
1

Quality Measure Functions
for Calibration of Speaker Recognition Systems

in Various Duration Conditions
Miranti Indar Mandasari, Student Member, IEEE, Rahim Saeidi, Member, IEEE,

Mitchell McLaren, Member, IEEE, David A. van Leeuwen, Member, IEEE

Abstract—This paper investigates the effect of utterance dura-
tion to the calibration of a modern i-vector speaker recognition
system with probabilistic linear discriminant analysis (PLDA)
modeling. A calibration approach to deal with these effects
using quality measure functions (QMFs) is proposed to include
duration in the calibration transformation. Extensive experiments
are performed in order to evaluate the robustness of the proposed
calibration approach for unseen conditions in the training of cali-
bration parameters. Using the latest NIST corpora for evaluation,
results highlight the importance of considering the quality metrics
like duration in calibrating the scores for automatic speaker
recognition systems.

Index Terms—calibration, quality measures, duration, foren-
sics, speaker recognition, i-vector, PLDA.

I. INTRODUCTION

The traditional challenges associated with speaker recogni-
tion system can be attributed to the within-speaker variability
of recorded speech signals. Within-speaker or intra-speaker
variability [1] refers to the changes that occur in the recorded
speech produced by a single speaker. In speaker recognition,
the source of within-speaker variability may originate from
the language spoken by the speakers, speech register, vocal
effort, emotion, background noise, duration of speech samples,
recording channel and encoding, and the reverberation condi-
tions. The within-speaker variation has been shown to reduce
the performance of speaker recognition system [2]–[7].

In the real application of speaker recognition, there is a
high likelihood of having different conditions between the
reference (or model) and test recordings. For example, in a
forensic scenario, the test recording might originate from a
wire-tapped telephone conversation with the reference speech
recorded in the interview session. Another example is in
biometric authentication where differences may occur in the
reverberation and/or background noise conditions between the
enrollment of the speaker and actual authentication attempts.

There are a number of ways in dealing with the problem
of within-speaker variability in speaker recognition. Since
the Gaussian mixture model (GMM) was proposed for text-
independent speaker recognition in the 1990s [8], there has
been a strong focus on channel compensation and normaliza-
tion strategies in feature, score and model domains [9]–[15].
These strategies were proposed to improve system robustness
to the within-speaker variability problems.

The research leading to these results has received funding from the
European Community’s Seventh Framework Program (FP7/2007-2013) under
grant agreement number 238803.

Along with the development of speaker recognition tech-
nology, short duration cases have always been one of many
problems that lead to the system performance degradation. As
the speech duration is reduced, the system performance tends
to follow suit. This is due to the lack of information provided
by the short duration of speech samples. In [3]–[5] for exam-
ple, we can find related studies to discrimination performance
of speaker recognition systems in short duration conditions.
Even though it is reported in [16] that the i-vector system
performance is less sensitive to short utterances compared to
previous techniques such as support vector machine (SVM)
and joint factor analysis (JFA), performance still degrades in
the presence of short duration as presented in [3], [5].

There has been numerous studies in the speaker recognition
field in order to solve the short duration problem. In [17], the
duration variability problem in speaker recognition is tackled
using the duration pattern extracted from the automatic speech
recognition prior to the modeling and scoring process. In [18],
the short duration problem is addressed by doing logistic
regression and fusion from several speaker recognizers.

Almost invariably, the research studying the effects of
(shorter) duration in speaker recognition have concentrated on
the consequences to the discrimination performance, which
can be seen from the reported the performance in terms of the
calibration-insensitive equal error rate or minimum decision
cost function. However, for deployment of speaker recognition
systems, the calibration of the scores is equally important [20].
Traditional understanding of calibration is the capability of the
system to choose a threshold for detection optimally in terms
of minimum expected costs. However, in the last decade the
concept of calibration has been generalized to a wider range
of the detection-error trade-off [21]–[23] with the introduction
of the calibrated likelihood ratio and accompanying evaluation
metrics such as Cllr [22] and the empirical cross entropy [24].
Presentation of recognition results in terms of calibrated
log-likelihood-ratios is not only required for application in
forensic evidence evaluation [25], but also presents a speaker
comparison result in an application-independent way to the
user [22], [23]. For the first time in the National Institute
of Standards and Technology (NIST) Speaker Recognition
Evaluations (SRE) in 2012 [26] it was required to submit a
recognition score as a calibrated log-likelihood-ratio.

In our previous work [3], we evaluated i-vector based
speaker recognition system with LDA modeling in terms of
both discrimination and calibration performances on various
duration conditions. However, in that study, we did not propose
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Fig. 1. Score distributions of NIST SRE’10 det-5 database for before and after conventional linear calibration [19] performed in the model/test (sec) duration
conditions.

any technique to address this duration variability problem. This
paper is a continuation of that work in which we propose a
way to address the variability problem during calibration of
the speaker recognition system.

The proposed calibration technique that is introduced in this
paper is inspired by the concept of quality measures presented
in [27], [28]. Here, the quality measure is defined as “knowing
the quality of what you have,” which in our case are the speech
segments used for speaker recognition. We treated the duration
as not only the source of the within-speaker variability, but also
as the quality measure or quality factor of speech samples.

Using quality measures of speech to improve the system
performance is not a new thing in the speaker recognition
field. It is mentioned in [28] that there are four stages in
recognition process where the engagement of quality measures
is potentially possible in order to improve the system perfor-
mance: feature extraction, model training, score computation
and score fusion. In [29], the quality measures are incorporated
in a speaker recognition system in the modeling stage. Here,
the authors introduced a technique for combining quality
measure information in the system by classifying trials based
on speaker adaptation transforms from an automatic speech
recognition, and training fusion separately for each of those
trial class. The incorporation of quality measures in the score
fusion is quite popular in the field with most studies focusing
on bi-modal person recognition1 [30]–[33].

In this paper, we use the duration of model and test
segments of speech as the quality measures to improve the
calibration performance of the speaker recognition system in
various duration conditions. As can be seen from Figure 1,

1Person recognition based on two biometric modalities (speech, face,
fingerprints, etc.).

the duration variability in speaker recognition system affects
the distribution of scores. By keeping the model segment
duration as full and reducing the duration of the test segment,
the target scores distribution approaches the non-target scores
distribution (see the before calibration column). By training
a typical score calibration technique [19] on full duration
segments for model and test, we arrive at the right column
in Figure 1. When we calibrated the scores from shorter
duration conditions using the parameters trained from the
longer duration, the large score shift between training and
evaluation materials in calibration causes large miscalibration
cost. One way of dealing with the score shift in calibration
is by using discrete classes for the quality conditions, and
effectively training separate calibration parameters for any of
the possible combinations of quality conditions between train
and test. This was, for instance, carried out for the NIST
SRE 2008 by several groups [34], [35] in a calibration
implementation coined bi-linear fusion of side-information.
These ideas materialized later in the well-known BOSARIS
toolkit [36] that can be used for calibrating speaker recognition
scores with such side-information. This side-information can
be used for quality measures, but inherently as discrete classes.

