The following full text is a preprint version which may differ from the publisher's version.

For additional information about this publication click this link.
http://hdl.handle.net/2066/117217

Please be advised that this information was generated on 2020-02-15 and may be subject to change.
Search for long-lived, multi-charged particles in pp collisions at $\sqrt{s} = 7$ TeV using the ATLAS detector

The ATLAS Collaboration

Abstract

A search for highly ionising, penetrating particles with electric charges from $|q| = 2e$ to $6e$ is performed using the ATLAS detector at the CERN Large Hadron Collider. Proton-proton collision data taken at $\sqrt{s} = 7$ TeV during the 2011 running period, corresponding to an integrated luminosity of 4.4 fb$^{-1}$, are analysed. No signal candidates are observed, and 95% confidence level cross-section upper limits are interpreted as mass-exclusion lower limits for a simplified Drell–Yan production model. In this model, masses are excluded from 50 GeV up to 430, 480, 490, 470 and 420 GeV for charges $2e$, $3e$, $4e$, $5e$ and $6e$, respectively.
Search for long-lived, multi-charged particles in pp collisions at $\sqrt{s} = 7$ TeV using the ATLAS detector

The ATLAS Collaboration

Abstract
A search for highly ionising, penetrating particles with electric charges from $|q| = 2e$ to $6e$ is performed using the ATLAS detector at the CERN Large Hadron Collider. Proton-proton collision data taken at $\sqrt{s} = 7$ TeV during the 2011 running period, corresponding to an integrated luminosity of 4.4 fb$^{-1}$, are analysed. No signal candidates are observed, and 95% confidence level cross-section upper limits are interpreted as mass-exclusion lower limits for a simplified Drell–Yan production model. In this model, masses are excluded from 50 GeV up to 430, 480, 490, 470 and 420 GeV for charges 2e, 3e, 4e, 5e and 6e, respectively.

Keywords: high-energy collider experiment, long-lived particle, highly ionising, new physics, multiple electric charges

1. Introduction
Numerous theories of physics beyond the Standard Model (SM) predict long-lived, exotic objects producing anomalous ionisation. These include magnetic monopoles [1], dyons [2], long-lived micro black holes in models of low-scale gravity [3] and Q-balls [4], which are non-topological solitons predicted by minimal supersymmetric generalisations of the SM. No such particles have so far been observed in cosmic-ray and collider searches [1, 5–7], including several recent searches at the Large Hadron Collider (LHC) [8–13]. The high centre-of-mass energy of the LHC makes a new energy regime accessible, and searching for multi-charged particles with electric charges $2e \leq |q| \leq 6e$ complements the searches for slowly singly charged particles [10] and for particles with charges beyond $6e$ [8].

The existence of long-lived particles with an electric charge $|q| > e$ could have implications for the formation of composite dark matter [14]. Two extensions of the SM in which heavy stable multi-charged particles are predicted are the AC model [15] and the walking technicolour model [16–18]. The AC model is based on the approach of almost-commutative geometry [19] which extends the fermion content of the SM by two heavy particles with opposite electric charges, $\pm q$. The minimal walking technicolour model predicts the existence of three particle pairs, with electric charges given in general by $q + e$, q, and $q - e$, which would behave like leptons in the detector. In both of these models, $|q|$ may be larger than e.

This Letter describes a search for multi-charged particles in $\sqrt{s} = 7$ TeV pp collisions using data collected in 2011 by the ATLAS detector at the CERN LHC. The data sample corresponds to an integrated luminosity of 4.4 fb$^{-1}$. Multi-charged particles will be highly ionising, and thus leave an abnormally large specific ionisation signal, dE/dx. In this Letter, a search for such particles traversing the ATLAS detector leaving a track in the inner tracking detector, and producing a signal in the muon spectrometer, is reported. A SM-like coupling proportional to the electric charge is assumed as the production model of the multi-charged particles. Therefore, the main production mode is Drell–Yan (DY) with no weak coupling. Multi-charged particles can also be pair-produced from radiated photons resulting in a larger production cross section, and in some cases non-perturbative effects [20] can also enhance the production rate. In the derivation of limits, neither enhancement is included in the calculation resulting in conservative limits in these scenarios.

2. ATLAS detector
The ATLAS detector [21] covers nearly the entire solid angle around the collision point. It consists of an inner tracking detector (ID) comprising a silicon pixel detector (pixel), a silicon microstrip detector (SCT) and a Transition Radiation Tracker (TRT). Apart from being a straw-based tracking detector, the TRT (covering $|\eta| < 2.0$) also provides particle identification via transition radiation and ionisation energy loss measurements [22]. The ID is surrounded by a thin superconducting solenoid providing a 2 T axial magnetic field, and by high-granularity liquid-argon (LAr) sampling electromagnetic calorimeters. An iron–scintillator tile calorimeter provides hadronic energy measurements in the central rapidity region. The endcap and forward regions are instrumented with LAr calorimeters for both electromagnetic and hadronic energy measurements. The calorimeter system is surrounded by a

1The term long-lived in this paper refers to a particle that does not decay within the ATLAS detector.

May 9, 2013
muon spectrometer (MS) incorporating three superconducting toroid magnet assemblies. The MS is a combination of several sub-detectors used to measure muons that traverse the ATLAS calorimeters. The Resistive Plate Chambers (RPC) in the barrel region (|η| < 1.05) and the Thin Gap Chambers (TGC) in the endcap region (1.05 < |η| < 2.4) provide signals for the trigger for charged particles reaching the MS. Monitored Drift Tube (MDT) chambers measure the momentum and track positions of muons with very high precision.

