The following full text is a publisher's version.

For additional information about this publication click this link.
http://hdl.handle.net/2066/119330

Please be advised that this information was generated on 2021-01-11 and may be subject to change.
Mirror, firehose and cosmic-ray-driven instabilities in a high-β plasma

A. Achterberg

Department of Astrophysics, IMAPP, Radboud University, PO Box 9010, NL-6500 GL Nijmegen, the Netherlands

ABSTRACT
I consider low-frequency instabilities in a plasma with high-β plasma, with β the ratio of thermal and magnetic pressures. I derive the mirror and firehose instabilities, due to pressure anisotropy, for such a plasma. This derivation uncovers clear modifications with the more familiar, low-β case. I also consider the interplay between these instabilities and the current-driven instability (the Bell–Lucek instability) that occurs near a shock that accelerates cosmic rays. It is shown that the two instability mechanisms in combination can lead to a stronger instability over a wider range of wavelengths.

Key words: acceleration of particles – diffusion – instabilities – shock waves – methods: waves.

1 INTRODUCTION
The properties of low-frequency magnetohydrodynamics (MHD) waves in high-β plasmas, where β ≃ 8πP/B^2 is the ratio of the thermal and magnetic pressures, differ considerably from the properties obtained from a simple fluid approximation. In particular, the fundamental wave modes are coupled and through this coupling obliquely propagating Alfvén waves become subject to linear collisionless damping. The first full calculation using kinetic theory of low-frequency quasi-MHD waves in such plasmas is due to Foote & Kulsrud (1979), building on earlier work by Stepanov (1958) and Barnes (1966). For frequencies well below the ion gyrofrequency Ω_i = qB_i/m_i c in the ambient magnetic field B_o, finite Larmor radius corrections to the ion response in the waves, as well as the effects of thermal motion along the magnetic field, change the character of the waves. In particular, the E × B_o drift speed (with E the electric field in the wave) of ions in a high-β plasma differs from that of electrons as the mean wave electric field, averaged over one gyro-orbit, equals

\[\langle E(k) \rangle = \frac{E(k) J_0 \left(\frac{k \cdot v_e}{\Omega} \right)}{J_0(k)} \simeq \frac{E(k)}{1 - \frac{k^2 v_e^2}{4\Omega_e^2}}. \]

Here v_e is the component of the particle velocity in the plane perpendicular to the ambient magnetic field and \(k \cdot is the corresponding component of the wave vector k, \Omega \equiv qB_o/m_e c is the gyrofrequency and J_0 is the Bessel function of order zero. The second equality assumes \(k \cdot v_e/\Omega \ll 1 \), the standard assumption for MHD waves that the wavelength is much larger than the gyroradius \(r_g = v_e/\Omega_\perp \) of all charge species in the plasma. This averaging procedure applies as long as the wave frequency is much lower than the ion gyrofrequency: \(\omega \ll \Omega_i \).

Assuming a plasma with similar ion and electron temperatures the mean square thermal velocity for particles of mass m is equal to

\[\langle v^2 \rangle = \frac{2k_i T_i}{m} \equiv 2V^2_i. \]

Using this estimate for \(v_i^2 \), together with \(\Omega_i = eB_o/m_ic \) (\(\Omega_i = eB_o/m_i c \) for ions (electrons) in a hydrogen plasma, one sees that the finite gyration radius correction in relation (1) is a factor \(m_e/m_i \sim 1/1836 \) smaller for electrons than it is for ions. The effect of the finite gyration radius on the electron response can therefore safely be neglected for realistic parameters. The difference in the ion and electron response leads to a net current associated with the E × B_o drift of both species. The standard MHD approximation applies to long wavelength modes in a plasma with sufficiently low \(\beta \), where the correction to the ion response remains small and electrons and ions drift across the magnetic field with the same velocity.

In relation (2) I have allowed for the possibility that the plasma has a temperature anisotropy, where the temperature \(T_\parallel \) associated with the two degrees of freedom perpendicular to the magnetic field differs from the parallel temperature \(T_\perp \) associated with thermal motion along the magnetic field. The latter is defined formally by

\[\langle v^2 \rangle = \frac{k_i T_i}{m} \equiv V^2_i. \]

Thermal motion of the ions along the magnetic field also changes wave properties when \(k \cdot v_i \simeq \Omega_i \), with correction terms scaling as \(k_i^2 V^2_i / \Omega_i^2 \), similar in form to those resulting from finite Larmor radius effects. Both effects are included in the calculations presented below.

Two well-known instabilities are associated with a temperature anisotropy and are discussed in this paper. I will derive the high-β versions of the firehose instability, commonly associated with the Alfvén wave and the magnetosonic wave that propagate...
quasi-parallel along the field, and the mirror instability that is associated with a magnetoacoustic wave propagating quasi-perpendicular to the field. These two instabilities are receiving renewed interest with the realization that conditions in the interstellar/intergalactic medium are such that the low ion collision frequency allows anisotropies to develop in the ions distribution in the presence of weak magnetic fields (e.g. Schekochihin et al. 2005).

As will be demonstrated below in Section 6, the low ion collisionality allows for ion pressure anisotropies to be generated in the cosmic ray (CR) precursors of shocks that accelerate these particles by the shock acceleration mechanism. Instabilities in these precursors, driven by the return current induced by the streaming CRs in the plasma, have also been the subject of recent interest (Lu & Bell 2000; Bell & Lu 2001; Bell 2004; Luo & Melrose 2009). In the precursor the pressure force from of the accelerated CRs slows down the incoming fluid, and the resulting changes in the magnetic field and plasma density allow pressure anisotropies to develop in the ion plasma if the scattering rate of the thermal ions is sufficiently small.

This paper is organized as follows: the plasma response for low-frequency waves in an anisotropic quasi-Maxwellian high-β plasma is calculated in Section 2. The wave properties and possible instabilities are discussed in Sections 3 and 4. The (indirect) effect of CRs is considered in Section 5, and in Sections 6 and 7 I discuss the application to the CR precursors in the high Mach number shocks that accelerate these particles. The conclusions are found in Section 8.

2 Dispersion Relation for Quasi-MHD Waves

The calculation of linear wave properties in a plasma involves the determination of the dielectric tensor \(\epsilon(\omega, k)\) as a function of wave angular frequency \(\omega\) and wave vector \(k\). It can be represented as

\[
\epsilon(\omega, k) = I + \sum_{\sigma} \chi^{\sigma}(\omega, k).
\]

Here \(\chi^{\sigma}(\omega, k)\) is the susceptibility tensor of species \(\sigma\), with \(\sigma = e, i\) for a simple ion–electron plasma, and \(I = \text{diag}(1, 1, 1)\) is the unit tensor. The dispersion relation of the waves that determines the frequency \(\omega(k)\) as a function of wavenumber then reads, see for instance Ichimaru (1973), Akhiezer et al. (1975) and Stix (1992):

\[
\det \left[\frac{k^2 c^2}{\omega^2} (I - \hat{k} \hat{k}) - \epsilon(\omega, k) \right] \equiv \det [D(\omega, k)] = 0.
\]

Here \(\hat{k} \equiv k/k\) is the unit vector along the wave vector. The second equality in this condition defines the dispersion tensor \(D(\omega, k)\). The dispersion relation is the solution of the set of coupled equations \(\sum_{\sigma} J_{\sigma}(\omega, k) E_{\sigma}(\omega, k) = 0\) that follow from Maxwell’s equations and the linearized equation of motion (or kinetic equation) for all components of the plasma.

Low-frequency MHD waves follow from a simplified version of dispersion relation (5). In what follows I choose the ambient magnetic field along the z-axis \((B_0 = B_0 \hat{z})\) and the wave vector as \(k = k_1 \hat{x} + k_2 \hat{z}\). For waves with a frequency much less than the electron plasma frequency \(\omega_{pe} = \sqrt{4\pi e^2 n_e/m_e}\) (with \(n_e\) the electron density) one can show that the component of the wave electric field along the magnetic field, \(E_z(\omega, k)\), is almost shorted out by the electrons. This implies \(D_z\) is much larger than \(D_{xx}, D_{yy}, D_{yx}\) and \(D_{xy}\) and \(|E_z| \ll |E_x|, |E_y|\). One can then limit the discussion to waves where the wave electric field lies entirely in the plane perpendicular to \(B_0\): \(E_{\perp}(\omega, k) = (E_x(\omega, k), E_y(\omega, k), 0)\). The wave properties for such waves follow from the condition that the determinant of the cofactor of \(D_z\) vanishes (cf. Foote & Kulsrud 1979): \(D_{xx} D_{yy} - D_{yx} D_{xy} = 0\). In terms of susceptibilities \(\chi_{\perp}(\omega, k)\):

\[
\left(\frac{k^2 c^2}{\omega^2} - 1 - \chi_{xx} \right) \left(\frac{k^2 c^2}{\omega^2} - 1 - \chi_{yy} \right) - \chi_{xy}^2 = 0.
\]

2.1 Ion Response

The susceptibility tensor \(\chi^{\sigma}(\omega, k)\) can be calculated by standard means. A convenient assumption is that the ion velocity distribution is a bi-Maxwellian \(f_{BM}(v_{\perp}, v)\), where the number of ions found in the velocity interval \(v_{\perp}, v_{\perp} + dv_{\perp}, v_{\perp} + dv_{\perp}\) equals \(dn_i = n_i f_{BM}(v_{\perp}, v_{\perp}) 2\pi v_{\perp} dv_{\perp} dv\), with

\[
f_{BM}(v_{\perp}, v) = \frac{1}{(2\pi)^{3/2} V_{Ti}^2} \exp \left(-\frac{v^2}{2 V_{Ti}^2} - \frac{v_{\perp}^2}{2 V_{T_{i\perp}}^2} \right) .
\]

Here the characteristic ion thermal speeds \(V_{Ti} \parallel \) and \(V_{Ti} \perp \) are defined in equations (2)/(3) in terms of the perpendicular (parallel) ion temperatures \(T_i \parallel, T_i \perp \). The quantity \(n_i\) is the total number density of the ions, and \(v_{\perp}(v)\) refers to the components of the particle velocity perpendicular to (along) the magnetic field. The ion plasma exhibits a temperature anisotropy if \(T_i \parallel \neq T_i \perp \). To quantify this I introduce the ion anisotropy parameter:

\[
\Delta_T = \frac{T_i \perp}{T_i \parallel} - 1 = \frac{P_{TeV}}{P_{TV_i}} - 1.
\]

I have suppressed the species subscript ‘i’ on most quantities, concentrating for now on the ion contribution to the susceptibility.