The new approach taken in this paper is that we model
the effect of continuous quality measures to the calibration
in low-parameter continuous functions. This is an attempt
to capture the relation between a range of quality measure
values and the calibration process in a single function, with
the potential to both interpolate and extrapolate unseen quality
measure values and model the interaction between quality
measurements from train and test. We named this proposed
calibration technique Quality Measure Function or QMF cali-
bration. Please note that we use duration as an example quality
measure, but that the approach can also be applied for other
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measures, such as the signal-to-noise ratio. In this paper, we
present the results from a number of linear calibration exper-
iments in various duration conditions on a modern i-vector
based speaker recognition system with probabilistic linear
discriminant analysis (PLDA) modeling [37]–[39]. Besides
the proposed QMF calibration, we also report the calibration
performance using other linear calibration techniques such as
matched, mismatched, stacked scores, and shared scaling, as
comparison to QMF calibration. The proposed approach does
not only show improved performance in dealing with duration
variation of speech utterances, but also shows some robustness
in calibration towards extrapolated durations.

This paper provides an overview of automatic speaker
recognition system configuration used for the experiments in
Section II. Databases explanation and calibration performance
metrics are presented in Section III. In Section IV, all linear
calibration approaches analyzed in this paper are explained.
The experiment results discussed in Section V, and Section VI
concludes the paper.

II. AUTOMATIC SPEAKER RECOGNITION SYSTEM

Text-independent speaker recognition system technologies
have consistently been improving in the past decades [40].
Speaker recognition systems based on Gaussian mixture model
(GMM) speaker modeling were proposed in 1995 [8], and be-
came a fundamental approach for speaker recognition with the
introduction of the universal background model (UBM) around
2000 [41]. Several milestones in the GMM-UBM based system
development were achieved by the researchers subsequently.
Support vector machines (SVM) [42] and joint factor analysis
(JFA) [43] techniques were introduced from 2003–2007. Both
of these are examples of supervector approaches [40]. Re-
cently, the mainstream in the text-independent based speaker
recognition system has moved more towards compact rep-
resentations of the utterance in subspaces, known as i-
vectors [16].

The text-independent speaker recognition system used in
this paper is based on subspace modeling of i-vectors using
probabilistic linear discriminant analysis (PLDA). This section
presents a brief explanation of i-vector extraction and PLDA
modeling.

A. I-vectors

The speaker recognition system used in this paper follows
the i-vector framework that was proposed in [12], [16]. The i-
vector is a compact representation of the speech utterance in a
low-dimensional space. This space contains both speaker and
channel/session variability so that our speaker- and session-
dependent Gaussian mean supervector M can be modeled as:

M = m + Tw (1)

where m is the speaker- and session-independent mean su-
pervector of the UBM, T is a low-rank matrix that defines
the low-dimensional space, and w is our identity vector or
so-called i-vector.

The speaker- and session-dependent mean supervector in
i-vector speech representation is very similar to in the JFA

speaker representation [44]. The main difference between the
i-vector and JFA modeling is that JFA defines separate speaker
and session subspaces, while these factors of variability are
combined in a single space T in i-vector representation.

B. Probabilistic Linear Discriminant Analysis

Probabilistic linear discriminant analysis is a probabilistic
approach that models the i-vectors distribution with a Gaussian
assumption [37]–[39]. Computed scores from the PLDA model
are directly in the form of a ratio of the likelihoods that the
enrollment and test i-vectors come from the same speaker
and different speakers, respectively. The PLDA method im-
plemented in our system is similar to the approach in [45].

The PLDA models the distribution of i-vectors as the sum
of Gaussians for the speaker-dependent term, µ + Φyk and
an utterance dependent term Γzr + εr with r = 1, . . . , R
utterances for a speaker k [15], [37]. The overall mean of
the training vectors is denoted by µ and the matrices Φ and
Γ are composed of the bases for between-speaker and within-
speaker subspaces, respectively. The yk and zr are positioning
the i-vector in between-speaker and within-speaker subspaces,
respectively, and εr is a Gaussian residual error term with
covariance Σ.

In the context of PLDA model, the hypothesis testing
becomes evaluation of the probabilities if the two i-vectors
w1 and w2, traditionally named enrollment/model and test, are
generated by the same speaker, H1, or by different speakers,
H2. This can be formulated as:

s =
P (w1,w2|H1)

P (w1,w2|H2)
(2)

It is shown in [46] and [15] that the likelihoods can be
computed analytically as:

s =
N (w12 | µ2,Σp)

N (w12 | µ2,Σd)
, (3)

where w12 is formed by stacking i-vectors w1 and w2 and
µ2 by stacking µ twice, and the covariance matrices for the
same and different speakers are obtained by using the matrix
expressions:

Σp =

[
ΦΦT + ΓΓT + Σ ΦΦT

ΦΦT ΦΦT + ΓΓT + Σ

]
(4)

Σd =

[
ΦΦT + ΓΓT + Σ 0

0 ΦΦT + ΓΓT + Σ

]
(5)

C. Experimental Setup

Features were extracted from audio samples by calculating
19 MFCC2 parameters and the log energy of speech sig-
nal using 20 ms analysis windows every 10 ms. These were
augmented using delta and double delta coefficients over 9
frames forming a feature vector of 60 dimension. Speech
activity detection (SAD) is performed using a two-Gaussian
energy based algorithm as described in [13] and [47]. After
SAD, short time Gaussianization is applied using a 5 second

2Mel frequency cepstral coefficients.
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TABLE I
GENERAL SYSTEM PERFORMANCE OF NIST SRE-2008 AND NIST SRE-2010 FOR MALE GENDER IN TERMS OF E= (%).

E= (%) for NIST SRE-2008, det-7 (NIST SRE-2010, det-5)
Model/Test 5 10 20 40 full
5 22.79 (23.33) 18.31 (19.05) 13.27 (14.66) 11.69 (12.33) 10.62 (10.93)
10 16.14 (18.36) 11.07 (13.17) 7.20 (9.36) 6.00 (7.52) 5.47 (6.17)
20 11.28 (14.49) 6.91 (9.48) 4.25 (6.24) 2.97 (4.87) 2.97 (3.81)
40 7.96 (11.66) 5.18 (7.01) 3.06 (4.40) 2.39 (3.35) 1.74 (2.48)
full 7.09 (11.09) 4.27 (5.71) 2.53 (3.48) 1.86 (2.55) 1.33 (1.87)
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Fig. 2. E= (%) from NIST SRE-2008 det-7 (dashed lines) and NIST SRE-
2010 det-5 (solid lines) databases for male trials in all 25 duration conditions.

analysis window [10]. Finally, a gender-dependent UBM of
2048 components were applied. The UBM was trained on
the NIST SRE-2004, 2005, and 2006, Switchboard II and
Switchboard Cellular (1 & 2) and Fisher English databases.

In this paper, we used a gender-dependent 400-dimensional
i-vector space which was trained on the same data as the UBM
training. I-vector length normalization [14] and within class
covariance normalization (WCCN) [11] were applied prior
to PLDA3 for optimal performance of our system [2]. We
used optimal settings of 200 speaker factors and 50 session
factors in applying PLDA4. Subspace matrices in PLDA for
both speaker and session spaces are trained using the same
databases for i-vector space training, this time using the
speaker labels.

III. EVALUATION DATABASES AND METRICS

A. NIST Speaker Recognition Evaluation Protocols

For over one decade, the National Institute of Standard
and Technology (NIST) have set the standard for evaluation
of text independent speaker recognition systems. The general
goal of the NIST SRE is to push the technology in the field
of text independent speaker recognition forward. At regular
intervals, a number of research groups participate with their
most advanced technology in speaker recognition, and disclose
their findings in the workshop following the evaluation. [48]

3We did not apply LDA prior to PLDA modeling.
4The dimension of speaker and session factors are the number of compo-

nents in Φ and Γ, respectively. See Section II-B for further explanations.

