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a  b  s  t  r  a  c  t

Bone  marrow-derived  mesenchymal  stem  cells  (MSCs)  have  the capacity  to  regenerate  renal  tubule
epithelia  and  repair  renal  function  without  fusing  with  resident  tubular  cells.  The  goal  of  the present
project  was  to investigate  the  role  of  MSCs  secreted  cytokines  on tubule  cell  viability  and  regeneration
after  a toxic  insult,  using  a  conditionally  immortalized  human  proximal  tubule  epithelial  cell  (ciPTEC)
line.  Gentamicin  was  used  to induce  nephrotoxicity,  and  cell  viability  and  migration  were  studied  in
absence  and  presence  of  human  MSC-conditioned  medium  (hMSC-CM)  i.e.  medium  containing  soluble
factors  produced  and  secreted  by MSCs.  Exposure  of  ciPTEC  to 0–3000 �g/ml  gentamicin  for  24 h caused
a  significant  dose-dependent  increase  in  cell  death.  We  further  demonstrated  that  the  nephrotoxic  effect
esenchymal stem cells
ephrotoxicity
egeneration

of  2000  �g/ml gentamicin  was  recovered  partially  by  exposing  cells  to  hMSC-CM.  Moreover,  exposure  of
ciPTEC  to  gentamicin  (1500–3000  �g/ml)  for  7 days  completely  attenuated  the migratory  capacity  of  the
cells.  In  addition,  following  scrape-wounding,  cell  migration  of  both  untreated  and  gentamicin-exposed
cells  was  increased  in  the presence  of  hMSC-CM,  as compared  to exposures  to  normal  medium,  indicat-
ing  improved  cell recovery.  Our  data  suggest  that  cytokines  secreted  by  MSCs  stimulate  renal  tubule  cell

toxic
regeneration  after  nephro

. Introduction

The proximal tubule epithelium in the kidney is essential in
he clearance of endogenous waste products, exogenously adminis-
ered compounds, such as drugs, as well as environmental toxicants
Ferguson et al., 2008; Mutsaers et al., 2011). Due to the unique
hysiological role of the kidney, the tubular epithelium is exposed
o high concentrations of potential toxic compounds and there-
ore a frequent target of injury due to toxicity. This can lead to
cute kidney injury (AKI) or acute renal failure (ARF), which is a
requently occurring clinical problem that affects up to 7% of hos-
italized patients. ARF is potentially reversible; however, it can be
 determining element of multiple organ failure as well. Hence,
he mortality rate in hospital-acquired ARF ranges from 30 to 80%
Schrier et al., 2004).
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While tubular cell death due to necrosis or apoptosis is
widespread following injury, less severely injured cells can survive
and are believed to be the principal source for tubule regeneration
(Humphreys et al., 2011; Lin et al., 2005). Surviving tubular cells
can spread and migrate to cover the exposed areas of the base-
ment membrane followed by redifferentiation into an epithelial
phenotype (Duffield et al., 2005). Additionally, resident epithe-
lial cells may lose their characteristic features of mature renal
tubular epithelia, e.g. the apical brush border membrane and
tight-junctions. As a consequence, the cells acquire a flat and
more spread morphological phenotype, resembling undifferenti-
ated mesenchyme or fibroblasts. This loss in phenotype, via the
process of epithelial-to-mesenchymal transition (EMT), is sup-
posed to be an essential factor in promoting regeneration through
activation of cell migration and proliferation pathways (Guo and
Cantley, 2010; Witzgall et al., 1994). Yet, such resolution may
occur only when the tubular basement membrane is still intact
(Fragiadaki and Mason, 2011).

Open access under the Elsevier OA license.
In addition to EMT, bone marrow-derived mesenchymal stem
cells (MSCs) may  have the capacity to migrate to the injured kid-
ney and contribute to tubule epithelium regeneration and renal
function repair without fusing with resident tubular cells (Huls
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t al., 2010). The exact mechanism through which MSCs mitigate
enal damage is not fully elucidated. One possible explanation is
hat MSCs produce cytokines and growth factors that promote
nti-inflammatory, immunosuppressive, anti-apoptotic and proli-
erative effects (Humphreys and Bonventre, 2008). This hypothesis
s supported by other studies demonstrating that conditioned

