PDF hosted at the Radboud Repository of the Radboud University Nijmegen

The following full text is a publisher's version.

For additional information about this publication click this link.
http://hdl.handle.net/2066/116514

Please be advised that this information was generated on 2019-12-26 and may be subject to change.
Hierarchical Organization of Parietofrontal Circuits during Goal-Directed Action

Lennart Verhagen,1,2 H. Chris Dijkerman,2 W. Pieter Medendorp,1 and Ivan Toni1
1Donders Institute for Brain, Cognition, and Behavior, Radboud University Nijmegen, 6500 HB, Nijmegen, The Netherlands, and 2Experimental Psychology, Helmholtz Institute, Utrecht University, 3508 TC, Utrecht, The Netherlands

Two parietofrontal networks share the control of goal-directed movements: a dorsomedial circuit that includes the superior parieto-occipital sulcus (sPOS) and a dorsolateral circuit comprising the anterior intraparietal sulcus (aIPS). These circuits are thought to independently control either reach and grip components (a functional dissociation), or planning and execution phases of grasping movements (a temporal dissociation). However, recent evidence of functional and temporal overlap between these circuits has undermined those models.

Here, we test an alternative model that subsumes previous accounts: the dorsolateral and dorsomedial circuits operate at different hierarchical levels, resulting in functional and temporal dependencies between their computations. We asked human participants to grasp a visually presented object, manipulating movement complexity by varying object slant. We used concurrent single-pulse transcranial magnetic stimulation and electroencephalography (TMS-EEG) to probe and record neurophysiological activity in the two circuits. Changes in alpha-band oscillations (8–12 Hz) characterized the effects of task manipulations and TMS interferences over aIPS and sPOS.

Increasing the complexity of the grasping movement was accompanied by alpha-suppression over dorsomedial parietofrontal regions, including sPOS, during both planning and execution stages. TMS interference over either aIPS or sPOS disrupted this index of dorsomedial computations; early when aIPS was perturbed, later when sPOS was perturbed, indicating that the dorsomedial circuit is temporally dependent on aIPS. TMS over sPOS enhanced alpha-suppression in inferior parietal cortex, indicating that the dorsolateral circuit can compensate for a transient sPOS perturbation. These findings suggest that both circuits specify the same grasping parameters, with dorsomedial computations depending on dorsolateral contributions.

Introduction
The control of grasping movements relies on two parietofrontal circuits: a dorsolateral and a dorsomedial pathway (Grafton, 2010). The dorsolateral circuit includes the anterior intraparietal sulcus (aIPS) and the ventral premotor cortex (PMv); the dorsomedial circuit connects the superior parieto-occipital sulcus (sPOS) and the dorsal premotor cortex (PMd). These two circuits have been suggested to control either different motoric functions in parallel (Jeannerod et al., 1995; Culham et al., 2006; Vesia and Crawford, 2012) (e.g., reaching and grasping components), or different temporal phases of an action, serially (Pisella et al., 2000; Rizzolatti and Matelli, 2003; Glover, 2004) (e.g., planning and on-line control). Here, we test the hypothesis that these two circuits support the same functional components of grasping, in parallel, but with serial temporal dependencies, which is indicative of a hierarchical organization.

This hypothesis is grounded on two sets of observations. First, the two circuits, which are monosynaptically connected (Borra et al., 2008; Gambarini et al., 2009; Gerbella et al., 2011; Gharbawie et al., 2011), show functional overlap in the processing of intrinsic object features, such as size and shape, to plan a grasping movement (Murata et al., 2000; Fattori et al., 2010). Second, there is evidence that the operations of the two circuits have different temporal profiles (Tunik et al., 2008). TMS interferes earlier with dorsolateral than with dorsomedial contributions (Davare et al., 2006; Taubert et al., 2010), and aIPS rapidly builds a preliminary motor plan based on multiple sources of information (Verhagen et al., 2012). Yet, it remains to be seen how the functions and temporal dynamics of these two circuits interact. This interaction can only be studied when their contributions are separately probed and directly contrasted.

We address this issue by using a combination of movement analyses, EEG, TMS, and task manipulations requiring human subjects to grasp objects oriented at different slants. The slant of the object influences the sensorimotor complexity of the movement: a horizontally slanted objects requires a more complex grasp than a vertically slanted object because it is harder to reliably reach the digit endpoints and to accommodate tighter spatial constraints (Gentilucci et al., 1996; van Bergen et al., 2007; Bouwman et al., 2009). Furthermore, both BOLD and EEG power mea-
sures have shown that this grasping task engages both dorsolateral and dorsomedial circuits (Verhagen et al., 2008, 2012). In this study, functional and temporal dependencies between dorsolateral and dorsomedial processes were assessed by perturbing neural processing in either aIPS or sPOS with single-pulse TMS during grasp preparation. The consequences of those TMS perturbations were quantified behaviorally with movement analyses, and cerebrally by tracking changes in alpha-band and beta-band oscillatory power, well known indices of increased computational load (Neuper et al., 2006; Jensen and Mazaheri, 2010). The sensitive measurements provided by the integration of these techniques indicate that both parietofrontal circuits support the same functional components of grasping, in parallel, with the dorsomedial circuit serially dependent on a preliminary motor plan structured by the dorsolateral circuit.