In our experiments, we used data and protocols from NIST
SRE-2008 [49] and 2010 [50]. We focus on utterances from
telephone-telephone conversation in English, which are known
as ‘det-7’ and ‘det-5’ conditions in SRE-2008 and 2010,
respectively. Calibration performance is evaluated on the SRE-
2010 trials (extended list) with the calibration parameters
trained on the SRE-2008 trials. The experimental results
presented in this paper concentrate on male trials only. The
number of trials we used from SRE-2008 are 769 target and
10 050 non-target trials, and for SRE-2010, 3 601 target and
226 818 non-target trials, respectively.

B. Utterances Duration and Truncation Procedure

In the NIST SRE database, the length of utterances vary
in duration. In order to obtain segments for short duration
conditions, all utterances from the database were truncated to
d = 5, 10, 20, and 40 seconds. The truncation process was
carried out from the beginning point of the utterances at the
feature level after SAD and before short term Gaussianization,
so that the duration d represents the length of active speech
from the utterances. Utterances that have active speech dura-
tion less than 40 seconds were excluded from the experiments
in order to have the same number of trials in every duration
condition.

The original segments from the NIST SRE database without
any truncation form the full condition in this paper. From the
full condition features and the features obtained by truncation,
we have five test sets with different duration conditions in both
model and test segment collections. Twenty five trial lists are
formed by combining the model and test sides from every
duration condition for both SRE-2008 and 2010 data sets.
This set of 25 trial lists is often referred to as 25 duration
conditions in this paper. We use the notation ‘〈duration of
model segment〉/〈duration of test segment〉 condition,’ in which
duration is measured in seconds or ‘full’.

C. General Discrimination Performance

We have measured the discrimination performance of our
PLDA based i-vector system on both the SRE-2008 and
2010 core condition, for trial sets of telephone channel, male
speakers. The system’s discrimination performance in terms
of equal error rate5 E= is presented in Table I and depicted
in Figure 2. In general, the system shows lower E= for SRE-
2008 than for SRE-2010, in all duration conditions.

5Equal error rate is the error rate at the operating point of a detection system
where the probability of false acceptance and probability of false rejection are
equal.
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In our previous work [3], we have shown that our i-
vector based speaker recognition system has a symmetrical
behavior regarding the duration of trials, which is what is
expected because model and test segments in the i-vector
framework are treated completely the same and the scoring is
symmetrical. However, in the most extreme difference between
model and test segment durations (5/full and full/5 conditions),
we observe a little difference in E= between those conditions.
We surmise that this phenomena occurs because of the way
NIST decides which utterances are the part of the model or
the test segments in their evaluation protocols.

Figure 3 presents the target and non-target scores distribu-
tion for SRE-2008 and 2010 databases for full/full duration
condition. The figure shows that the scores distribution be-
tween the two databases are fairly similar. However, the scores
shift from one database to the next, this is a phenomenon
known as ‘data set shift’ [51]. This score shifting will result in
lower calibration performance, when using one set (SRE-2008)
for calibration of the other (SRE-2010). We may therefore
expect some calibration loss using any form of calibration of
scores, in this paper we restrict ourselves to linear calibration
of scores.

D. Evaluation Metrics for Calibration Performance

To evaluate the calibration performance of the speaker
recognition system in general, we use two basic measures Cllr

and Cmin
llr . The metric Cllr is the cost of the log-likelihood-

ratio, a metric that measures calibration over the entire range
of effective priors, which has both an interpretation in terms
of detection cost functions Cdet(Oeff), where Oeff are the
effective prior odds, and an information theoretical interpre-
tation [22]. The metric Cmin

llr is the same metric, but after an
optimal transformation of scores that minimizes Cllr under the
condition that the order of scores stay the same, i.e., the score

to likelihood function is monotonously rising. From these basic
metrics, we derive the absolute and relative miscalibration
costs, or calibration loss. For an introduction to Cllr, see [23].

The metric Cllr can be evaluated empirically for a super-
vised set of evaluation log-likelihood-ratios xi (in our case
SRE-2010) using

Cllr =
1

Ntar

∑
i∈tar

log2(1 + exp(−xi))

+
1

Nnon

∑
j∈non

log2(1 + exp(xj))
(6)

with xi and xj running over the number of target trials (Ntar)
and non-target trials (Nnon) respectively, i.e., trials for which
either H1 or H2 is true.

The absolute (Cmc) and relative (Rmc) calibration loss, or
miscalibration cost, are defined as:

Cmc = Cllr − Cmin
llr , (7)

and

Rmc =
Cmc

Cmin
llr

=
Cllr

Cmin
llr

− 1 (8)

The value for minimum cost of the log-likelihood-ratios,
Cmin

llr , can be obtained by isotonic regression. An efficient
method for this is known as the pool adjacent violators
(PAV) algorithm as explained in [22] which has relations
to the receiver operating characteristic convex hull (ROC-
CH) [52]. All metrics share the same property, that lower
values are indicate better performance. Here, Cllr integrates
both discrimination and calibration performance, where Cmin

llr

only reveals discrimination performance. The mis-calibration
costs Cmc and Rmc only show calibration performance.

IV. SCORE CALIBRATION

In many mathematical formulations of speaker recognition,
including PLDA based systems, recognition scores are com-
puted as likelihood ratios. However, due to a number of mod-
eling assumptions that are probably incorrect, most notably
the assumption of frame independence, these computed scores
do not have a direct proper probabilistic interpretation. Using
such uncalibrated scores in court as calibrated likelihood ratios
will be misleading [53]. However, there is a number of ways
in which we can transform the uncalibrated scores into log-
likelihood-ratios, a process known as calibration and in which
the field of speaker recognition has extensive experience,
specifically in comparison to other biometric technologies.
A remarkable property of calibrated log-likelihood-ratios `
is relates to the probability density function of itself (for a
derivation of this, see the appendix),

` = log
P (` | H1)

P (` | H2)
. (9)

The metric Cllr can measure the validity of this property
empirically for a set of evaluation trials.
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In this paper we restrict ourselves to linear calibration
transformations6, i.e., the function that is used to convert our
uncalibrated scores s into calibrated likelihood ratios x is

x = w0 + w1s (10)

where w0 is the offset of the transformation and w1 is a
scaling parameter. Both the offset and scaling parameters can
be obtained by optimization on a development set. An effec-
tive method for this optimization is logistic regression [56]
training which uses an objective function quite closely related
to Cllr [22]. For implementation of this linear calibration,
we utilized FoCal toolkit [19] and the sretools analysis
package [57].

There are 5 linear calibration approaches discussed in
this paper which we refer to as ‘mismatched,’ ‘matched,’
‘stacked,’ ‘shared scaling’ and ‘duration quality measure func-
tion’ (QMF). All of these approaches are explained in the
following subsections. The goal of this research is to describe
the problems of duration for calibration (mismatched, matched
and stacked scores), to understand the effects of duration to
the calibration parameters (shared scaling), and to design low-
parameter models to account for these effects in calibration
(duration quality measures).