edium, in which MSCs secreted growth factors and cytokines
re present, could ameliorate renal tubular injury (Humphreys and
onventre, 2008). Yet, most studies that investigated the role of
SCs in the regeneration of kidney injury used rodent or other
ammalian animal models.
Therefore, this study was designed to investigate whether

oluble factors produced and secreted by MSCs could provide pro-
ection against gentamicin-induced nephrotoxicity using a human
n vitro model. We  hypothesized that human MSC-derived con-
itioned medium would prevent renal proximal tubular cells to
ndergo nephrotoxicant-induced cell death thereby protecting
gainst tubular injury. We  used a recently developed conditionally
mmortalized human proximal tubular epithelial cell line (ciPTEC)
Wilmer et al., 2009), which was exposed to the nephrotoxic drug
entamicin, and studied the cell viability and cell migration in
bsence and presence of human MSC-conditioned medium (hMSC-
M).

. Materials and methods

.1.  Proximal tubular epithelial cells

The ciPTEC line was generated by culturing cells exfoliated in
he urine of a healthy volunteer, followed by immortalization using
oth the temperature-sensitive mutant U19tsA58 of SV40 large T
ntigen (SV40T) and the essential catalytic subunit of human telo-
erase (hTERT), as previously described (Wilmer et al., 2009). The

ells were cultured in ciPTEC medium containing phenol red-free
MEM/F12 medium (Gibco/Invitrogen, Breda, the Netherlands)

upplemented with 10% (v/v) fetal calf serum (FCS; MP  Biomedicals,
den, the Netherlands), insulin (5 �g/ml), transferrin (5 �g/ml),

elenium (5 ng/ml), hydrocortisone (36 ng/ml), epithelial growth
actor (10 ng/ml) and tri-iodothyronine (40 pg/ml) at 33 ◦C in a
% (v/v) CO2 atmosphere. Propagation of cells was  maintained
y subculturing the cells at a dilution of 1:3 to 1:6 at 33 ◦C. For
xperiments, cells were cultured at 33 ◦C to 40% confluency, fol-
owed by maturation for 7 days at 37 ◦C during which the cells
ormed a confluent monolayer. Furthermore, expression of SV40T
ecreases gradually in ciPTEC cultured at 37 ◦C, minimizing the

nfluence of the transfection on cellular phenotype and allowing
ells to differentiate. Routinely, cell morphology was  monitored
y phase-contrast microscopy at each passage and showed no
arked difference from passage 35 up to 40, during which experi-
ents were performed. Moreover, it was previously reported that

iPTECs maintain their proximal tubular characteristics, includ-
ng expression of CD13, ZO-1, megalin-mediated albumin uptake,
nd functional expressions of organic cation transporter 2 and P-
lycoprotein over a prolonged period of culturing time (Wilmer
t al., 2009).

.2.  Stem cell isolation and culture, and preparation of hMSC-CM

Bone  marrow-derived MSCs were isolated from healthy donors
t the Radboud University Nijmegen Medical Centre, as described
efore (Jansen et al., 2010). In short, MSCs were isolated from

ach bone marrow sample by Ficoll density gradient centrifuga-
ion. Afterwards, the cells were seeded into polystyrene culture
asks (Becton Dickinson, Bedford, Mass, United States) at a density
f 1 × 106 cells/cm2 in alpha-Minimum Essential Medium (alpha
icologic Pathology 65 (2013) 595– 600

MEM),  with 100 U/ml penicillin, 0.1 mg/ml  streptomycin (Gibco
BRL), 2 �M l-glutamine (Gibco BRL) and 10% (v/v) FCS selected
for MSC  growth (Hyclone, characterized, Lot ALF 14015). Cul-
tures, maintained in a humidified atmosphere with 5% (v/v) CO2
at 37 ◦C, had their medium changed twice weekly thereafter. On
reaching 60–80% confluency, adherent cells were detached after
treatment with 0.05% (v/v) trypsin/1 �M EDTA solution (Gibco,
BRL) for reseeding at 103 cells per/cm2. To obtain human MSC-
conditioned medium (hMSC-CM), cells were cultured in DMEM
medium containing low glucose (1 g/l), supplemented with peni-
cillin (100 U/ml), streptomycin (100 �g/ml) and 10% (v/v) FCS
of a selected batch. We  cultured hMSCs to confluency and
collected the medium after approximately 24–48 h after refresh-
ing medium. hMSC-CM was centrifuged at 800 × g for 5 min  to
remove detached MSCs and stored at −80 ◦C until further use,
hMSC-CM was  diluted (1:1) in ciPTEC culture medium prior to
incubation.