3. Simulated samples

Benchmark samples of simulated events with multi-charged particles are produced for masses of 50, 100, 200, 300, 400, 500 and 600 GeV, with charges 3^e, $3e$, $4e$, $5e$ and $6e$. Pairs of long-lived multi-charged particles are simulated using MadGraph5 [23] via the DY process to model the kinematic distributions. The DY production model also determines the cross section used for limit setting. Typical values for the cross sections of simulated multi-charge pair production range from tens of pb for a mass of 50 GeV down to a few fb at a mass of 600 GeV. Events are generated using the CTEQ6L1 [24] parton distribution functions, and PYTHIA version 6.425 [25] is used for hadronisation and underlying-event generation. A GEANT4 simulation [26, 27] is used to model the response of the ATLAS detector, and the samples are reconstructed and analysed in the same way as the data. The production cross sections are estimated using MadGraph5 and are cross-checked with CalcHEP 3.4 [28]. Each simulated event is overlaid with additional collision events (“pile-up”) in order to reproduce the observed distribution of the number of proton–proton collisions per bunch crossing. In 2011 data the average number of interactions per bunch crossing was typically between 5 and 20. These samples are used to determine the detection efficiency, the resolution on the quantities used in the event selection and the associated systematic uncertainties for multi-charged particles. While the background estimation is data-driven, muons from $Z \rightarrow \mu\mu$ simulated samples are used to calibrate the selection variables. These samples are generated in PYTHIA and passed through the GEANT4 simulation of the ATLAS detector.

4. Ionisation estimators

The specific energy loss, dE/dx, is described by the Bethe–Bloch formula [29]. The energy loss depends quadratically on the particle charge, q, so that particles with higher charges have a significantly higher energy loss.

4.1. MDT dE/dx

Each drift tube of the MDT system provides a signal proportional to the charge from ionisation, which is used to estimate dE/dx. A truncated mean of dE/dx, where the maximum value is removed, is used as the overall MDT dE/dx estimator. As each track crosses more than 20 drift tubes, the MDT dE/dx provides a good estimate of ionisation losses.

4.2. TRT dE/dx

Energy deposits in a TRT straw greater than 200 eV (low-threshold hits) are used for tracking, while those that exceed 6 keV (high-threshold hits) occur due to the passage of highly ionising particles or due to transition radiation emitted by highly relativistic electrons when they cross radiator material between the straws. The estimated dE/dx value for each hit is derived from the time the signal remains above the low threshold. The TRT dE/dx is the truncated mean of the dE/dx estimates, where the highest estimate is removed. On average, a track in the TRT contains 32 hits. Additionally, the ratio of the number of high-threshold (HT) hits to the total number of TRT hits on a given track f^{HT} provides a second estimator of high ionisation.

4.3. Pixel dE/dx

The pixel detector measures the charge from ionisation in each pixel. The dE/dx from the pixel detector is calculated from the truncated mean of measurements from several clusters of pixels [30]. Particles with charges higher than $2e$ deposit energies which easily exceed the dynamic range of the pixel detector readout. Therefore, the electronic signal is saturated and pixel information will not be read out leading to an unreliable dE/dx measurement for such particles.

4.4. dE/dx significance

The significance of each dE/dx variable is defined as the difference between the observed dE/dx of the track and that expected for muons, measured in units of the uncertainty of the measurement:

$$S(dE/dx) = \frac{dE/dx_{\text{track}} - \langle dE/dx_{\mu}\rangle}{\sigma(dE/dx_{\mu})}.$$ (1)

Here dE/dx_{track} represents the estimated dE/dx of the track, and $\langle dE/dx_{\mu}\rangle$ and $\sigma(dE/dx_{\mu})$, respectively, are the mean and the width of the dE/dx distribution for muons in data.

To obtain expected dE/dx values and their resolution for the different detector components (MDT, TRT, Pixel), the dE/dx variables are calibrated with muons from $Z \rightarrow \mu\mu$ events in data and simulation. Muons for this calibration are selected by requiring a track reconstructed in the MS matched to a good quality track in the ID with $p_T > 20$ GeV and $|\eta| < 2.4$. Each muon is further required to belong to an oppositely charged pair with dimuon mass between 81 GeV and 101 GeV. Fig. [1] shows the comparison between these muons in data and simulation for the MDT and TRT dE/dx significance. While the TRT distribution shows good agreement except in the tails, a discrepancy between simulation and data is observed for the MDT significance. This discrepancy has a small effect on the limit setting, and the effect is included in the systematic uncertainties. Fig. [2] shows the distributions of the MDT and TRT dE/dx significance for simulated muons from $Z \rightarrow \mu\mu$ production compared to those of multi-charged particles for different charges ($2e$, $4e$ and $6e$) and for a mass of 200 GeV. For the multi-charge particle
search, the S(MDT dE/dx) and S(TRT dE/dx) variables are required to exceed threshold values. These thresholds are established from the separation of the dE/dx significance distributions between muons and $|q| = 2e$ signal particles. The dE/dx significance distributions for higher charge values, $|q| > 2e$, are further separated from muons, as seen for simulated events in Fig. 2. The detailed response for these higher charge particles may not be perfectly modelled by the simulation due to saturation effects. However, their dE/dx response will certainly be higher than that of $|q| = 2e$ particles, and thus their detailed response has no significance for the analysis. The separation power of the pixel dE/dx significance is shown in Fig. 3 for a $2e$ charge at $m = 200$, 400 and 600 GeV. The behaviour of the dE/dx significance distributions is found to be as expected with respect to p_T, η, and ϕ. For simulated multi-charged particles the dE/dx significances strongly depend on the particle’s charge and weakly on the particle’s mass.

5. Event and candidate selection

Multi-charged candidates are sought for among those particles traversing the entire ATLAS detector, thus being initially selected as muons. Candidates are selected by analysing the specific ionisation losses in the different detectors. The search is based on a cut-and-count method, described in Section 6, where the signal region is defined by high dE/dx significances of the track measured by the TRT and MDT detectors.