A. Calibration using Mismatched and Matched Duration Con-
ditions

Both mismatched and matched approaches employ the
scores transformation defined in equation (10), which consists
of two weighting parameters w0 and w1. In the mismatch
approach, the two calibration parameters are trained in the
full/full duration condition from the SRE-2008 calibration set.
These parameters are then applied to all 25 duration conditions
of the SRE-2010 evaluation set. This approach is called mis-
matched because the presence of many duration-mismatched
conditions between the calibration and evaluation data, i.e., the
calibration parameters remain trained on the full/full condition
even if they are applied to, e.g., the 40/20 seconds condition
for evaluation. This is a 2-parameter calibration, and we expect
it to be the worst performing based on previous work on an
LDA i-vector system [3].

In the matched approach, calibration parameters are trained
on each of 25 duration conditions in the SRE-2008 calibration
set. This approach uses 50 calibration parameters, 25 pairs of
weighting parameters w0 and w1. Each of these weighting
pairs are then applied to the corresponding matched condition
in the SRE-2010 evaluation data. One may consider this as
a “poor-man’s” solution, because it does not rely on under-
standing the effect of the quality measures on calibration, but
requires to match the quality of the calibration data with the
conditions under evaluation. For (shorter) duration, this may
actually be feasible (although perhaps not very practical), but
for other quality factors such as language, reverberation or

6It is presented in [54] that the scores calibration can be conducted by doing
simple normalization (like Z- or T-norm), isotonic regression, etc. besides
the linear logistic regression. One of the authors is also contributed in the
proposing of line-up calibration method for speaker recognition system which
is not a form of linear calibration [55].
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Fig. 4. Offset parameters distribution across all duration conditions from
shared scaling calibration approach. This distribution has a saddle-plane shape.

background noise level and type, this may be less than trivial.
In the more realistic forensic cases, it may not always be
possible to find training calibration material that match the
condition of evaluation data. The matched approach needs
50 parameters, and we expect this to outperform most other
methods, simply because the only reason for miscalibration is
the data set shift, which is hard to deal with anyway.

B. Calibration using Stacked Scores

In the case of mismatched duration, the training calibration
condition used (full/full) is quite peripheral to the conditions
used in evaluation. The purpose of the stacked scores approach
is to understand the potential of two-parameter linear calibra-
tion if calibration training data shows the same variability as
the evaluation. The stacked scores approach uses all available
data for calibration in all 25 conditions in order to train a
single set of transformation parameters according to (10).
Similarly to the mismatched approach, this single set of 2
calibration parameters is applied to all duration conditions of
the evaluation data. We expect that this approach performs
better, on average, than the mismatched approach.

C. Calibration using Shared Scaling

Keeping in mind that we would like to design a calibration
function that takes duration of model and test segments into
account, we want to study the effect of duration on the shift
parameter w0 while keeping the scaling w1 constant. This
approach is somewhat between stacked scores and matched
approaches. We stack all calibration trials, but use a sin-
gle scaling parameters (w1) while allowing for a duration-
dependent offset parameter (w0) for each of the 25 duration
conditions. This approach is similar to the ‘side information’
calibration technique mentioned earlier that was employed in
the NIST SRE-2008 in order to deal with varying language and
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TABLE II
DURATION QUALITY MEASURE FUNCTIONS (QMFS) PROPOSED FOR

CALIBRATION ON VARIOUS DURATION CONDITIONS.

n QMF: Qn(dm, dt, . . .)
Additional
parameters

1 Q1 = w2

∣∣∣∣log dmdt
∣∣∣∣ w2

2 Q2 = w2 log
2 dm

dt
w2

3 Q3 = w2 log
dm

dc
log

dt

dc
w2, dc

4
Q4 = w2

(
log

dm

dc
+ log

dt

dc

)2

−w3

(
log

dm

dc
− log

dt

dc

)2 w2, w3, dc

transducer [34]. We expect this approach to be almost as good
as the matched approach, because of its many parameters.
However, this is not an approach we would like to propose
as a viable method of dealing with continuous quality factors
in general, but rather as an inspiration for designing quality
measure functions. To this effect, the 25 offset parameters are
presented in Figure 4. The behavior study of the calibration
parameters presented in the figure becomes the foundation of
the duration quality measures approach that we propose in the
next section.

D. Linear Calibration with Duration Quality Measure Func-
tions

Finally, we propose a calibration approach for calibra-
tion in various duration conditions that models the effect
of calibration in a low-parameter model. The general score
transformation model is:

x = w0 + w1s+Q(dm, dt, w2, . . .) (11)

where Q(dm, dt, w, . . . ) is the quality measure function
(QMF) that is related to duration of model segment dm
and duration of test segment dt. We propose four QMFs
for improving the global calibration performance in various
duration conditions in Table II.

The results on calibration using shared scaling (cf. Figure 4
(further explained in Section V) shows that the larger mag-
nitude of offset parameters (w0) occurs where the difference
between model and test segments duration are larger. The first
two QMFs, Q1 and Q2, model this behavior. These two func-
tions, however, do not model any difference in offset where
model and test segments have the same duration. Observing
Figure 4 there clearly is a dependency on the duration even
for dm = dt. Therefore, the QMFs Q3 and Q4 were proposed
in order to better model the offset parameters behavior from
the shared scaling approach.

The mathematical form of Q3 and Q4 are modeled after
the saddle-like shape of the surface in Figure 4. In general, a
two-dimensional saddle function can be described by

f(y, z) = α · y2 − β · z2, (12)

with αβ > 0. In our case, we use a rotated version of the axes
y and z which work with log-duration, and placing the origin

TABLE III
MINIMUM COST OF LOG-LIKELIHOOD-RATIO CALIBRATION Cmin

llr
OF NIST SRE-2010 DET-5 CONDITION FOR THE MATCHED, MISMATCHED,

AND STACKED SCORES CALIBRATION TECHNIQUES.

dm/dt 5 10 20 40 full
5 0.695 0.581 0.476 0.416 0.372
10 0.572 0.428 0.321 0.264 0.223
20 0.470 0.319 0.219 0.171 0.138
40 0.401 0.248 0.156 0.119 0.094
full 0.351 0.210 0.122 0.090 0.071

at dc = 20 s for both model and test durations, so that

y = log
dm
dc

+ log
dt
dc
, (13)

z = log
dm
dc
− log

dt
dc
. (14)

The rotation is because the distribution of offset parameters
has the saddle plane shape which lies along the diagonal axis
of dm and dt as depicted in Figure 4. By using y and z defined
in (13), the QMFs that model the saddle-plane Q3 and Q4 from
Table II can be found with

w2 = 2(α+ β), (15)
w3 = α− β. (16)

The third QMF Q3 is the case where α = β, i.e., forcing the
‘tails’ at the extremes full/5 and 5/full to go as much up as the
ones at 5/5 and full/full go down. The parameter dc is fixed
in our experiments to 20 seconds as it is the center of our
saddle-shaped parameter distribution (as seen in Figure 3)

The proposed QMFs are not designed to handled the con-
dition where duration goes to zero. In this extreme condition,
the speaker recognition system should output ` = 0 as there is
no speaker information, and hence both hypotheses are equally
likely. The log-duration dependence of the QMFs in Table II is
inspired by Figure 4, which has logarithmic axes, and may find
some further motivation in the observation that the number
of unique phones found in a random speech sample scales
logarithmically with duration over a fairly wide range [58].

V. EXPERIMENT RESULTS

The calibration results for all linear calibrations mentioned
in previous section are presented in Table IV, and analyzed
in the paragraphs V-B until V-E. Table V is the summary of
Table IV in where we take the average µ and standard devi-
ation σ across all 25 duration conditions for each calibration
technique7.

