Search for a heavy narrow resonance decaying to $e\mu$, $e\tau$, or $\mu\tau$ with the ATLAS detector in $\sqrt{s} = 7$ TeV pp collisions at the LHC

The ATLAS Collaboration

Abstract

This letter presents the results of a search for a heavy particle decaying into an $e^\pm\mu^\mp$, $e^\pm\tau^\mp$, or $\mu^\pm\tau^\mp$ final state in pp collisions at $\sqrt{s} = 7$ TeV. The data were recorded with the ATLAS detector at the LHC during 2011 and correspond to an integrated luminosity of 4.6 fb$^{-1}$. No significant excess above the Standard Model expectation is observed, and exclusions at 95% confidence level are placed on the cross section times branching ratio for the production of an R-parity-violating supersymmetric tau sneutrino. These results considerably extend constraints from Tevatron experiments.
Search for a heavy narrow resonance decaying to $e\mu$, $e\tau$, or $\mu\tau$ with
the ATLAS detector in $\sqrt{s} = 7$ TeV pp collisions at the LHC

The ATLAS Collaboration

Abstract

This letter presents the results of a search for a heavy particle decaying into an $e^\pm\mu^\mp$, $e^\pm\tau^\mp$, or $\mu^\pm\tau^\mp$ final state in pp collisions at $\sqrt{s} = 7$ TeV. The data were recorded with the ATLAS detector at the LHC during 2011 and correspond to an integrated luminosity of 4.6 fb$^{-1}$. No significant excess above the Standard Model expectation is observed, and exclusions at 95% confidence level are placed on the cross section times branching ratio for the production of an R-parity-violating supersymmetric tau sneutrino. These results considerably extend constraints from Tevatron experiments.

1. Introduction

Neutrino oscillations show that lepton-flavour quantum numbers are not conserved in Nature. On the other hand, lepton-flavour violation (LFV) has not been observed in the charged lepton sector, where neutrino-induced LFV is predicted to be extremely small in the Standard Model (SM). The study of possible LFV processes involving charged leptons is an important topic in the search for physics beyond the SM. One possible signature is the production of a particle that decays to a pair of different flavour, opposite-sign leptons $e^\pm\mu^\mp$ ($e\mu$), $e^\pm\tau^\mp$ ($e\tau$), or $\mu^\pm\tau^\mp$ ($\mu\tau$) (referred to generically as $\ell\ell'$). Since leptons with large transverse momenta are identified cleanly, efficiently, and with good resolution, the ATLAS detector is well suited to a search for this signature. Many new physics models allow LFV in charged lepton interactions. For example, in R-parity-violating (RPV) models of supersymmetry (SUSY) [1], a sneutrino can have LFV decays to $\ell\ell'$. Models with additional gauge symmetry can accommodate an $\ell\ell'$ signature through LFV decays of an extra gauge boson Z' [2]. This signature is also produced in the SM framework, for example, $t\bar{t}$, WW, or $Z/\gamma^* \rightarrow \tau^-\tau^+$ production where the final-state particles decay to leptons of different flavour. These processes typically have small cross sections, and the $\ell\ell'$ invariant mass ($m_{\ell\ell'}$) lies predominantly below the range favoured for new physics signals.

This letter reports on a search for a heavy particle decaying into the $e\mu$, $e\tau_{\text{had}}$, or $\mu\tau_{\text{had}}$ final state, where τ_{had} is a τ lepton that decays hadronically. The search uses 4.6 fb$^{-1}$ of 7 TeV pp collision data taken with the ATLAS detector during 2011. The results are interpreted in terms of the production via $d\bar{d}$ annihilation and subsequent decay of a tau sneutrino $\tilde{\nu}_\tau$ in RPV SUSY ($d\bar{d} \rightarrow \tilde{\nu}_\tau \rightarrow \ell\ell'$). Both the CDF and D0 Collaborations at the Tevatron collider have re-
ported searches for the RPV production and decay of a $\tilde{\nu}_\tau$ in the $e\mu$ channel [3]. The CDF Collaboration also set limits in the $e\tau$ and $\mu\tau$ channels [3]. This letter supersedes previous ATLAS searches for a high-mass resonance decaying to $e\mu$ based on 1 fb^{-1} of 2011 data [4] and extends the search to $e\tau_{\text{had}}$ and $\mu\tau_{\text{had}}$ final states.

Precision low-energy searches, such as μ to e conversion on nuclei, rare muon decays, and rare tau decays, place limits on RPV couplings [5]. These limits often depend on masses of supersymmetric particles that occur in loop diagrams and often need to assume the dominance of certain couplings or pairs of couplings to extract limits.

2. ATLAS detector

The ATLAS experiment at the LHC employs a multipurpose particle physics detector [6] with a forward-backward symmetric cylindrical geometry and near 4π coverage in solid angle. The inner tracking detector covers the pseudorapidity region $|\eta| < 2.5$ and consists of a silicon pixel detector, a silicon microstrip detector, and a transition radiation tracker. The inner tracking detector is surrounded by a thin superconducting solenoid that provides a 2 T magnetic field and by a finely-segmented calorimeter with nearly full solid-angle coverage. The latter covers the pseudorapidity range $|\eta| < 4.9$ and provides three-dimensional reconstruction of particle showers. The electromagnetic compartment uses lead absorbers with liquid-argon as the active material. This is followed by a hadronic compartment, which uses scintillating tiles with iron absorbers in the central region and liquid-argon sampling with copper or tungsten absorbers for $|\eta| > 1.7$. The muon spectrometer surrounds the calorimeters and consists of three large superconducting toroids (each with eight coils), a system of precision tracking chambers ($|\eta| < 2.7$), and detectors for triggering.

3. Data and event selection

The data used in this analysis were recorded in 2011 at a centre-of-mass energy of 7 TeV. Only data with stable run conditions and operational tracking, calorimeter, and muon subdetectors are used. This results in a data sample with an integrated luminosity of 4.6 fb$^{-1}$ with an estimated uncertainty of 3.9% [7]. Events are required to satisfy a single-electron trigger for the $e\mu$ and $e\tau_{\text{had}}$ searches and a single-muon trigger for the $\mu\tau_{\text{had}}$ search. The nominal transverse momentum (p_T) threshold for the electron trigger was 20 or 22 GeV, depending on the instantaneous luminosity, and was 18 GeV for the muon trigger.