The ion susceptibility tensor is (e.g. Ichimaru 1973, Ch. 5.2)

\[
\chi^i(\omega, k) = -\frac{\omega_{pi}^2}{\omega^2} \left[I + \sum_{n = -\infty}^{+\infty} \int dv_{\perp} J_{n} v_{\perp} \left(\frac{\hat{G}_n f_{BM}(v_{\perp}, v)}{n\Omega_i + k_1 v_{\perp} - \omega} \right) \Pi_n \right]
\]

Here \(\omega_{pi}^2 = 4\pi e^2 n_i/m_i\) is the ion plasma frequency squared (assuming a hydrogen plasma with \(q = e, m = m_i\), \(\Omega_i = eB_0/m_i c\) is the ion gyrofrequency and \(\hat{G}_n\) is the operator:

\[
\hat{G}_n = \frac{n\Omega_i}{v_{\perp} \perp} \frac{\partial}{\partial v_{\perp}} + \frac{k_1}{v_{\perp}} \frac{\partial}{\partial v_{\perp}}
\]

The 3 × 3 tensor \(\Pi_n\) involves products of Bessel functions and derivatives thereof. In the present case we only need the components \(\Pi_{xx}, \Pi_{yy}\) and \(\Pi_{xy} = -\Pi_{yx}\) in the plane perpendicular to \(B_0\), which together can be represented by the 2 × 2 matrix \(\Pi_{\perp\perp}\):

\[
\Pi_{\perp\perp} = \left< \left(\frac{n\Omega_i}{k_1} \right)^2 J^2_{n}(\mu) \right> \left< \frac{\partial}{\partial v_{\perp}} \frac{n\Omega_i}{k_1} \right> J^2_{n}(\mu) \left< \frac{1}{v_{\perp}^2} (J^0_{n}(\mu))^2 \right>.
\]

I employ the notation \(f_{n}(\mu) = dJ_{n}(\mu)/d\mu\). The argument of the Bessel functions is \(\mu \equiv k_1 v_{\perp} / \Omega_i\).

Let us denote the 2 × 2 matrix consisting of the ion susceptibilities \(\chi_{xx}, \chi_{yy}\) and \(\chi_{xy} = -\chi_{yx}\) by \(\chi_{\perp}(\omega, k)\). Substituting the bi-Maxwellian (7) into (9) and performing the velocity integrations one finds after a significant amount of algebra:

\[
\chi_{\perp}(\omega, k) = \frac{\omega_{pi}^2}{\omega^2} \sum_{n = -\infty}^{+\infty} \frac{\omega}{\omega - n\Omega_i} \{ W(Z_n) - 1 \} + \Delta_T W(Z_n) \times M_{\perp\perp}.
\]
Here $W(Z_n)$ is the plasma dispersion function defined by Ichimaru (1973, Ch. 4):

$$W(Z_n) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} dx \frac{x \exp(-x^2/2)}{x - Z_n}, \quad Z_n = \frac{\omega - n\Omega}{|k||V_t|}. \quad (13)$$

It results from the integration over v_1. The parameter Δ_T was defined in (8). The 2×2 tensor $M_{\perp\nu}$ is obtained from the integration over $v_{1\perp}$:

$$M_{\perp\nu} = \begin{pmatrix} \frac{n^2}{\mu} \Lambda_n(\mu) & \text{in } \Lambda_n(\mu) \\ -n^2 \Lambda_n(\mu) - 2\mu \Lambda_n'(\mu) & \frac{n^2}{\mu} \end{pmatrix}. \quad (14)$$

The function $\Lambda_n(\mu)$ and its derivative $\Lambda_n'(\mu) \equiv d\Lambda_n(\mu)/d\mu$ contain the finite gyration radius corrections. $\Lambda_n(\mu)$ is given by

$$\Lambda_n(\mu) \equiv I_0(\mu) \exp(-\mu), \quad \mu = \frac{k_j^2 V_i^2}{\Omega^2}. \quad (15)$$

with $I_0(\mu)$ the modified Bessel function of the first kind. For the isotropic case, $\Delta_T = 0$, result (12) for $\chi_1(\omega, k)$ reduces to that of Ichimaru (1973, Ch. 5.2).

I know make the following two assumptions: [1] a high-β plasma with

$$\beta_2 = \frac{8\pi n k_j T_j}{B_0^2} \gg 1, \quad \beta_\perp = \frac{8\pi n k_j T_j}{B_0^2} \gg 1, \quad \beta \ll 1, \quad (16)$$

and [2] low-frequency, long wavelength waves with (for positive ω)

$$\omega \ll |k||V_t|, \quad \omega \ll \Omega, \quad \mu \ll 1. \quad (17)$$

In that case one has $|Z_n| \ll 1$ and one can use for $W(Z_n)$:

$$W(Z_n) \simeq 1 - Z_n^3 + i \frac{\sqrt{2}}{2} Z_n \exp(-Z_n^3/2). \quad (18)$$

In contrast, $|Z_n| \gg 1$ for $n = \pm 1, \pm 2, \ldots$ and $W(Z_n)$ satisfies

$$W(Z_n) \simeq -\frac{1}{Z_n^3} - \frac{3}{Z_n^5} \quad (for \ n \neq 0). \quad (19)$$

The imaginary term in the expression for $W(Z_n)$ comes from the Landau prescription for navigating the pole in the complex plane of the integral (13) at $x = Z_n$. It leads to the well-known effect of collisionless Landau damping of the wave modes at the Cerenkov resonance $\omega = k_j V_t$. As $|Z_n| \gg 1$ we can neglect the effect of cyclotron damping at the resonance $\omega = k_j V_t + n\Omega$ with $n \neq 0$.

The assumption $\mu \ll 1$ allows one to expand $\Lambda_n(\mu)$ (e.g. Stix 1992, Ch. 10). Table 1 gives the result of this expansion for the elements of $M_{\perp\nu}$ for $n = 0, \pm 1$ and ± 2. I neglect terms of order μ^2 and higher, which allows me to break off the summation over cyclotron harmonics (harmonic number n) after $n = \pm 2$.

At the same time we have to expand factors resulting involving Z_n for $n = \pm 1, \pm 2$, for example:

$$\frac{1}{Z_n^3} = \frac{k_j^2 V_i^2}{(\omega - \Omega^2)^3} \simeq \frac{k_j^2 V_i^2}{\Omega^4} \left(1 + 2 \frac{\omega}{\Omega^2} - \frac{3 \omega^2}{\Omega^4} + \cdots\right). \quad (20)$$

| Matrix element n | $n = 0$ | $n = \pm 1$ | $n = \pm 2$
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>M_{xx}</td>
<td>0</td>
<td>$(1 - \mu)/2$</td>
<td>$\mu/2$</td>
</tr>
<tr>
<td>M_{yy}</td>
<td>2μ</td>
<td>$(1 - 3\mu)/2$</td>
<td>$\mu/2$</td>
</tr>
<tr>
<td>$M_{xy} = -M_{yx}$</td>
<td>$\pm i(1 - 2\mu)/2$</td>
<td>$\pm i\mu/2$</td>
<td>$\pm i\mu/2$</td>
</tr>
</tbody>
</table>

Table 1. Components of $M_{\perp\nu}$ for $\mu \ll 1$ to first order in μ.

The second and third term inside the bracket terms give corrections that are usually neglected in the low-β limit.

In order to make direct contact with the results obtained by Foote & Kulcsrud (1979) for the isotropic case ($\Delta_T = 0$) I employ a similar set of dimensionless variables for parallel and perpendicular wavenumber and wave frequency. Dimensionless wavenumbers are defined in terms of $k_0 \equiv \Omega_1 V_i/2 V_t^2$:

$$\ell_\parallel = \frac{k_j}{k_0} = 2k_j V_i^2 / \Omega_1 V_t^2, \quad \ell_\perp = \frac{k_\perp}{k_0} = 2k_\perp V_i^2 / \Omega_1 V_t^2. \quad (21)$$

The dimensionless frequency is

$$v = \frac{\omega}{k_0 V_t} = \frac{\omega \beta_2}{\Omega_1}. \quad (22)$$

Here V_\perp is the Alfvén speed defined in the usual manner, $V_\perp = B_0/\sqrt{4\pi n_e m_p}$, neglecting the electron inertia. These definitions are based on the fact that wave properties in a high-β plasma start to deviate significantly from the better-known cold plasma results for

$$k \sim k_0 = \frac{\Omega_1}{V_\perp \beta_2^2}, \quad |v| \sim k_0 V_\perp = \frac{\Omega_1}{\beta_2^2} \quad (23)$$

that is at $|\ell_\parallel|, |\ell_\perp| \sim 1$ and $|v| \sim 1$.

A lengthy but relatively straightforward calculation gives the relevant components of the ion susceptibility tensor:

$$\chi_\perp^{\parallel} = c^2 V_\perp^2 \left\{1 + \frac{3 \ell_\parallel^2}{2 \beta_2} - 3 \frac{\ell_\parallel^2}{8 \beta_\perp} + \frac{\nu^2}{\beta_\perp} \right\}$$

$$\chi_\perp^{\perp} = \frac{c^2}{2 \nu^2} \frac{\ell_\parallel^2}{2 \beta_2} \Delta_T \left\{1 + \frac{3 \ell_\parallel^2}{2 \beta_2} - 3 \frac{\ell_\parallel^2}{8 \beta_\perp} + 3 \frac{\nu^2}{\beta_\perp} \right\},$$

$$\chi_\perp^{\parallel} = c^2 \frac{\ell_\parallel^2}{V_\perp^4} \Delta_T \left\{1 + \frac{3 \ell_\parallel^2}{2 \beta_2} - 3 \frac{\ell_\parallel^2}{8 \beta_\perp} + 3 \frac{\nu^2}{\beta_\perp} \right\},$$

$$\chi_\perp^{\parallel} = -\chi_\perp^{\parallel} = -i \frac{c^2}{\sqrt{2}} \frac{\ell_\parallel^2}{V_\perp^4} \left\{1 + \frac{\ell_\parallel^2}{2 \beta_2} - \frac{3 \ell_\parallel^2}{4 \beta_\perp} + \frac{\nu^2}{\beta_\perp} \right\}$$

$$-\frac{c^2}{V_\perp^4} \Delta_T \left\{1 + \frac{3 \ell_\parallel^2}{2 \beta_2} - \frac{15 \ell_\parallel^2}{16 \beta_\perp} + 2 \frac{\nu^2}{\beta_\perp} \right\}. \quad (24)$$

Here I have used $\beta_2 = 2V_\perp^2/V_t^2$ and $\beta_\perp = 2V_\perp^2/V_\perp^2$. Since only a small anisotropy is needed ($|\ell_\parallel| \sim 1/\beta$) for the firehose- and mirror instabilities discussed below, the term $\propto \Delta_T$ in the expression for χ_\perp^{\parallel} can be simplified: the factor in curly brackets may be approximated by unity as the finite Larmor radius corrections then correspond to a set terms of order $1/\beta^2$. Terms of similar magnitude are also neglected in the rest of the expression.