Track reconstruction assumes particles with charge $\pm 1e$, whereas particles with higher charges bend more in the magnetic field. Therefore, the effective cut on the momentum of the multi-charged particle imposed by the trigger and selection is a factor of $|q|/e$ higher than the cut on the muon candidate. In the following, we will refer to p_T as the reconstructed transverse momentum assuming charge $|q| = 1e$.

5.1. Trigger and event selection

Events collected with a single-muon trigger \[\text{[31]} \] with a transverse momentum threshold of $p_T = 18$ GeV are considered. In simulated events the trigger efficiency from the RPC is corrected as a function of a particle’s η and β, where β is the ratio of the particle’s velocity to the speed of light. Events are further required\[\text{[3]} \] to contain either at least one muon with $p_T > 75$ GeV.
or at least two muons with $p_T > 15$ GeV.

5.2. Candidate selection

Candidate particles are tracks reconstructed in the MS which are required to be matched to the object passing the muon trigger, and to originate within tolerances from the primary interaction point. They must also be within the acceptance region $|\eta| < 2.0$, have a $p_T > 20$ GeV, and leave a high-quality track in the ID. However, because of potential pixel readout saturation, there is no requirement that a candidate particle has pixel information. The p_T measured by the muon system is smaller than the p_T measured in the ID due to energy loss in the calorimeters, and the p_T in the ID is used for candidate selection. In the track candidate selection, the measurement of the ionisation energy loss in the calorimeter system was not used. However, the calorimeter energy loss was validated for use as an independent cross-check in case of an observation of candidates above the expected background.

An initial preselection of highly ionising candidates is based on the pixel dE/dx significance and the TRT high-threshold fraction f_{HT}. As seen in Fig. 3, the pixel dE/dx significance is a powerful discriminator for particles with a significance greater than 10. For higher values of $|q|$, the pixel readout saturates and the dE/dx signal is no longer reliable. Therefore, to search for particles with $|q| > 2e$, the TRT f_{HT} (see Fig. 4) is used as a discriminating variable instead. The signal region is defined by requiring the f_{HT} to be above 0.4. This preselection uses the pixel dE/dx or the f_{HT} reduces the background contribution by almost three orders of magnitude for both $|q| = 2e$ and $|q| > 2e$.

In the final step of the search, the MDT dE/dx significance, S(MDT dE/dx), and the TRT dE/dx significance, S(TRT dE/dx), are used as discriminating variables to separate the signal and background. These variables are shown for real data and simulated signal events in Fig. 5 (6) for candidates preselected as $|q| = 2e$ ($|q| > 2e$). Only the signal sample for a mass of 200 GeV is shown as there is very little change in the selection variables for different masses. As seen, the detector signatures are different for the two preselected samples, and thus the final signal regions are chosen differently. They are defined in Table 1. The selection was optimised using only simulated samples and data control samples without examining the signal region in the data.

![Figure 3: Normalised distribution of S(pixel dE/dx) for simulated muons and multi-charged particles. Distributions are shown for the signal sample for $|q| = 2e$, for masses of 200, 400 and 600 GeV. The structure at a significance of -5 is from pixel read-out saturation.](image1.png)

![Figure 4: Normalised distribution of f_{HT} for simulated muons and multi-charged particles. Distributions are shown for the signal samples for $|q| = 2e$, $4e$, and $6e$ for a mass of 200 GeV.](image2.png)

![Figure 5: Normalised distribution of S(Pixel dE/dx) for simulated muons and multi-charged particles. Distributions are shown for the signal sample for $|q| = 2e$, $4e$, and $6e$ for a mass of 200 GeV.](image3.png)

6. Background estimation

The background contribution to the signal region is estimated using an ABCD method. In this method, the regions A,B,C and D are defined by dividing the plane of the uncorrelated TRT and MDT dE/dx significances using the final selection cuts, as seen in Figs. 3 and 4. The region D is defined as the signal region, with regions A, B and C as control regions for the background. The expected number of candidates from background in the region D, N_{data}^{D}, is estimated from the numbers of observed data candidates in regions A, B and C ($N_{data}^{A,B,C}$):

$$N_{data}^{D} = N_{data}^{B} \times N_{data}^{C} \div N_{data}^{A}.$$

(2)

Table 2 gives the number of candidates in A, B and C, as well as the observed number of candidates in the signal region D.

| $|q|$ | S(MDT dE/dx) | S(TRT dE/dx) |
|--------|-----------------|------------------|
| $2e$ | > 3 | > 4 |
| $>2e$ | > 4 | > 5 |

Table 1: The final signal regions for the two preselections.

this information. The p_T requirements on muons given here are imposed for the preparation of this stream and are not optimised for the current analysis.
after the final selection. These results are compared to the expected number of background candidates of 0.41±0.08 for the \(|q| = 2\) selection and 1.37±0.46 for the \(|q| > 2\) selection. The uncertainties are statistical. The systematic uncertainty on the background estimation is discussed in Section 8.1.

7. Signal selection efficiency

The signal cross section is given by

\[
\sigma = \frac{N_{\text{rec}}^{\text{data}}}{2 \times \mathcal{L} \times \epsilon},
\]

where \(\mathcal{L}\) is the integrated luminosity of the analysed data, \(N_{\text{rec}}^{\text{data}}\) the number of candidate particles in data above the expected background and the factor of 2 is the number of particles per event in the DY model. The efficiency \(\epsilon\) includes trigger, reconstruction and selection efficiencies. The efficiency is the number of all multi-charged particles that satisfy the selection criteria divided by the number of all simulated multi-charged particles.

The efficiency to find a multi-charged particle is given in Table 3 for each signal sample. Several factors contribute to the overall low efficiency and its dependencies on mass and charge. The \(|q| < 2\) selection and the requirement to reach the MS with a \(\beta\) which fits the timing window for the trigger are the primary causes of the reduction in efficiency. For the simulated signal samples, this timing requirement generally implies a momentum requirement stricter than the explicit \(p_T\) selection. The implied selection can be as high as approximately \(p_T/q > 120\) GeV. The charge dependence of the efficiency results from higher ionisation and the higher effective single muon \(p_T\) selection, which are augmented by the factors \(q^2\) and \(q\) respectively. The mass dependence has two competing factors: at low mass there are more candidates above \(|q| = 2\), while at high mass the \(\beta\) spectrum is softer.