An electron candidate is required to have $p_T > 25$ GeV and to lie in the pseudorapidity region $|\eta| < 2.47$, excluding the transition region ($1.37 < |\eta| < 1.52$) between the barrel and endcap calorimeters. The p_T of the electron is calculated from the calorimeter energy and the direction of the inner detector track. A set of electron identification criteria based on the calorimeter shower shape, track quality, transition radiation, and track match-
ing with the calorimeter energy deposition, referred to as ‘tight’ \[8\], is applied. Two lepton isolation criteria are used to reduce backgrounds from hadronic jets. The calorimetric isolation criterion requires that the transverse energy deposited within a cone of radius \(\Delta R = \sqrt{\Delta \eta^2 + \Delta \phi^2} = 0.3\) around the electron cluster, excluding the core energy deposited by the electron, is less than 0.14 times the \(p_T\) of the candidate. The tracking isolation criterion requires the sum of the transverse momenta of tracks with \(p_T > 1\) GeV within a cone of radius \(\Delta R < 0.3\) around the electron track, excluding the electron track, is less than 0.13 times the \(p_T\) of the candidate.

A muon candidate must have reconstructed tracks in both the inner detector and the muon spectrometer. The muon track parameters are a statistical combination of those for the inner detector and muon spectrometer tracks. The inner detector track is required to have a pattern of hits consistent with a quality track. Furthermore, the muon candidate must have \(p_T > 25\) GeV and be isolated, using similar criteria as for electrons: 0.14 times \(p_T\) for calorimetric isolation and 0.15 times \(p_T\) for tracking isolation.

Jets are reconstructed using the anti-\(k_t\) jet clustering algorithm \[9\] with a radius parameter of 0.4. Only jets with \(p_T > 20\) GeV and \(|\eta| < 2.5\) are considered. Leptons are retained only if they are separated from all jets by \(\Delta R > 0.4\).

Tau leptons are reconstructed through their hadronic decays. The tau reconstruction is seeded by anti-\(k_t\) jets \[9\] with cone size \(\Delta R = 0.4\) and jet \(p_T > 10\) GeV. Corrections depending on \(p_T\) and \(\eta\) are applied to the tau energy. A boosted decision tree discriminator \[10\] efficiently selects taus while rejecting backgrounds. The variables used in the discriminator are \(\Delta R\) between the tracks and the tau candidate, the impact parameter significance of the tracks, the fraction of the \(p_T\) of the tau candidate carried by the tracks, the number of tracks in an isolation annulus of 0.2 < \(\Delta R < 0.4\), the width of the energy deposition in the calorimeter, energy isolation for cones of \(\Delta R = 0.1\) and \(\Delta R = 0.4\), and the invariant mass associated with the energy deposition. For this analysis, ‘medium’ selection criteria as described in reference \[10\] are used. This selection is about 60% efficient at retaining taus that decay hadronically, as measured in \(Z \rightarrow \tau\tau\) decays, while accepting 1 of 20 to 1 of 50 ordinary hadronic jets misidentified as tau candidates. The reconstruction efficiency for hadronic tau decays with three tracks drops significantly at large transverse momentum as the tracks become more collimated. This analysis therefore uses only tau candidates with one track, which comprise 85% of tau decays. Tau candidates must have \(E_T > 20\) GeV and pseudorapidity in the range 0.03 < \(|\eta| < 2.5\). The lower limit excludes a region where there is reduced coverage from the inner detector and calorimeters, which greatly increases misidentification of electrons as hadronic tau decays. To retain only taus that decay hadronically (\(\tau_{\text{had}}\)), candidates consistent with being an electron or a muon are rejected.

The missing transverse energy (\(E_T^{\text{miss}}\)) is calculated from the vector sum of the transverse momenta of all high-\(p_T\) objects (electrons, muons, photons, taus, and jets) and all calorimeter energy clusters with \(|\eta| < 4.5\) not associated with those objects \[11\].

Events are required to have exactly two lepton candidates with opposite sign and different flavour, that is, \(e\mu, e\tau_{\text{had}}, \text{or } \mu\tau_{\text{had}}\). In addition, each event must have at least
one primary vertex with at least four tracks with $p_T > 400$ MeV. The two leptons are chosen to be back-to-back in ϕ by requiring that the azimuthal angle between them satisfies $\Delta \phi_{\ell\ell'} > 2.7$. Finally, for the τ_had and μ_had events, the p_T of the electron or muon is required to be greater than the E_T of the tau.

For e_had and μ_had signal events, the presence of only one tau and the requirement of large momentum relative to the tau mass implies that the neutrino from the tau decay should point in nearly the same direction as the tau momentum and that there are no other significant sources of E_T^{miss}. The transverse components of the neutrino momentum are set equal to the components of the E_T^{miss} vector and the polar angle of the neutrino momentum is set equal to the polar angle of the tau candidate’s momentum. The momentum of the tau candidate is corrected for the momentum of the neutrino in the calculation of the E_T of the tau used in the selection requirements above is not corrected for the neutrino momentum.

4. Backgrounds

The SM processes that can produce an $\ell\ell'$ signature are divided into two categories: backgrounds that produce direct lepton pairs (referred to as direct-lepton backgrounds) and jet backgrounds where one or both of the candidate leptons is from a misidentified jet. Data events with an $\ell\ell'$ invariant mass below 200 GeV constitute a control region to verify the background estimates, and events with masses above 200 GeV comprise the signal search region.

The dominant direct-lepton backgrounds are $t\bar{t}$, $Z/\gamma^* \rightarrow \ell\ell$, diboson ($WW$, ZZ, and WZ), and single top quark (Wt). Since these processes are well understood and modelled, their contributions are estimated using Monte Carlo samples generated at $\sqrt{s} = 7$ TeV and processed with the full ATLAS GEANT4 [12] simulation and reconstruction. The event generators used are PYTHIA 6.421 [13] (W and Z/γ^*), POWHEG 1.0 [14] ($t\bar{t}$), MADGRAPH 4 [15] ($W/Z + \gamma$), MC@NLO 3.4 [16] (single top quark) and HERWIG 6.510 [17] (WW, WZ and ZZ). The parton distribution functions are CTEQ6L1 [18] for W and Z production and CT10 [19] for $t\bar{t}$, single-top quark, and diboson production. The Monte Carlo samples are normalized to cross sections with higher-order corrections applied. The cross section is calculated to next-to-next-to-leading order for W and Z/γ^* [20], next-to-leading order plus next-to-next-to-leading log for $t\bar{t}$ [21], and next-to-leading order for WW, WZ and ZZ [22]. Single-top quark and $W/Z + \gamma$ cross sections are calculated with MC@NLO and MADGRAPH,

...
respectively. The effects of QED radiation are generated with PHOTOS \[23\]. Hadronic tau decays are simulated with TAUOLA \[24\]. Studies of leptons in Z/γ^*, W, and J/ψ events \[25\] have shown that the lepton reconstruction and identification efficiencies, energy scale, and energy resolution need small adjustment in the Monte Carlo simulation to describe the data properly. The appropriate corrections are applied to the Monte Carlo samples to improve the modelling of the backgrounds. The effect of additional pp interactions per bunch crossing as a function of the instantaneous luminosity is modelled by overlaying simulated minimum bias events with the same distribution in number of events per bunch crossing as observed in the data.