2.2 Electron response

The electron contribution to the plasma susceptibility can be calculated in the same manner, using the electron version of relation (9).
There are, however, a number of significant simplifications that result from the assumptions. We neglect the electron temperature anisotropy as we expect $\Delta T_e \sim (m_e/m_i)^{1/2} \Delta T \sim 0.025 \Delta T$ to be very small. This is due to the fact that electron–ion collisions that tend to erase electron pressure anisotropies are a factor $\sqrt{m_i/m_e}$ more frequent than the ion–ion collisions that do the same for the ions. In what follows will put $\Delta T_e = 0$. In addition, the finite gyration radius corrections are very small: $\mu^2 \sim (m_i/m_e) \mu \approx 0.0005 \mu$. That means that we can use the leading terms in the expansion of the components of \mathbf{M}_{\perp}, the electron version of Table 1. Unless the electrons are significantly hotter than the ions, $T_e > (m_p/m_e)^{1/2} T_i$, (25)

\[\nu_c = \sqrt{k_B T_e/m_e}. \]

(26)

I will allow for an electron current along the magnetic field, adopting a drifting Maxwellian distribution for the electrons, $d\nu_e = n_e f_e(v_{\perp}, v_{\parallel}) \frac{2}{\pi\nu_e^2} dv_{\perp} dv_{\parallel}$ with

\[f_e(v_{\perp}, v_{\parallel}) = \frac{1}{2(n_e^2 V_e^2)^{1/2}} \exp \left(-\frac{v_{\perp}^2 + (v_{\parallel} - U)^2}{2n_e^2 V_e^2} \right). \]

Here U is the electron drift velocity $(|v_{\parallel}| = U)$ with respect to the ions. Since the elements of the 2×2 matrix Π_{\perp} do not explicitly involve v_{\parallel}, the drift leads to the replacement of the wave frequency ω by its Doppler-shifted version,

\[\omega \rightarrow \omega' = \omega - k_{\parallel} U. \]

(28)

This is easily seen from using the drift function $f_v(v_{\perp}, v_{\parallel})$ together with a simple change of integration variable from v_{\parallel} to $v_{\parallel} \equiv v_{\parallel} - U$ in the integration over v_{\parallel}. The electron susceptibility χ_{\perp}^e is formally

\[\chi_{\perp}^e(\omega, \mathbf{k}) = \frac{\omega^2}{\alpha^2} \sum_{n=\infty}^{|n|}\left\{ \frac{\omega}{\omega - n\Omega_c} \{ W(Z_n) - 1 \} \right\} M_{\perp n}. \]

(29)

Here $\omega_{pe} = \sqrt{4\pi e^2 n^2 e^2}$ is the electron plasma frequency and

\[Z_n = \frac{\omega - k_{\parallel} U - n\Omega_c}{k_{\parallel} V_e}, \quad \Omega_c = \frac{eB_0}{m_e c} = -|\Omega_c|. \]

(30)

Assuming T_e to be similar to the ion temperatures T_i and T_L and consistently neglecting terms of order $\sqrt{m_i/m_p, m_i/m_p}$ with respect to unity one finds (using the above considerations) that the electron susceptibility becomes very simple:

\[\chi_{\perp}^e \approx \frac{\omega^2}{\Omega_c^2} \frac{\omega^2}{\alpha^2} \frac{m_e c^2 \omega^2}{m_p \nu_e^2 \omega^2}, \]

\[\chi_{\parallel}^e \approx \frac{\omega^2}{\Omega_c^2} \frac{\omega^2}{\alpha^2} \frac{k_i^2 V_i^2}{\alpha^2} \frac{\omega}{|k_i| V_e} \exp \left(-\frac{\omega^2}{k_i^2 V_i^2} \right), \]

\[\chi_{\perp}^e = -\chi_{\parallel}^e \approx -i \frac{\omega^2}{\alpha^2 |\Omega_c|}. \]

(31)

Using $V_e \approx \sqrt{m_p/m_e} V_i$, $\omega_{pe} = \sqrt{m_p/m_e} \omega_{pi}$ and $|\Omega_c| = (m_p/m_e) \Omega_c$, it is easily checked that the electron contribution to the xx and yy components of χ_{\parallel} can be neglected altogether with respect to the ion terms unless the drift velocity becomes very large (i.e. $U > (m_p/m_e)^{1/2} |\Omega_c/k_i|$). In practice, there are other plasma instabilities (in particular, electrostatic two-stream instabilities) that prevent this from happening. However, the xy component of χ_{\parallel} is important. It can be written as

\[\chi_{xy}^e = -i \frac{\omega^2}{V_e^2 \nu v} \frac{n_e}{n_i} \left(\frac{1 - k_{\parallel} U}{\omega} \right). \]

(32)

If there is no electron current with respect to the ions ($U = 0$) and no net charge density (so that $n_e = n_i$), this term exactly cancels the corresponding (leading) term in the ion susceptibility χ_{xy}^i. This is the near-cancellation of the electron- and ion currents associated with the $E \times B_0$ drift that was referred to in the Introduction.

2.3 Total response for a simple two-temperature plasma

For a simple quasi-neutral plasma ($n_e = n_i$) without electron current ($U = 0$) the total susceptibility is the sum of the ion and electron susceptibilities. As argued above, the xx and yy components of $\chi_{\parallel}(\omega, \mathbf{k})$ are adequately described by the ion terms alone, given in equation (24). The off-diagonal components satisfy

\[\chi_{xy} = -\chi_{yx} = \frac{c^2}{V_A^2} \left[\frac{1}{2} \frac{\omega^2}{\nu} \frac{3}{4} \frac{\beta_L}{\nu} \frac{1}{\| k_i \|} + \frac{\nu}{\nu_i} \right]. \]

(33)

In what follows I use the dimensionless phase speed ν, defined as

\[\nu \equiv \frac{\omega}{|k_i| V_A} = \frac{\nu}{|\nu_i|}. \]

(34)

the wave frequency in units of the frequency of the classical Alfvén wave. I also assume a non-relativistic plasma in the sense that $V_A^2/c^2 \ll 1$. Finally, it is useful to define the quantity

\[Q = 1 + \frac{3 \beta_L^2}{2 \beta_i} - \frac{3 \beta_i^2}{8 \beta_L}. \]

(35)

In most cases we can use $Q \simeq 1$. With these definitions dispersion relation (6) in dimensionless variables can be written as

\[\left\{ \frac{\xi^2}{\beta_i^2} \nu^4 + Q \nu^2 - \mathcal{F}(\beta_i, \beta_i) \right\} \times \left\{ \frac{\xi^2}{\beta_i^2} \nu^4 + Q \nu^2 - \mathcal{F}(\beta_i, \beta_i) - \left(\frac{\beta_i}{\beta_i} \right)^2 \right\} \left[\left(\frac{T_i}{T_L} \right)^2 \mathcal{M}(\beta_i, \beta_i) \right] \]

\[+ \frac{\xi^2}{\beta_i^2} \nu^4 + 2 \nu^2 - i\sqrt{\pi \beta_i} \nu \exp \left(-\nu^2/2 \beta_i \right) \]

\[- \frac{\xi^2}{\beta_i^2} \nu^4 \left\{ 1 - \frac{3}{2} \left(\frac{\beta_i}{\beta_i} \right)^2 \right\} + 2 \nu^2 - 2 \Delta \right\}^2 = 0. \]

(36)

The effects of the ion temperature anisotropy are represented in (36) by the firehose function,

\[\mathcal{F}(\beta_i, \beta_i) \equiv 1 + \frac{\beta_i Q \Delta \nu}{2} \simeq 1 + \frac{\beta_i - \beta_i}{2}. \]

(37)
and the mirror function,
\[M(\beta_\perp, \beta) = 1 - \beta_\perp \Delta \gamma = 1 - \frac{\beta_\perp}{\beta} (\beta_\perp - \beta) . \]

(38)

Here \(\beta_\perp \) and \(\beta_\parallel \) refer to ion pressure alone. The approximate equality in (37) is valid if \(\ell^2 / |k| \ll 1 \), \(\ell^2 / \beta_\perp \ll 1 \) so that \(Q \approx 1 \). These two terms are responsible for the firehose instability and the mirror instability. In the classical (low-\(\beta \)) case they occur, respectively, when \(\mathcal{F}(\beta_\perp, \beta_\parallel) < 0 \) when \(k \sim |k| \) and \(M(\beta_\perp, \beta_\parallel) < 0 \) when \(k \sim k \). In the rest of this paper I will refer to instabilities occurring when \(\Delta \gamma < 0 \) as firehose instabilities, and those that occur for \(\Delta \gamma > 0 \) as mirror instabilities.

If there is no temperature anisotropy (\(\Delta \gamma = 0 \), \(\mathcal{F} = \mathcal{M} = 1 \) dispersion relation (36) reduces to the result of Foote & Kulsrud (1979), their equation (9)–(11). They employ slightly different variables and one needs the substitutions \(\ell_\parallel \rightarrow \ell \) and \(\ell_\parallel \rightarrow \ell \tan \theta \) (where \(\theta \) is the angle between \(\mathbf{B}_0 \) and \(\mathbf{k} \)) to get complete correspondence with their expressions.

