (3.9%) production.

The normalization uncertainties affecting the \(\gamma j\) and \(jj\) background predictions result from propagating the
uncertainties on ϵ_γ (1.5%) and ϵ_j (10%) in the estimation of their yields via Eq. [1]. The uncertainties on the γj and jj yields from varying ϵ_γ are 6.9% and 5.3%, respectively. The corresponding uncertainties from varying ϵ_j are 0.6% and 15.3%, respectively.

The remaining systematic uncertainties affect the shape of the BDT output distributions. Such uncertainties include the photon energy scale (1%–5% for signal, 1%–4% for DPP background), the modeling of DPP by SHERPA (1%–10%), and the modeling of the Higgs boson p_T spectrum in GF production (1%–5%). The last two uncertainties are obtained by doubling and halving the factorization and renormalization scales with respect to the nominal choice. Uncertainties on the shape of the $\gamma j + jj$ background are 5%–7% and are estimated by comparing the BDT output distribution from the high-statistics samples obtained by inverting the O_{NN} requirement to those predicted via the matrix method.

VIII. RESULTS

For each hypothesized M_H value, the BDT output distributions discussed in Sect. [VII] for the photon-enriched and jet-enriched samples are used to perform the statistical analysis to search for a significant signal above the background prediction. As mentioned before, such discriminants are defined only for events with $M_{\gamma\gamma}$ falling in the $M_H \pm 30$ GeV interval. The remainder of the $M_{\gamma\gamma}$
spectrum (see Fig. 1) for both the photon-enriched and jet-enriched samples, corresponding to the sideband regions, is also included in the statistical analysis as it provides a significant constraint on the DPP normalization. Therefore, for each M_H a total of four distributions are analyzed.

In the absence of a significant data excess above the background prediction, upper limits on the product of the production cross section and branching fraction ($\sigma \times B(H \rightarrow \gamma\gamma)$) are derived as a function of M_H, for both the SM and fermiophobic Higgs boson scenarios. Limits are calculated at the 95% CL with the modified frequentist approach [47], which employs a log-likelihood ratio (LLR) as test-statistic, $LLR = -2 \ln(L_{s+b}/L_b)$, where L_{s+b} (L_b) is a binned likelihood function (product of Poisson probabilities) to observe the data under the signal-plus-background (background-only) hypothesis. Pseudo-experiments are generated for both hypotheses, taking into account per-bin statistical fluctuations of the total predictions according to Poisson statistics, as well as Gaussian fluctuations describing the effect of systematic uncertainties. The individual likelihoods are maximized with respect to the DPP background normalization as well as other nuisance parameters that parameterize the systematic uncertainties [48]. This global fit determines the normalization of the DPP background directly from data and significantly reduces the impact of systematic uncertainties on the overall sensitivity. Examples of the post-fit BDT output distribution, after background subtraction, are shown in Fig. 11. The fraction of pseudo-experiments for the signal-plus-background (background-only) hypothesis with LLR larger than a given threshold defines CL_{s+b} (CL_b). This threshold is set to the observed (median) LLR for the observed (expected) limit. Signal cross sections for which $CL_b = CL_{s+b}/CL_b < 0.05$ are deemed to be excluded at 95% CL.

The resulting upper limits on $\sigma \times B(H \rightarrow \gamma\gamma)$ relative to the SM prediction are shown as a function of M_H in Fig. 12(a), and are summarized in Table IV. This translates into the observed (expected) lower 95% CL of $M_H > 113$ (114) GeV. After dividing by the theoretical cross section, upper limits on $B(H \rightarrow \gamma\gamma)$ are derived as a function of M_H and presented in Fig. 12(b).

IX. SUMMARY

A search for a Higgs boson decaying into a pair of photons has been presented using 9.6 fb$^{-1}$ of $p\bar{p}$ collisions at $\sqrt{s} = 1.96$ TeV collected with the D0 detector at the Fermilab Tevatron Collider. The search employs multivariate techniques to discriminate the signal from the non-resonant background, and is separately optimized for a SM and a fermiophobic Higgs boson. No significant excess of data above the background prediction is observed, and upper limits on the product of the cross section and branching fraction are derived at the 95% CL as a function of M_H. For a SM Higgs boson with $M_H = 125$ GeV, the observed (expected) upper limits are a factor of 12.8 (8.7) above the SM prediction. The existence of a fermiophobic Higgs boson with mass in the 100–113 GeV range is excluded at the 95% confidence level.