Materials and Methods

Subjects

The dataset used in this study was acquired in the context of a larger dataset, parts of which were described previously (Verhagen et al., 2012). These studies used the same cohort of subjects, applying the same inclusion and exclusion criteria and basic data preprocessing steps, but report different sets of results. In this report, we summarize the overlapping methodology, and describe in detail the novel aspects of this study. Datasets from 24 healthy, right-handed subjects (mean ± SD, age: 21 ± 2 years; handedness: 89 ± 11; 9 males) (Oldfield, 1971) with normal or corrected-to-normal vision were included in this experiment. The study was approved by the local ethics committee and a written informed consent was obtained before the start of the experiment according to the Declaration of Helsinki.

Experimental setup and task

Subjects were seated at a table; their head was stabilized by a chin rest. They wore ear plugs, and their right hand rested on a button box, pressing down the “home-key.” Vision was controlled by two mechanical shutters that could be opened and closed independently within 3.4 ms (Fig. 1A). At the start of a trial, subjects’ vision was occluded. Then, after a random time interval (2–4 s), either one or both shutters opened, allowing monocular or binocular vision of the object to be grasped. The target object (a black rectangular object, 6 × 6 × 2 cm) was displayed against a white background, suspended in front of the subject along the midsagittal plane at a comfortable reaching distance (~25 cm in front and ~30 cm above the starting position of the right hand) (Fig. 1A). The orientation of the object could be varied around its pitch axis, in seven steps of 15° between the frontoparallel (vertical) and transversal (horizontal) plane. In the vertical configuration (0° relative to the frontal plane) the object is suspended upright with its largest surface facing the subjects directly. Subjects grasped the vertical object with the index finger on the top of the object and the thumb on the bottom. When the slant of the object is increased, the top of the object is further away from the subjects (and the bottom closer). In the horizontal configuration (90° relative to the fron-
tual plane) the object’s largest surface is in parallel with the tabletop. Subjects grasped the horizontal object with the index finger on the far end of the object and the thumb on the close end. They slid the object from its support, held it in mid-air, placed it back into its support, and then returned to the starting position (Fig. 1B). As soon as the subjects started to grasp (releasing the home-key), their vision was occluded. This absence of visual feedback, as well as the requirements to hold the object against gravity, further ensured that the subjects prepared an accurate grasping movement.

A trial lasted between 6 and 11 s (mean, ~8 s). Subjects performed 6 blocks of 84 trials each (~11 min per block), a total of 504 trials for the whole experiment (~60 min including short breaks between each block).

Experimental design

We considered two factors: TMS site (three levels: control, aIPS, and sPOS) (Fig. 1B), and object slant (two levels: vertical: 0°, 15°, 30°; horizontal: 60°, 75°, 90°) (Fig. 1C). This experimental design manipulates the demands on visuospatial transformations by varying object slant, testing the effects of TMS over aIPS and sPOS. With increasing object slant, the wrist, thumb, and especially the index finger need to be lifted and transported further along a more constrained path requiring increased coordination of multiple joints. The end-point of the index finger becomes occluded and the object becomes an obstacle on the intended trajectory for the hand and fingers. These constraints increase the demands for accurate sensorimotor transformations. If both aIPS and sPOS contribute to these sensorimotor processes, then TMS over either region is expected to disturb an electrophysiological correlate of these processes, i.e., suppression of low-frequency cerebral oscillation (Verhagen et al., 2012). We can track the dynamics of these changes in oscillatory power by virtue of the temporal specificity of EEG.

To determine whether the expected modulations were driven by the required output of the system, or alternatively by its available input, we considered the type of vision of the object as a *post hoc* factor (two levels: binocular, monocular). Binocular (stereoscopic disparity) and monocular (pictorial) cues of depth are differentially dependent on the slant of the object, with binocular cues being most informative for vertically slanted objects, and monocular cues for horizontally slanted objects (Knill, 2005). If the sensorimotor transformations are fully determined by the quality of the visual cues they should follow the differential dependency of vision on object slant (i.e., reveal a different relationship between parietofrontal circuit involvement and object slant for monocular and binocular trials). However, if the sensorimotor transformations are only informed by the required movement, the increasing demands for accurate sensorimotor transformations with increasing object slant should be equal for monocular and binocular trials.

The seven object slants were binned in two factorial levels of object slant (vertical: 0°, 15°, 30°; horizontal: 60°, 75°, 90°) to maximize the number of trials per condition for statistical inference (see below, EEG: statistical inference). We arbitrarily chose to provide monocular vision to only the right eye. To prevent a preference by expectation for the right eye we included left eye monocular trials as catch trials (~8% of the total). In summary, each condition of the TMS site (3) × slant (2) × vision (2) design contained 33 trials; a total of 396 trials were included in the analysis, and 108 additional trials were considered catch trials (66 trials with objects slanted at 45°, and 42 trials allowing only monocular vision to the left eye). Experimental conditions were pseudorandomized and evenly distributed across trials.

TMS

On each trial, we delivered a single monophasic TMS pulse (Magstim) at a randomized time point between 100 and 400 ms after stimulus presentation (but before movement onset). This relatively wide temporal range allowed inferences to be drawn from the whole preparation phase, but minimized the predictability of the TMS occurrence for the subjects. No TMS pulses were delivered between 200 and 300 ms after stimulus presentation to ensure that a sufficient number of trials could contribute to a continuous averaged EEG signal unaffected by TMS artifacts. The pulses were delivered at a particularly low intensity, at the active motor threshold (AMT) (Rossini et al., 1994), improving functional specificity (Verhagen et al., 2012). Average AMT was 33 ± 7% (mean ± SD) of maximum stimulator output. Subjects wore earplugs during both AMT determination and the experimental sessions to minimize the acoustic effect of TMS delivery.