2.3. Cell viability

Sensitivity of cells to gentamicin (100–3000 �g/ml) was deter-
mined by a standard spectrophotometric 3-(4,5-dimethylthiazole-
2-yl)-2,5 diphenyltetrazolium bromide (MTT; Sigma) assay.
ciPTECs were grown in 96-well plates and exposed to gentami-
cin for 24 h in 100 �l of ciPTEC medium (control) or hMSC-CM.
Next, medium was removed, 20 �l preheated (37 ◦C) MTT  solu-
tion (5 mg/ml  PBS) was added and cells were incubated for 4 h at
37 ◦C. Afterwards, MTT  solution was  removed, followed by the addi-
tion of 200 �l DMSO. The extinction of the solution was measured
at 570 nm using a Benchmark Plus Microplate Spectrophotometer
(Biorad, Veenendaal, the Netherlands).

2.4. Cell migration

The  effect of hMSC-CM on migration of unexposed and
gentamicin-exposed ciPTECs was  determined using the scratch
assay. Cells were cultured in 6-well plates and the confluent mono-
layers were treated with ciPTEC medium, hMSC-CM or gentamicin
(1500–3000 �g/ml) for 24 h followed by scrape-wounding the cells
using a plastic pipette tip. Following scraping, the medium contain-
ing detached cells was removed and replaced with either ciPTEC
medium without or with gentamicin (1500–3000 �g/ml) or hMSC-
CM, and incubated until the monolayer was restored (5–7 days).
To replenish nutrients, medium was refreshed every 2 days. Cell
migration and cell monolayer recovery was  studied by phase con-
trast microscopy over time, as described in detail by Liang et al.
(2007). Length of scratching area was measured on stored images
using ImageJ software (U.S. National Institutes of Health, Bethesda,
MD, USA).

2.5.  Statistics

Statistics were performed using GraphPad Prism 5.02 via a
One-way analysis of variance (ANOVA) followed by the Dunnett’s
or Bonferroni’s Multiple Comparison Test. Differences between
groups were considered to be statistically significant when P < 0.05.

3. Results

3.1. Gentamicin-induced cell death can be partially rescued by
hMSC-CM
First  the cytotoxic effect of gentamicin without co-exposure
to hMSC-CM was  evaluated, after which the protective effect of
hMSC-CM on a toxic concentration of gentamicin was  studied
(see Fig. 1A for experimental design). A dose-dependent reduction
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Fig. 1. Reduction in cell viability of ciPTECs exposed to gentamicin and partial recovery by hMSC-CM. Cell viability was determined using the MTT  assay and data are shown
as  the percentage of viable cells. (A) Schematic overview of experimental set-up. Cells were plated at 33 ◦C at day-8 and transferred to 37 ◦C to enable maturation. Medium
was  replaced every other day. At day 0, medium was replaced with ciPTEC medium supplemented with gentamicin for 24 h. At day 1, an MTT  assay was performed. (B) There
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s  a significant increase in cell death with increasing doses of gentamicin. (C) The inc
o  hMSC-CM. Cells incubated with ciPTEC medium are indicated as control. **P < 0.0

n cell viability was observed after exposing cells to gentamicin
or 24 h as assessed by the MTT  assay, with an apparent LC50
f 1765 ± 25 �g/ml (Fig. 1B). At a concentration of 2000 �g/ml,
entamicin reduced cell viability by 53% (P < 0.001). In the pres-
nce of hMSC-CM, viability was only reduced by 33%, suggesting

 protective effect of conditioned medium on gentamicin-induced
ephrotoxicity (Fig. 1C).

.2.  Effect of the hMSC-CM on migration of ciPTECs exposed to
entamicin

The  scratch assay is a straightforward method to study cell
igration in vitro (see Fig. 2A for experimental set-up). Long term,

.e. 7 days, exposure of ciPTEC to high doses of gentamicin, ranging
rom 1500 to 3000 �g/ml, completely attenuated the migratory
apacity of the cells (Fig. 2B, D, F, H, J and L). However, ciPTECs
xposed to gentamicin (1500 and 2000 �g/ml) for 24 h, followed
y a change toward fresh medium without the nephrotoxicant,
howed a tremendous increase in cell migration and cell transfor-
ation with monolayer restoration for up to 80% (Fig. 2C, E, I and K).