8. Systematic uncertainties

The systematic uncertainties on the background estimate and on the signal efficiency are determined by varying the selection cuts within the uncertainty on each selection variable.

8.1. Background estimation uncertainty

The background estimate in the signal region, D, relies on the fact that the \(S(\text{TRT } dE/dx)\) and the \(S(\text{MDT } dE/dx)\) are uncorrelated. To estimate potential influences of signal contamination close to the region boundaries and remaining correlations in the tails of the distributions, the ABCD regions are varied. For this estimate, the signal region D is maintained, but regions A, B and C are redefined by excluding the region...
close to the default cut from the background estimation. This ensures a higher background purity. This test is performed for many different definitions of the control regions and leads to an uncertainty of 5% on the estimated background contribution in the signal region.

8.2. Trigger efficiency uncertainty

The uncertainty on the trigger efficiency has two sources: the standard uncertainty on the trigger efficiency of 1% as determined by ATLAS muon performance studies [31] and a β-dependent trigger uncertainty. The size of the β-dependent part is dominated by the uncertainty on the timing correction of the RPC trigger efficiency (trigger for $|q| < 1.05$). The correction is varied by ±50% to account for the large dependence of the efficiency on the trigger timing. The relative difference of the trigger efficiencies between the nominal and the varied correction depends on the mass and charge of the benchmark samples, and ranges from less than 1% for $|q| = 6e$, $m = 50$ GeV to 24% for $|q| = 5e$, $m = 600$ GeV. The timing in the TGC (trigger for $|q| > 1.05$) for data and simulation is in good agreement, and the systematic uncertainty for the TGC timing correction is negligible. The systematic uncertainty on whether a candidate particle would reach the MS in the timing window for the trigger selection also depends on the simulation of energy losses in the calorimeters and the material description of the detector. In a study using muons from $Z \rightarrow \mu\mu$ events in data and simulation, the energy losses were shown to be in excellent agreement. The energy-loss difference between data and simulation is less than 5%. A cross-check that varies the amount of material by 5% and corresponds to the resolution of the track p_T measurements. The variation of 20% of the TGC HT fraction arises from the pile-up dependence of this variable. For the pixel and the TGC dE/dx significances, 5% corresponds to the observed agreement of the mean and width of these distributions in the $Z \rightarrow \mu\mu$ events in data and simulation. This is also applied to the lower variation of $S(MDT \ dE/dx)$. Here, a relative shift between simulation and data is observed. The magnitude and direction of this shift suggest a variation of $S(MDT \ dE/dx)$ by 50% in the positive direction. While this would have been important for a potential signal interpretation, it has only a small effect on the limit setting. For all other variables the variations have no observable effect in any of the signal samples. The total systematic uncertainties on the efficiency arising from these cut variations range up to 2.1%.

8.4. Summary of systematic uncertainties

In Table 4, the quadratic sums of all the systematic uncertainties considered above are summarised for the different signal samples. The two main uncertainties are the uncertainty on the trigger efficiency and the uncertainty due to the small number of Monte Carlo events. The latter makes a significant contribution for some of the high-charge and low-mass samples. The 50 GeV samples were produced with a selection at the generator level requiring $p_T/q > 15$ GeV in order to decrease the statistical uncertainty. The systematic uncertainties vary between 6% and 28% in total.

| Mass [GeV] | $|q| = 2e$ | $|q| = 3e$ | $|q| = 4e$ | $|q| = 5e$ | $|q| = 6e$ |
|------------|-----------|-----------|-----------|-----------|-----------|
| 50 | 8 | 6 | 6 | 10 | 19 |
| 100 | 10 | 9 | 7 | 12 | 28 |
| 200 | 13 | 12 | 10 | 9 | 12 |
| 300 | 14 | 15 | 15 | 12 | 11 |
| 400 | 17 | 17 | 18 | 18 | 13 |
| 500 | 18 | 18 | 19 | 21 | 18 |
| 600 | 22 | 22 | 23 | 25 | 24 |

The uncertainty on the integrated luminosity is estimated to be 3.9% from Van der Meer scans [32,33] and is not included in Table 4.

9. Results

No signal candidates are found for either the $|q| = 2e$ or the $|q| = 4e$ selected sample. The results are consistent with the expectation of $0.41\pm0.08\pm0.02$ and $1.37\pm0.46\pm0.07$ background candidates, respectively. From these numbers the expected and observed limits are computed using pseudo-experiments. For the total cross-section limit, the systematic uncertainties on efficiency and the luminosity are taken into account in the pseudo-experiments. For every benchmark point, 100,000 pseudo-experiments are used. The measurement excludes DY model pair-production over wide ranges of tested masses. Fig. 7 shows the observed 95% confidence level cross-section limits as a function of mass for the five different charges. Due to the low number of expected events, the dominant uncertainty arises from Poisson statistics as reflected in the asymmetric uncertainty bands. The limits range from around 10^{-2} pb for the lower charges to 10^{-1} pb for $|q| = 6e$. In addition to the expected and observed limits the predicted cross section is shown for the simplified Drell–Yan model. For the given model the cross-section limits can be transformed into mass exclusion limits from 50 GeV to 430, 480, 490, 470 and 420 GeV for charges $|q| = 2e$, $3e$, $4e$, $5e$ and $6e$, respectively. Fig. 8 summarises the observed limits.

