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Behavioral/Systems/Cognitive

Prestimulus Oscillatory Activity in the Alpha Band Predicts
Visual Discrimination Ability

Hanneke van Dijk, Jan-Mathijs Schoffelen, Robert Oostenveld, and Ole Jensen
F. C. Donders Centre for Cognitive Neuroimaging, Radboud University Nijmegen, 6500HB Nijmegen, The Netherlands

Although the resting and baseline states of the human electroencephalogram and magnetoencephalogram (MEG) are dominated by
oscillations in the alpha band (�10 Hz), the functional role of these oscillations remains unclear. In this study we used MEG to investigate
how spontaneous oscillations in humans presented before visual stimuli modulate visual perception. Subjects had to report if there was
a subtle difference in gray levels between two superimposed presented discs. We then compared the prestimulus brain activity for
correctly (hits) versus incorrectly (misses) identified stimuli. We found that visual discrimination ability decreased with an increase in
prestimulus alpha power. Given that reaction times did not vary systematically with prestimulus alpha power changes in vigilance are not
likely to explain the change in discrimination ability. Source reconstruction using spatial filters allowed us to identify the brain areas
accounting for this effect. The dominant sources modulating visual perception were localized around the parieto-occipital sulcus. We
suggest that the parieto-occipital alpha power reflects functional inhibition imposed by higher level areas, which serves to modulate the
gain of the visual stream.
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Introduction
The resting state of the human brain has recently received in-
creasing interest in human neuroimaging research (Gusnard and
Raichle, 2001). What are the electrophysiological correlates of the
resting or baseline states and do they serve a functional role? The
ongoing human electroencephalogram (EEG) and magnetoen-
cephalogram (MEG) during rest are dominated by posterior �10
Hz oscillations, termed the alpha, or Berger, rhythm (Berger,
1929). Although these posterior oscillations are produced by
large ensembles of neurons oscillating in synchrony, their role in
visual perception remains unclear. Although alpha activity used
to be considered an “idling” rhythm (for review, see Pfurtscheller
et al., 1996), more recent proposals suggest that it either reflects
active inhibition (Klimesch et al., 2007) or plays a direct role in
cortical processing (Palva and Palva, 2007).

The proposal that alpha activity reflects inhibition is based on
the notion that posterior brain regions are disengaged when not
functionally relevant for a given task. This is among others im-
plied by the finding that posterior alpha power increases para-
metrically with working memory load during retention (Krause
et al., 1996; Jensen et al., 2002; Tuladhar et al., 2007). In support
of the alpha inhibition hypothesis, a visuospatial working mem-
ory experiment demonstrated that alpha power during retention
increased in parieto-occipital areas ipsilateral to the hemifield

where the memory item was presented compared with when the
item was presented in the contralateral hemifield (Medendorp et
al., 2007). Furthermore, a previous working memory study en-
gaging either the dorsal or ventral stream, showed that alpha over
dorsal areas increased when the ventral stream was engaged
(Jokisch and Jensen, 2007). In addition to the inhibition hypoth-
esis, alpha activity has been proposed to play an active role in
neuronal processing (Palva and Palva, 2007). This hypothesis is
among others based on findings showing phase-coupling be-
tween oscillations in the alpha- and higher-frequency bands dur-
ing various cognitive tasks. Related to this idea is the notion that
phase-synchronization in the alpha band between frontal and
posterior regions reflects a top-down drive important for antici-
pation (von Stein et al., 2000).

One approach of examining the role of posterior alpha oscil-
lations in the visual system is by investigating how alpha activity
correlates with visual detection; however, the experimental data
on this subject are inconclusive. In a visual detection task using
EEG, Ergenoglu et al. (2004) showed that prestimulus alpha ac-
tivity reduced visual detection ability, whereas Babiloni et al.
(2006) found the reverse result. Beyond differences in the task, a
possible explanation for the diverging results is that signal from,
for example, sensorimotor and posterior areas are mixing at the
sensor level because of volume conduction (Hari and Salmelin,
1997). Such mixing will confound the subsequent analysis. One
step toward improving discrimination between different neuro-
nal sources is to use MEG because this technique has a better
spatial resolution than EEG (Hämäläinen et al., 1993). An addi-
tional step is to use spatial filters (e.g., beamforming) to estimate
the activity from the respective sources engaged (Gross et al.,
2001).

In this study, we used MEG to explore the influence of pre-
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stimulus alpha-band activity on visual perception. We presented
stimuli of different contrasts at detection threshold and investi-
gated how discrimination ability was modulated by prestimulus
alpha-band power.