The processes $W/Z + \gamma$, $W/Z+\text{jets}$, and multijet production give rise to backgrounds from jets misidentified as leptons, electrons from photon conversions, and leptons from hadron decays (including b- and c-hadron decays). The dominant component of these backgrounds is from events with one prompt lepton and one jet misidentified as a lepton, with an additional contribution from events with two misidentified jets. These backgrounds are estimated using data. The background component initiated by prompt photons is estimated from Monte Carlo samples.

The jet backgrounds, including semileptonic decays in bottom and charm jets, are greatly reduced by the lepton isolation and high-p_T requirements but are still significant. The dominant jet background is due to $W+\text{jets}$ production, whose contribution is estimated using data from a subsample selected with the same criteria as signal events but with the additional requirement $E_T^{\text{miss}} > 30 \text{ GeV}$. This subsample is enriched in $W+\text{jets}$ events, whose contribution is about 60\%, while the multijet background is reduced to about 3\% and the direct-lepton background to about 37\%. The potential effect of the multijet contribution is included in the systematic uncertainty. The contribution from direct-lepton backgrounds in the subsample is determined from Monte Carlo simulation and is subtracted to give the number of $W+\text{jets}$ events. This number is extrapolated to the number in the full data sample without the E_T^{miss} criterion using the $W+\text{jets}$ Monte Carlo samples. The shapes of the $W+\text{jets}$ background in various kinematic variables, including $m_{\ell\ell}$, are taken from $W+\text{jets}$ Monte Carlo samples.

Studies of event samples dominated by multijet events show that the probability that a jet is misidentified as a lepton is independent of its charge \[26\], with a 10\% uncertainty. A same-sign sample is selected using the same criteria as for the signal sample but with the sign requirement reversed. The multijet background in the opposite-sign sample is taken to be equal to its contribution in the same-sign sample. Direct-lepton backgrounds produce more opposite-sign than same-sign events, so the same-sign sample is enriched in multijet background. Contributions to the same-sign sample by the direct-lepton backgrounds are determined from Monte Carlo simulation. The $W+\text{jets}$ contamination of the same-sign sample is determined by selecting only same-sign events with $E_T^{\text{miss}} > 30 \text{ GeV}$ and then extrapolating to the full same-sign sample using Monte Carlo simulation. The direct-lepton background and $W+\text{jets}$ contributions are subtracted from the observed same-sign sample to give the expected distribution and normalisation of the multijet background in the opposite-sign sample.

Table II shows the number of events selected in data and the estimated back-
ground contributions with their uncertainties. The largest backgrounds in the signal region ($m_{\ell\ell} > 200$ GeV) are $W +$ jets events, arising primarily from the leptonic decay of the W and the misidentification of a jet as a lepton, and $t\bar{t}$ events, arising primarily from semileptonic decays of both the t and \bar{t}. For the $e\tau_{\text{had}}$ mode, there is a significant contribution from multijet events where two jets are misidentified as leptons. There is also a significant contribution to the $e\mu$ mode from WW diboson production where one W decays to an electron and the other to a muon. Blank entries indicate an insignificant contribution to the background. The dominant sources of systematic uncertainty for the background predictions arise from the statistical uncertainty on the $W +$ jets and multijet background determinations from data, a 10% uncertainty on extrapolation from the subsample to the full sample in the calculation of the $W +$ jets backgrounds, theoretical uncertainties on the cross sections of the direct-lepton background processes (5% to 10%), and the integrated luminosity uncertainty (3.9%). Other systematic uncertainties from the lepton trigger (1%), the product of reconstruction and identification efficiencies (1%, 2%, and 5% for e, μ, and τ, respectively), and the energy/momentum scale and resolution (1%, 1%, and 3% for e, μ, and τ, respectively) are small and have been included. There are small correlations between the background estimates (for example, from the luminosity), which are included when setting limits.

The expected number of events in the control region agrees well with the observed number of events for all three signatures ($e\mu$, $e\tau_{\text{had}}$, and $\mu\tau_{\text{had}}$).

5. Signal Simulation

The production of an RPV $\tilde{\nu}_\tau$, followed by a lepton-flavour-violating decay into $e\mu$, $e\tau$, or $\mu\tau$ is considered in the interpretation of the data. The $\tilde{\nu}_\tau$ may be produced by either $d\bar{d}$ or $s\bar{s}$ but not $u\bar{u}$ annihilation. This search is performed assuming exclusively $d\bar{d}$ production, since $s\bar{s}$ production is expected to be a factor of 10 to 60 lower than $d\bar{d}$ production for the same couplings for sneutrino masses from 500 GeV to 2000 GeV.

In RPV SUSY, the LFV terms of the effective Lagrangian are given by $L = \frac{1}{2} \lambda_{ijk} L_i L_j e_k + \lambda'_{ijk} L_i Q_j d_k$, where L and Q are the lepton and quark SU(2) supermultiplets, e and d are the lepton and down-like quark singlet supermultiplets, and $i, j, k = 1, 2, 3$ refer to fermion generation number. The theory requires $\lambda_{ijk} = -\lambda_{jik}$. The λ' terms include coupling of downlike quark-antiquark pairs to sneutrinos, and the λ terms include couplings of the sneutrino to distinct charged leptons. For the interpretation of this measurement, the sneutrino is produced by $d\bar{d}$ annihilation to $\tilde{\nu}_\tau$ with coupling λ'_{311} and decays to $\ell\ell'$ with couplings λ_{132}, λ_{133}, and λ_{233} for $e\mu$, $e\tau$, and $\mu\tau$, respectively.