A. Discrimination performance based on Cmin
llr

The minimum achievable values Cmin
llr were measured and

showed in Table III for all 25 duration conditions in the SRE-
2010 evaluation set. The numbers presented in Table III are
the Cmin

llr values from all calibration techniques but the QMFs
approach. The Cmin

llr values on the full/full QMFs calibration

7We took the averaging approach to summarize the results instead of
pooling the scores then computing the calibration metrics. This is due to
the pooling method that causing Cmc less sensitive because of the pooled
Cmin

llr is increasing.
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TABLE IV
CALIBRATION RESULTS OF LINEAR CALIBRATION APPROACHES IN TERMS OF Cllr Cmc AND Rmc FOR ALL 25 DURATION CONDITIONS.

Cllr Cmc Rmc(%)
Calibration: dm/dt 5 10 20 40 full 5 10 20 40 full 5 10 20 40 full

Mismatched

5 .771 .684 .603 .591 .600 .076 .103 .127 .174 .228 10.96 17.73 26.68 41.84 61.19
10 .668 .521 .398 .346 .308 .096 .093 .078 .081 .086 16.81 21.63 24.26 30.72 38.64
20 .600 .403 .267 .205 .163 .130 .084 .049 .034 .025 27.59 26.32 22.33 19.77 18.02
40 .571 .328 .187 .134 .101 .170 .081 .031 .015 .007 42.34 32.49 20.15 12.59 7.67
full .568 .294 .145 .098 .074 .217 .084 .024 .008 .004 61.71 40.25 19.32 8.49 5.53

Matched

5 .701 .586 .482 .423 .380 .006 .005 .006 .007 .008 0.82 0.86 1.18 1.64 2.18
10 .581 .435 .326 .270 .231 .009 .007 .005 .006 .009 1.63 1.59 1.63 2.33 3.94
20 .480 .324 .223 .176 .144 .010 .005 .005 .004 .005 2.04 1.72 2.23 2.57 3.84
40 .410 .252 .160 .124 .099 .009 .004 .005 .005 .005 2.25 1.68 2.92 4.27 5.21
full .360 .214 .127 .095 .074 .008 .004 .005 .005 .004 2.42 2.01 3.88 5.02 5.53

Stacked scores

5 .752 .595 .484 .437 .415 .057 .014 .008 .021 .043 8.16 2.41 1.67 4.97 11.57
10 .586 .434 .326 .272 .233 .014 .006 .006 .008 .011 2.46 1.37 1.76 2.92 4.94
20 .478 .324 .227 .180 .147 .008 .006 .009 .009 .009 1.68 1.75 4.05 5.26 6.15
40 .421 .256 .168 .134 .112 .020 .008 .013 .016 .018 4.88 3.22 8.14 13.20 19.15
full .392 .219 .133 .107 .096 .040 .009 .011 .017 .025 11.42 4.52 9.38 19.20 35.70
5 .731 .597 .484 .424 .378 .036 .015 .007 .007 .006 5.21 2.64 1.55 1.78 1.63
10 .586 .451 .328 .271 .232 .014 .023 .008 .007 .009 2.49 5.41 2.47 2.46 3.85

Duration QMF 20 .477 .328 .232 .178 .151 .007 .009 .013 .007 .011 1.49 2.79 6.16 4.00 8.24
Q1 40 .408 .254 .165 .126 .109 .007 .007 .009 .008 .015 1.71 2.63 5.93 6.48 15.96

full .355 .215 .135 .102 .085 .006 .007 .014 .013 .014 1.64 3.34 11.83 14.45 20.63
5 .735 .597 .486 .426 .381 .040 .016 .010 .009 .007 5.76 2.71 2.03 2.23 1.82
10 .586 .440 .329 .272 .232 .015 .012 .009 .008 .007 2.54 2.70 2.68 3.00 3.26

Duration QMF 20 .480 .328 .227 .178 .148 .010 .010 .009 .007 .009 2.06 3.04 3.90 4.02 6.22
Q2 40 .410 .256 .165 .128 .107 .009 .008 .009 .009 .013 2.13 3.16 5.88 7.75 13.85

full .356 .214 .132 .102 .087 .006 .006 .011 .012 .016 1.74 3.03 9.51 13.17 23.44
5 .740 .603 .485 .424 .379 .045 .022 .009 .008 .007 6.46 3.75 1.89 1.83 1.81
10 .591 .436 .326 .271 .231 .020 .008 .005 .006 .008 3.44 1.95 1.58 2.42 3.59

Duration QMF 20 .479 .324 .226 .179 .146 .009 .005 .008 .008 .008 1.90 1.55 3.54 4.72 5.59
Q3 40 .408 .254 .167 .129 .102 .007 .006 .011 .010 .007 1.74 2.59 7.36 8.84 7.83

full .356 .215 .132 .099 .077 .006 .006 .010 .008 .005 1.67 3.04 8.51 8.32 6.58
5 .743 .604 .485 .424 .378 .048 .022 .009 .008 .006 6.94 3.85 1.87 1.84 1.66
10 .592 .436 .326 .271 .231 .020 .008 .005 .007 .008 3.54 1.79 1.59 2.49 3.45

Duration QMF 20 .479 .323 .227 .180 .146 .009 .005 .008 .009 .007 1.87 1.49 3.88 5.10 5.39
Q4 40 .408 .254 .168 .130 .101 .007 .007 .012 .011 .007 1.75 2.68 7.92 9.28 7.31

full .355 .215 .132 .099 .077 .006 .006 .010 .007 .004 1.68 2.94 8.43 8.07 5.86

are slightly different to what is presented in the table due
to the effect of variable duration in the full/full condition.
As explained in Section III-D, Cmin

llr is a representation of
discrimination loss [23]. Thus, it has similar information as
E= that it is presented in Section III-C. We can observe
Cmin

llr is increasing as the duration of model/test segments
are decreasing. Note that Cmin

llr stays the same after linear
calibration applied unless Cmin

llr is computed on pooled scores
over all 25 duration conditions, because the pooling makes
Cmin

llr sensitive to “relative calibration” between the duration
conditions. Further, linear calibration will have an effective
objective to minimize Cllr, but we know beforehand that Cmin

llr

is a lower bound to this.

B. Calibration using Mismatched and Matched approaches

In this section, we compare the calibration performance
from the mismatched and matched approaches. The calibration
results for these two approaches are presented in the top
sections of Table IV. In the mismatched condition, where we
trained calibration parameters on the full/full duration condi-
tion only, the miscalibration values are higher, as the durations
of model or test segments are shorter, and deviate more from
the calibration condition. The highest miscalibration values are
present when there is a large difference between the duration
in model and test segments. These results confirm that by

TABLE V
RESUME OF TABLE IV: CALIBRATION PERFORMANCE OVER ALL LINEAR
CALIBRATION APPROACHES IN TERMS OF THE MEAN µ AND STANDARD

DEVIATION σ OF ALL 25 DURATION CONDITIONS.