During each of the six blocks of trials, TMS was applied with the coil centered over one of three different sites, counterbalanced within subjects: (1) group-averaged coordinates of the left anterior region of the intraparietal sulcus (Verhagen et al., 2008), the putative human homolog of macaque anterior intraparietal area (Culham et al., 2006) (2) group-averaged coordinates of the anterior bank of the superior part of the parieto-occipital sulcus in the left hemisphere (Verhagen et al., 2008), the putative human homolog of macaque visual area 6A (Cavina-Pratesi et al., 2011), or (3) a site controlling for nonspecific TMS effects (the vertex of the head). The coil was oriented in such a way that first half of the monophasic pulse was delivered over the aIPS site in an inferior/posterior to superior/anterior direction, over the sPOS site from inferior to superior direction, and over the vertex of the head from a posterior to anterior direction. Continuous online stereotactic guidance of the TMS coil was physically incompatible with the current experimental setup. Therefore, we adopted an alternative approach to ensure anatomical and functional consistency in the TMS intervention (described in detail in a previous report) (Verhagen et al., 2012). In brief, by using a low-intensity stimulation we ensured that only neuronal populations activated by the task will be effectively perturbed, whereas other neuronal populations with a similar distance from the TMS coil, but not activated by the task remain functionally unaffected task (Allen et al., 2007). Furthermore, preceding the data acquisition in the main cohort of subject, we quantified the variability of TMS site localization in six additional pilot subjects.

Specifically, we transformed the stereotactic coordinates of aIPS and sPOS (MNI coordinates: [−42 −44 42] and [−18 −72 50]) (Verhagen et al., 2008) into the native anatomical space of each pilot subject (as defined by their structural MRI scan). The projection of that location on each subject’s scalp did not vary across the pilot group >7 mm for the aIPS site and 9 mm for the sPOS site. This variability is within the spatial range of the effective magnetic field changes induced by the TMS pulse and within the variability achieved using alternative neuronavigation approaches (Sack et al., 2009). We mapped the aIPS and sPOS sites (Fig. 1B) off-line with respect to the 10-10 system for EEG electrode positioning after the procedure described in detail in a previous report. The scalp-projection of the aIPS site fell near electrode CP3, superior to electrode CP5 located above the supramarginal gyrus (Koessler et al., 2009). The scalp-projection of the sPOS site fell just left of the midpoint between electrodes POz and Pz. The vertex site, serving as a control site, was defined as the point where both the sagittal midline from nasion to inion and the coronal line from ear to ear were dissected in the middle (Jasper, 1958; Chatrian et al., 1985).

Kinematics

Data acquisition. We sampled position and orientation of four sensors at 250 Hz, using an electromagnetic tracking system (LIBERTY, Polhemus). Three sensors were placed on the hand and fingers: on the nail of the thumb, the nail of the index finger, and on top of the first metacarpophalangeal joint (labeled “hand”). The fourth sensor was positioned on the object to be grasped, along its axis of rotation.

Data analysis. Kinematic data were analyzed off-line using MATLAB (Mathworks). A detailed specification of the analysis procedure can be found in Verhagen et al. (2012).

First, we preprocessed the sensor time series: removing the TMS-induced artifact, low-pass filtering at 15 Hz (sixth order Butterworth), and defining a virtual “grip” sensor as the mean position of the thumb and index finger sensors. We then calculated several derivatives: velocity, acceleration, grip aperture, grip orientation, and grip velocity.

Subsequently, we took particular care to robustly estimate the onset and offset of the movement. We used a multiple-sources of information approach, formalized in both binary and continuous functions weighted to find optimal points of transition (Schoot et al., 2010). Movement onset was defined as the point in time when the fingers just started moving (binary: velocity >0.02 m/s), but their velocity and the grip aperture were as small as possible (continuous: velocity ↓ 0, aperture ↓ 0). To identify movement offset, the grip sensor must be and stay close to the object
(binary: distance <7 cm), grip velocity must be decreasing and stay low (binary: grip velocity <0.05 m/s), whereas the velocities of the sensors and the grip, and the grip aperture must be as small as possible (continuous: velocity ↓ 0, aperture ↓ 0).

To characterize the kinematics of the grasping movement we calculated commonly used kinematic parameters (Jeanneud, 1984): reaction time (RT), movement duration (MT), trajectory length (TL), mean velocity (μV), mean transport velocity (during first 75% of the movement; μTV), peak velocity (during last 25% of movement; AV), peak velocity (PV), time to peak velocity (tPV), peak grip aperture (PGA), time to peak grip aperture (tPGA). The TL, $\mu V, \mu TV, AV, PV, tPV$ parameters were based on the velocity time series of the virtual grip sensor, i.e., the mean of the thumb and index finger sensors.

Finally, we described the spatial variability of the movements of the hand, thumb and index finger by calculating spatial confidence intervals of the trajectories at multiple points along the movement. These spatial confidence intervals were obtained separately for each object slant in each individual subject based on spatially averaged trajectories. Our approach is similar to the method described by Liu and Todorov (2007) but resulted in 2D confidence ellipses for each point along the trajectory in a plane perpendicular to the movement direction at that point. Averaging trajectories in space, regardless of time, is not trivial and requires an iterative algorithm to converge upon a solution (Liu and Todorov, 2007).