or the highest concentration tested, 3000 �g/ml, no cell migration
as observed during 7 days using fresh medium after 24 h genta-
icin exposure, suggesting severe toxicity (Fig. 2G and M).  Fig. 2N

hows a summary of three independent experiments, demon-
trating that restoration of the monolayer was possible after 24 h
entamicin exposure at concentrations up to 2000 �g/ml. When
MSC-CM was used instead of normal medium the recovery rate
fter intermediate toxic concentration of gentamicin (1500 �g/ml)
as accelerated by 25% on day 5 (Fig. 3; P < 0.05). Treatment with
onditioned medium solely resulted in a 96% restoration of the
cratch area on day 3 and 100% on day 5, whereas normal medium
esulted in a restoration of the scratch wound by 87% and 96% on
ay 3 and 5, respectively.
 in cell death by 2000 �g/ml gentamicin was partially restored by co-exposing cells
compared to control; #P < 0.01 as compared to 2000 �g/ml gentamicin.

4. Discussion

The results of the present study indicate that MSC-derived
conditioned medium increased cell viability and accelerated cell
migration after gentamicin-induced cell toxicity in a unique human
proximal tubular epithelial cell line. Gentamicin is well known for
its nephrotoxicity in various in vitro and in vivo investigations,
which hampers its clinical use. In accordance with previous studies
using Madin–Darby canine kidney cells type II (Notenboom et al.,
2006), we  observed a concentration-dependent increase in cell tox-
icity after gentamicin exposure, indicating that ciPTECs are an ideal,
human-derived, tool to study gentamicin-induced renal toxicity.
Concentrations of ≥2000 �g/ml gentamicin and multiple days dos-
ing of ciPTECs caused irreversible cell damage and a lack of ability
to migrate into a scratch-wounded area.

Wound healing assays have been carried out in tissue culture
studies to estimate the migration and proliferation rates of cells
and the impact of culture conditions on these parameters. Upon
scratching a line through a monolayer, the open gap is inspected
microscopically over time as the cells move in and fill the damaged
area. This healing can take from several hours to over a day depend-
ing on the cell type, conditions, and the extent of the wounded
region. Here, the ciPTEC monolayer was almost completely recov-
ered within five days using normal medium. This process was
significantly accelerated when cells were exposed to hMSC-CM.
In presence of gentamicin, no cell monolayer regeneration was
observed for up to seven days, however, when cells were exposed
for 24 h to gentamicin followed by a replacement with normal
medium or hMSC-CM the monolayer was restored in a great part
within seven days. Again, the recovery rate was  accelerated by 25%

by hMSC-CM.

During this study, hMSC-CM contained penicillin and strepto-
mycin, due to the cell culture requirements of primary human
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Fig. 2. Effect of gentamicin on cell migration. (A) Schematic overview of experimental set-up. Cells were plated at 33 ◦C at day-8 and transferred to 37 ◦C to enable maturation.
Medium is replaced every other day. At day 0, medium was  replaced with ciPTEC medium supplemented with gentamicin for 24 h. At day 1, the cell monolayer was disrupted
by  scraping the cells, following medium replacement without (0) or with the indicated concentration (�g/ml) gentamicin. At day 7, length of scratching area was  analyzed
by phase contrast microscopy. (B–M) Representative images are shown of confluent monolayers of ciPTECs exposed to gentamicin (1500 �g/ml (B and C), 2000 �g/ml (D and
E  treatm
m rmed
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)  and 3000 �g/ml (F and G)). The wound-induced cell motility was  measured after
edium (0). Magnification, 10×. (N) Mean of three independent experiments perfo

SCs. Previously, it has been reported that antibiotics can nega-
ively influence epithelial physiology (Shen et al., 2003; Zietse et al.,
009). This indicates that our results possibly underestimate the
otential beneficial effect of hMSC-CM on tubular regeneration.

The  functional importance of bone marrow-derived cells in
he kidney has been studied in vivo in multiple rodent models of
idney injury as well as in larger mammals (Masereeuw, 2009).
ollowing kidney injury, the number of bone marrow-derived cells
n the circulation slightly increases. Trans-differentiation of bone

arrow-derived cells to functional tubular epithelium has been
emonstrated, however, beneficial effects of bone marrow-derived

ransplantations may  have been accelerated by irradiation of the
nimals prior to transplantation and kidney injury (Fang et al.,
008). Indeed, other groups failed to detect any evidence of bone
arrow-derived cells in sections of injured kidneys, excluding their
ent with gentamicin without (H, J, and L) or with (I, K, and M)  a change to control
 in triplicate. *P < 0.05 as compared to same treatment on day 0.

trans-differentiation (Duffield and Bonventre, 2005). Recent stud-
ies support a paracrine or endocrine role of MSCs, in which an
improvement of renal function is observed without direct involve-
ment in tubular epithelial engraftment.