Approach Cllr Cmc Rmc(%)
n
∗)
pµ σ µ σ µ σ

Mismatched .385 .216 .084 .063 26.20 14.86 2
Matched .307 .173 .006 .002 2.62 1.35 50
Stacked Scores .317 .177 .016 .013 7.60 7.76 2
Shared Scaling .313 .173 .012 .005 5.46 3.42 26
Duration Q1 .312 .175 .011 .007 5.47 5.08 3
Duration Q2 .312 .175 .011 .007 5.26 5.04 3
Duration Q3 .311 .177 .010 .008 4.10 2.54 3
Duration Q4 .311 .177 .010 .009 4.11 2.56 4
∗)np = number of calibration parameters.

training the calibration parameters using a data set which is
not representative of evaluation data in the sense of speech
segments duration, the calibration performance is not very
good.

The matched calibration approach is an easy solution to
come up with the deficiency of mismatched approach by
simply matching the duration condition of training calibration
data to the evaluation data. As presented in Table V, the cal-
ibration system performance using matched approach totally
surpass the mismatched approach based on the miscalibration
values. The average miscalibration values from all 25 duration
conditions drops from 0.084 for mismatched to 0.006 for
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matched. This is of course an expected effect, but it is
interesting to note here that the effect on miscalibration cost
in the PLDA system is much smaller than in the i-vector LDA
system reported on our earlier work [3]. For the LDA system,
we had observed average miscalibration values Cmc = 0.494
and Rmc = 141% over all 25 duration conditions following
the mismatched calibration approach. This shows that with the
classifier in i-vector systems becoming better at discrimination
(going from LDA with cosine distance scoring via normalized
cosine to PLDA with probabilistic scoring), the calibration
behavior improves as well.

Even though the matched calibration approach offers a very
good calibration performance, the training process within this
approach can be tough because we have to match the condition
of our training data to the evaluation data. This condition
matching might not possible in an extreme condition such as
when we have only limited amount of training data in which
we do not have long enough duration to match the evaluation
data condition.

C. Calibration using Stacked Scores

The experiment results of the stacked scores approach is
presented in the third section of Table IV. Compared to
the mismatched approach, the stacked calibration results is
generally better in terms of miscalibration results over all
25 duration conditions. The miscalibration metrics in the
condition where the duration of model and test segments have
large difference (i.e., 5/full and full/5 conditions) are lower in
the staked scores approach than in the mismatched approach.
These results show that the stacked scores calibration works
generally better than the mismatched approach even though
we have to sacrifice the calibration performance in the longer
duration condition.

The average values of miscalibration using the stacked
scores approach is 0.016, still a notable increase over the
optimal value of 0.006 found using the matched approach.
This is due to a fact that in the stacking calibration, we only
use 2 calibration parameters even though we had more training
data available compared to the matched approach, while in
the matched approach, we use 50 calibration parameters in
total. Hence, there is room for improvement for the system
calibration performance in various duration conditions, where
we can have a good performance with using only a small
number of calibration parameters. In order to find out about
the pattern of calibration parameters with respect to duration of
model/test segments, we will now present the results for shared
scaling calibration which are discussed in the next section.

D. Calibration using the shared scaling approach

This section presents the experimental results on calibra-
tion using the shared scaling approach. This experiment was
performed to demonstrate the relation between the bias term
(offset parameter) of linear calibration and the speech segment
duration. This formed the inspiration of the proposed duration
quality measure function which explained in Section V-E. The
25 offset parameters trained from this calibration approach is
presented in Table VI and have been shown before in Figure 4.

TABLE VI
OFFSET PARAMETERS IN SHARED SCALING APPROACH FOR ALL 25

DURATION CONDITIONS (µ = 0.236, σ = 0.586).

dm/dt 5 10 20 40 full
5 -0.346 -0.022 0.372 0.877 1.552
10 -0.189 0.114 0.322 0.645 1.085
20 0.153 0.294 0.110 0.094 0.285
40 0.680 0.471 -0.037 -0.340 -0.402
full 1.235 0.660 -0.103 -0.669 -0.934

TABLE VII
P-VALUES FROM ONE-SIDED PAIRED T-TEST IN COMPARING Rmc VALUES

OVER ALL 25 DURATION CONDITIONS FOR CALIBRATION APPROACH IN
SIDE-A AND SIDE-B WITH ALTERNATIVE HYPOTHESIS: SIDE-A GIVES

“GREATER” Rmc VALUES THAN SIDE-B CALIBRATION APPROACH.

XXXXXXXXside-A
side-B p-values (p) based on Rmc metric

Q1 Q2 Q3 Q4

Mismatched 4.6×10−6 3.9×10−6 3.8×10−7 3.8×10−7

Stacked scores 1.1×10−2 2.3×10−3 6.7×10−3 8.0×10−3

Q1 - 2.1×10−1 3.3×10−2 4.3×10−2

Q2 7.9×10−1 - 6.3×10−2 7.5×10−2

Q3 9.7×10−1 9.4×10−1 - 5.5×10−1

Q4 9.6×10−1 9.3×10−1 4.5×10−1 -

The standard deviation of this 25 offset parameters is 0.511.
This means that there is a large variability of offset parameters
due to the variation of duration condition in the calibration.

From Table V, the average of miscalibration values of the
shared scaling8 approach is 0.010 which is better than the
stacked scores calibration results. Despite its low average of
miscalibration costs, the shared scaling approach requires a
large number of calibration parameters (26) which need to be
trained. As indicated earlier, the motivation was to use the
offset parameters (cf.Figure 4) to find a simpler calibration
technique with few calibration parameters and comparable
calibration performance. In the next subsection, we present
the duration quality measures calibration results.

E. Calibration using the Duration Quality Measures Approach

This section presents the results of duration quality measure
calibration which is based on the QMFs proposed in Sec-
tion IV-D. As can be seen from the average of miscalibration
values of all 25 duration conditions in Table V, all of the
proposed duration QMFs offer better calibration performance
than the stacked scores approach. It has also comparable
performance to the shared scaling approach, even though the
duration QMF approaches use only 3 or 4 calibration param-
eters. By adding 1 or 2 extra parameters in the duration QMF
approach, it provides much better calibration performance than
the 2-parameter mismatched or stacked scores approaches. The
differences in Rmc are statistically significant at p < 0.05, as
tested in a one-sided paired t-test9 [59]. The results for this
t-test are presented in Table VII.

Presented in Table V, there are differences in performance
which are offered by each of the proposed duration QMFs.
The first two functions, Q1 and Q2, have similar calibration

8The calibration experiment results for shared scaling are not shown in
Table IV because this calibration method is carried out only as an inspiration
for QMF design, and not as a calibration method per sec.

9via R programming language.
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performance trend in terms of miscalibration values, while
the last two functions, Q3 and Q4, have almost identical
calibration performance trend. In terms of the average of
miscalibration values of all 25 duration conditions, Q3 and Q4

offer slightly better calibration performance than the Q1 and
Q2 functions, but it has bigger variance. A one-sided paired t-
test shows that Q3 and Q4 have statistically significantly lower
Rmc than Q1 at the p < 0.05 level as presented in Table VII.

In the miscalibration metrics of the proposed QMFs shown
in Table IV, Q1 and Q2 functions have better calibration
performance at the 5/5 duration condition, while it has worse
calibration performance at the full/full condition compared to
the Q3 and Q4 functions. In general, Q3 and Q4 functions
have lower miscalibration value across all duration conditions
except for 3 conditions, which are 5/5, 5/10 and 10/5. From
this observation, we summarize that the Q3 and Q4 functions
have better performance than the Q1 and Q2 functions except
in the conditions in which the model and/or test segments
contain 5 second of duration. Even though there are slight
differences between the calibration performance among the
proposed duration QMFs, all of them bring improved results
in the calibration performance of the system compared to the
stacked calibration technique, as revealed by one-sided paired
t-tests we carried out.