To initialize the cycle, all movements were resampled to 1000 points on equidistant intervals along the trajectory. An average trajectory was created by taking the mean of all trajectories on a point-by-point basis. We then restructured the individual trajectories by taking the closest point from each resampled 1000-point trajectory to each point of the average. To minimize the chance that one point of an individual trajectory maps onto multiple points of the average, the average was first down-sampled to 300 equidistant points. This cycle of steps was repeated with the restructured trajectories being used to calculate a new average in an iterative fashion until convergence upon a stable spatially averaged trajectory (i.e., no change from one iteration to the next). The trajectory variability was calculated on basis of these resampled trajectories. For each of the 300 points of the average, the instantaneous gradient in three dimensions was used as a normal vector to describe a plane perpendicular to the movement direction. For all trajectories the intersection with this plane was calculated using linear interpolation resulting in a 2D distribution of points (oriented in 3D). The confidence ellipse was calculated on the basis of an Eigen-decomposition of the covariance matrix of this set of points and scaled using a critical parameter describing the variability of the trajectories along the movement is the area of the confidence ellipses resulting in 300-point time-series. Statistical inference. We excluded trials in which subjects started moving before the TMS pulse. Within each subject, trajectory points were identified for which the difference between conditions exceeded an arbitrary threshold ($p < 0.05$) in an independent samples t test. A cumulative statistic was calculated for each cluster of surviving points connected along the trajectory. An accurate Monte Carlo estimate of the permutation p value is obtained by comparing the cluster-level statistic of interest to the distribution of cluster-statistics calculated from 10,000 random permutations of the conditions.

EEG

Data acquisition. We recorded the EEG using 31 Ag/AgCl electrodes, organized on a flat-tip cap (BrainProducts) according to the 10-10 system (Chatrani et al., 1985). Electrical voltage was sampled at 5000 Hz using an amplifier with a high dynamic range and capable of direct current recording (MR+DC BrainAmp, BrainProducts). The EEG data were low-pass filtered at 1000 Hz. Electrical artifacts associated with the TMS pulse were minimized during acquisition by the use of tip, rather than classical circular, electrodes and by positioning the EEG cables perpendicular to the orientation of the TMS coil whenever possible. Furthermore, to minimize the temporal spread of TMS induced artifacts, no high-pass filter was applied at acquisition.

Data analysis. After excluding trials with prominent eye movements, blinks, and muscle artifacts (on the basis of visual inspection of the data), EEG data were processed and analyzed using a MATLAB toolbox (FieldTrip, http://www.ru.nl/neuroimaging/fieldtrip/) (Oostenveld et al., 2011). TMS artifacts were identified, modeled, and removed using an iterative least-squares optimization algorithm when possible, or otherwise the trial was discarded (Ilmoniemi and Kiciê, 2010; Verhagen et al., 2012). On average, 79 ± 6% (mean ± SD. across subjects) of the trials survived both the kinematic and EEG exclusion criteria. The remaining data were re-referenced to the average signal of all sensors to remove any spatial effects on voltage differences with respect to the location of the reference electrode. By means of independent component analysis (Lee et al., 1999; Makeig et al., 2004) residual signals related to eye movements, blinks, muscle tension, and TMS artifacts were identified and removed (Korhonen et al., 2011). After power line noise was removed (using discrete Fourier transform notch filters at 50, 100, and 150 Hz), data were bandpass filtered (0.75–150 Hz using a sixth order Butterworth filter) and down-sampled to 500 Hz.

For each trial and sensor we calculated time–frequency representation TFRs of oscillatory power using a Fourier transform approach (8–35 Hz, in steps of 1 Hz) applied to sliding time windows (sliding in 20 ms steps) multiplied by a Hanning taper. We focused on a low-frequency range (8–35 Hz) where power can be robustly estimated with minimal signal deterioration by potential artifacts. In this range, two prominent and dissociable oscillatory rhythms are present that index cerebral activity: the alpha (9–12 Hz) and beta (18–24 Hz) frequency bands. We performed the time–frequency analyses with two different time-window durations: a relatively short 200 ms taper (5 Hz frequency smoothing), and a more conventional 400 ms taper (2.5 Hz frequency smoothing). The 200 ms taper was used when estimating oscillatory power shortly before and after the TMS pulse, prioritizing temporal above spectral specificity. Power could not be estimated in a 220 or 420 ms window around the TMS pulse, for the 200 and 400 ms tapers, respectively (the width of one taper and one additional step of 20 ms). However, because of the trial-to-trial variation in the time of the TMS pulse, we could still generate a continuous average estimate of power using the short taper. For each experimental condition, power estimates were averaged over trials, log-transformed, and related to a baseline period from the same trials (relative change from [–700 – 200] ms before stimulus presentation). Subsequently, the individual effects were grand averaged over subjects to estimate the group effects.

Statistical inference. Within each subject, the difference between conditions was quantified as the difference of the relative log-transformed mean power changes. Statistical inference ($p < 0.05$) was performed at the group level (within-subjects random-effects analysis) using a non-parametric randomization test controlling for multiple-comparisons across the sensor, frequency, and time dimensions (SFT points) (Maris and Oostenveld, 2007). This nonparametric test requires two conditions to be randomly swapped, preventing a full factorial analysis similar to the ANOVA of the behavioral data. Importantly, in the current experimental design the factors TMS site, object slant, and vision were orthogonal to
Spatial variability of finger and hand trajectories (object slant)

A. grasping vertical objects
B. grasping horizontal objects
C. index finger variability
D. thumb variability
E. hand variability

Figure 2. Spatial variability of hand and finger trajectories as a function of object slant. A, B, 3D representations of the effect of object slant (during control sessions) on the shape of the 95% confidence interval of the trajectories of the index finger (red), thumb (green), and hand (blue). The confidence trajectories are calculated for each object configuration separately, but binned in two levels: A, vertical: 0°, 15°, 30°; B, horizontal: 60°, 75°, 90°. C–E, Trajectory dynamics of the tangential area of the 95% confidence intervals when grasping vertical (blue) and horizontal (orange) objects. Shaded areas surrounding the curves represent SEM. Clusters with significant effects of object slant are indicated with gray boxes on the x-axis.