3 Parallel Propagation: The Firehose Instability

It is instructive to see to what extent the well-known result for the firehose instability is changed in a high-\(\beta \) plasma. The firehose instability is associated with waves that propagate quasi-parallel to the magnetic field, that is for wavenumbers satisfying

\[\left| \frac{\ell_\parallel}{\ell} \right| = \left(\frac{T_f}{T_i} \right) \frac{\ell_\parallel}{\ell} \ll 1. \]

(39)

If we assume \(\ell^2 / |k| \ll 1 \) we can put \(Q = 1 \) and dispersion relation (36) may be approximated by

\[(v^2 - \mathcal{F}(\beta_\perp, \beta_\parallel))^2 - \frac{\ell^2}{4} v^2 = 0. \]

(40)

We can neglect the Landau damping term for these modes. It will be considered in the next section. The four solutions to this bi-quadratic dispersion relation for \(v \) come in the form of \(v_+, -v_+, v_-, -v_-, \) with \(v_\pm \), defined as

\[v_\pm \equiv \sqrt{\mathcal{F}(\beta_\perp, \beta_\parallel) + \frac{\ell^2}{16} \pm \frac{|\ell|}{4}}. \]

(41)

In a plasma without an (ion) temperature anisotropy (\(\beta_\parallel = \beta_\perp \) so that \(\mathcal{F}(\beta_\perp, \beta_\parallel) = 1 \)), this relation reduces to the one derived by Foote & Kulsrud (1979), their equation (18). The cold plasma limit corresponds to \(|\ell| = 0 \), and one recovers the well-known firehose dispersion relation, in physical variables

\[\omega^2 = k_\parallel^2 \frac{V_A^2}{\Omega_i^2} \left[1 + \beta_\parallel - \frac{\beta_\perp}{2} \right]. \]

(42)

Unstable solutions with \(\text{Im}(\omega) > 0 \) are possible if the argument of the square root in (41) becomes negative, which occurs when \(\mathcal{F}(\beta_\perp, \beta_\parallel) + \ell^2 / 16 < 0 \), in physical variables

\[\left(1 - \frac{k_\parallel^2 V_A^2}{4 \Omega_i^2} \right) P_1 > P_1 + \frac{B_z^2}{4\pi}. \]

(43)

This shows that the inclusion of finite-\(\beta \) effects (ion velocity dispersion along the field) has a stabilizing influence: a larger pressure anisotropy is needed for unstable behaviour at shorter wavelengths as \(|\ell| \) increases. In addition, the frequency of the unstable mode is complex, rather than purely imaginary as in the cold plasma case, due to the dispersion introduced by the \(\ell_\parallel \) term. The unstable wavenumbers are in the range

\[0 \leq |\ell| \leq \ell_m = 4\sqrt{\mathcal{F}(\beta_\perp, \beta_\parallel)}. \]

(44)

The maximum growth rate occurs at \(|\ell| = \ell_m / \sqrt{2} \equiv \ell_\ast \). The maximum growth rate (in units of \(k_0 V_A \)) is

\[\sigma_{\text{max}} = \frac{\text{Im}(v^\ast)}{k_0 V_A} = \frac{\ell_\ast}{\sqrt{2}} \sqrt{\mathcal{F}(\beta_\perp, \beta_\parallel)} = 2 \mathcal{F}(\beta_\perp, \beta_\parallel). \]

(45)

To summarize: the term \(\propto k_\parallel^2 V_A^2 / \Omega_i^2 \) in the dispersion relation regularizes the behaviour of the firehose instability at short wavelengths, and introduces a maximum growth rate at \(|\ell| = \sqrt{2 \mathcal{F}(\Omega_i V_A / V_A^2)} \).

One can find useful approximations to relation (41) in the two limits \(\ell^2 / 16 \ll |\mathcal{F}(\beta_\perp, \beta_\parallel)| \) and \(|\mathcal{F}(\beta_\perp, \beta_\parallel)| \ll \ell^2 \ll 2 \beta_\parallel \). In the first case one finds

\[v_\pm = \sqrt{\mathcal{F}(\beta_\perp, \beta_\parallel)} \pm \frac{|\ell|}{4} = \left[1 + \frac{\beta_\parallel - \beta_\perp}{2} \right] \pm \frac{|\ell|}{4}, \]

(46)

or equivalently in physical variables

\[\omega_\pm = |k| V_A \sqrt{1 + \frac{\beta_\parallel - \beta_\perp}{2} \pm \frac{k_\parallel^2 V_A^2}{2 \Omega_i^2}}. \]

(47)

Both modes are unstable if the classical firehose criterion

\[P_1 < P_\perp + \frac{B_z^2}{4\pi}, \]

(48)

is satisfied.

In the limit \(|\mathcal{F}(\beta_\perp, \beta_\parallel)| \ll \ell^2 \ll 2 \beta_\parallel \) one gets a large (\(v_+ \gg 1 \)) and a small (\(v_+ \ll 1 \)) solution, respectively, given by

\[v_+ \sim \frac{|\ell|}{2} + \frac{2 + \beta_\parallel - \beta_\perp}{|\ell|} \]

(49)

and

\[v_- \sim \left(1 + \frac{\beta_\parallel - \beta_\perp}{2} \right) \frac{2}{|\ell|}. \]

(50)

Taking only the leading terms, these two solutions correspond in physical variables to

\[\omega_+ \sim \frac{k_\parallel^2 V_A^2}{\Omega_i^2} = \beta_\parallel \frac{k_\parallel^2 V_A^2}{\Omega_i^2}, \quad \omega_- \sim \left(1 + \frac{\beta_\parallel - \beta_\perp}{2} \right) \frac{2 \Omega_i}{\beta_\parallel}. \]

(51)

These short-wavelength modes are stable, in accordance with the discussion above.

Fig. 1 shows the solution of the dispersion relation for the case of an isotropic plasma (\(\mathcal{F}(\beta_\perp, \beta_\parallel) = 1 \)). Fig. 2 shows the firehose-unstable case \(\mathcal{F}(\beta_\perp, \beta_\parallel) = -1 \). This last figure is representative for all cases with \(\mathcal{F}(\beta_\perp, \beta_\parallel) < 0 \).

4 Oblique Propagation: Firehose/Mirror Instabilities

When \(k_\perp \neq 0 \), but \(k_\perp \) is still small compared with \(k_\parallel \), new wave modes become possible as the Landau term \(\propto \sqrt{\pi \beta_\parallel} \) in \(\chi_{yy} \) becomes important. Its importance can be represented by the parameter \(\alpha \) (following Foote & Kulsrud 1979), who employ instead \(\alpha_{\text{FK}} = \ell_\parallel^2 / \ell_\perp^2 \) defined as

\[\alpha \equiv \sqrt{\pi \beta_\parallel} \left(\frac{\ell_\perp}{\ell_\parallel} \right)^2. \]

(52)

Note that \(\alpha \sim 1 \) when \(k_\perp \sim k_\parallel / (\pi \beta_\parallel)^{1/4} \ll k_\parallel \) if \(\beta_\parallel \) is sufficiently large.
I will consider the solutions of (53/56) in various limits.

Figure 1. The two solutions to the dispersion relation for pure parallel propagation ($\ell_\parallel = 0$) in an isotropic plasma with $T_\parallel = T_\perp$.

For low-frequency waves with $|v| \ll \sqrt{2|\beta\ell_\perp}$ one can put $\exp(-v^2/2|\beta\ell_\parallel) \simeq 1$, use $Q \simeq 1$ and neglect all terms involving $\ell_\parallel^2 v^2 / |\beta\ell_\parallel^2$ in (36), as well as the terms $\propto v^2$ inside the square brackets in the second factor of the first term of (36). The dispersion relation simplifies considerably:

$$(v^2 - F(\beta_\perp, \beta_\parallel)) (v^2 + iv - G(\beta_\perp, \beta_\parallel)) - \frac{\ell_\parallel^2 v^2}{4} = 0. \quad (53)$$

Here I define

$$G(\beta_\perp, \beta_\parallel) = F(\beta_\perp, \beta_\parallel) + \left(\frac{\ell_\parallel}{\ell_\perp}\right)^2 \frac{\alpha M(\beta_\perp, \beta_\parallel)}{\sqrt{\pi |\beta_\parallel^2}}. \quad (54)$$

Note that $G(\beta_\perp, \beta_\parallel) = F(\beta_\perp, \beta_\parallel)$ for $\alpha = 0$ (parallel propagation). In that case this dispersion relation reverts to relation (40) and the results of Section 3 apply.

An alternative form of dispersion relation (53) proves useful. Defining

$$\xi_\pm = \pm \sqrt{\frac{\ell_\parallel}{2} - \frac{\alpha^2}{2}}, \quad (55)$$

one can rewrite (53) as

$$(v^2 + \xi_+ v - G(\beta_\perp, \beta_\parallel)) (v^2 + \xi_- v - G(\beta_\perp, \beta_\parallel))$$

$$+ \xi_+ \xi_- (G(\beta_\perp, \beta_\parallel) - F(\beta_\perp, \beta_\parallel)) = 0. \quad (56)$$

I will consider the solutions of (53/56) in various limits.

4.1 Case $\alpha \leq |\xi_\parallel|$ and $|\xi_\parallel| \ll 1$

In this case $|\xi_\parallel| \sim |\xi_\perp| \ll 1$ and $|G - F| \sim \alpha / \sqrt{|\beta\ell_\parallel} \ll 1$. Then (56) is the best approximation for the dispersion relation, where one can neglect the last term on the left-hand side, which is formally of order $\alpha^2 / \sqrt{|\beta\ell_\parallel} \ll \alpha^2$. The solutions are

$$v = -\frac{\xi_\parallel}{2} \pm \sqrt{\frac{G + \xi_\parallel^2}{4}}. \quad (57)$$

and

$$v = -\frac{\xi_\parallel}{2} \pm \sqrt{F + \xi_\parallel^2 / 4}. \quad (58)$$

If $|v| \ll |\ell_\parallel|$ we can put

$$\xi_\pm \simeq \frac{\xi_\parallel}{2} + \frac{i\alpha}{2}, \quad \xi_\parallel^2 \simeq \frac{\ell_\parallel^2}{4} \pm \frac{i\alpha |\xi_\parallel|}{2} + \mathcal{O}(\alpha^2). \quad (59)$$

We get the solutions (leaving the complex roots unresolved)

$$v = -\frac{|\xi_\parallel|}{4} \pm \frac{i\alpha}{4} \sqrt{\frac{G + \xi_\parallel^2}{16}} + \frac{i\alpha |\xi_\parallel|}{8}. \quad (60)$$
and
\[v = \frac{|\xi_1|}{4} - \frac{i\alpha}{4} \pm \sqrt{\mathcal{F} + \frac{\ell^2_1}{16} - i\alpha |\xi_1|}. \] (61)

This is a minor modification of the parallel modes discussed in Section 3 as \(|\mathcal{G} - \mathcal{F}| = O(\alpha) \). The term \(-i\alpha/4\) represents Landau damping.

4.2 Case \(\alpha \approx 1 \) and \(|\xi_1| \ll 1 \)

Here we can again employ form (56) of the dispersion relation together with
\[\xi_+ \approx i\alpha, \quad \xi_- \approx \frac{i\ell^2_1}{4\alpha} \ll 1. \] (62)

As \(|\xi_-| \ll |\xi_+| \) we can again neglect the last term on the left-hand side of (56). Then the formal solutions are
\[v = -\frac{i\alpha}{2} \pm \sqrt{\mathcal{F} - \frac{\alpha^2}{4}} \] (63)
and
\[v = \frac{i\ell^2_1}{8\alpha} \pm \sqrt{\mathcal{F} - \frac{\ell^2_1}{64\alpha^2}} \] (64)

Respectively these two solutions correspond to a ‘large’ (\(|v| \sim 1 - |\alpha| \approx 1 \)) and a ‘small’ (\(|v| \sim \ell^2_1/\alpha \ll 1 \)) solution. The large solution can also be obtained from (53) by neglecting the coupling term.