The signal cross sections are calculated to next-to-leading order [1] using CTEQ6L1 parton distribution functions [18] and depend on the $\tilde{\nu}_\tau$ mass ($m_{\tilde{\nu}_\tau}$), λ'_{311} and λ_{i3k}, where $i \neq k$ are the final-state lepton generations. The sneutrino is assumed to be a narrow resonance, and the measurement here is sensitive to the production coupling λ'_{311} and the branching ratio $\tilde{\nu}_\tau \rightarrow \ell\ell'$. Monte Carlo events with $\tilde{\nu}_\tau$ decaying into $e\mu$, $e\tau$, and $\mu\tau$ are generated with HERWIG 6.520 [17, 27] with sneutrino masses ranging from 500 GeV to 2000 GeV.

From precision low-energy experi-
Table 1: Estimated SM backgrounds and observed event yield for each signal category for the background ($m_{\ell\ell'} < 200$ GeV) and signal ($m_{\ell\ell'} > 200$ GeV) regions.

<table>
<thead>
<tr>
<th>Process</th>
<th>$m_{\ell\ell'} < 200$ GeV</th>
<th>$m_{\ell\ell'} > 200$ GeV</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$N_{e\mu}$</td>
<td>$N_{e\tau\text{had}}$</td>
</tr>
<tr>
<td>$Z/\gamma^* \rightarrow \tau\tau$</td>
<td>1880 ± 150</td>
<td>4300 ± 600</td>
</tr>
<tr>
<td>$Z/\gamma^* \rightarrow ee$</td>
<td>1050 ± 80</td>
<td>3030 ± 290</td>
</tr>
<tr>
<td>$Z/\gamma^* \rightarrow \mu\mu$</td>
<td>96 ± 18</td>
<td>60 ± 7</td>
</tr>
<tr>
<td>Diboson</td>
<td>260 ± 27</td>
<td>57 ± 8</td>
</tr>
<tr>
<td>Single top quark</td>
<td>87 ± 8</td>
<td>11 ± 2</td>
</tr>
<tr>
<td>$W^+\text{jets}$</td>
<td>420 ± 260</td>
<td>3500 ± 700</td>
</tr>
<tr>
<td>multijet</td>
<td>37 ± 13</td>
<td>220 ± 700</td>
</tr>
<tr>
<td>Total background</td>
<td>3440 ± 300</td>
<td>11200 ± 900</td>
</tr>
<tr>
<td>Data</td>
<td>3345</td>
<td>11212</td>
</tr>
</tbody>
</table>

ments [3], the best limit on λ'_{311} is $0.012 \times (m_{\tilde{\nu}}/100$ GeV) = 0.12 for the current lower limit on $m_{\tilde{d}}$. The limit on λ_{3k} is $0.05 \times (m_{\tilde{e}_k}/100$ GeV), where \tilde{e}_k is the k^{th} generation slepton. Couplings of $\lambda'_{311} = 0.11$, $\lambda_{3k} = 0.07$ and $\lambda'_{311} = 0.10$, $\lambda_{3k} = 0.05$ are used as benchmarks in this letter. These are consistent with current limits and benchmarks used in previous searches [3, 4]. For these couplings, the expected width of the sneutrino is approximately 0.1% of its mass. For the range of couplings considered in this letter, the width is always less than 5% of the mass. If the couplings are significantly larger than our benchmarks, the use of perturbation theory is not valid.

6. Results

The $\ell\ell'$ invariant mass distributions in the signal region are presented in figure 1 for data, SM background contributions, and a $\tilde{\nu}_\tau$ with $m_{\tilde{\nu}_\tau} = 500$ GeV and with couplings $\lambda'_{311} = 0.11$ and $\lambda_{3k} = 0.07$.

The invariant mass spectra are examined for the presence of an RPV sneutrino. No significant excess above the SM expectation is observed, and limits are placed on the production cross section times branching ratio. For each sneutrino mass, the search region is defined to be within ±3 standard deviations of the sneutrino mass, except for $m_{\tilde{\nu}_\tau}$ above 800 GeV, where all events with $m_{\ell\ell'} > 800$ GeV are used. The probability of observing a number of events as a function of the cross section times branching ratio, efficiency, luminosity, and background expectation is constructed from a Poisson distribution. The systematic uncertainties are included by convolution with Gaussian distributions. The expected and observed 95% confidence level (CL) upper limits on $\sigma(pp \rightarrow \tilde{\nu}_\tau) \times \text{BR}(\tilde{\nu}_\tau \rightarrow \ell\ell')$ are calculated as a function of $m_{\tilde{\nu}_\tau}$ using a Bayesian method [28] with a flat prior for the signal cross section times branching ratio and integrating over the nuisance parameters. Figure 2 shows the expected
and observed limits as a function of $m_{\tilde{\nu}_\tau}$, together with the ±1 and ±2 standard deviation uncertainty bands. The expected exclusion limits are determined using simulated pseudo-experiments containing only SM processes by evaluating the 95% CL upper limits for each pseudo-experiment at each value of $m_{\tilde{\nu}_\tau}$, including systematic uncertainties. The expected limit is calculated as the median of the distribution of limits. The ensemble of limits is also used to find the 1σ and 2σ envelopes of the expected limits as a function of $m_{\tilde{\nu}_\tau}$. For a sneutrino mass of 500 (2000) GeV, the observed limits on the production cross section times branching ratio are 3.2 (1.4) fb, 42 (17) fb, and 40 (18) fb for the $e\mu$, $e\tau$, and $\mu\tau$ modes, respectively. The $e\tau$ and $\mu\tau$ limits are weaker because (1) the 1-track tau hadronic branching ratio is about 50%, (2) the tau reconstruction efficiency is lower due to criteria needed to reduce jet backgrounds, and (3) the jet backgrounds are significantly larger than for the $e\mu$ mode.

