Draft Genome Sequence of *Methylomicrobium buryatense* Strain 5G, a Haloalkaline-Tolerant Methanotrophic Bacterium

GK Skryabin Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences, Pushchino, Russia; Department of Chemical Engineering, University of Washington, Seattle, Washington, USA; eScience Institute, University of Washington, Seattle, Washington, USA; Department of Microbiology, University of Washington, Seattle, Washington, USA; Los Alamos National Laboratory, Joint Genome Institute, Biosciences Division Genome Science B6, Los Alamos, New Mexico, USA; Equipe Adaptations et Interactions Microbiennes dans l’Environnement, UMR 7156 UdS–CNRS Génétique Moléculaire, Génomique, Microbiologie, Université de Strasbourg, Strasbourg, France; Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, Iowa, USA; Department of Biological Sciences, University of Calgary, Calgary, Canada; Department of Microbiology, Institute of Water and Wetland Research, Radboud University Nijmegen, Nijmegen, the Netherlands; Department of Biology, University of North Carolina, Charlotte, North Carolina, USA; Institute of Crop Science and Resource Conservation–Molecular Biology of the Rhizosphere, University of Bonn, Bonn, Germany; School of Environmental Sciences, University of East Anglia, Norwich, United Kingdom; Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kyoto, Japan; Department of Civil & Environmental Engineering, the University of Michigan, Ann Arbor, Michigan, USA; Department of Arctic and Marine Biology, University of Tromsø, Tromsø, Norway; OMeGA, the Organization for Methanotrophic Genome Analysis, Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada

Robust growth of the gammaproteobacterium *Methylomicrobium buryatense* strain 5G on methane makes it an attractive system for CH₄-based biocatalysis. Here we present a draft genome sequence of the strain that will provide a valuable framework for metabolic engineering of the core pathways for the production of valuable chemicals from methane.

Received 23 January 2013 Accepted 8 May 2013 Published 27 June 2013

Copyright © 2013 Khmelenina et al. This is an open-access article distributed under the terms of the Creative Commons Attribution 3.0 Unported license.

Address correspondence to Marina G. Kalyuzhnaya, mkalyuzh@uw.edu.
dioxylamine oxidoreductase is present (17, 18). The ammonium assimilation inventory includes genes for glutamate and alanine dehydrogenases, glutamate synthase/glutamine synthetase, serine-pyruvate/serine-glyoxylate, and aspartate aminotransferases (19). Genes essential for ectoine biosynthesis were identified.

Nucleotide sequence accession numbers. The *Methylomicrobium buryatense* 5G genome sequence was deposited in GenBank/EMBL under the accession numbers AOTL01000000 and KB455575 and KB455576.

ACKNOWLEDGMENTS

This work was supported by the National Science Foundation (MCB-0842666, to M.G.K.), NSERC (L.Y.S.), and the Russian Foundation for Basic Research (RFBR 11-04-00801, to V.N.K.). The work conducted by the U.S. Department of Energy Joint Genome Institute is supported by the Office of Science of the U.S. Department of Energy under contract no. DE-AC02-05CH11231.

REFERENCES