The instability conditions are, respectively, \(\mathcal{G} < 0 \) (mirror instability) and \(\mathcal{F} < 0 \) (firehose instability). The condition \(\mathcal{G} < 0 \) can be written in terms of physical variables as
\[k^2_1 \left(\frac{B^2_0}{4\pi} + P_{\perp - P_1} \right) + 2k^2_1 \left(\frac{B^2_0}{8\pi} - P_{\perp \perp} \left(\frac{T_{\perp}}{T_1} - 1 \right) \right) < 0, \] (65)
the classical condition for the firehose instability that is also found in the low-\(\beta \) case. For small anisotropies (\(\beta_1 / \beta_\perp \approx \beta / \Delta_T \leq 1 \)) condition (65) can be approximated as
\[k^2 - \beta_\perp \Delta_T \left(k^2_1 - \frac{k^2_1}{2} \right) \ll 0. \] (66)

Modes with \(k_\perp < k_\perp / \sqrt{2} \) are potentially firehose unstable if \(\Delta_T \) is negative (\(P_{\perp} > P_1 \)). Modes with \(k_\perp > k_\perp / \sqrt{2} \) can be mirror-unstable if \(\Delta_T \) is positive (\(P_{\perp} > P_1 \)). This agrees with the conclusions of Schekochihin et al. (2005), see also Schekochihin et al. (2010). Close to the mirror instability boundary \(\mathcal{G} = 0 \) one can expand the square root in (63) for \(|\mathcal{G}| \ll \alpha^2/4 \) and get
\[v \approx \frac{i\mathcal{G}}{\alpha}. \] (67)

In physical variables this is
\[\omega = -i|k_\parallel|V_1 \sqrt{\frac{2}{\pi}} \left(\frac{\beta_\parallel}{\beta_\perp} \right) \left\{ \frac{k_\parallel}{k_\perp} \right\} \frac{1 + \frac{\beta_\perp - \beta_\parallel}{2}}{1 + \frac{\beta_\perp + \beta_\parallel}{2}} \] (68)
This low-frequency/long wavelength solution coincides with the one found in the low-\(\beta \) case (e.g. Hasegawa 1975; Southwood & Kivelson 1993) using similar assumptions. In this limit finite Larmor radius effects can be entirely neglected.

4.3 Case \(\alpha \sim |\xi_1| \gg 1 \)

Here we have large solutions with \(|v| \sim |\alpha| \). As long as \(|\mathcal{F}|, \; |\mathcal{G}| \ll \alpha \) we can neglect the \(\mathcal{F} \) and \(\mathcal{G} \) terms (56), leading to
\[v = -\xi_+ = -\frac{i\alpha}{2} - \sqrt{\frac{\ell^2_1 - \alpha^2}{2}} \] (69)
and
\[v = -\xi_- = -\frac{i\alpha}{2} + \sqrt{\frac{\ell^2_1 - \alpha^2}{2}}. \] (70)

These modes are always damped. In addition there are small solutions with \(|v| \sim 1 / \alpha \ll 1 \). These solutions can be obtained by neglecting the \(\nu^\prime \) and \(\nu^\ast \) terms in (53), and assuming \(\ell_1^2 / 4 \gg |\mathcal{F}|, \; |\mathcal{G}| \).

The approximate dispersion relation becomes
\[\frac{\ell^2_1}{4} v^2 + i\alpha \mathcal{F} v - \mathcal{F}G = 0. \] (71)
The solution reads, using (54) for \(\mathcal{G} \):
\[v = -\frac{2i\alpha \mathcal{F}}{\ell^2_1} \pm \frac{2}{\ell^2_1} \sqrt{\ell^2_1 \mathcal{F}^2 - \alpha^2 \mathcal{F}^2} \] (72)
There is a firehose-unstable mode (with \(\text{Im}(v) > 0 \)) for both signs in front of the square root when \(\mathcal{F} < 0 \) (which implies \(M > 1 + 2(\beta_1 / \beta_\perp) \leq 3 \)). If \(\mathcal{F} > 0 \) and \(\mathcal{G} < 0 \) (which requires \(M < 0 \)) there is a mirror-unstable mode. In the limit \(|\mathcal{G}| \ll (\alpha/\ell_1)^2 \mathcal{F} \) the unstable solution occurs in the mode with the plus sign in front of the root, and its growth rate is again given by (67). The other mode is damped.

4.4 Case \(\alpha \sim \ell^2_1 \) and \(|\xi_1| \gg 1 \)

Again we can use (62) and employ form (56) of the dispersion relation. Here there are three relevant solution families.

4.4.1 Large solution

For \(|v| \sim \ell_1^2 \gg |\mathcal{F}|, \; |\mathcal{G}| \) we can neglect the \(\mathcal{F} \) and \(\mathcal{G} \) terms in the dispersion relation and one again finds solution (69). As \(\alpha^2 \sim \ell^2_1 \gg \ell^2_1 \) it can be written as
\[v = -\xi_+ = -\frac{i\alpha}{2} \left(1 + \sqrt{1 - \frac{\ell^2_1}{\alpha^2}} \right) \approx -i\alpha \left(1 - \frac{\ell^2_1}{4\alpha^2} \right). \] (73)

This solution is always damped. The root involving \(\xi_- \) (see 70), also obtained when neglecting the \(\mathcal{F} \) and \(\mathcal{G} \) terms in the dispersion relation, is not large. It should therefore be discarded!

4.4.2 Intermediate solutions

These solutions have \(|v| \sim 1 \) and coincide with (64):
\[v = -\frac{i\ell^2_1}{8\alpha} \pm \sqrt{\mathcal{F} - \frac{\ell^2_1}{64\alpha^2}}. \] (74)
This is a pure firehose mode that goes unstable when \(\mathcal{F} < 0 \). If one looks at the dispersion relation in the form (56) one sees that this is a reasonable approximation as long as

\[
\xi \approx |\mathcal{G} - \mathcal{F}| \approx \frac{\xi_i^2 \mathcal{G}}{4 \alpha^2 \mathcal{F}} \approx \frac{\xi_i^2}{\alpha} \frac{M}{16 \pi \beta_i} \ll 1. \tag{75}
\]

4.4.3 Small solution

The small solution has \(|v| \sim 1/\alpha \ll 1\). If we neglect the coupling term in (53) the small solution coincides with (63) with the plus sign, after expansion of the square root:

\[
v = -\frac{i \alpha}{2} \sqrt{\mathcal{G} - \frac{\alpha^2}{4}} - \frac{i \mathcal{G}}{\alpha}. \tag{76}
\]

The approximation is for \(|\mathcal{G}| \ll \alpha^2/4\). This mode goes unstable if \(\mathcal{G} < 0 \), so it is a pure mirror/firehose mode. This solution coincides with (67) and with (72) in the limit \(\xi_i^2 \mathcal{G} \ll \alpha^2 \mathcal{F} \). This shows how these solutions are connected across different wavelength/obliqueness regimes.

In the isotropic case \(\mathcal{F} = \mathcal{G} = 1 \) all solutions obtained above coincide with those found by Foote & Kulsrud (1979) for the corresponding values of \(\alpha \) and \(|\xi_i| \).

The conclusion of this analysis is that for \(\alpha \neq 0 \) unstable modes occur for \(\mathcal{F} < 0 \) or for \(\mathcal{G} < 0 \), i.e. the same instability conditions that govern the low-\(B \) firehose and mirror instabilities.

5 INSTABILITIES IN THE PRESENCE OF COSMIC RAYS

It is now commonly assumed that the bulk of the Galactic CRs obtains their energy through the process of diffusive shock acceleration, proposed by several authors around 1977/1978: Krymskii (1977), Axford, Leer & Skadron (1977), Bell (1978) and Blandford & Ostriker (1978). In this process, CRs cross a shock repeatedly and gain energy as a result of the velocity difference (net compression) between the up- and downstream flow. A still useful review of the basic theory is Drury (1983). Recent developments are reviewed by Schure et al. (2012). An essential ingredient of this theory is the presence of a turbulent magnetic field that provides the necessary scattering of energetic particles, to the fluid and allows them to tap the kinetic energy of the flow. Originally, it was thought that this scattering proceeds through the gyroresonant interaction with Alfvén waves, the process also thought to be responsible for the scattering of CRs in the Galactic interstellar medium. These are self-generated waves due to a streaming instability. It has been realized more recently (Bell & Lucek 2001; Bell 2004) that direct, non-resonant amplification of MHD waves is possible inside the CR precursor to the shock. This is usually referred to as the Bell–Lueck instability, BLI for short. The growth of the waves in this case is (mostly) generated by the current flowing in the bulk plasma (return current) rather than the direct CR current.

In the shock precursor created by shock-accelerated CRs (assumed to be protons for simplicity) there is a net charge and current density in the background (thermal) plasma. These are needed to compensate for charge- and current density of the CRs so that the total current- and charge density vanishes. In the rest frame of the plasma, to a good approximation the rest frame of the bulk of the ions, this charge- and current density is carried by the highly mobile electrons, and we have (e.g. Achterberg 1983; Bell 2004)

\[
n_e = n_i + n_{cr}, \quad e n_e u_i = J_{cr} \equiv e n_{cr} V_{cr}. \tag{77}
\]

Here \(n_{cr} \) is the density of CRs, and \(J_{cr} \) is the CR current along the magnetic field. The velocity \(V_e \) is the electron drift speed with respect to the ions. It is assumed that the shock propagates along the magnetic field.

It has been shown (Bell 2004; Luo & Melrose 2009) that the non-resonant instability occurs for wavelengths shorter than the CR gyration radius (i.e. for \(r_g \simeq p e/eB \gg 1/k_i \) with \(p = \gamma m_c \) the CR momentum), which is much longer than the gyration radius \(r_g \sim V_A / \Omega_i \) of the thermal ions. In that limit the effect of the CR-induced current on the linear response of the background plasma changes wave properties much stronger than the direct response \(\chi_{cr} \) associated with the CRs themselves. Consequently the direct CR contribution to the plasma susceptibility can be neglected. As already discussed in Section 2.2, the electron current changes \(\chi_{cr} \) (see relation (32), the dominant electron contribution to the susceptibility. Adding the ion and electron contributions to \(\chi_{cr} \) and using (77) one has

\[
\chi_{xy} \simeq \frac{1}{\Delta \omega} \left(\frac{r_g^2}{V_A^2} \right) \left(\frac{\mathcal{G}}{\mathcal{F}} \right) \left(\frac{r_g^4}{V_A^4} \right) \left(\frac{J_{cr}}{\mathcal{F}_{cr}} \right) \left(\frac{\mathcal{G}_{cr}}{\mathcal{F}_{cr}} \right) \left(\frac{\mathcal{G}}{\mathcal{F}} \right) \tag{78}
\]

with (in physical variables)

\[
\Delta \omega = \frac{n_{cr}}{n_i} \left(\frac{k_i V_{cr}}{\omega} - 1 \right) \tag{79}
\]

giving the effect of the CR-induced current. I have neglected a small term \(\alpha \Delta \omega \sim 1/\beta \) in the ion susceptibility \(\chi_{cr}^i \) as well as the direct contribution \(\chi_{cr}^\perp \) from the CRs.