We thank the staffs at Fermilab and collaborating institutions, and acknowledge support from the DOE and NSF (USA); CEA and CNRS/IN2P3 (France); MON, NRC KI and RFBR (Russia); CNPq, FAPERJ, FAPESP and FUNDUNESP (Brazil); DAE and DST (India); Colciencias (Colombia); CONACYT (Mexico); NRF (Korea); FOM (The Netherlands); STFC and the Royal Society (United Kingdom); MSMT and GACR (Czech Republic); BMBF and DFG (Germany); SFI (Ireland); The Swedish Research Council (Sweden); and CAS and CNSF (China).

FIG. 11: (color online). Distribution of the BDT output for data (points with statistical error bars) after subtraction of the fitted background (under the background-only hypothesis) in (a) the photon-enriched sample and (b) the jet-enriched sample, for $M_H = 125$ GeV. The expected SM Higgs signal is normalized to the observed limit on $\sigma \times B(H \rightarrow \gamma\gamma)$. The bands represent the 1 s.d. uncertainties on the background prediction resulting from the fit.

FIG. 12: (color online). (a) Observed and expected 95% CL limits on the ratio of $\sigma \times B(H \rightarrow \gamma\gamma)$ to the SM prediction as a function of M_H. The bands correspond to 1 and 2 s.d. around the median expected limit under the background-only hypothesis. (b) Observed log-likelihood ratio (LLR) as a function of M_H compared to the expected LLR under the background-only hypothesis (LLR$_b$) and signal+background hypothesis (LLR$_{s+b}$). The bands correspond to the 1 s.d. and 2 s.d. around the expected median LLR$_b$.

<table>
<thead>
<tr>
<th>M_H (GeV)</th>
<th>100</th>
<th>105</th>
<th>110</th>
<th>115</th>
<th>120</th>
<th>125</th>
<th>130</th>
<th>135</th>
<th>140</th>
<th>145</th>
<th>150</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\sigma \times B(H \rightarrow \gamma\gamma)$ (fb)</td>
<td>Expected</td>
<td>46.1</td>
<td>37.2</td>
<td>32.8</td>
<td>30.3</td>
<td>27.7</td>
<td>24.6</td>
<td>22.0</td>
<td>20.7</td>
<td>18.7</td>
<td>17.2</td>
</tr>
<tr>
<td></td>
<td>Observed</td>
<td>44.7</td>
<td>60.6</td>
<td>37.1</td>
<td>27.9</td>
<td>28.4</td>
<td>36.1</td>
<td>30.1</td>
<td>20.5</td>
<td>22.0</td>
<td>24.8</td>
</tr>
<tr>
<td>$\sigma \times B(H \rightarrow \gamma\gamma)/$SM</td>
<td>Expected</td>
<td>12.2</td>
<td>10.2</td>
<td>9.3</td>
<td>9.1</td>
<td>8.9</td>
<td>8.7</td>
<td>9.0</td>
<td>10.0</td>
<td>11.2</td>
<td>13.3</td>
</tr>
<tr>
<td></td>
<td>Observed</td>
<td>11.9</td>
<td>16.6</td>
<td>10.5</td>
<td>8.3</td>
<td>9.1</td>
<td>12.8</td>
<td>12.3</td>
<td>9.9</td>
<td>13.2</td>
<td>19.2</td>
</tr>
</tbody>
</table>

TABLE III: Expected and observed upper limits at 95% CL on the cross section times branching fraction for $H \rightarrow \gamma\gamma (\sigma \times B(H \rightarrow \gamma\gamma))$ and on $\sigma \times B(H \rightarrow \gamma\gamma)$ relative to the SM prediction for a SM Higgs boson as a function of M_H.
Pseudorapidity is defined as $\eta = -\ln[\tan(\theta/2)]$, where θ is the polar angle relative to the proton beam direction.

ϕ is the azimuthal angle in the plane transverse to the proton beam direction.

TABLE IV: Expected and observed upper limits at 95% CL on the cross section times branching fraction for $H_i \rightarrow \gamma\gamma$ ($\sigma \times B(H_i \rightarrow \gamma\gamma)$) and on $B(H_i \rightarrow \gamma\gamma)$ for a fermiophobic Higgs boson as a function of M_{H_i}. Also given are the theoretical predictions for $\sigma \times B(H_i \rightarrow \gamma\gamma)$ and $B(H_i \rightarrow \gamma\gamma)$ as a function of M_{H_i}.
[hep-ex], submitted to Phys. Lett. B.

[34] V.M. Abazov et al. (D0 Collaboration), Phys. Rev. Lett. 102, 231801 (2009).

[43] G.C. Blazey et al., [arXiv:hep-ex/0005012] (2000); V.M. Abazov et al. (D0 Collaboration), Phys. Rev. D 85, 052006 (2012). Calorimeter jets are reconstructed using the iterative midpoint cone algorithm with radius $R = 0.5$ in $y-\phi$ space, where y is the rapidity.