In order to extract mass and coupling limits, it is assumed that only $d\bar{d}$ and $\ell\ell'$ couple to the sneutrino. The theoretical cross sections times branching ratios for $\lambda_{311}^{\prime} = 0.11$, $\lambda_{33k}^{\prime} = 0.07$ and $\lambda_{511}^{\prime} = 0.10$, $\lambda_{33k}^{\prime} = 0.05$ are also shown in figure 2. The branching ratio for each $\ell\ell'$ mode depends on the couplings and is 21% for $\lambda_{311}^{\prime} = 0.11$, $\lambda_{33k}^{\prime} = 0.07$ and 14% for $\lambda_{511}^{\prime} = 0.10$, $\lambda_{33k}^{\prime} = 0.05$. The uncertainties on the theoretical cross sections are evaluated by varying the factorisation and renormalisation scales (set equal to each other) from $m_{\tilde{\nu}_\tau}/2$ to $2m_{\tilde{\nu}_\tau}$ and varying the parton distribution functions. These uncertainties are indicated as bands in figure 2 and are small (only slightly larger than the width of the central line). For couplings $\lambda_{311}^{\prime} = 0.10$, $\lambda_{33k}^{\prime} = 0.05$, the lower limits on the $\tilde{\nu}_\tau$ mass are 1610 GeV, 1110 GeV, and
1100 GeV for $e\mu$, $e\tau$, and $\mu\tau$, respectively. These lower limits are a factor of two to three higher than the best limits from the Tevatron for the same couplings.

The limits on the cross section times branching ratio are converted to limits on the couplings under the assumption that there are no other significant couplings that contribute to the decay of the $\tilde{\nu}_\tau$. In this case, the dependence of the cross section times branching ratio on the couplings is $|\lambda'_{311}|^2|\lambda_{33k}|^2/(N_c|\lambda'_{311}|^2 + 2|\lambda_{33k}|^2)$, where the $|\lambda'_{311}|^2$ in the numerator is from the production and the rest is from the branching ratio. The factor $N_c = 3$ is from color, and the 2 in the denominator comes from accepting both charge states, that is, $\ell^+\ell^-$ and $\ell^-\ell^+$. Figure 3 shows contours of the limit on λ'_{311} as a function of the sneutrino mass for various values of λ_{33k}. For each curve, the area above the curve is excluded. The previous limit from ATLAS for the $e\mu$ mode, based on 1 fb$^{-1}$ of 7 TeV data, is also shown.

7. Summary

A search has been performed for a heavy particle decaying to $e\mu$, $e\tau$, or $\mu\tau$ final states using 4.6 fb$^{-1}$ of pp collision data at $\sqrt{s} = 7$ TeV recorded by the ATLAS detector at the LHC. The data are found to be consistent with SM predictions. Limits are placed on the cross section times branching ratio for an RPV SUSY sneutrino. These results considerably extend previous constraints from ATLAS and the Tevatron experiments.

8. Acknowledgements

We thank CERN for the very successful operation of the LHC, as well as the support of

<table>
<thead>
<tr>
<th>$m_{\tilde{\nu}_\tau}$ [GeV]</th>
<th>$95%$ CL Upper Limit [fb]</th>
</tr>
</thead>
<tbody>
<tr>
<td>500</td>
<td>10^{-5}</td>
</tr>
<tr>
<td>1000</td>
<td>10^{-4}</td>
</tr>
<tr>
<td>1500</td>
<td>10^{-3}</td>
</tr>
<tr>
<td>2000</td>
<td>10^{-2}</td>
</tr>
</tbody>
</table>

Figure 2: The 95% CL upper limit on the production cross section times branching ratio as a function of sneutrino mass for $e\mu$ (top), $e\tau$ (middle), and $\mu\tau$ (bottom) modes. The red dotted curve is the expected limit, the black solid curve is the observed limit, and the yellow and green bands give ±1 and ±2 standard deviations in the expected limit. The expected theoretical curves for $\lambda'_{311} = 0.11$, $\lambda_{33k} = 0.07$ (light blue dot–dash) and $\lambda'_{311} = 0.10$, $\lambda_{33k} = 0.05$ (light magenta dashed) are also plotted with their uncertainties.
Figure 3: The 95% CL limits on λ^\prime_{311} as a function of sneutrino mass for assumed values of λ_{333} for the $e\mu$ (top), $e\tau$ (middle), and $\mu\tau$ (bottom) modes. For the $e\mu$ mode, the black solid curve is the previous ATLAS result based on 1 fb$^{-1}$ of data at 7 TeV.

We acknowledge the support of ANPCyT, Argentina; YerPhI, Armenia; ARC, Australia; BMWF, Austria; ANAS, Azerbaijan; STFC, Belarus; CNPq and FAPESP, Brazil; NSERC, NRC and CFI, Canada; CERN; CONICYT, Chile; CAS, MOST and NSFC, China; COLCIENCIAS, Colombia; MSMT CR, MPO CR and VSC CR, Czech Republic; DNRF, DNSRC and Lundbeck Foundation, Denmark; ARTEMIS, European Union; IN2P3-CNRS, CEA-DSM/IRFU, France; GNAS, Georgia; BMBF, DFG, HGF, MPG and AvH Foundation, Germany; GSRT, Greece; ISF, MINERVA, GIF, DIP and Benoziyo Center, Israel; INFN, Italy; MEXT and JSPS, Japan; CNRST, Morocco; FOM and NWO, Netherlands; RCN, Norway; MNiSW, Poland; GRICES and FCT, Portugal; MERYS (MECTS), Romania; MES of Russia and ROSATOM, Russian Federation; JINR; MSTD, Serbia; MSSR, Slovakia; ARRS and MVZT, Slovenia; DST/NRF, South Africa; MICINN, Spain; SRC and Wallenberg Foundation, Sweden; SER, SNSF and Cantons of Bern and Geneva, Switzerland; NSC, Taiwan; TAEK, Turkey; STFC, the Royal Society and Leverhulme Trust, United Kingdom; DOE and NSF, United States of America.

The crucial computing support from all WLCG partners is acknowledged gratefully, in particular from CERN and the ATLAS Tier-1 facilities at TRIUMF (Canada), NDGF (Denmark, Norway, Sweden), CC-IN2P3 (France), KIT/GridKA (Germany), INFN-CNAF (Italy), NL-T1 (Netherlands), PIC (Spain), ASGC (Taiwan), RAL (UK) and BNL (USA) and in the Tier-2 facilities worldwide.
References