Behavioral effects of grasping a slanted object: increased sensorimotor demands change grasping kinematics

Behavioral measurements obtained after control TMS over the vertex indicated that grasping a horizontal object places higher demands on sensorimotor processing than grasping a vertical object. When grasping a vertically oriented object the target endpoints of the thumb and index finger can be reached relatively straightforwardly. In contrast, grasping a horizontally oriented object involves satisfying two additional constraints: (1) specifying an unseen endpoint for landing the index finger on the object while avoiding collision with its distal edge; and (2) moving the index finger along a longer path over the object while the wrist is being flexed (Gentilucci et al., 1996; Mamassian, 1997; van Bergen et al., 2007; Brouwer et al., 2009). The first constraint is meant to reduce the velocity and variability of the trajectory of the index finger when it closely approaches the desired end-point, as required by the need to avoid collisions with the object edge (acting both as an obstacle and a target) and slippage. The second constraint is meant to increase the variability of the trajectory of both fingers and the hand when the hand is approaching a horizontally oriented object. These qualitative hypotheses were confirmed in a quantitative comparison of the spatial variability of the movement trajectories. More specifically, we indexed the spatial distribution of the hand, thumb, and index finger at multiple points along the trajectory by estimating 95% confidence ellipses perpendicular to the movement direction (Fig. 2A,B). The spatial variability of the trajectory is described by the evolution of the area of these confidence ellipses across the trajectory, separately for grasping horizontally oriented and vertically oriented objects (Fig. 2C–E). It can be seen that, during the final 5% of the movement, the variability of the index finger is significantly reduced when grasping horizontally oriented objects ($p = 0.012$) (Fig. 2C). This effect occurs when the index finger needs to curl around the edge of the object (Fig. 2B). This finding supports the notion
Behavioral effects of varying sensorimotor demands of grasping (object slant)

![Graphs illustrating behavioral effects of varying sensorimotor demands of grasping](Image)

Figure 3. Behavioral effects of varying sensorimotor demands of grasping by object slant. A–F, Bar plots showing kinematic parameter values of the effect of object slant (mean ± SEM). Color coding is as in Figure 1, B and C bars are grouped by object slant (blue, vertical; orange, horizontal), with bar face color indicating the site of TMS (gray, control; magenta, aIPS; cyan, sPOS). Significant effects of object slant are indicated with stars (*p < 0.05; **p < 0.01). A, RTs were not modulated by object slant, but were significantly shorter after TMS over aIPS compared with control stimulation. B, Grasping movement durations increased with increasing object slant. C, D, The increase in movement duration was driven by an increased TL and accompanied by a small increase in their PV. E, F, During the transport toward the object (first 75% of the movement) the velocity of the virtual grip sensor increased with increasing object slant (μTV). In contrast, when approaching near horizontal objects (last 25% of the movement) the fingers moved with a slower velocity than when approaching near vertical objects (μAV).

Table 1. Behavioral effects

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Effect of slant</th>
<th>Control TMS<sup>a</sup></th>
<th>TMS over aIPS<sup>a</sup></th>
<th>TMS over sPOS<sup>a</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td>RT (ms)</td>
<td></td>
<td>Vertical: 672 (34)</td>
<td>669 (35)</td>
<td>642 (33)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Horizontal: H9262</td>
<td>H9262</td>
<td>H9262</td>
</tr>
<tr>
<td>MT (ms)</td>
<td></td>
<td>Vertical: 1038 (49)</td>
<td>1101 (49)</td>
<td>1020 (41)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Horizontal: H9262</td>
<td>H9262</td>
<td>H9262</td>
</tr>
<tr>
<td>TL (cm)</td>
<td></td>
<td>Vertical: 40.9 (0.4)</td>
<td>44.7 (0.4)</td>
<td>41.1 (0.5)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Horizontal: H9262</td>
<td>H9262</td>
<td>H9262</td>
</tr>
<tr>
<td>μTV (cm/s)</td>
<td>0.029 (5.46)</td>
<td>Vertical: 41.9 (1.9)</td>
<td>42.8 (2.0)</td>
<td>42.3 (1.8)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Horizontal: H9262</td>
<td>H9262</td>
<td>H9262</td>
</tr>
<tr>
<td>μAV (cm/s)</td>
<td>0.019 (4.42)</td>
<td>Vertical: 10.1 (0.7)</td>
<td>9.1 (0.6)</td>
<td>10.4 (0.8)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Horizontal: H9262</td>
<td>H9262</td>
<td>H9262</td>
</tr>
<tr>
<td>PV (cm/s)</td>
<td>0.029 (5.48)</td>
<td>Vertical: 102.5 (4.3)</td>
<td>101.9 (4.8)</td>
<td>102.8 (1.8)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Horizontal: H9262</td>
<td>H9262</td>
<td>H9262</td>
</tr>
<tr>
<td>IPV (ms)</td>
<td>0.749 (0.11)</td>
<td>Vertical: 333 (15)</td>
<td>334 (16)</td>
<td>326 (14)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Horizontal: H9262</td>
<td>H9262</td>
<td>H9262</td>
</tr>
<tr>
<td>PGA (cm)</td>
<td>0.000 (75.29)</td>
<td>Vertical: 12.1 (0.2)</td>
<td>11.3 (0.2)</td>
<td>12.1 (0.2)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Horizontal: H9262</td>
<td>H9262</td>
<td>H9262</td>
</tr>
<tr>
<td>IPGA (ms)</td>
<td>0.000 (56.12)</td>
<td>Vertical: 679 (34)</td>
<td>756 (36)</td>
<td>666 (30)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Horizontal: H9262</td>
<td>H9262</td>
<td>H9262</td>
</tr>
</tbody>
</table>