10. Summary

A search for long-lived, multi-charged particles has been performed using an integrated luminosity of 4.4 fb$^{-1}$ of pp colli-
Figure 7: Upper limits on the production cross section of multi-charged highly ionising particles from pair-production as a function of particle mass. The dotted line shows the expected limit with the ±1σ and ±2σ uncertainty bands. The observed limit is compared with the predicted rapidly falling cross section from the DY model. The plots are shown separately for charges from $|q| = 2e$ to $|q| = 6e$. In the $|q| = 2e$ case, the observed limit lies on top of the expected limit.

Figure 8: Observed 95% CL cross-section upper limits and theoretical cross sections as functions of the multi-charged particle mass.

11. Acknowledgements

We thank CERN for the very successful operation of the LHC, as well as the support staff from our institutions without whom ATLAS could not be operated efficiently.

We acknowledge the support of ANPCyT, Argentina; YerPhl, Armenia; ARC, Australia; BMWF and FWF, Austria; ANAS, Azerbaijan; SSTC, Belarus; CNPq and FAPESP, Brazil; NSERC, NRC and CFI, Canada; CERN; CONICYT, Chile; CAS, MOST and NSFC, China; COLCIENCIAS, Colombia; MSMT CR, MPO CR and VSC CR, Czech Republic; DNRF, DNSRC and Lundbeck Foundation, Denmark; EPLANET, ERC and NSRF, European Union; IN2P3-CNRS, CEA-DSM/IRFU, France; GNSF, Georgia; BMBF, DFG, HGF, MPG and AvH Foundation, Germany; INFN, Italy; MEXT and JSPS, Japan; CNRST, Morocco; FOM and NWO, Netherlands; BRF and RCN, Norway; MNiSW, Poland; GRICES and FCT, Portugal; MERSYS (MECTS), Romania; MES of Russia and ROSATOM, Russian Federation; JINR; MSTD, Serbia; MSSR, Slovakia; ARRS and MVZT, Slovenia; DST/NRF, South Africa; MICINN, Spain; SRC and Wallenberg Foundation, Sweden; SER, SNSF and Cantons of
M. Viti,
I. Vivarelli,

F. Vives Vaque,
S. Vlachos,
D. Vladoiu,
M. Vlasak,
A. Vogel,
P. Vokac,
G. Volpi,
G. Volpini,
H. von der Schmitt,
H. von Radziewski,
e. von Toerne,
V. Vorobel,
V. Vorwerk,
M. Vos,
R. Voss,
J.H. Vossebeld,
N. Vranjes,
M. Vranjes Milosavljevic,
V. Vruh,
M. Vreeswijk,
T. Vu Anh,
R. Vuillermet,
I. Vukotic,
W. Wagner,
P. Wagner,
H. Wahlen,
S. Wahrmund,
J. Wakabayashi,
S. Walch,
J. Walder,
W. Walkowiak,
R. Wall,
P. Waller,
B. Walsh,
C. Wang,
H. Wang,
H. Wang,
J. Wang,
J. Wang,
R. Wang,
S.M. Wang,
T. Wang,
A. Warburton,
C.P. Ward,
D.R. Wardrope,
M. Warsinsky,
A. Washbrook,
C. Wasicz,
I. Watanabe,
P.M. Watkins,
A.T. Watson,
I.J. Watson,
M.F. Watson,
G. Watts,
S. Watts,
A.T. Waugh,
B.M. Waugh,
M.S. Weber,
A.R. Weidberg,
J. Weingarten,
C. Weiser,
P.S. Wells,
T. Wenaas,
D. Wendland,
Z. Weng,
S. Wenig,
N. Wermex,
M. Wernere,
P. Werner,
M. Werth,
M. Wessels,
J. Wetter,
C. Weydert,
K. Whalen,
A. White,
M.J. White,
S. White,
S.R. Whitehead,
D. Whiteson,
D. Whittington,
D. Whicke,
S. Whytten,
L. Whalen,
M. Whisnant,
D. Whisnant,
M. Winter,
W. Willis,
S. Willo,
S. Willoq,
J.A. Wilson,
M.G. Wilson,
A. Wilson,
J. Wingerter-Seez,
S. Winkelmann,
F. Winklimeier,
M. Wittgen,
S.J. Wollstadt,
M.W. Wolter,
H. Wolters,
A.G. Wong,
G. Wooden,
B.K. Wosiek,
J. Wotschack,
M.J. Woudstra,
K.W. Wozniak,
K. Wrath,
M. Wright,
B. Wroni,
S.L. Wu,
X. Wu,
Y. Wu,
E. Wulf,
B.M. Wynne,
S. Xella,
M. Xiao,
S. Xie,
C. Xu,
D. Xu,
L. Xu,
B. Yabsley,
S. Yacoob,
M. Yamada,
H. Yamaguchi,
A. Yamamoto,
K. Yamamoto,
Y. Yamamoto,
T. Yamamura,
T. Yamankova,
T. Yamazaki,
Y. Yamazaki,
Z. Yan,
H. Yang,
U.K. Yang,
Y. Yang,
Z. Yang,
Y. Yang,
S. Yanush,
L. Yao,
Y. Yasu,
E. Yatsenko,
J. Ye,
S. Ye,
A.L. Yen,
M. Yilmaz,
R. Yoosoofmyia,
K. Yorita,
R. Yoshida,
K. Yoshihara,
C. Young,
C.J.S. Young,
S. Youssif,
D. Yu,
D.R. Yu,
J. Yu,
J. Yu,
L. Yuan,
A. Yurkewicz,
B. Zabinski,
R. Zaidan,
A.M. Zaitsev,
L. Zanello,
D. Zaniz,
A. Zaytsev,
C. Zeitnitz,
M. Zeman,
A. Zemla,
O. Zenin,
S. Zeri,
D. Zerwa,
G. Zevi della Porta,
D. Zhang,
H. Zhang,
J. Zhang,
Z. Zhang,
Z. Zhang,
L. Zhao,
Z. Zhao,
A. Zhemchugov,
J. Zhong,
B. Zhou,
N. Zhou,
Y. Zhu,
C.G. Zhu,
H. Zhu,
J. Zhu,
Y. Zhu,
X. Zhuang,
V. Zhirnovov,
A. Zibell,
D. Zieminska,
N.I. Zimin,
R. Zimmermann,
S. Zimmermann,
S. Zimmermann,
Z. Zinonos,
M. Ziolkowski,
R. Zitoun,
L. Živkovic,
V. Zmouchko,
G. Zobernig,
X. Zhang,
Z. Zhang,
Z. Zhang,
L. Zhao,
Z. Zhao,
A. Zhembuchov,
J. Zhong,
B. Zhou,
N. Zhou,
Y. Zhu,
C.G. Zhu,
H. Zhu,
J. Zhu,
Y. Zhu,
X. Zhuang,
V. Zhirnovov,
A. Zibell,
D. Zieminska,
N.I. Zimin,
R. Zimmermann,
S. Zimmermann,
S. Zimmermann,
Z. Zinonos,
M. Ziolkowski,
R. Zitoun,
L. Živkovic,
V. Zmouchko,
G. Zobernig,
A. Zoccoli,
M. zur Nedden,
V. Zutshi,
L. Zwalinski.