The ATLAS Collaboration

Physics, University of Bern, Bern, Switzerland
18 School of Physics and Astronomy, University of Birmingham, Birmingham, United Kingdom
19 (a) Department of Physics, Bogazici University, Istanbul; (b) Division of Physics, Dogus University, Istanbul; (c) Department of Physics Engineering, Gaziantep University, Gaziantep; (d) Department of Physics, Istanbul Technical University, Istanbul, Turkey
20 (a) INFN Sezione di Bologna; (b) Dipartimento di Fisica, Università di Bologna, Bologna, Italy
21 Physikalisches Institut, University of Bonn, Bonn, Germany
22 Department of Physics, Boston University, Boston MA, United States of America
23 Department of Physics, Brandeis University, Waltham MA, United States of America
24 (a) Universidade Federal do Rio De Janeiro COPPE/EE/IF, Rio de Janeiro; (b) Federal University of Juiz de Fora (UFJF), Juiz de Fora; (c) Federal University of Sao Joao del Rei (UFSJ), Sao Joao del Rei; (d) Instituto de Fisica, Universidade de Sao Paulo, Sao Paulo, Brazil
25 Physics Department, Brookhaven National Laboratory, Upton NY, United States of America
26 (a) National Institute of Physics and Nuclear Engineering, Bucharest; (b) University Politehnica Bucharest, Bucharest; (c) West University in Timisoara, Timisoara, Romania
27 Departamento de Física, Universidad de Buenos Aires, Buenos Aires, Argentina
28 Cavendish Laboratory, University of Cambridge, Cambridge, United Kingdom
29 Department of Physics, Carleton University, Ottawa ON, Canada
30 CERN, Geneva, Switzerland
31 Enrico Fermi Institute, University of Chicago, Chicago IL, United States of America
32 (a) Departamento de Física, Pontificia Universidad Católica de Chile, Santiago; (b) Departamento de Física, Universidad Técnica Federico Santa María, Valparaíso, Chile
33 (a) Institute of High Energy Physics, Chinese Academy of Sciences, Beijing; (b) Department of Modern Physics, University of Science and Technology of China, Anhui; (c) Department of Physics, Nanjing University, Jiangsu; (d) School of Physics, Shandong University, Shandong; (e) Physics Department, Shanghai Jiao Tong University, Shanghai, China
34 Laboratoire de Physique Corpusculaire, Clermont Université and Université Blaise Pascal and CNRS/IN2P3, Clermont-Ferrand, France
35 Nevis Laboratory, Columbia University, Irvington NY, United States of America
36 Niels Bohr Institute, University of Copenhagen, Kobenhavn, Denmark
37 (a) INFN Gruppo Collegato di Cosenza; (b) Dipartimento di Fisica, Università della Calabria, Arcavata di Rende, Italy
38 AGH University of Science and Technology, Faculty of Physics and Applied Computer Science, Krakow, Poland
39 The Henryk Niewodniczanski Institute of Nuclear Physics, Polish Academy of Sciences, Krakow, Poland
40 Physics Department, Southern Methodist University, Dallas TX, United States of America

25
Physics Department, University of Texas at Dallas, Richardson TX, United States of America

DESY, Hamburg and Zeuthen, Germany

Institut für Experimentelle Physik IV, Technische Universität Dortmund, Dortmund, Germany

Institut für Kern- und Teilchenphysik, Technical University Dresden, Dresden, Germany

Department of Physics, Duke University, Durham NC, United States of America

SUPA - School of Physics and Astronomy, University of Edinburgh, Edinburgh, United Kingdom

INFN Laboratori Nazionali di Frascati, Frascati, Italy

Fakultät für Mathematik und Physik, Albert-Ludwigs-Universität, Freiburg, Germany

Section de Physique, Université de Genève, Geneva, Switzerland

(a) INFN Sezione di Genova; (b) Dipartimento di Fisica, Università di Genova, Genova, Italy

E. Andronikashvili Institute of Physics, Iv. Javakhishvili Tbilisi State University, Tbilisi; (b) High Energy Physics Institute, Tbilisi State University, Tbilisi, Georgia

II Physikalisches Institut, Justus-Liebig-Universität Giessen, Giessen, Germany

SUPA - School of Physics and Astronomy, University of Glasgow, Glasgow, United Kingdom

II Physikalisches Institut, Georg-August-Universität, Göttingen, Germany

Laboratoire de Physique Subatomique et de Cosmologie, Université Joseph Fourier and CNRS/IN2P3 and Institut National Polytechnique de Grenoble, Grenoble, France

Department of Physics, Hampton University, Hampton VA, United States of America

Laboratory for Particle Physics and Cosmology, Harvard University, Cambridge MA, United States of America

(a) Kirchhoff-Institut für Physik, Ruprecht-Karls-Universität Heidelberg, Heidelberg; (b) Physikalisches Institut, Ruprecht-Karls-Universität Heidelberg, Heidelberg; (c) ZITI Institut für technische Informatik, Ruprecht-Karls-Universität Heidelberg, Mannheim, Germany

Faculty of Applied Information Science, Hiroshima Institute of Technology, Hiroshima, Japan

Department of Physics, Indiana University, Bloomington IN, United States of America

Institut für Astro- und Teilchenphysik, Leopold-Franzens-Universität, Innsbruck, Austria

University of Iowa, Iowa City IA, United States of America

Department of Physics and Astronomy, Iowa State University, Ames IA, United States of America