Materials and Methods
Subjects. Students from the local university participated in the experi-
ment. The applied detection task was highly demanding and only 8 of 21
subjects were able to perform it in a satisfactory way (see below). The
eight subjects (50% male, age 26 � 3 years) were right handed, had
normal or corrected-to-normal vision, and no history of neurological
disorders. Informed consent was obtained after the task was explained.

Stimuli and design. Subjects were asked to focus on a fixation cross
during a baseline period of random length (2.5–3.5 s). The stimuli were
presented for 16 ms and consisted of a disc (2.1°) superimposed on a
larger disc (3.8°) (see Fig. 1a). Subjects were asked to push a left (right)
response button when they detected a difference in gray level between the
discs and a right (left) button when they did not. The response hands
were counterbalanced over subjects. Immediately after the response, a
uniform gray disc (5°) was presented to mask the stimuli to avoid after-
effects interfering in the next trial. If the subject did not respond within
700 ms the mask was presented automatically. This was done to ensure a
fast response from the subjects; however, also those trials were included
in the analysis. If the response was later than the mask, the 2.5–3.5 s
baseline period followed the response. Visual stimuli were presented
using an liquid crystal display projector (PROxtraX; Sanyo, Osaka,
Japan; refresh rate, 60 Hz). The subjects were trained on the task for 20
min, followed by a 20 min staircase procedure to determine the subjects’
individual contrast threshold. The contrast resulting in a discrimination
rate of �50% was selected to be the threshold stimulus in the recording
session. In the MEG recording session, the threshold stimulus was pre-
sented in 70% of the trials. A no-contrast stimulus was presented in 26%
of the trials and 4% of the trials consisted of easy contrast trials. The
experimental (threshold) session took between 40 and 50 min dependent
on the reaction times of the subjects. Only datasets from subjects who
performed the task were analyzed. Subjects with a false alarm rate �20%
on the no-contrast stimulus were rejected because it implied that they
were guessing on a lot of trials. Furthermore, to have enough trials for the
analysis we required at least 130 trials for both hits as misses in the
threshold contrast condition. No subjects were rejected on the basis of
the MEG data. The relative high number of rejected subjects is explained
by the task being highly demanding in terms of physical stamina and
concentration. After the discrimination task, a short recording was per-
formed to identify the source of the posterior alpha rhythm. Subjects
were instructed to close and open their eyes (in response to one and two
tones, respectively) for 6 s in 40 trials while MEG data were acquired. In
total the recording sessions lasted �66 –76 min, self-paced breaks
excluded.

Data collection and analysis. A whole-head MEG system (151 axial
gradiometers, VSM/CTF Systems, Port Coquitlam, British Columbia,
Canada) was used for the data acquisition. The data were low-pass fil-
tered at 150 Hz and digitized at 600 Hz. A bipolar electrooculogram
(EOG) was recorded to later discard trials with eye blinks. Key presses
were detected using an optical button box (Lumitouch). Before and after
each recording session, the head position of the subjects was measured
with respect to the MEG sensor array. This was done using coils placed on
the ear canals and the bridge of the nose. Structural magnetic resonance
(MR) images were acquired using a 1.5 T Sonata scanner (Siemens, Er-
langen, Germany). The MEG data were aligned to the structural MR data,
according to the MEG coils at the anatomical landmarks.

The Matlab (MathWorks, Natick, MA) package Fieldtrip was used for
data analysis (http://www.ru.nl/fcdonders/fieldtrip). Trials contami-
nated by artifacts, such as eye-blinks and sensor jumps, were rejected.
Only trials in which the threshold stimuli had been presented were used
in the subsequent analysis.

The oscillatory activity with respect to hits and misses was character-
ized by calculating the power in the 1 s interval preceding the stimulus. A
multitaper spectral estimation method was applied (Percival and Wal-

den, 1993). The data were multiplied with a set of three orthogonal
Slepian tapers. Each tapered data epoch was subsequently Fourier trans-
formed and the power-spectral densities were averaged. This procedure
resulted in single-trial estimates of oscillatory power with � 2 Hz fre-
quency smoothing.