On dimensional grounds one can define a typical wavenumber associated with the CR current:

\[
k_{cr} = \frac{4 \pi}{c} \frac{|J_{cr}|}{B} \sim \frac{4 \pi n_{cr} e |V_{cr}|}{e B}. \tag{80}
\]

Its dimensionless counterpart, defined in terms of \(k_0 = \Omega_i V_A / 2V_{cr}^2 \), is

\[
\ell_{cr} = \frac{k_{cr}}{k_0} = \frac{\beta_i}{n_i} \frac{n_{cr}}{n_i} \left(\frac{|V_{cr}|}{V_A} \right). \tag{81}
\]

In terms of \(\ell_{cr} \) expression (78) for \(\chi_{xy} \) becomes

\[
\chi_{xy} \simeq \frac{1}{\Delta \omega} \left(\frac{r_g^2}{V_A^2} \right) \left(\frac{\mathcal{G}_{cr}}{\mathcal{F}_{cr}} \right) \left(\frac{r_g^4}{V_A^4} \right) \left(\frac{J_{cr}}{\mathcal{F}_{cr}} \right) \left(\frac{\mathcal{G}}{\mathcal{F}} \right) \left(\frac{\mathcal{G}_{cr}}{\mathcal{F}_{cr}} \right) \left(\frac{\mathcal{G}}{\mathcal{F}} \right) \left(\frac{\mathcal{G}_{cr}}{\mathcal{F}_{cr}} \right) \left(\frac{\mathcal{G}}{\mathcal{F}} \right) \tag{82}
\]

Here \(\sigma_{cr} = \text{sign}(k_i V_{cr}) = \pm 1 \). In CR precursors to a CR producing shock with velocity \(V_s \) one has

\[
k_{cr} \approx k_i \frac{V_s}{\omega} \simeq \frac{k_i V_A}{\omega} \gg \frac{k_i V_A}{\omega}. \tag{83}
\]

as shock acceleration only proceeds efficiently if \(V_s \gg V_A \). In that case one can safely neglect the last term inside the bracket in the expression for \(\chi_{xy} \). I will use this approximation in what follows.

5.1 Combined firehose/Bell–Lueck instability

I will consider the parallel case \(\ell_{cr} = 0 \). Dispersion relation (6) with (82) for \(\chi_{xy} \) factors into

\[
\left\{ v^2 - \frac{|v|}{2} + \left(\mathcal{F}(\beta_\perp, \beta_i) + \sigma_{cr} \frac{\mathcal{G}_{cr}}{|\mathcal{F}_{cr}|} \right) \right\} \times \left\{ v^2 + \frac{|v|}{2} + \left(\mathcal{F}(\beta_\perp, \beta_i) - \sigma_{cr} \frac{\mathcal{G}_{cr}}{|\mathcal{F}_{cr}|} \right) \right\} = 0. \tag{84}
\]
The two square roots turns negative, i.e. for the expression inside the two square roots turns negative, i.e. for
\[\mathcal{F}(\beta_\perp, \beta_i) + \frac{\ell^2_c}{16} \pm \sigma_c \frac{\ell^2_c}{|\ell_c^0|} = 0. \] (85)

There are unstable solutions with \(\text{Im}(\nu) > 0 \) if (85) is satisfied. In terms of physical variables:
\[1 + \sqrt{\frac{P_\perp - P_i}{B^2}} - \frac{\pi P_\perp}{B^2} \left(\frac{k_V}{2 \Omega_i} \right)^2 \pm \sigma_c \frac{4 \pi |J_{\text{crit}}|}{|\ell_1^c| |e_B|} < 0. \] (86)

For \(\ell_1^c \ll 1 \), \(|\ell_c^0| \ll 1 \) so that finite Larmor radius effects can be neglected, and for an isotropic plasma with \(\mathcal{F}(\beta_\perp, \beta_i) = 1 \), the four solutions of (85) reduce to the ones derived by Bell (2004), see his equation (15). In physical variables:
\[\omega_\perp = \pm V_A \sqrt{\frac{k^2_\perp}{3} - |k_\perp|^2 |\nu_c|.} \] (88)

In this limit an instability occurs with \(\text{Im}(\nu_\perp) > 0 \) in the wavenumber range \(0 < |k_\perp| < k_\perp \), with the maximum growth rate at \(|k_\perp| = k_\perp^c/2 \) that equals
\[\text{Im}(\omega_\perp)_{\text{max}} = \frac{k_\perp V_A}{2}. \] (89)

In what follows I will look at the more general case. An instability will occur first in the solution for which the last term in (86)/87) is negative, i.e. for \(\pm \sigma_c = -1 \). This case, where the CR-induced current is destabilizing, is considered now in more detail.

5.1.1 Firehose-unstable case

For the firehose-unstable case, \(\mathcal{F} < 0 \), one can define two new characteristic dimensionless wavenumbers
\[\ell_\perp = \frac{4 |\mathcal{F}|^{1/2}}{\sqrt{3}}, \quad \ell_c = 2 \ell_\perp^{3/2}, \] (90)
and the associated auxiliary parameters
\[y = \frac{\ell_\perp}{\ell_c}, \quad \eta = \frac{\ell_\perp}{\ell_c} = \frac{2 |\mathcal{F}|^{1/2}}{\sqrt{3} \ell_c^{3/2}}. \] (91)

Instability condition (86) for \(\pm \sigma_c = -1 \) becomes
\[F(y) = y^3 - 3 \eta^2 y - 2 < 0. \] (92)

Standard analysis of this cubic equation (e.g. Abramowitz & Stegun 1970, Ch. 3.8) quickly establishes the following: as \(y \geq 0 \) by definition and with \(F(0) = -2 \) negative, \(F(y) \) has a single negative minimum for \(y > 0 \) and a single positive root \(y_m \) of \(F(y_m) = 0 \). The instability therefore occurs for \(0 < y < y_m \), with \(y_m \) given by
\[y_m = \begin{cases} 2 & (\eta = 1), \\ \sqrt{3} \eta + \frac{1}{3 \eta^2 + 4} & (\eta > 1). \end{cases} \] (93)

The first two relations, valid for \(\eta \leq 1 \), are exact. The approximate relation for \(\eta > 1 \) is obtained through twice iterating the relation \(F(y) = 0 \) for \(y_m \) in the form
\[y = \sqrt{3} \eta + \frac{2}{y (y + \sqrt{3} \eta)}. \] (94)

treating the second term on the right-hand side as small and starting at \(y = y_0 = \sqrt{3} \eta \). This approximation is already very accurate at \(\eta = 1 \), where the exact solution is \(y_m = 2 \): it gives \(y_m \approx 1.991 \).

5.1.2 Firehose-stable case

Here unstable solutions only occur for those modes where the last term on the left-hand side of (86)/87) is negative, i.e. for \(\pm \sigma_c = -1 \). This instability is driven entirely by the CR-induced current, and corresponds most closely to the instability discussed by Bell (2004) and by Luo & Melrose (2009). They consider the case \(\mathcal{F} = 1 \) and neglect the finite Larmor radius terms.

With \(\mathcal{F} \geq 0 \) one can perform a similar analysis as in the previous case by defining \(\tilde{\eta} = 2 \sqrt{\mathcal{F}} / \sqrt{3} \ell_\perp^{3/2} \). The variable \(y \) is defined as before: \(y = |\ell_\perp| / 2 \ell_\perp^{3/2} \). In these variables the instability condition now reads
\[\tilde{F}(y) = y^3 + 3 \tilde{\eta}^2 y - 2 < 0. \] (95)

One finds that a current-driven instability can occur for \(0 < y < y_m \) with \(y_m = (\sqrt{1 + \tilde{\eta}^2} + 1)^{1/3} - (\sqrt{1 + \tilde{\eta}^2} - 1)^{1/3} \). (96)

For very large \(\tilde{\eta} \) one finds that \(y_m \) is small (i.e. a weak instability): \(y_m \approx 2 / 3 \tilde{\eta}^2 \). This corresponds to
\[|\ell_\perp|_{\text{lim}} = \frac{\ell_\perp}{\mathcal{F}} \left(|k_\perp| = \frac{k_\perp}{\nu_c} \right), \] (97)

and the dispersion relation in this limit is in physical variables
\[\omega \approx \pm V_A \sqrt{\frac{k^2_\perp}{3} - |k_\perp|^2 |\nu_c|.} \] (98)

5.1.3 Firehose-unstable case with adverse current

When \(\mathcal{F} < 0 \) and \(\pm \sigma_c = +1 \) there is the possibility of an instability that is ‘pure firehose’ in the sense that the CR-induced current is now stabilizing. Again using the variables defined in (90)/(91) the instability occurs when
\[F(y) = y^3 - 3 \eta^2 y + 2 < 0. \] (99)

It is easily checked that \(\tilde{F}(y) \) has a minimum at \(y = \eta \), where \(\tilde{F}(\eta) = 2 (1 - \eta^2) \). Therefore, an instability can only occur for \(\eta > 1 \), or equivalently
\[|\mathcal{F}(\beta_\perp, \beta_i)| > \frac{3}{4} \ell_\perp^{3/2}. \] (100)

In that case there are two positive real roots of \(\tilde{F}(y) = 0 \), say \(y_1 \) and \(y_2 \), and an instability occurs for \(y_1 < y < y_2 \). Unfortunately, \(y_1 \) and \(y_2 \) are not readily calculated by analytic means, except in the case where \(\eta > 1 \) (\(\ell_\perp \ll |\mathcal{F}|^{1/2} \)) where \(y_1 \approx 2 / 3 \eta^2 \ll 1 \) and \(y_2 \approx \sqrt{3} \tilde{\eta} \gg 1 \). In that limit an instability occurs in the wavenumber range
\[\ell_\perp \approx \frac{\ell_\perp}{|\mathcal{F}|^{1/2}} |\ell_\perp| < |\ell_\perp| < \frac{4 \eta^3}{3} \] (101)

and the solutions of the dispersion relation in physical variables can be approximated by \(\omega = \pm \omega_\perp, \pm \omega_\perp \) with
\[\omega_\perp = |k_\perp| V_A \sqrt{\frac{k^2_\perp |k_\perp|^2}{3 |\mathcal{F}|} + \frac{k^2_\perp V_A^2}{4 \Omega_i^2} - |\mathcal{F}|} + \frac{2 k^2_\perp V_A^2}{|\mathcal{F}|}. \] (102)