It has been proposed that MSCs must provide paracrine and/or
endocrine factors that explain their positive effects on kidney
repair following injury (Togel and Westenfelder, 2011). Evidence
for this paracrine/endocrine process was  provided by Bi et al.
(2007), using a model of cisplatin-induced renal damage. The
apparent reparative function of MSCs could be achieved via an
intraperitoneal injection of the MSC-conditioned medium alone.

Our study provides supporting evidence of such a paracrine effect
of MSCs, which have been shown to secrete a number of growth
factors (Togel and Westenfelder, 2011). Imberti et al. (2007) sug-
gested that this humoral function results from insulin-like growth
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Fig. 3. MSC-derived conditioned medium increases cell migration. (A) Schematic overview of experimental set-up. Cells were plated at 33 ◦C at day-8 and transferred to
37 ◦C to enable maturation. Medium is replaced every other day. At day 0, medium was replaced with hMSC-CM or control medium in presence or absence of gentamicin
(1500 �g/ml) for 24 h. At day 1, the cell monolayer was  disrupted by scraping the cells, following medium replacement with either hMSC-CM or ciPTEC medium (control).
At day 3 and 5, length of scratching area was  analyzed by phase contrast microscopy. (B–G) Representative images of confluent monolayers of ciPTECs exposed to medium
(control; B), hMSC-CM (E), and gentamicin for 24 h and then were scratched by a plastic pipette. The wound-induced cell motility was measured after recovery in control
m depen
t

f
o
f
f
l
i
2
t
c
g

edium (C and D) and hMSC-CM (F and G). Magnification, 10×. (H) Mean of three in
reatment; #P < 0.05 hMSC-CM as compared to ciPTEC medium on same day.

actor 1 (IGF1), whereas others attributed it to a combination
f hepatocyte growth factor (HGF), IGF1 and epidermal growth
actor. Vascular endothelial growth factor can be an additional
actor in the renoprotection by MSCs (Togel et al., 2009). It has
ong been known that IGF1 and HGF can play reparative roles
n the kidney following acute injury (Humphreys and Bonventre,

008). Bone morphogenetic protein 7 has also been implicated in
he protection against fibrosis (Zeisberg and Kalluri, 2008). The
urrent study, demonstrating hMSC-CM accelerates repair after
entamicin-induced nephrotoxicity in ciPTECs, is in concordance
dent experiments performed in triplicate. **P < 0.001 as compared to day 0 of same

with  the theory that not MSCs themselves, but secretory proteins
dominate regeneration processes. Moreover, the human origin of
ciPTECs in this study underscores the promising effective thera-
peutic interventions using MSCs in tissue regeneration in case of
ARF and AKI. Still, a number of uncertainties exist in understand-
ing which (patho)physiological triggers cause activation of MSCs

and the subsequent production of soluble factors. Most likely, the
inflammatory conditions after an injury provide key signals. Togel
and Westenfelder (2011) suggested that MSCs exert their renal
protection through inhibition of proinflammatory cytokines. This
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mplies that the reparative role of MSCs may  be multifactorial and
nclude production of anti-inflammatory cytokines to limit apopto-
is, enhance proliferation and dampen the inflammatory response.
n addition, the renal interstitium itself likely contributes to the
enal regeneration process as well, by controlling fibrosis along-
ide preserving the kidney’s architecture (Kaissling and Le, 2008).
uture in vivo studies should be directed at identifying the multiple
actors that contribute to renal restoration after acute injury.

In  conclusion, hMSC-conditioned medium accelerates mono-
ayer restoration after gentamicin-induced toxicity in a human
enal proximal tubular epithelial cell line, demonstrating that
uman MSCs can play an important role in renal repair mechanisms
fter acute injury. These findings warrant further investigation into
he specific set of cytokines and growth factors excreted by MSCs
hat contribute to the positive effect of these cells on renal repair
n vivo. Identification of these factors could aid in the development
f novel therapies.
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