When analyzing the topography of the power spectra at the sensor level
we computed the planar gradiometer representation of the data (Bas-
tiaansen and Knosche, 2000). The calculated planar field gradient ap-
proximates the signals measured by physical planar gradiometers [e.g., as
in Elekta (Stockholm, Sweden) Neuromag systems]. This is often advan-
tageous when analyzing MEG signals, because the strongest field of the
planar gradient signal usually is situated above the neural sources
(Ahonen et al., 1993). The horizontal and vertical components of the
planar gradients were estimated at each sensor location using the fields
from the sensor and its neighboring sensors. The power values for the
horizontal and vertical components after the spectral analysis were
summed for each sensor location.

Changes in power were statistically assessed using a nonparametric
randomization method identifying clusters of sensors with significant
changes. This effectively corrects for multiple comparisons over sensors,
in within subject comparisons (Nichols and Holmes, 2002; Maris and
Oostenveld, 2007). Clusters are defined as spatially contiguous sensors
where the t statistics exceed a previous threshold ( p � 0.05) with respect
to two conditions. Note that the comparison based on t statistics was used
to identify sensors with effects exceeding a threshold for the subsequent
cluster analysis; thus, the power values to be tested were not required to
be normally distributed. The cluster-level test statistic was defined as the
sum of the t statistics of the sensors in a cluster. In a nonparametric
statistical test, the type-I error rate for the complete set of 151 sensors was
controlled by evaluating the cluster-level test statistic under the random-
ization null distribution of the maximum cluster-level test statistic. This
was obtained by randomly permuting the data between the two experi-

Figure 1. Task used to determine visual discrimination ability and behavioral data. a, The
stimuli consisted of a smaller disc superimposed on a larger disc with different contrasts (gray
levels). Contrasts resulting in �50% detection defined the threshold stimulus. The contrasts
are exaggerated here to make them clearly visible. In 70% of the trials the threshold stimulus
was presented. Of the remaining trials, 4% contained an easy contrast stimulus and 26% a
no-contrast stimulus. b, After a fixation period with a random duration (2.0 –3.5 s) the stimulus
was presented for 16 milliseconds. In a forced-choice task, subjects reported whether they
detected a contrast difference within a 700 ms response interval. Immediately after the re-
sponse, a mask was presented. c, There was no significant difference between the number of
trials with hits and misses. d, The reaction time for hits was faster than for misses ( p � 0.041).
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mental conditions within every participant. By
creating a reference distribution from 1000 ran-
dom sets of permutations, the p value was esti-
mated as the proportion of the elements in the
randomization null distribution exceeding the
observed maximum cluster-level test statistic.

Dynamic Imaging of Coherent Sources
(DICS), a frequency-domain adaptive spatial
filtering algorithm was applied to identify the
neuronal source of interest. DICS has proven to
be particularly useful when localizing oscilla-
tory sources (Liljeström et al., 2005). The brain
volume was discretized to a three-dimensional
grid (5 mm spacing), and at each grid point
spatial filters were constructed from the cross-
spectral density matrix of the MEG signals and
the respective lead field. The multitaper method
described above was used to estimate the
Fourier-transformed data and the cross-
spectral density matrix. The lead fields were cal-
culated from a multiple spheres head model
(Huang and Mosher, 1997). The resulting spa-
tial filters were applied to the power of the
Fourier-transformed data for the frequency of
interest (i.e., alpha) to optimally pass informa-
tion of the location of interest while attenuating
the activity from other regions. To reduce biases
toward the center of the head, we computed the
neural activity index (NAI) by dividing the es-
timated power at each grid point by an estimate
of the noise. This noise bias is affected by the
amount of data in the sense that more data re-
sults in a reduction of variance. Thus, the noise
biases had to be estimated from the experimen-
tal data subject by subject. This was done by
applying the spatial filter to an identity matrix
scaled with the smallest singular value of the
cross-spectral density matrix (Van Veen et al.,
1997). To prevent this bias, we equalized the
number of trials in the hits and misses condi-
tions. For each subject we randomly selected
trials from the condition with the most trials
until the amount of trials was equal to the number of trials in the condi-
tion with the least trials. The resulting distribution of the NAI in the alpha
band was subsequently coregistered on the subject’s structural MRI. To
compute the grand average of the data, the individual functional volumes
were spatially normalized to a canonical brain, and subsequently
smoothed with a Gaussian kernel (full width at half-maximum, 10 mm),
using SPM2 (http://www.fil.ion.ucl.ac.uk/spm/software/spm2) (Supple-
mental figure, available at www.jneurosci.org as supplemental material).
Subsequently, the spatially normalized source estimates were averaged.