The discussion states that, in the current experimental setup, grasping a horizontally oriented object entails the satisfaction of additional spatial constraints on the index finger, increasing movement complexity with respect to grasping a vertically oriented object. It can also be seen that, in the second half of the movement, the variability of the trajectories of both fingers and hand was larger when grasping horizontally oriented objects (index finger: between 52 and 75% of path length, p = 0.019; thumb: 69–97%, p < 0.001; hand: 21–100%, p < 0.001) (Fig. 2C–E). This effect occurs in mid-flight, when the fingers and the hand travel over the object. During this phase, those effectors reach higher velocity than when grasping vertically oriented objects (Fig. 3E), and their position is not spatially restricted as when the fingers need to be in contact with the object. These conditions lead to a generalized increase in spatial variability of the trajectories of both fingers and hand during this stage of the movement. This effect is consistent with the notion that, when grasping a horizontally oriented object, coordinating fingers and hand is more complex. Finally, in contrast to the thumb and index finger, the variability of the hand remains larger when grasping horizontally oriented objects even in the final 5% of the movement, in accordance with the fact that the back of the hand was not spatially restricted even in the final phase of the movement.

Other kinematic parameters corroborated the inferences drawn from the spatial variability of the movements of the hand, thumb, and index finger (Table 1; Fig. 3) (main effect of slant within the control session). The hand traveled a longer path at a slightly higher average speed, resulting in longer movement durations (MT, TL) (Fig. 3B, C). The peak velocity was slightly higher when grasping horizontal compared with vertical objects, but occurred at the same time point after movement onset (PV) (Fig. 3D). Importantly, the velocity of the fingers had similar
dynamics as the variability of the index finger trajectory, namely being significantly higher when grasping horizontal compared with vertical objects in the first three quartiles of the movement ($\mu_{TV}: F_{1,22} = 14.69, p < 0.001$) (Fig. 3E), although being significantly lower in the last quartile ($\mu_{AV}: F_{1,22} = 6.42, p = 0.019$) (Fig. 3F). In contrast to these widespread effects on the grasping kinematics, object slant did not influence the duration of movement planning ($\text{RT}: F_{1,22} = 0.26, p = 0.615$) (Fig. 3A). We also observed that with increasing slant from vertical to horizontal the peak grip aperture became smaller and occurred later (PGA and tPGA) (Table 1; Fig. 3G,H). This finding has been consistently reported in the literature (Mamassian, 1997; Démurger et al., 1998; van Bergen et al., 2007). When grasping vertical objects the hand palm is facing the frontal surface of the object, and the peak grip aperture is reached by opening both the index finger and thumb. However, when grasping horizontally slanted objects, the hand palm is not fully rotated with the object to minimize effort (otherwise the hand would need to be lifted directly above the object). The remaining rotation of the grip is achieved by keeping the thumb closer to the hand palm, and the index finger fully extended. Accordingly, the peak grip aperture is limited when grasping more horizontally oriented objects. This biomechanical constraint overshadows any potential influence of changes in planning uncertainty on the peak grip aperture (Jean-nerod, 1986).

Cerebral effects of grasping a slanted object: increased sensorimotor demands enhance dorsomedial alpha-suppression

Planning and executing the grasping movement led to strong suppression of ongoing low-frequency oscillations (alpha, 8–12 Hz, over parieto-occipital sensors; beta, 18–24 Hz, over fronto-parietal sensors) (Verhagen et al., 2012), a well known index of increased computational load (Neuper et al., 2006; Jensen and Mazaheri, 2010).

As object slant increased from vertical to horizontal, movement complexity increased, and alpha-power over dorsomedial parietal and frontal areas was suppressed even further ($p = 0.004$; Fig. 4A). Importantly, this additional alpha-suppression, related to increased sensorimotor complexity, arose just before movement onset and persisted during the first half of the movement, when vision of the hand and object was prevented (Fig. 4B,C).

The enhanced alpha-suppression in trials with the object in a more horizontal orientation (from here on labeled “sensorimotor alpha-suppression”) was not modulated by the type of depth information allowed by vision (binocular or monocular: post hoc, $p = 0.65$). In general, we found no significant differences in oscillatory power between monocular and binocular trials or significant interactions between object vision (monocular, binocular) and TMS site. This indicates that the changes in sensorimotor alpha-suppression are purely a consequence of the requested motor output, and not driven by the information value of the visual input, or the type of depth information (Knill, 2005).