To better analyzed how the QMFs can give better per-
formance in calibration with duration variability problem,
we present the score distributions of calibrated scores from
the mismatched and Q4 calibrations in Figure 5. As can be
seen from the figure, the calibrated scores from mismatched
technique are shifted further to the left when the test segment
duration is decreased. In the calibrated scores using the Q4

function, however, the QMF is able to normalized the duration
effect in the scores distribution. Therefore, the Q4 calibrated
scores is pushed back to the center of the log likelihood ratio
(LLR) axis (LLR = 0).

We further evaluate the robustness of proposed QMF cal-
ibration to the mismatched channel problem. We applied the
same calibration parameters used to calibrate NIST SRE’10
det-5 condition to the det-3 condition. Since the calibration
parameters were trained in the NIST SRE’08 det-7 (telephone-
telephone), the evaluation on NIST SRE’10 det-3 (interview-
telephone) is therefore incurring ‘mismatched channel’ chal-
lenge in calibration. The average of Cllr values from all 25
duration conditions in det-3 trial set are 0.550 (mismatched);
0.376 (matched); 0.380 (stacked scores); 0.379 (Q1 and Q2);
and 0.375 (Q3 and Q4). The Cllr values from det-3 evaluation
deviate by similar amount for each of the calibration tech-
niques compared to the det-5 results. In addition, similar trends
in performance are observed across all calibration techniques.
These results show that the QMF calibration is robust in
dealing with duration variability, even though the mismatched
channel problem occurs in the calibration process.

F. Extrapolation Experiment

In this section, we will present the results from our extrapo-
lation experiments on the duration QMF calibration approach.
The extrapolation experiments were performed in order to test
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Fig. 5. Calibrated scores distribution for target and non-target trials from
the mismatched (dashed line) and Q4 (solid line) calibrations.

the robustness of the calibration approach to unseen values
of the quality measures. There are two experiments in which
we tested extrapolation performance of our proposed duration
QMF calibration:
• Short missing: Calibration parameters were trained by

using only 16 duration conditions by excluding durations
of 5 s present in the model and/or test segments.

• Long missing: Calibration parameters were trained by
using only 16 duration conditions by excluding conditions
in which full condition present in the model and/or test
segments.

These trained calibration parameters were then applied in
evaluation to the nine duration conditions which were not seen
in the calibration training. These extrapolation experiments
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TABLE VIII
THE EXTRAPOLATION EXPERIMENT RESULTS IN THE SHORT MISSING AND

LONG MISSING CONDITIONS FOR STACKED SCORES AND ALL DURATION
QMFS CALIBRATION APPROACHES.

Calibration Short missing Long missing
approach: Cllr Cmc Rmc (%) Cllr Cmc Rmc (%)
Mismatch* .628 .147 34.09 .261 .076 28.98
Match* .489 .008 1.67 .192 .006 3.78
Stacked scores .519 .038 8.35 .207 .022 13.06
Q1* .493 .012 2.24 .196 .011 9.06
Q1 Extrapolation .504 .022 4.51 .197 .011 9.86
Q2* .495 .013 2.56 .195 .010 8.45
Q2 Extrapolation .503 .021 4.08 .204 .017 11.28
Q3* .496 .015 2.72 .193 .007 5.21
Q3 Extrapolation .509 .027 5.00 .194 .009 5.96
Q4* .497 .015 2.78 .193 .007 4.98
Q4 Extrapolation .510 .029 5.30 .194 .008 5.78
* No extrapolation experiments applied in this approach.

were conducted for all four duration QMFs, and the results
of these experiments are presented in Table VIII for both
short missing and long missing extrapolations. The calibration
metrics presented in Table VIII are averaged over the nine
extrapolation conditions.

In order to be able to compare the performance of all cali-
bration approaches in the extrapolation experiments, Figure 6
depicts the miscalibration rate values for every observed du-
ration conditions in the short and long missing extrapolations.
In both extrapolations, the system calibration performance
drops compared to the experiments with calibration training
on all 25 duration conditions. This may be expected because
there is still an obvious duration mismatch. However, the
extrapolated QMFs show a lot better performance than the
stacked scores approach that did have access to the missing
duration conditions.

In the short missing extrapolation, the Q2 function has
the best extrapolation performance compared to the other
QMFs based on the average of miscalibration values which
are presented in Table VIII. The Q1 function has the next
best performance, and both Q1 and Q2 perform statistically
significantly better than the stacked calibration technique
based on one-sided paired t-test similar to what we did for
the results in Section V-E. As presented in Table VIII, the
Q3 and Q4 functions do not perform as well as the other
two in this extrapolation experiment, perhaps because they
utilizes a too complex duration QMFs. Specifically in the
short duration condition such as 5/5, Q3 and Q4 functions
give limited performance improvement, similar to what we
observed in the all duration training condition from the last
paragraph of Section V-E.

In the long missing extrapolation, in contrary, the Q3 and Q4

functions offer statistically significantly better extrapolation
performance compared to the Q2 function, as we determined
by a one-sided paired t-test. As it is mentioned in Section V-E,
the Q3 and Q4 functions are, in fact, performing well in the
presence of longer duration in both model and test segments.
However, inspecting the difference of miscalibration average
between the duration QMF approach for the full training
and extrapolation experiment, the Q1 and Q2 functions show
only a 0.001 and 0.003 absolute miscalibration increase,
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(b) Long missing extrapolation.

Fig. 6. Miscalibration rate values Rmc of extrapolation experiments on
various calibration approaches in (a) long missing and (b) short missing
conditions. Note that in the matched approach, extrapolation is not applicable.

respectively. This is not very much and comparable to the
increase found in Q3 and Q4 which shows the robustness of
all proposed QMFs to unseen duration condition in calibration.

In general, the trend of the extrapolation results for both
short missing and long missing for all duration QMFs indicate
good extrapolation performance: in almost every evaluated
condition in the extrapolation experiment, the calibration per-
formance is better than the calibration performance of the
stacked scores approach. We conclude that the proposed du-
ration QMF approaches have successfully maintained a good
calibration performance in the various duration conditions at
the cost of adding at most two extra parameters in scores
transformation for calibration, even if the durations have to be
extrapolated beyond the range of durations seen in calibration
training.
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G. Comparison of Duration QMFs and k-means approaches

This section contrasts our proposed duration QMFs to other
calibration techniques that also include quality measures. We
use two contrasting approaches: calibration through k-means
clustering of duration conditions and calibration via side-
information using the BOSARIS toolkit [36] . Calibration
through k-means clustering uses discrete calibration classes
(clusters of duration) based on the duration in model and
test segments. In applying calibration on the evaluation set,
the parameters from the cluster closest to the evaluation train
and test durations are used. The BOSARIS approach is the
current common practice performing calibration for speaker
recognition systems, and allows duration to be ‘fused in’ as
side-information in the calibration step. In other parts of this
paper, the calibration experiments were carried out using the
FoCal toolkit, which is the predecessor of BOSARIS toolkit.