Figs 3, 4 and 5 show the growth rate of the Firehose/BL Instability for increasing strength of the CR-induced current.
5.2 Oblique propagation: combined mirror/Bell–Lucek instability

For oblique propagation ($k_\perp \neq 0$), the mirror instability becomes important if $P_\perp > P_\parallel$. Its dispersion relation is most straightforward in the low-frequency limit: $(\omega/kV_A)^2 \ll 1$. In that limit we have $\nu \simeq -i\mathcal{G}/\alpha$ (cf. relation 67), in physical variables

$$\frac{\omega}{k_\parallel V_A} = -i \left(\frac{k_\perp}{k_\parallel} \right)^2 \left(\frac{\beta_\perp}{\beta_\parallel} \right)^2 \mathcal{G} \left(\beta_\perp, \beta_\parallel \right) \sqrt{\pi \beta_\parallel}. \tag{103}$$

The function $\mathcal{G} (\beta_\perp, \beta_\parallel)$ has been defined in (54) for the case $J_{cr} = 0$. Including the effects of the return current it becomes

$$\mathcal{G} (\beta_\perp, \beta_\parallel) = \left[1 + \frac{\beta_\perp - \beta_\parallel}{2} \right] + \left(\frac{k_\perp}{k_\parallel} \right)^2 \left[1 + \beta_\perp \left(1 - \frac{\beta_\perp}{\beta_\parallel} \right) \right] - \frac{k_{cr}^2}{k_\parallel^2} \left(1 + \frac{\beta_\perp - \beta_\parallel}{2} \right). \tag{104}$$

The instability condition $\text{Im}(\omega) > 0$ requires $\mathcal{G} (\beta_\perp, \beta_\parallel) < 0$, in physical variables

$$k_\parallel^2 \left[1 + \frac{4\pi (P_\perp - P_\parallel)}{B^2} \right] + k_\perp^2 \left[1 + \frac{8\pi P_\perp}{B^2} \left(1 - \frac{P_\parallel}{P_\perp} \right) \right] - \frac{k_{cr}^2}{1 + \frac{4\pi (P_\perp - P_\parallel)}{B^2}} < 0. \tag{105}$$
One sees from condition (105) that the effect of the CR-induced return current is destabilizing provided that $\mathcal{F} = 1 + (\beta_r - \beta_i)/2 > 0$, that is when the condition for the ordinary firehose instability is not satisfied.

For large β and small pressure anisotropies, with $\beta_\perp = \beta (1 + \frac{1}{3} \Delta \tau), \beta_\parallel = \beta (1 - \frac{1}{3} \Delta \tau)$ and $|\Delta \tau| \ll 1$, one has to first order in $\Delta \tau$ and $1/\beta$:

$$\mathcal{G}(\beta_\perp, \beta_\parallel) \simeq \frac{1}{k^2_\perp} \left[(1 - \beta_\parallel \Delta \tau) k^2_\perp + \frac{1 + \beta_\parallel \Delta \tau}{2} k^2_\perp - \frac{k^2_\parallel}{1 + \frac{m_\perp}{m_\parallel}} \right].$$

The instability condition $\mathcal{G}(\beta_\perp, \beta_\parallel) < 0$ then leads to the following condition when $\Delta \tau > 0$ and $k_\perp > k_\parallel$:

$$\beta_\Delta \tau > \frac{2k^2_\perp - k^2_\parallel}{2k^2_\perp - k^2_\parallel} + \frac{9k^4_\perp - 4k^2_\parallel (2k^2_\perp - k^2_\parallel)}{2k^2_\perp - k^2_\parallel}.$$ \hfill (107)

Since $k_\perp \propto J_{\parallel\perp}$, the current needed to drive this mirror/Bell--Lucek branch unstable becomes smaller with increasing $\Delta \tau$ and decreasing k_\parallel/k_\perp. When the return current is absent so that $k_\parallel = 0$ condition (107) reduces to the instability condition implicit in the results derived by Schekochihin et al. (2005), as discussed in Section 3, equation (66).

If there is no pressure anisotropy at all ($\Delta \tau = 0$) we get a slow-mode version of the BLI for $k = \sqrt{k^2_\perp + k^2_\parallel} < k_{cr}$, with a growth rate $\sigma \equiv \text{Im}(\omega)$ equal to

$$\sigma = |k_\parallel| V_{\parallel} \frac{k^2_\parallel - k^2_\perp}{\sqrt{\pi} \beta k_\perp}.$$ \hfill (108)

The results in this subsection have not been obtained in earlier treatments that use cold plasma theory in the description of the wave response of the background plasma. That approach does not include kinetic effects, and in particular those associated with the Landau pole in the dispersion relation. In fact, the high-β case considered here can only be done consistently using kinetic theory.

6 EFFECTS OF A FINITE ELECTRON TEMPERATURE ANISOTROPY

So far we have assumed that the temperature anisotropy in the electrons is vanishingly small, of order $\sqrt{m_\perp/m_\parallel} \times \text{the ion temperature anisotropy}$ as a result of the more rapid electron–electron scattering, so that it can be neglected. In that case no terms involving the electron temperature appear in the dispersion relation. If we relax that assumption, additional electron terms involving the electron temperature anisotropy appear. Here I briefly consider their effect.

Defining the electron anisotropy parameter in the same fashion as for ions, $\Delta \tau = T_{\parallel}/T_{\parallel} - 1$, the leading terms in the electron susceptibility are (compare 31, using $\partial \omega / \Omega^2 = m_e c^2/m_e V^2_e$)

$$\chi^x_{\parallel} \simeq \frac{m_e}{m_\parallel} \frac{c^2}{V^2_e} \left(\frac{\partial^2}{\omega^2} - \frac{k^2_\parallel V^2_e}{\omega^2} \right),$$

$$\chi^x_{\perp} \simeq \frac{m_e}{m_\parallel} \frac{c^2}{V^2_e} \left(\frac{\partial^2}{\omega^2} + \frac{\Delta \tau}{2k^2_\parallel - k^2_\perp} \frac{V^2_e}{\omega^2} \right) + \sqrt{2\pi} \frac{m_e c^2}{\omega_\perp} \frac{\partial}{k_\parallel |V_e|} \exp \left(- \frac{\partial^2}{k^2_\parallel V^2_e} \right),$$

$$\chi^x_{\parallel} \simeq -\chi^x_{\perp} \simeq -i \frac{\omega_\parallel}{\omega^2 |\Omega_e|}.$$ \hfill (109)

Here I have neglected the electron temperature anisotropy in the factors multiplying $\Delta \tau$, simply writing $V^2_e \equiv k_e T_e/m_e$ for V^2_e/ω_\perp^2, and for V^2_e/ω_\perp^4, under the assumption that $\Delta \tau \sim \Delta \tau \sim \beta^{-1} \ll 1$. This amounts to neglecting small corrections of order $\Delta \tau^2$. I also neglected terms of order $k^2_\parallel V^2_e/\Omega^2_e$, $k^2_\parallel V^2_e/\Omega^2_e$ with respect to unity.

One can use electron susceptibility (109) in the dispersion relation, neglecting the Landau term (the last term) in the expression for χ^x_{\parallel}, a good approximation for low-frequency waves as long as $T_e \simeq T_i$. For the wave modes discussed above in Sections 3-- the only effect is that one should make the replacement

$$\Delta \tau \implies \Delta \tau + \left(\frac{T_e}{T_i} \right) \Delta \tau.$$ \hfill (110)

The electrons terms not explicitly involving $\Delta \tau$ in χ^x_{\parallel} and χ^x_{\perp} are small (of order m_e/m_\parallel) and can be neglected, as was argued already in Section 2.2. A more general discussion for strong electron temperature anisotropies can be found in Hellinger (2009).

7 THE NEED FOR HIGH β AND LOW ION COLLISIONALITY FOR INSTABILITIES IN CR PRECURSORS

Pressure anisotropies in the bulk plasma typically change the properties of low-frequency (quasi-MHD) waves when

$$|\Delta \rho| \equiv |P_{\parallel} - P_{\perp}| > B^2/4\pi = 2\rho/\beta.$$ \hfill (111)

Such a situation is easy to achieve in a high-β plasma. The scale L_{ρ} of pressure gradients in the precursor that cause a pressure anisotropy is set by the diffusivity of the CRs. If they diffuse along the magnetic field with diffusion coefficient κ_e, that scale is $L_{\rho} \sim \kappa_e/V_e$, with V_e the shock speed. In the shock rest frame V_e is the speed of the upstream plasma well ahead of the shock. In that frame one may assume a steady state, where the mass flux $J \equiv \rho U_e$ and the momentum flux $\rho U_e^2 + P + P_{\rho}$ normal to the shock are both conserved. Here ρ is the mass density of the ambient medium, U_e ($U_e = V_e$ for a normal shock) is the flow velocity component perpendicular to the shock, P is the gas pressure and P_{ρ} is the CR pressure. These simple relations neglect the pressure anisotropies in the ambient gas, assumed to be small (of order $1/\beta \ll 1$) in what follows, and magnetic stresses that are formally also of order $1/\beta$. This will suffice for order-of-magnitude estimates in the case of high Mach number shocks, precisely those shocks associated with the young supernova remnants of Type II (core-collapsing) supernovae that are believed to be the sources of Galactic CRs.