For the experimental conditions, the spatial filters were also used to
derive estimates of the source power on a trial by trial basis (“virtual
sensors”). To this end, the spatial filter at the regions of interest was
applied to the Fourier transforms of single tapered data segments. The
regions of interest were chosen. The contribution of the dipole at the
locations of interest was estimated by performing a singular-value de-
composition on the real part of the cross-spectral density matrix of the
virtual sensors. Single-trial power estimates were obtained by rotating
the spatially filtered Fourier transforms according to the first singular
vector and subsequently averaging the power of the data segments across
the tapers.

We investigated poststimulus activity by calculating the event-related
fields (ERFs). Trials were low-pass filtered off-line at 30 Hz and baseline
corrected (�100 – 0 ms). The trials were divided into hits and misses. For
each subject the difference between the two conditions was calculated in
the axial gradient representation after which the planar gradient repre-
sentation was computed as described above. For each sensor location we

then calculated the root mean square for the two planar gradient direc-
tions. Subsequently, the ERF differences were averaged over subjects.

Results
We used a task in which subjects had to report whether they could
distinguish the contrast between two superimposed gray discs
(Fig. 1a). First, we identified the discrimination threshold in each
subject using a staircase procedure (see Materials and Methods).
Subsequently, while the MEG was recorded, we presented the
stimuli at discrimination threshold (70%) randomly intermixed
with catch trials.

Data were collected for 21 subjects and analyzed for the eight
subjects who were able to perform the task well (see Materials and
Methods). In the analysis we categorized the trials with stimuli
presented at threshold into hits (detected) and misses (not de-
tected). There was no significant differences between the number
of hits and misses ( p � 0.25, two-tailed paired t test) (Fig. 1c).
Reaction times were slightly faster for hits than misses ( p �
0.041, two-tailed paired t test) (Fig. 1d).

As the first step in the MEG data analysis, we characterized the
alpha power with respect to behavioral responses. The power
spectra were calculated for all sensors (after conversion to the
planar gradient; see Materials and Methods) in a 1 s prestimulus
interval for hits and misses separately. Figure 2a shows the alpha
power (8 –12 Hz) topography for the difference between misses

Figure 2. Characterization of visual discrimination ability in relation to the prestimulus MEG data. a, Topography of the 8 –12
Hz power of the difference between misses and hits (planar gradient) averaged over subjects. Sensors showing significantly
stronger alpha power for misses than hits are highlighted with dots ( p � 0.008; corrected for multiple comparisons). b, Grand
average of the spectra calculated for the prestimulus time window (�1– 0 s; green line, hits; red line, misses). The spectra are
averaged over the sensors that showed a significant difference between misses and hits in the 8 –12 Hz band. c, The trials of the
detection session were sorted according to prestimulus alpha power and binned into quartiles. The hit rates (hits divided by
misses) were normalized and then averaged over subjects. The hit rates in the first quartile (low alpha power) were significantly
higher than those in the fourth quartile ( p � 0.018). d, The reaction times for each quartile normalized and averaged over
subjects. The reaction times did not show a statistically significant correlation with alpha power. Error bars represent SEM.
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and hits. The prestimulus alpha power was significantly higher
for misses than hits (corrected for multiple comparisons by a
cluster analysis; p � 0.008). Figure 2b shows the power spectra
averaged over the posterior sensors belonging to the cluster with
a significant effect. Note that a modulation of power �30 Hz with
respect to hits and misses was constrained to the alpha band. This
was the case when considering the other sensors as well.

To investigate how detection ability was related to alpha
power, we selected the sensors that showed a significant differ-
ence in prestimulus alpha power between hits and misses (Fig.
2a). Subsequently, we estimated the average single-trial alpha
power from the prestimulus intervals of these sensors for each
subject. The trials were sorted according to power and divided
into quartiles. Hit rates (number of hits divided by misses) were
calculated for each quartile and normalized in each subject to the
individual mean hit rate over all quartiles (Linkenkaer-Hansen et
al., 2004) (Fig. 2c). The normalized hit rates in the first quartile
were significantly larger than hit rates in the fourth quartile ( p �
0.018, repeated-measures ANOVA, simple first contrast). Hit
rates for intermediate compared with low alpha power did not