1 School of Chemistry and Physics, University of Adelaide, Adelaide, Australia
2 Physics Department, SUNY Albany, Albany NY, United States of America
3 Department of Physics, University of Alberta, Edmonton AB, Canada
4 (a)Department of Physics, Ankara University, Ankara; (b)Department of Physics, Dublin University, Kuthaya; (c)Department of Physics, Gazi University, Ankara; (d)Division of Physics, TOBB University of Economics and Technology, Ankara; (e)Turkish Atomic Energy Authority, Ankara, Turkey
5 LATP, CNRS/N2P3 and Université de Savoie, Annecy-le-Vieux, France
6 High Energy Physics Division, Argonne National Laboratory, Argonne IL, United States of America
7 Department of Physics, University of Arizona, Tucson AZ, United States of America
8 Department of Physics, The University of Texas at Arlington, Arlington TX, United States of America
9 Department of Physics, University of Athens, Athens, Greece
10 Physics Department, National Technical University of Athens, Zographou, Greece
11 Institute of Physics, Azerbaijan Academy of Sciences, Baku, Azerbaijan
12 Institut de Fisica d’Altes Energies and Departament de Fisica de la Universitat Autònoma de Barcelona and ICREA, Barcelona, Spain
13 (a)Institute of Physics, University of Belgrade, Belgrade; (b)Vinca Institute of Nuclear Sciences, University of Belgrade, Belgrade, Serbia
14 Department of Physics and Technology, University of Bergen, Bergen, Norway
15 Physics Division, Lawrence Berkeley National Laboratory and University of California, Berkeley CA, United States of America
16 Department of Physics, Humboldt University, Berlin, Germany
17 Albert Einstein Center for Fundamental Physics and Laboratory for High Energy Physics, University of Bern, Berne, Switzerland
18 School of Physics and Astronomy, University of Birmingham, Birmingham, United Kingdom
19 (a)Department of Physics, Bogazici University, Istanbul; (b)Division of Physics, Doga University, Istanbul; (c)Department of Physics Engineering, Gaziantep University, Gaziantep; (d)Department of Physics, Istanbul Technical University, Istanbul, Turkey
20 (a)INFN Sezione di Bologna; (b)Dipartimento di Fisica, Università di Bologna, Bologna, Italy
21 Physikalisches Institut, University of Bonn, Bonn, Germany
22 Department of Physics, Boston University, Boston MA, United States of America
23 Department of Physics, Brandeis University, Waltham MA, United States of America
24 (a)Universidade Federal do Rio De Janeiro COPPE/EE/IF, Rio de Janeiro; (b)Federal University of Juiz de Fora (UFJF), Juiz de Fora; (c)Federal University of Sao Joao do Rei (UFSJ), Sao Joao do Rei; (d)Instituto de Fisica, Universidade de Sao Paulo, Sao
72 (a) INFN Sezione di Lecce, (b) Dipartimento di Matematica e Fisica, Università del Salento, Lecce, Italy
73 Oliver Lodge Laboratory, University of Liverpool, Liverpool, United Kingdom
74 Department of Physics, Jozef Stefan Institute and University of Ljubljana, Ljubljana, Slovenia
75 School of Physics and Astronomy, Queen Mary University of London, London, United Kingdom
76 Department of Physics and Astronomy, Royal Holloway University of London, Surrey, United Kingdom
77 Department of Physics and Astronomy, University College London, London, United Kingdom
78 Laboratoire de Physique Nucléaire et de Hautes Energies, UPMC and Université Paris-Diderot and CNRS/IN2P3, Paris, France
79 Fysika institutionen, Lunds universitet, Lund, Sweden
80 Dipartimento di Fisica Teorica C-15, Universidad Autonoma de Madrid, Madrid, Spain
81 Institut für Physik, Universität Mainz, Mainz, Germany
82 School of Physics and Astronomy, University of Manchester, Manchester, United Kingdom
83 CPPM, Aix-Marseille Université et CNRS/IN2P3, Marseille, France
84 Department of Physics, University of Massachusetts, Amherst MA, United States of America
85 Department of Physics, McGill University, Montreal QC, Canada
86 School of Physics, University of Melbourne, Victoria, Australia
87 Department of Physics, The University of Michigan, Ann Arbor MI, United States of America
88 Department of Physics and Astronomy, Michigan State University, East Lansing MI, United States of America
89 (a) INFN Sezione di Milano; (b) Dipartimento di Fisica, Università di Milano, Milano, Italy
90 B.I. Stepanov Institute of Physics, National Academy of Sciences of Belarus, Minsk, Republic of Belarus
91 National Scientific and Educational Centre for Particle and High Energy Physics, Minsk, Republic of Belarus
92 Department of Physics, Massachusetts Institute of Technology, Cambridge MA, United States of America
93 Group of Particle Physics, University of Montreal, Montreal QC, Canada
94 P.N. Lebedev Institute of Physics, Academy of Sciences, Moscow, Russia
95 Institute for Theoretical and Experimental Physics (ITEP), Moscow, Russia
96 Moscow Engineering and Physics Institute (MEPhI), Moscow, Russia
97 D.V. Skobeltsyn Institute of Nuclear Physics, M.V. Lomonosov Moscow State University, Moscow, Russia
98 National Institute for Subatomic Physics, Amsterdam, Netherlands
99 Department of Physics, University of Oslo, Oslo, Norway
100 Department of Physics, Oxford University, Oxford, United Kingdom