In such shocks, where the shock speed is much larger than the (pre-shock) sound speed as well as the Alfvén speed, magnetic flux conservation gives $B_e = \text{constant}$ and the induction equation in the MHD approximation gives $B_{\rho} \propto \text{constant}$. Here B_e (B_{ρ}) is the magnetic field components normal to (tangential to) the shock surface. If one neglects the effect of heat conduction the parallel and perpendicular pressures satisfy $P_{\parallel} \propto \rho B^2$ and $P_{\perp} \propto \rho^3/B^2$, as well-known Chew–Goldberger–Low relations for an anisotropic plasma (Chew, Goldberger & Low 1956). For small pressure anisotropies, where $P_{\parallel} = P + \frac{1}{4} \Delta P$ and $P_{\perp} = P - \frac{2}{3} \Delta P$ with $\Delta P \sim P/\beta \ll P$, the evolution of the pressure anisotropy in the ions is approximately described by

$$\left(\frac{\partial}{\partial t} + (U \cdot \nabla) \right) \Delta P = 3P \left(\nabla \nabla \cdot U - \frac{1}{3} \nabla \cdot U \right) - \nu_u \Delta P.$$ \hfill (112)
Here \(\mathbf{b} = \mathbf{B}/B \) is the unit vector along the magnetic field, \(U \) is the flow velocity and \(v_{\text{th}} \) is the ion–ion collision frequency. The pressure anisotropy is only significant for the ions, since electron scattering proceeds a factor \(\sqrt{m_i/m_e}(\approx 43 \text{ in a hydrogen plasma}) \) faster for electrons. The first term on the right-hand side gives the generation of anisotropy due to changes in density and magnetic field strength, while the second term gives the relaxation of the anisotropy due to collisions. The notation \(\mathbf{b} \cdot \mathbf{U} \) is short-hand for \(b_iU_j(\partial U_j/\partial x_i) \). If \(x \) is the coordinate along the shock normal, and \(\mathbf{i}_B \) is the inclination angle of the magnetic field so that \(B_n = B \cos i_B \), balancing the generation term and the relaxation term gives an estimate for the pressure anisotropy:

\[
\frac{\Delta P}{P} \simeq \frac{3 \cos^2 i_B - 1}{v_{\text{th}}} \frac{dU_n}{dx}, \tag{113}
\]

where it is assumed that quantities in the precursor only depend on the normal coordinate \(x \). If the flow inside the precursor is high Mach number, the increase of CR pressure towards the shock slows down the precursor flow according to \(\mathcal{J} (dU_n/dx) \simeq -dP_{\text{cr}}/dx \) over a scale \(\Delta x \sim L_{\text{cr}} \). Using as an estimate \(|dU_n/dx| \simeq P_{\text{cr}}/\rho V_{\text{L},\text{cr}} \), with \(P_{\text{cr}} \) the CR pressure at the shock, we have

\[
\frac{|\Delta P|}{P} \simeq \frac{P_{\text{cr}}}{\rho V_{\text{L},\text{cr}}} L_{\text{cr}}. \tag{114}
\]

Here I have put the geometrical factor involving \(\cos^2 i_B \) to unity. For the pressure anisotropy to be important we need (see equation (111)) \(|\Delta P|/P > 2/\beta\). With (114) this condition can be written as a requirement on the precursor thickness \(L_{\text{cr}}\) :

\[L_{\text{cr}} < M_i \left(\frac{\beta}{2} \right) \left(\frac{P_{\text{cr}}}{\rho V_{\text{L},\text{cr}}} \right)^{1/2} \lambda_i, \tag{115} \]

Here \(M_i = V_i/C_i \) is the Mach number of the precursor flow with \(C_i \) the sound speed, and \(\lambda_i = V_i/v_{\text{th}} \) is the scattering mean free path for ion–ion collisions with \(V_i = \sqrt{kT_i/m_i} \) the ion thermal velocity for ion temperature \(T_i \). If electron and ion temperatures inside the precursor are not too different we have \(V_i \approx C_i \). Typical parameters for young Type II supernova blast waves that accelerate CRs and the surrounding interstellar medium are \(M_i \approx 100-250, \beta \approx 10-20, P_{\text{cr}}/\rho V_{\text{L},\text{cr}}^2 \approx 0.1 \). Requirement (115) typically leads to \(L_{\text{cr}}/\lambda_i < 50-200 \). The ion–ion scattering length is

\[
\lambda_i = \frac{V_i}{v_{\text{th}}} \approx 10^{12} \left(\frac{n_i}{1 \text{ cm}^{-3}} \right)^{-1} \left(\frac{T_i}{10^8 \text{ K}} \right)^2 \text{ cm}. \tag{116} \]

The precursor scale is set by the CR diffusion coefficient and the shock speed:

\[
L_{\text{cr}} = \frac{\kappa_{\text{cr}}}{\gamma_{\text{cr}}} \approx 10^{14} \left(\frac{V_i}{1000 \text{ km s}^{-1}} \right)^{-1} \left(\frac{B}{3 \mu G} \right)^{-1} \eta \gamma_{\text{cr}} \text{ cm}. \tag{117} \]

Here \(\gamma_{\text{cr}} \) is the typical Lorentz factor of the CRs contributing the bulk of the CR pressure, and \(\eta = \kappa_{\text{cr}}/\kappa_0 \) is the ratio of the CR diffusion coefficient and the Bohm diffusion coefficient \(\kappa_B = cr_f/3 \), with \(r_f = \gamma_{\text{cr}}mc^2/qB \) the CR gyroradius. This last parameter is often assumed to be of order unity. If \(\gamma_{\text{cr}} \) is not too large and for young SNRs with \(V_i \approx 3000 \text{ km s}^{-1} \) it is fairly easy to satisfy condition (115). The numbers are for CR protons with \(m = m_p \) and \(q = e \).

8 PRECURSOR STRUCTURE AND WAVE GENERATION

The magnitude and sign of the anisotropy depend on the orientation of the magnetic field in the precursor, see equation (112). I will consider the case of a high Mach number steady flow in the precursor, with \(U = U_0(x) \hat{x} + U_\perp \), where the shock is located at \(x = 0 \) and \(x < 0 (x > 0) \) corresponds the precursor region (post-shock flow). As long as \(U_0 \gg V_{\text{S}} \), precisely for the condition efficient acceleration of CRs, the density and magnetic field components normal and tangential to the shock scale in the precursor as

\[
\rho(x) = r(x) \rho_0, \quad B_n = B_\perp, \quad B_\parallel = r(x) B_\parallel, \tag{118} \]

where \(r(x) \) measures the compression inside the precursor. All quantities with subscript ‘0’ refer to the conditions far ahead of the shock, formally at \(x = -\infty \). In that case the geometrical factor in the anisotropy generation term in (112) scales as

\[
3 \cos^2 i_B - 1 = \frac{2 - r^2 \tan^2 i_B}{1 + r^2 \tan^2 i_B} \rho(x), \tag{119} \]

Here \(i_0 \equiv i_B(x = -\infty) \) is the field inclination angle far ahead of the shock. Since \(r(x) \geq 1 \) increases monotonically with \(x \), \(\partial \rho/\partial x) < 0 \) and \(dU_0/dx < 0 \) (decelerating flow) it follows that there are two possible cases.

(i) When \(\tan^2 i_O < 2/\beta \), we have \(\rho(x) < 0 \) and \(P_{\text{cr}} \) increases when one approaches the shock. Here only the mirror/BLI can occur.

(ii) When \(\tan^2 i_O < 2/\beta < 0 \), in this case \(P_{\text{cr}} \) decreases first, and the firehose/BLI instability can occur. If the approximations leading to (119) continue to hold this trend reverses if the compression in the precursor reaches a value where \(r > \sqrt{2}/\tan i_0 \). Depending on the circumstances one may get a mirror-unstable region closer to the shock.

The case \(i_0 = 0 \) (magnetic field along shock normal) is special: in that case \(B_\perp = 0 \) throughout the precursor. \(\rho = 2 \) and only the firehose/BLI can occur.

As soon as the pressure anisotropy nears the level corresponding to the threshold for the (classical) firehose or mirror instability \((|\Delta P|/P > 2/\beta)\), one needs to use the full stress tensor \(T \) (including Reynolds stresses) that is appropriate for a gyrotropic plasma to describe precursor dynamics. In dyadic notation:

\[
T = \rhoUU + P_{\perp}(I - \mathbf{b}\mathbf{b}) + P_{\parallel}\mathbf{b}\mathbf{b} + P_{\text{cr}}I + \frac{B^2}{8\pi} I - \frac{BB}{4\pi}. \tag{120} \]

Here \(I = \text{diag}(1,1,1) \) is the unit 3 \times 3 tensor and \(\mathbf{b} = B/B \) is the unit vector along the magnetic field. Conservation (in a steady flow) of the momentum component normal to the shock, \(\partial T_{\perp}/\partial x = 0 \), then reads

\[
\rho U_{\perp}^2 + \left(P_{\perp} + \frac{B^2}{8\pi} \right) \sin^2 i_B + \left(P_{\parallel} - \frac{B^2}{8\pi} \right) \cos^2 i_B + P_{\text{cr}} = \text{constant}. \tag{121} \]

When one nears the threshold of the classical firehose instability, \(P_{\parallel} \simeq P_{\perp} + B^2/4\pi \), this reduces to \(\rho U_{\perp}^2 + P_{\perp} + P_{\text{cr}} + (B^2/8\pi) \simeq \text{constant} \). Near the threshold for the classical mirror instability, where \(P_{\parallel} \simeq P_{\perp} + \mu \beta \), \(\beta \approx (1 + \beta^2/8\pi)^{-1} \) in a high-\(\beta \) plasma, the momentum conservation law becomes approximately \(\rho U_{\perp}^2 + P_{\perp} + P_{\text{cr}} + \psi(B^2/8\pi) \simeq \text{constant} \) with \(\psi < 0 \).

In both cases the bulk plasma in the precursor continues to decelerate under the influence of the adverse CR pressure gradient, and the instabilities described above are likely to occur.

9 CONCLUSIONS

In this paper I have considered the properties of low-frequency (quasi-MHD) waves in an anisotropic plasma using kinetic theory,
both without and with CRs present. In interstellar (or intracluster) gas with a sufficiently high ratio of kinetic to magnetic pressure, $\beta = 8\pi P / B^2$, only small pressure anisotropies are needed to produce an instability. At the same time, wave properties in these plasmas are more complex due to finite Larmor radius corrections scaling as $k_i^2 V_i^2 / \Omega_i^2$ and the effect of thermal motion along the field that leads to corrections that scale as $k_i^2 V_i^2 / \Omega_i^2$. I have shown that the well-known mirror and firehose instabilities persist in these plasmas. The only significant change in the condition for instability occurs for the firehose instability in the case of pure parallel plasmas. The condition for instability that the well-known mirror and firehose instabilities persist in these plasmas is

$$E_{\max} \propto \frac{\pi P/B}{\Omega_i^2} \text{ only small pressure anisotropies are needed to produce an instability.}$$

REFERENCE

Barnes A., 1966, Phys. Fluids, 9, 1483

Hasegawa A., 1975, Plasma Instabilities and Nonlinear Effects. Springer-Verlag, Berlin

Hellinger P., 2009, Phys. Plasmas, 14, 082105

Krymskii G. F., 1977, Akademiia Nauk SSR Doklady, 234, 1306

Stepanov K. N., 1958, Sov. Phys. JETP, 34, 892

This paper has been typeset from a \TeX/\LaTeX file prepared by the author.