differ significantly (Fig. 2c). Because
Linkenkaer-Hansen et al. (2004) found a
quadratic relationship between somato-
sensory mu power and somatosensory de-
tection rates, we investigated if there was a
quadratic relationship between alpha
power and visual hit rates in other sensors.
We subjected the hit rates in the four bins
to the following expression: hit rate (alpha-
bin) � a alpha-bin 2 � b alpha-bin � c,
where alpha-bin refers to the four alpha-
bins (represented in the equation as �3,
�1, 1, and 3). We did this for each sensor
and then tested if the quadratic, (a) and the
linear term (b) were different from 0 using
the cluster randomization procedure. Only
the linear term was different from 0 in pos-
terior sensors overlapping with those in
Figure 2a. In conclusion, we found no evi-
dence suggesting a quadratic relationship
between hit rate and alpha power. Figure
2d shows the relationship between reaction
times and alpha power. Reaction times
were computed for each quartile and nor-
malized according to the mean in each sub-
ject. The reaction times were not signifi-
cantly related to the alpha power with
respect to the four bins (repeated-measures
ANOVA). Using the same analysis as for
the hit rates, we found no evidence for a
quadratic relationship between reaction
time and alpha power.

To identify the sources producing the
oscillatory activity modulating the visual
detection ability, we applied a beamform-
ing technique. First, we estimated the
sources of the 1 s prestimulus activity by
computing the NAI (Van Veen et al., 1997)
in the 8 –12 Hz band for both hits and
misses (Fig. 3a). The source representa-
tions were coregistered onto the individual
subjects’ structural MR images, normal-
ized to a standard brain, and averaged. The

strongest source was identified in precuneus [Brodmann area
(BA) 7] bordering the parieto-occipital sulcus. Additionally, we
identified two bilateral sources around the sensorimotor hand
areas of the central sulcus (BAs 3 and 4). These reflect the �10 Hz
component of the sensorimotor mu rhythm (Hari and Salmelin,
1997). To identify the sources accounting for the modulation in
detection ability, we subtracted the NAI for hits and misses. The
source representing the difference in alpha power was localized
around the parieto-occipital sulcus (Fig. 3b). This source location
is consistent with the alpha power differences observed at the
sensor level topographic maps (Fig. 2a). There was a tendency
toward a left lateralization. However, this was mainly dominated
by 4 subjects. Note that no sources accounting for the difference
between the two conditions were found in sensorimotor regions.
In short, sources for the �10 Hz prestimulus activities were
found in posterior and sensorimotor regions; however, sources
correlating with discrimination ability were only found in poste-
rior regions.

To investigate hit rates as a function of �10 Hz activity at the
sources level, we used the coordinates of the sources (one poste-

Figure 3. Source estimation of the prestimulus alpha activity and characterization of the data using virtual sensors. a, The
source estimates of the prestimulus 8 –12 Hz activity for hits and misses were combined for each subject, normalized to a
standard brain and then averaged. The sensorimotor mu sources are indicated (R�). b, The estimated source activity for hits
subtracted from the misses. The posterior alpha source is indicated (R�). Sources maps were thresholded with respect to 50% of
the maximum. The colors represent NAIs. c, Hit rates for the posterior alpha source (R�). The hit rates for the third and fourth
quartile differ from the first quartile ( p � 0.024 and p � 0.001, respectively). d, Hit rates were not correlated with by the 8 –12
Hz activity from for the bilateral mu sources (R�). Error bars represent SEM.
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rior alpha and two central mu sources)
identified in each subject to create a “vir-
tual sensor” by means of spatial filtering.
The signals from the virtual sensors were
analyzed in the same way as the sensor
data. We found that the prestimulus alpha
power with respect to a virtual sensor in
the parieto-occipital sulcus (Fig. 3b, R�)
strongly correlated with visual discrimina-
tion ability: the normalized hit rates de-
crease with an increase in alpha power
(Fig. 3c) (main effect, p � 0.015, repeated-
measures ANOVA). The hit rate in the first
quartile (representing low alpha power)
was significantly higher than the hit rates
in the third and fourth quartiles ( p �
0.024 and p � 0.001, respectively,
repeated-measures ANOVA, simple first
contrast). The effect observed for the vir-
tual posterior sensors showed a more sys-
tematic decrease in hit rate with alpha
power compared with the effect at the sen-
sors (compare Figs. 2c, 3c). The prestimu-
lus power detected by the virtual sensors in
the left and right sensorimotor regions
(Fig. 3b) (R� averaged over both hemi-
spheres) did not influence the hit rates
(Fig. 3d) (averaged over seven subjects be-
cause one subject was excluded because of
the absence of mu sources).