However, the lack of differences in oscillatory power between monocular and binocular trials does not imply a discrepancy with well known effects of visual input on event-related potentials (ERP) (Campbell and Green, 1965; Perry et al., 1968). In fact, a post hoc time-locked ERP analysis indicated that visually evoked potentials (N70-P100-N140, relative to stimulus onset) had a higher peak-to-peak amplitude during binocular compared with monocular vision, regardless of object orientation and stimulation site ($p < 0.001$). This observation matches previous findings of changes in both EEG ERPs and fMRI BOLD signals originating from early visual cortex (Campbell and Green, 1965; Perry et al., 1968; Verhagen et al., 2008). Importantly, this early effect of object vision occurred before the delivery of the TMS pulse, and it did not interact with the other experimental factors, or with the induced oscillatory power effects following the TMS delivery.
Cerebral consequences of TMS perturbation over aIPS and sPOS: functional dependencies between dorsolateral and dorsomedial circuits

To probe the functional dependencies between the dorsolateral and dorsomedial parietofrontal channels we used TMS to interfere with processing in aIPS and sPOS and tracked the consequences on cerebral computations supporting action planning and execution. Accordingly, we tested where and when sensorimotor alpha-suppression (Fig. 4) differed as a function of TMS site. We found that compared with control stimulation, TMS of both aIPS and sPOS diminished the sensorimotor alpha-suppression over medial parietofrontal cortex (aIPS: \(p = 0.006 \); sPOS: \(p = 0.017 \) (Fig. 5A).

These interactions of TMS site with sensorimotor alpha-suppression could be further specified in both topography and temporal dynamics. The spatial distribution of the perturbation effects evoked by aIPS and sPOS TMS overlapped with the topography of unaffected sensorimotor alpha-suppression evoked by vertex TMS (Figs. 4A, 5A). The perturbation effects were observed on top of the already strong low-frequency oscillatory suppression of these regions during action planning and execution (Fig. 4B,C) (Verhagen et al., 2012). Importantly, the timing of the effects differed: aIPS stimulation altered the sensorimotor alpha-suppression early during movement performance ([−40 380] ms relative to movement onset) (Fig. 5B,C, left panels), whereas sPOS stimulation induced a late alteration ([300 580] ms after movement onset) (Fig. 5B,C, right panels). Stimulation over the two parietal sites also differed significantly from each other early after movement onset ([80 260] ms after movement onset; \(p = 0.025 \)). These findings indicate that aIPS and sPOS contribute to the same sensorimotor processes, but are critically different in the timing of their contributions.

Dorsolateral alpha-suppression after sPOS perturbation

Above, we described the effects of movement complexity as a function of object slant and the interaction with TMS site. In addition, we observed one important general effect of TMS site, regardless of object slant. TMS over sPOS, compared with TMS over vertex, led to a sustained stronger suppression in the alpha frequency band over left anterior lateral parietal cortex. This sup-
pression was localized around electrode CP5 (putatively located over the superior marginal gyrus in the inferior parietal lobule) (Koessler et al., 2009) and continued throughout movement planning and the early stages of execution (p = 0.014) (Fig. 6A, B). In contrast, no main effect of TMS over aIPS was observed.

A priori, TMS perturbation of a region involved in the task, sPOS in this case, could be expected to cause a local reduction in low-frequency (alpha-band) power, reflecting disrupted neural computations. Here, instead, we observed a distant enhancement of alpha power that transcended the contribution of sPOS in both time and function. This effect was not accompanied by a change in kinematic behavior (Table 1). Together, these findings suggest that the increased alpha-band suppression in anterior lateral parietal cortex might have a general compensatory function following perturbation of sPOS by TMS. The alpha-suppression evoked by TMS over sPOS was not modulated by the type of vision allowed (binocular or monocular: post hoc, p = 0.96).

Discussion

This study assessed temporal and functional dependencies between parietofrontal circuits supporting goal-directed action, focusing on the relation between aIPS and sPOS contributions. Subjects grasped an object oriented at different slants, while maintaining constant object position, size, and shape. This manipulation varied movement complexity and consequently the demands on sensorimotor processing. There are three main results. First, when subjects grasped horizontally oriented objects and sensorimotor complexity increased, there was enhanced suppression of oscillatory power in the alpha-band over dorsomedial parietofrontal areas (in short, sensorimotor alpha-suppression), starting before movement onset and continuing during movement execution. This finding indicates that grasping parameters are specified in the dorsomedial parietofrontal circuit, just before movement onset. Second, disturbing either aIPS or sPOS during movement planning with single-pulse TMS had the same electrophysiological consequences, namely a disruption of the sensorimotor alpha-suppression, starting before movement led to strong suppression of oscillatory alpha power over occipital, parietal, and frontal sensors (Verhagen et al., 2012). Here, we report that alpha-suppression over dorsomedial parietofrontal regions changes as a function of grasp complexity: the suppression becomes stronger when the slant of the grasped object increases (Fig. 4). This effect is relevant because, in the current experimental setting, grasping horizontally slanted objects increases the computational load of the grasping movement. The object acts as an obstacle for seeing and reaching the intended digit end-points, and it requires the coordination of multiple joints along a longer path (Gentilucci et al., 1996; Ramnani et al., 2001), resulting in slant-related changes in trajectory variability (Fig. 2). The scalp topography of the sensorimotor demand-related alpha-suppression matches the spatial distribution of increased BOLD activity evoked by grasping objects at increasing slants, previously found to be centered on sPOS and PMd (Verhagen et al., 2008). These kinematic and electrophysiological findings provide evidence that sPOS deals with the transport of the hand only (Cavina-Pratesi et al., 2010; Gallivan et al., 2011). Crucially, the dorsomedial sensorimotor alpha-suppression started shortly before movement onset, suggesting that this element of the grasping movement is incorporated in the motor plan at a late stage. This observation fits with the timing of visuomotor neurons recorded from area V6A in macaques that specialize in grasping with the contralateral hand.
sharply increase in firing rate just before movement onset and continue to fire during movement execution (Galletti et al., 2003; Fattori et al., 2009). Together, these findings indicate that the dorsomedial parietofrontal circuit specifies motor parameters controlling arm, wrist, and finger movements with respect to object configuration, and that those parameters are specified just before movement onset.