In order to evaluate the calibration approaches compared in
this section, we generated a set of test segments with uniformly
random durations in both model and test, ranging from 5
seconds to full length durations from the NIST SRE-2010 det-
5 condition. The scores were then calibrated and evaluated
using stacked scores, k-means clustering, BOSARIS, and
QMFs approaches. In the k-means clustering approach, we use
25 clusters corresponding to the duration combinations used
earlier, i.e., the calibration parameters were taken from the
‘Matched Duration Condition’. In evaluation, the calibration
parameters were used corresponding to the closest duration
combination, e.g., a trial between a 12.5 s train segment and
a 23.2 s test segment was calibrated with the (10 s, 20 s)
calibration parameters from the Matched Duration Condition.

In the BOSARIS side-information, we used discrete classes
for duration in both train and test as indicator vectors, e.g.,
for the example above the indicator vectors for train and test
are vm = (0, 1, 0, 0, 0)T and vt = (0, 0, 1, 0, 0)T respectively.
BOSARIS uses these in a bilinear fashion to train a symmetric
offset matrix V using a term vmVvTt . As such, it is a
symmetricized version of the k-means approach.

The calibrations results of these comparisons are presented
in Table IX. As can be seen from the Cmc values, all cali-
bration approaches produce very low miscalibration cost with
k-means clustering has the highest cost. However, based on the
E= and Cmin

llr values, the QMFs have generally better discrim-
ination performance than other approaches. The Q1 and Q2

the best performance in both calibration and discrimination
shown by all performance metrics presented in Table IX.
With relatively less calibration parameters employed in the
calibration process, the proposed duration QMF approach can
outperform other techniques that also incur information of
duration quality measures in calibration, e.g., with k-means
clustering approach.

VI. CONCLUSION

Using a simple modification in the linear scores transforma-
tion for calibration by adding a quality measure function of
duration is an easy and straight-forward idea to improve the
calibration performance of speaker recognition system. This
is observed from the calibration performance of the proposed

TABLE IX
CALIBRATION PERFORMANCE IN RANDOM TRUNCATED SCORES USING
STACKED SCORES, K-MEANS CLUSTERING, BOSARIS, AND PROPOSED

QMFS APPROACHES.

Calibration approach Cllr Cmin
llr Cmc Rmc (%) E= (%) np

Stacked scores* 0.318 0.317 0.001 0.34 9.28 2
k-means clustering 0.312 0.311 0.002 0.48 9.19 50
BOSARIS 0.315 0.313 0.001 0.43 9.23 7
QMF 1 0.313 0.311 0.001 0.39 9.26 3
QMF 2 0.312 0.311 0.001 0.41 9.23 3
QMF 3 0.311 0.310 0.001 0.30 9.18 3
QMF 4 0.311 0.310 0.001 0.29 9.18 4
* Stacked scores does not include quality measures in calibration.

duration quality measures approach and its comparison with
other linear calibration approaches. Four duration quality
measure functions are proposed and evaluated in this paper.
All of them have their own advantages in counteracting the
duration variability problem in calibration. Based on the one-
sided paired t-test, all proposed QMFs perform statistically
significantly better than the stacked scores calibration, and the
saddle-shaped Q3 and Q4 functions offer better performance
compared to the wedge-shaped Q1 in terms of Rmc. We
have also shown from the extrapolation experiments that the
duration quality measures approach is fairly robust against
the calibration problem of unseen duration condition in the
calibration.

Future work in the topic of calibration with QMF technique
includes using other quality measures such as background
noise level which can be quantified as signal to noise ratio
(SNR). Evaluation of the proposed duration QMFs are planned
using different databases with more variation in duration
conditions. With encouraging results achieved from the good
calibration performance offered by QMF technique, further
research on this topic is highly encouraged.

APPENDIX

In this appendix we will derive (9) following an argument
put forward by Niko Brümmer. The relation is well-known by
forensic statisticians, but we are not aware of any published
derivation. The basic premise is that the likelihood ratio `(x, y)
for a speaker recognition system comparing speech samples x
and y

` =
P (x, y | H1)

P (x, y | H2)
(17)

is well-calibrated if it results in the same posterior distribution
over H , whether ` or the speech input (x, y) is given. This
means that all speaker comparison information is encoded in `:

P (H|`) = P (H|x, y). (18)

Applying Bayes’ rule, and converting to the log odds domain
this becomes

log
P (`|H1)P (H1)

P (`|H2)P (H2)
= log

P (x, y|H1)P (H1)

P (s, y|H2)P (H2)
, (19)

where in the odds domain the factors with P (`) and P (x, y)
cancel. In (19) the prior odds P (H1)/P (H2) cancel as well,
so that with the definition of the log likelihood ratio (17) we
have

log
P (`|H1)

P (`|H2)
= log

P (x, y|H1)

P (x, y|H2)
= `, (20)

which proves (9).
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[23] D. A. van Leeuwen and N. Brümmer, “An introduction to application-
independent evaluation of speaker recognition systems,” Speaker Clas-
sification I, pp. 330–353, 2007.

[24] D. Ramos, “Forensic evaluation of the evidence using automatic speaker
recognition systems,” Ph.D. dissertation, Universidad Autonoma de
Madrid, November 2007.

[25] J. Gonzalez-Rodriguez, P. Rose, D. Ramos, D. T. Toledano, and
J. Ortega-Garcia, “Emulating dna: Rigorous quantification of evidential
weight in transparent and testable forensic speaker recognition,” IEEE
Transactions on Audio, Speech and Language Processing, vol. 15, no. 7,
pp. 2104–2115, September 2007.

[26] C. S. Greenberg, “The NIST year 2012 speaker recognition evaluation
plan,” 2012. [Online]. Available: http://www.nist.gov/itl/iad/mig/upload/
NIST SRE12 evalplan-v17-r1.pdf

[27] D. Garcia-Romero, J. Fierrez-Aguilar, J. Gonzalez-Rodriguez, and
J. Ortega-Garcia, “On the use of quality measures for text-independent
speaker recognition,” in Proc. of Odyssey: The Speaker and Language
Recognition Workshop, 2004.

[28] ——, “Using quality measures for multilevel speaker recognition,”
Computer Speech & Language, vol. 20, no. 2, pp. 192–209, 2006.

[29] L. Ferrer, K. Sönmez, and S. Kajarekar, “Class-dependent score combi-
nation for speaker recognition,” in Proc. Interspeech, 2005.

[30] C. Chibelushi, F. Deravi, and J. Mason, “A review of speech-based
bimodal recognition,” Multimedia, IEEE Transactions on, vol. 4, no. 1,
pp. 23–37, 2002.

[31] J. Kittler, N. Poh, O. Fatukasi, K. Messer, K. Kryszczuk, J. Richiardi,
and A. Drygajlo, “Quality dependent fusion of intramodal and multi-
modal biometric experts,” in Proc. of SPIE Vol, vol. 6539, 2007, pp.
653 903–1.

[32] J. Bigun, J. Fiérrez-Aguilar, J. Ortega-Garcia, and J. Gonzalez-
Rodriguez, “Multimodal biometric authentication using quality signals
in mobile communications,” in Image Analysis and Processing, 2003.
Proceedings. 12th International Conference on. IEEE, 2003, pp. 2–11.

[33] J. Fierrez-Aguilar, J. Ortega-Garcia, J. Gonzalez-Rodriguez, and J. Bi-
gun, “Discriminative multimodal biometric authentication based on
quality measures,” Pattern Recognition, vol. 38, no. 5, pp. 777–779,
2005.

[34] D. A. van Leeuwen, “The TNO SRE-2008 speaker recognition system,”
in Proceedings of the NIST Speaker Recognition Evaluation Workshop,
Montreal, 2008.
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