Joint Institute for Nuclear Research, JINR Dubna, Dubna, Russia

KEK, High Energy Accelerator Research Organization, Tsukuba, Japan

Graduate School of Science, Kobe University, Kobe, Japan

Faculty of Science, Kyoto University, Kyoto, Japan

Kyoto University of Education, Kyoto, Japan

Department of Physics, Kyushu University, Fukuoka, Japan

Instituto de Física La Plata, Universidad Nacional de La Plata and CONICET, La Plata, Argentina
Plata, Argentina
71 Physics Department, Lancaster University, Lancaster, United Kingdom
72 (a) INFN Sezione di Lecce; (b) Dipartimento di Matematica e Fisica, Università del Salento, Lecce, Italy
73 Oliver Lodge Laboratory, University of Liverpool, Liverpool, United Kingdom
74 Department of Physics, Jožef Stefan Institute and University of Ljubljana, Ljubljana, Slovenia
75 School of Physics and Astronomy, Queen Mary University of London, London, United Kingdom
76 Department of Physics, Royal Holloway University of London, Surrey, United Kingdom
77 Department of Physics and Astronomy, University College London, London, United Kingdom
78 Laboratoire de Physique Nucléaire et de Hautes Energies, UPMC and Université Paris-Diderot and CNRS/IN2P3, Paris, France
79 Fysiska institutionen, Lunds universitet, Lund, Sweden
80 Departamento de Fisica Teorica C-15, Universidad Autonoma de Madrid, Madrid, Spain
81 Institut für Physik, Universität Mainz, Mainz, Germany
82 School of Physics and Astronomy, University of Manchester, Manchester, United Kingdom
83 CPPM, Aix-Marseille Université and CNRS/IN2P3, Marseille, France
84 Department of Physics, University of Massachusetts, Amherst MA, United States of America
85 Department of Physics, McGill University, Montreal QC, Canada
86 School of Physics, University of Melbourne, Victoria, Australia
87 Department of Physics, The University of Michigan, Ann Arbor MI, United States of America
88 Department of Physics and Astronomy, Michigan State University, East Lansing MI, United States of America
89 (a) INFN Sezione di Milano; (b) Dipartimento di Fisica, Università di Milano, Milano, Italy
90 B.I. Stepanov Institute of Physics, National Academy of Sciences of Belarus, Minsk, Republic of Belarus
91 National Scientific and Educational Centre for Particle and High Energy Physics, Minsk, Republic of Belarus
92 Department of Physics, Massachusetts Institute of Technology, Cambridge MA, United States of America
93 Group of Particle Physics, University of Montreal, Montreal QC, Canada
94 P.N. Lebedev Institute of Physics, Academy of Sciences, Moscow, Russia
95 Institute for Theoretical and Experimental Physics (ITEP), Moscow, Russia
96 Moscow Engineering and Physics Institute (MEPhI), Moscow, Russia
97 D.V.Skobeltsyn Institute of Nuclear Physics, M.V.Lomonosov Moscow State University, Moscow, Russia
98 Fakultät für Physik, Ludwig-Maximilians-Universität München, München, Germany

27
Max-Planck-Institut für Physik (Werner-Heisenberg-Institut), München, Germany
Nagasaki Institute of Applied Science, Nagasaki, Japan
Graduate School of Science and Kobayashi-Maskawa Institute, Nagoya University, Nagoya, Japan
(a) INFN Sezione di Napoli; (b) Dipartimento di Scienze Fisiche, Università di Napoli, Napoli, Italy
Department of Physics and Astronomy, University of New Mexico, Albuquerque NM, United States of America
Institute for Mathematics, Astrophysics and Particle Physics, Radboud University Nijmegen/Nikhef, Nijmegen, Netherlands
Nikhef National Institute for Subatomic Physics and University of Amsterdam, Amsterdam, Netherlands
Department of Physics, Northern Illinois University, DeKalb IL, United States of America
Budker Institute of Nuclear Physics, SB RAS, Novosibirsk, Russia
Department of Physics, New York University, New York NY, United States of America
Ohio State University, Columbus OH, United States of America
Faculty of Science, Okayama University, Okayama, Japan
Homer L. Dodge Department of Physics and Astronomy, University of Oklahoma, Norman OK, United States of America
Department of Physics, Oklahoma State University, Stillwater OK, United States of America
Palacký University, RCPTM, Olomouc, Czech Republic
Center for High Energy Physics, University of Oregon, Eugene OR, United States of America
LAL, Université Paris-Sud and CNRS/IN2P3, Orsay, France
Graduate School of Science, Osaka University, Osaka, Japan
Department of Physics, University of Oslo, Oslo, Norway
Department of Physics, Oxford University, Oxford, United Kingdom
(a) INFN Sezione di Pavia; (b) Dipartimento di Fisica, Università di Pavia, Pavia, Italy
Department of Physics, University of Pennsylvania, Philadelphia PA, United States of America
Petersburg Nuclear Physics Institute, Gatchina, Russia
(a) INFN Sezione di Pisa; (b) Dipartimento di Fisica E. Fermi, Università di Pisa, Pisa, Italy
Department of Physics and Astronomy, University of Pittsburgh, Pittsburgh PA, United States of America
(a) Laboratorio de Instrumentacao e Fisica Experimental de Particulas - LIP, Lisboa; (b) Departamento de Fisica Teorica y del Cosmos and CAFPE, Universidad de Granada, Granada, Portugal
Institute of Physics, Academy of Sciences of the Czech Republic, Praha, Czech Republic
Czech Technical University in Prague, Praha, Czech Republic
Faculty of Mathematics and Physics, Charles University in Prague, Praha, Czech
State Research Center Institute for High Energy Physics, Protvino, Russia

Particle Physics Department, Rutherford Appleton Laboratory, Didcot, United Kingdom

Physics Department, University of Regina, Regina SK, Canada

Ritsumeikan University, Kusatsu, Shiga, Japan

(a) INFN Sezione di Roma I; (b) Dipartimento di Fisica, Università La Sapienza, Roma, Italy

(a) INFN Sezione di Roma Tor Vergata; (b) Dipartimento di Fisica, Università di Roma Tor Vergata, Roma, Italy

(a) INFN Sezione di Roma Tre; (b) Dipartimento di Fisica, Università Roma Tre, Roma, Italy

(a) Faculté des Sciences Ain Chock, Réseau Universitaire de Physique des Hautes Energies - Université Hassan II, Casablanca; (b) Centre National de l’Energie des Sciences Techniques Nucleaires, Rabat; (c) Faculté des Sciences Semlalia, Université Cadi Ayyad, LPHEA-Marrakech; (d) Faculté des Sciences, Université Mohamed Premier and LPTPM, Oujda; (e) Faculté des sciences, Université Mohammed V-Agdal, Rabat, Morocco

DSM/IRFU (Institut de Recherches sur les Lois Fondamentales de l’Univers), CEA Saclay (Commissariat à l’Energie Atomique et aux Energies Alternatives), Gif-sur-Yvette, France

Santa Cruz Institute for Particle Physics, University of California Santa Cruz, Santa Cruz CA, United States of America

Department of Physics, University of Washington, Seattle WA, United States of America

Department of Physics and Astronomy, University of Sheffield, Sheffield, United Kingdom

Department of Physics, Shinshu University, Nagano, Japan

Fachbereich Physik, Universität Siegen, Siegen, Germany

Department of Physics, Simon Fraser University, Burnaby BC, Canada

SLAC National Accelerator Laboratory, Stanford CA, United States of America

(a) Faculty of Mathematics, Physics & Informatics, Comenius University, Bratislava; (b) Department of Subnuclear Physics, Institute of Experimental Physics of the Slovak Academy of Sciences, Kosice, Slovak Republic

(a) Department of Physics, University of Johannesburg, Johannesburg; (b) School of Physics, University of the Witwatersrand, Johannesburg, South Africa

(a) Department of Physics, Stockholm University; (b) The Oskar Klein Centre, Stockholm, Sweden