101 INFN Sezione di Pavia; (b) Dipartimento di Fisica, Università di Pavia, Pavia, Italy
102 Department of Physics, Pennsylvania State University, University Park PA, United States of America
103 Petersburg Nuclear Physics Institute, Gatchina, Russia
104 (a) INFN Sezione di Pisa; (b) Dipartimento di Fisica E. Fermi, Università di Pisa, Pisa, Italy
105 Department of Physics and Astronomy, University of Pittsburgh, Pittsburgh PA, United States of America
106 Laboratorio de Instrumentacao e Física Experimental de Partículas - LIP, Lisboa, Portugal; (b) Departamento de Física Teórica y del Cosmos and CAFPE, Universidad de Granada, Granada, Spain
107 Institute of Physics, Academy of Sciences of the Czech Republic, Praha, Czech Republic
108 Czech Technical University in Prague, Prague, Czech Republic
109 Faculty of Mathematics and Physics, Charles University in Prague, Praha, Czech Republic
110 Center for High Energy Physics, University of Oregon, Eugene OR, United States of America
111 LAL, Université Paris-Sud and CNRS/IN2P3, Orsay, France
112 Graduate School of Science, Osaka University, Osaka, Japan
113 Department of Physics, Osaka University, Osaka, Japan
114 Department of Physics, University of Oslo, Oslo, Norway
115 (a) INFN Sezione di Padova; (b) Dipartimento di Fisica, Università di Padova, Padova, Italy
116 Petersburg Nuclear Physics Institute, Gatchina, Russia
117 Florida State University, Tallahassee FL, United States of America
118 Palacky University, RCPTM, Olomouc, Czech Republic
119 LAL, Université Paris-Sud and CNRS/IN2P3, Orsay, France
120 Department of Physics, University of Pennsylvania, Philadelphia PA, United States of America
121 National Institute for Subatomic Physics, Amsterdam, Netherlands
122 Institute of Physics, Academy of Sciences of the Czech Republic, Praha, Czech Republic
123 Center for High Energy Physics, University of Oregon, Eugene OR, United States of America
124 Institute of Physics, Academy of Sciences of the Czech Republic, Praha, Czech Republic
125 Czech Technical University in Prague, Prague, Czech Republic
126 Faculty of Mathematics and Physics, Charles University in Prague, Praha, Czech Republic
127 Institute of Physics, Academy of Sciences of the Czech Republic, Praha, Czech Republic
128 National Institute for Subatomic Physics, Amsterdam, Netherlands
129 Graduate School of Science, Osaka University, Osaka, Japan
130 Department of Physics, Osaka University, Osaka, Japan
131 Department of Physics, Oxford University, Oxford, United Kingdom
132 INFN Sezione di Padova; (b) Dipartimento di Fisica, Università di Padova, Padova, Italy
133 Department of Physics, University of Pennsylvania, Philadelphia PA, United States of America
134 Petersburg Nuclear Physics Institute, Gatchina, Russia
135 INFN Sezione di Napoli; (b) Dipartimento di Scienze Fisiche, Università di Napoli, Napoli, Italy
136 Department of Physics and Astronomy, University of New Mexico, Albuquerque NM, United States of America
137 Institute for Mathematics, Astrophysics and Particle Physics, Radboud University Nijmegen/Nikhef, Nijmegen, Netherlands
138 INFN Sezione di Napoli; (b) Dipartimento di Scienze Fisiche, Università di Napoli, Napoli, Italy
139 INFN Sezione di Napoli; (b) Dipartimento di Scienze Fisiche, Università di Napoli, Napoli, Italy
140 Department of Physics and Astronomy, University of New Mexico, Albuquerque NM, United States of America
141 Institute for Mathematics, Astrophysics and Particle Physics, Radboud University Nijmegen/Nikhef, Nijmegen, Netherlands
142 Department of Physics and Astronomy, University of New Mexico, Albuquerque NM, United States of America
143 Institute for Mathematics, Astrophysics and Particle Physics, Radboud University Nijmegen/Nikhef, Nijmegen, Netherlands
144 National Institute for Subatomic Physics, Amsterdam, Netherlands
145 Department of Physics, Northern Illinois University, DeKalb IL, United States of America
146 Budker Institute of Nuclear Physics, SB RAS, Novosibirsk, Russia
147 Department of Physics, New York University, New York NY, United States of America
148 Department of Physics, University of Oklahoma, Norman OK, United States of America
149 Department of Physics, Oklahoma State University, Stillwater OK, United States of America
150 Department of Physics and Astronomy, University of Oklahoma, Norman OK, United States of America
151 Palacky University, RCPTM, Olomouc, Czech Republic
152 LAL, Université Paris-Sud and CNRS/IN2P3, Orsay, France
153 Graduate School of Science, Osaka University, Osaka, Japan
154 Department of Physics, Osaka University, Osaka, Japan
155 Department of Physics, Oxford University, Oxford, United Kingdom
156 INFN Sezione di Pavia; (b) Dipartimento di Fisica, Università di Pavia, Pavia, Italy
157 Department of Physics, University of Pennsylvania, Philadelphia PA, United States of America
158 Petersburg Nuclear Physics Institute, Gatchina, Russia
159 INFN Sezione di Pisa; (b) Dipartimento di Fisica E. Fermi, Università di Pisa, Pisa, Italy
160 Department of Physics and Astronomy, University of Pittsburgh, Pittsburgh PA, United States of America