aIPS supports grasping parameterization before sPOS

Single-pulse TMS interference over aIPS or sPOS during grasp planning reduced sensorimotor alpha-suppression over dorsomedial parietofrontal regions (Fig. 5A). This effect was strongest when TMS was delivered while subjects planned to grasp horizontally slanted objects, and its characteristics changed according to the site of the TMS intervention. Sensorimotor alpha-suppression occurring around movement onset was disturbed by aIPS stimulation, whereas sPOS stimulation reduced alpha-suppression later during the movement. Two inferences can be drawn from these observations. First, the spatial and spectral overlap of the TMS effects indicate that disturbing aIPS and sPOS has the same neural consequences during grasp planning, suggesting that these areas support the computation of similar grasp parameters. This inference fits with empirical findings reporting similar neuronal properties of these regions (Murata et al., 2000; Fattori et al., 2009).

Second, the different temporal dynamics of the TMS effects indicates that sPOS computations follow information processing in aIPS early during planning. We infer that the dorsomedial circuit specifies motor parameters on the basis of object knowledge already processed in the dorsolateral stream, which in turn is informed by information elaborated in the ventral visual stream (Verhagen et al., 2008, 2012). The effects on dorsomedial alpha power were independent of the available visual cues (binocular, monocular) suggesting that sPOS computations might be functionally closer to the motor output than to the visual input, in line with the observation that the macaque homolog of this parietal region shows a relative abundance of motor over visual neurons (Gamberini et al., 2011).

The present data indicate that the two anatomically distinct parietofrontal circuits (Rizzolatti and Matelli, 2003) ignore the phenomenological border between motor planning and online control (Glover, 2004). Instead, a hierarchical organization between dorsolateral and dorsomedial circuits exists during motor planning, and it continues to operate during movement execution. We suggest that grasp computations, and not grasp timing, can be divided in two levels. The first level, impinging preferentially on the dorsolateral circuit, constructs an object-based action prior (Verhagen et al., 2012). The second level, impinging preferentially on the dorsomedial circuit, transforms currently available visuospatial evidence, in the context of the priors provided by the first level. In this framework, when object affordances change (Tunik et al., 2005), then dorsolateral computations become critical for online control; when extrinsic visuospatial parameters change (Desmurget et al., 1999), then dorsomedial computations are additionally required to adjust the grasping movement.

The dorsolateral circuit can compensate for sPOS perturbation

When sPOS activity was disturbed with TMS during motor preparation, there was a sustained increase in alpha-suppression over a left inferior parietal area, starting early during movement planning and continuing well into the execution phase (Fig. 6). This enhanced alpha-suppression over inferior parietal cortex was not a consequence of changes in grasping behavior, and emerged at a site and at a time remote from the TMS interference. Differently from the dorsomedial sensorimotor alpha-suppression effect discussed in the previous sections (Figs. 4, 5), the enhanced alpha-suppression over inferior parietal cortex was a main effect of stimulation site (TMS over sPOS vs TMS over vertex), and it started early during planning. The temporal and spatial characteristics of the enhanced alpha-suppression suggest that the dorsolateral circuit can compensate for a transient sPOS perturbation. This observation fits nicely with the grasping behavior of optic ataxia patients with bilateral lesions of the superior parieto-occipital cortex (Karnath and Pererin, 2005). These patients are impaired when asked to grasp a cylindrical object they have not encountered before (Jeannerod, 1986). However, they can skillfully grasp familiar objects of the same size and shape, for example, a tube of lipstick (Jeannerod et al., 1994). If the novel objects are presented repeatedly, the initially impaired hand shaping improves with increasing familiarity (Milner et al., 2001). The behavior of these patients suggests that object knowledge and previous experience, presumably processed in the dorsolateral circuit on the basis of computations performed in the ventral visual stream (Verhagen et al., 2012), can be used for structuring grasping movements when the dorsolateral stream is impaired. Accordingly, we speculate that the putative compensatory activity of inferior parietal regions we observed in this study could exploit the ability of the dorsolateral circuit to generate priors that constrain the grasp plan on the basis of abstract object knowledge (Arbib, 1985; Johnson and Grafton, 2003; Verhagen et al., 2012).

Conclusion

By measuring the behavioral and electrophysiological consequences of transient perturbation of aIPS and sPOS we have shown that the computations of both parietal areas converge on the same dorsomedial parietofrontal circuit, with aIPS contributions preceding those of sPOS. Furthermore, perturbation of sPOS was compensated by inferior parietal activity. These observations define the temporal and functional characteristics of aIPS and sPOS contributions to goal-directed grasping movements, and suggest a novel mechanism for the organization of these movements. First, aIPS computes an initial structure of the motor plan on the basis of object knowledge gathered from both dorsal and ventral visual streams (Verhagen et al., 2008, 2012). Second, dorsomedial parietofrontal regions use this movement structure as a prior for guiding the accurate parameterization of the movement in space. This mechanism also offers a reinterpretation of previous accounts of the organization of goal-oriented movements (Kandel et al., 2000; Glover, 2004; Culham et al., 2006). Planning versus online control and reaching versus grasping might be phenomenological instances of the underlying hierarchical organization of the dorsolateral and dorsomedial circuits, reflecting their temporal dependencies and the different levels of abstraction at which those circuits operate.

References

Medline
Medline
Rizzolatti G, Matelli M (2003) Two different streams form the dorsal visual