Physics Department, Royal Institute of Technology, Stockholm, Sweden

Departments of Physics & Astronomy and Chemistry, Stony Brook University, Stony Brook NY, United States of America

Department of Physics and Astronomy, University of Sussex, Brighton, United Kingdom

School of Physics, University of Sydney, Sydney, Australia

Institute of Physics, Academia Sinica, Taipei, Taiwan
Department of Physics, Technion: Israel Institute of Technology, Haifa, Israel
Raymond and Beverly Sackler School of Physics and Astronomy, Tel Aviv University, Tel Aviv, Israel
Department of Physics, Aristotle University of Thessaloniki, Thessaloniki, Greece
International Center for Elementary Particle Physics and Department of Physics, The University of Tokyo, Tokyo, Japan
Graduate School of Science and Technology, Tokyo Metropolitan University, Tokyo, Japan
Department of Physics, Tokyo Institute of Technology, Tokyo, Japan
Department of Physics, University of Toronto, Toronto ON, Canada
(a) TRIUMF, Vancouver BC; (b) Department of Physics and Astronomy, York University, Toronto ON, Canada
Faculty of Pure and Applied Sciences, University of Tsukuba, Tsukuba, Japan
Department of Physics and Astronomy, Tufts University, Medford MA, United States of America
Centro de Investigaciones, Universidad Antonio Narino, Bogota, Colombia
Department of Physics and Astronomy, University of California Irvine, Irvine CA, United States of America
(a) INFN Gruppo Collegato di Udine; (b) ICTP, Trieste; (c) Dipartimento di Chimica, Fisica e Ambiente, Università di Udine, Udine, Italy
Department of Physics, University of Illinois, Urbana IL, United States of America
Department of Physics and Astronomy, University of Uppsala, Uppsala, Sweden
Instituto de Física Corpuscular (IFIC) and Departamento de Física Atómica, Molecular y Nuclear and Departamento de Ingeniería Electrónica and Instituto de Microelectrónica de Barcelona (IMB-CNMI, University of Valencia and CSIC, Valencia, Spain
Department of Physics, University of British Colombia, Vancouver BC, Canada
Department of Physics and Astronomy, University of Victoria, Victoria BC, Canada
Department of Physics, University of Warwick, Coventry, United Kingdom
Waseda University, Tokyo, Japan
Department of Particle Physics, The Weizmann Institute of Science, Rehovot, Israel
Department of Physics, University of Wisconsin, Madison WI, United States of America
Fakultät für Physik und Astronomie, Julius-Maximilians-Universität, Würzburg, Germany
Fachbereich C Physik, Bergische Universität Wuppertal, Wuppertal, Germany
Department of Physics, Yale University, New Haven CT, United States of America
Yerevan Physics Institute, Yerevan, Armenia
Centre de Calcul de l’Institut National de Physique Nucléaire et de Physique des Particules (IN2P3), Villeurbanne, France
(a) Also at Department of Physics, King’s College London, London, United Kingdom
(b) Also at Laboratorio de Instrumentacao e Fisica Experimental de Particulas - LIP, Lisboa, Portugal
(c) Also at Faculdade de Ciencias and CFNUL, Universidade de Lisboa, Lisboa, Portugal
(d) Also at Particle Physics Department, Rutherford Appleton Laboratory, Didcot, United Kingdom
Kingdom
e Also at Department of Physics, University of Johannesburg, Johannesburg, South Africa
f Also at TRIUMF, Vancouver BC, Canada
g Also at Department of Physics, California State University, Fresno CA, United States of America
h Also at Novosibirsk State University, Novosibirsk, Russia
i Also at Department of Physics, University of Coimbra, Coimbra, Portugal
j Also at Department of Physics, UASLP, San Luis Potosi, Mexico
k Also at Università di Napoli Parthenope, Napoli, Italy
l Also at Institute of Particle Physics (IPP), Canada
m Also at Department of Physics, Middle East Technical University, Ankara, Turkey
n Also at Louisiana Tech University, Ruston LA, United States of America
o Also at Dep Fisica and CEFITEC of Faculdade de Ciencias e Tecnologia, Universidade Nova de Lisboa, Caparica, Portugal
p Also at Department of Physics and Astronomy, University College London, London, United Kingdom
q Also at Department of Physics, University of Cape Town, Cape Town, South Africa
r Also at Institute of Physics, Azerbaijan Academy of Sciences, Baku, Azerbaijan
s Also at Institut für Experimentalphysik, Universität Hamburg, Hamburg, Germany
t Also at Manhattan College, New York NY, United States of America
u Also at CPPM, Aix-Marseille Université and CNRS/IN2P3, Marseille, France
v Also at School of Physics and Engineering, Sun Yat-sen University, Guangzhou, China
w Also at Academia Sinica Grid Computing, Institute of Physics, Academia Sinica, Taipei, Taiwan
x Also at School of Physics, Shandong University, Shandong, China
y Also at Dipartimento di Fisica, Università La Sapienza, Roma, Italy
z Also at DSM/IRFU (Institut de Recherches sur les Lois Fondamentales de l’Univers), CEA Saclay (Commissariat à l’Énergie Atomique et aux Energies Alternatives), Gif-sur-Yvette, France
aa Also at Section de Physique, Université de Genève, Geneva, Switzerland
ab Also at Departamento de Fisica, Universidade de Minho, Braga, Portugal
ac Also at Department of Physics, The University of Texas at Austin, Austin TX, United States of America
ad Also at Department of Physics and Astronomy, University of South Carolina, Columbia SC, United States of America
ae Also at Institute for Particle and Nuclear Physics, Wigner Research Centre for Physics, Budapest, Hungary
af Also at California Institute of Technology, Pasadena CA, United States of America
ag Also at Institute of Physics, Jagiellonian University, Krakow, Poland
ah Also at LAL, Université Paris-Sud and CNRS/IN2P3, Orsay, France
ai Also at Faculty of Physics, M.V.Lomonosov Moscow State University, Moscow, Russia
aj Also at Nevis Laboratory, Columbia University, Irvington NY, United States of America
ak Also at Department of Physics and Astronomy, University of Sheffield, Sheffield, United Kingdom
Kingdom
ad Also at Department of Physics, Oxford University, Oxford, United Kingdom
am Also at Department of Physics, The University of Michigan, Ann Arbor MI, United States of America
an Also at Discipline of Physics, University of KwaZulu-Natal, Durban, South Africa
* Deceased