161 (a) Laboratorio de Instrumentacao e Física Experimental de Partículas - LIP, Lisboa, Portugal; (b) Departamento de Física Teórica y del Cosmos and CAFPE, Universidad de Granada, Granada, Spain
162 Institute of Physics, Academy of Sciences of the Czech Republic, Praha, Czech Republic
163 Czech Technical University in Prague, Prague, Czech Republic
164 Faculty of Mathematics and Physics, Charles University in Prague, Praha, Czech Republic
165 Institute of Physics, Academy of Sciences of the Czech Republic, Praha, Czech Republic
166 Faculty of Mathematics and Physics, Charles University in Prague, Praha, Czech Republic
129 Particle Physics Department, Rutherford Appleton Laboratory, Didcot, United Kingdom
130 Physics Department, University of Regina, Regina SK, Canada
131 Ritsumeikan University, Kusatsu, Shiga, Japan
132 (a)INFN Sezione di Roma I, (b)Dipartimento di Fisica, Università La Sapienza, Roma, Italy
133 (a)INFN Sezione di Roma Tor Vergata; (b)Dipartimento di Fisica, Università di Roma Tor Vergata, Roma, Italy
134 (a)INFN Sezione di Roma Tre; (b)Dipartimento di Matematica e Fisica, Università Roma Tre, Roma, Italy
135 (a)Faculté des Sciences Ain Chock, Réseau Universitaire de Physique des Hautes Energies - Université Hassan II, Casablanca;
136 (b)Centre National de l’Énergie des Sciences Techniques Nucléaires, Rabat; (c)Faculté des Sciences Semlalia, Université Cadi Ayyad, LPHEA-Marrakech; (d)Faculté des Sciences, Université Mohamed Premier and LPTPM, Oujda; (e)Faculté des sciences, Université Mohammed V-Agdal, Rabat, Morocco
137 DSM/IRFU (Institut de Recherches sur les Lois Fondamentales de l’Univers), CEA Saclay (Commissariat à l’Energie Atomique et aux Energies Alternatives), Gif-sur-Yvette, France
138 Santa Cruz Institute for Particle Physics, University of California Santa Cruz, Santa Cruz CA, United States of America
139 Department of Physics, University of Washington, Seattle WA, United States of America
140 Department of Physics and Astronomy, University of Sheffield, Sheffield, United Kingdom
141 Department of Physics, Shinshu University, Nagano, Japan
142 Fachbereich Physik, Universität Siegen, Siegen, Germany
143 Department of Physics, Simon Fraser University, Burnaby BC, Canada
144 (a)Department of Physics and Astronomy, University of Sussex, Brighton, United Kingdom
145 (a)Department of Physics, University of Southern Denmark
146 (b)School of Physics, University of the Witwatersrand, Johannesburg, South Africa
147 Physics Department, Royal Institute of Technology, Stockholm, Sweden
148 Departments of Physics & Astronomy, Stony Brook University, Stony Brook NY, United States of America
149 Department of Physics and Astronomy, University of Sussex, Brighton, United Kingdom
150 School of Physics, University of Sydney, Sydney, Australia
151 Institute of Physics, Academia Sinica, Taipei, Taiwan
152 Department of Physics, Technion: Israel Institute of Technology, Haifa, Israel
153 Raymond and Beverly Sackler School of Physics and Astronomy, Tel Aviv University, Tel Aviv, Israel
154 Department of Physics, Aristotle University of Thessaloniki, Thessaloniki, Greece
155 International Center for Elementary Particle Physics and Department of Physics, The University of Tokyo, Tokyo, Japan
156 Graduate School of Science and Technology, Tokyo Metropolitan University, Tokyo, Japan
157 Department of Physics, Tokyo Institute of Technology, Tokyo, Japan
158 Department of Physics, University of Toronto, Toronto ON, Canada
159 (a)TRIUMF, Vancouver BC; (b)Department of Physics and Astronomy, York University, Toronto ON, Canada
160 Faculty of Pure and Applied Sciences, University of Tsukuba, Tsukuba, Japan
161 Department of Physics and Astronomy, Tufts University, Medford MA, United States of America
162 Centro de Investigaciones, Universidad Antonio Narino, Bogota, Colombia
163 Department of Physics and Astronomy, University of California Irvine, Irvine CA, United States of America
164 (a)INFN Gruppo Collegato di Udine; (b)ICTP, Trieste; (c)Dipartimento di Chimica, Fisica e Ambiente, Università di Udine, Udine, Italy
165 Department of Physics, University of Illinois, Urbana IL, United States of America
166 Department of Physics and Astronomy, University of Uppsala, Uppsala, Sweden
167 Instituto de Física Corpuscular (IFIC) and Departamento de Física Atómica, Molecular y Nuclear and Departamento de Ingeniería Electrónica and Instituto de Microelectrónica de Barcelona (IMB-CNM), University of Valencia and CSIC, Valencia, Spain
168 Department of Physics, University of British Columbia, Vancouver BC, Canada
169 Department of Physics and Astronomy, University of Victoria, Victoria BC, Canada
170 Department of Physics, University of Warwick, Coventry, United Kingdom
171 Waseda University, Tokyo, Japan
172 Department of Particle Physics, The Weizmann Institute of Science, Rehovot, Israel
173 Department of Physics, University of Wisconsin, Madison WI, United States of America
174 Fakultät für Physik und Astronomie, Julius-Maximilians-Universität, Würzburg, Germany
175 Fachbereich C Physik, Bergische Universität Wuppertal, Wuppertal, Germany