Because posterior alpha power is
known to increase when eyes are closed
compared with when eyes are open (the
classical Berger effect), this raises the ques-
tion whether the posterior source we have
identified corresponds to the source ac-
counting for Berger’s effect (Berger, 1929). To investigate this, we
acquired MEG data when the subjects were performing a simple
eyes open/closed task (40 epochs of 6 s of eyes opened followed by
6 s of eyes closed). The power spectra showed a strong alpha
modulation at 8 –12 Hz when comparing eyes closed to eyes open
and it was significant in most sensors (Fig. 4a,b). As expected, the
alpha activity was strongest in the posterior sensors. The topog-
raphy of the difference between misses and hits does not seem to
differ significantly from the Berger effect (compare Figs. 2a, 4a);
however, a source analysis did reveal a difference. The location of
the source accounting for the difference in �10 Hz activity when
comparing eyes open to closed was identified to the cuneus (BA
17/18) just posterior to the parieto-occipital sulcus. This location
is more posterior compared with the source accounting for the
difference between misses and hits.

To investigate whether there were systematic changes in be-
havior and/or alpha power modulation over the course of the
experiment, we divided the trials into quartiles according to their
order in the experiment. Hit rates (hits/misses) were calculated
for each quartile and normalized in each subject to the individual
mean hit rate over all quartiles. The normalized grand average of
alpha power did not change significantly during the course of the
experiment ( p � 0.17) (Fig. 5a). Reaction times did not differ
significantly between quartiles either ( p � 0.27) (Fig. 5b). With
respect to hit rates, we observed a systematic decrease in perfor-
mance from the first compared with the rest of the quartiles ( p �
0.041, p � 0.01, and p � 0.008 respectively, repeated-measures

ANOVA, simple first contrast) (Fig. 5c). We conclude that, al-
though hit rates did decrease over the course of the experiment,
this decrease was not associated with significant changes in reac-
tion times or alpha power.

To investigate brain activity reflecting hits versus misses after
stimulus presentation, we calculated the combined planar gradi-
ent of the ERFs. As seen in Figure 6 we observed a reliable differ-
ence in the early ERFs 90 –135 ms after stimulus presentation.
The ERF for hits was bigger then the ERF for misses. The topog-
raphy reflecting the differences was clearly posterior and some-
what left lateralized. The topographies with respect to ERF differ-
ences and prestimulus alpha differences (Fig. 2a) had quite a
similar distribution. Thus, on the basis of these data, it is likely
that the same brain regions are responsible for producing the
differences in ERFs and alpha power. Source modeling would
have helped to clarify this issue; however, because of the weak
ERFs, we were not able to reliably construct a source model ac-
counting for the difference between hits and misses. On this basis,
we tentatively conclude that the alpha activity does modulate the
excitability of posterior visual areas. These modulations in excit-
ability are expressed in the magnitude of the ERFs reflecting vi-
sual perception in the same regions.

Discussion
We have demonstrated that prestimulus alpha power in humans
correlates with contrast-discrimination ability in a simple visual
task. An increase in posterior alpha power correlated with a de-
crease in discrimination ability. Source analysis revealed that

Figure 4. Characterization of the 8 –12 Hz alpha activity with respect to the eyes open/closed task. a, Topography of the 8 –12
Hz power for eyes open subtracted from eyes closed. Sensors that differ significantly are marked with dots ( p � 0.001 corrected
for multiple comparisons, cluster analysis). b, The spectra for the sensors that showed the biggest difference (sensors over occipital
areas; MLO11). c, Sources accounting for the eyes open/closed difference in the alpha band. The source estimates for the 8 –12 Hz
activity for eyes closed and open were subtracted for each subject, normalized to a standard brain and then averaged. The source
maps were masked with respect to 50% of the maximum. The colors represent NAIs.
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�10 Hz activity around the parieto-occipital sulcus was accom-
panied with a modulation in discrimination ability. Although
reaction times were faster for hits than for misses, they did not
vary systematically with alpha power. Thus, we suggest that the
changes in visual discrimination ability are modulated by oscilla-
tory activity in the alpha band, which serves to reduce the gain of
the visual dorsal stream.

Our findings are consistent with the hypothesis that increases
in posterior alpha activity reflect inhibition or disengagement of
posterior areas (Ray and Cole, 1985a,b; Vanni et al., 1997; Klime-
sch et al., 2000; Jensen et al., 2002; Cooper et al., 2003; Tuladhar et
al., 2007). One functional interpretation of the inhibition hy-
pothesis is that the gain of the dorsal visual stream is reduced with
alpha power (Jokisch and Jensen, 2007). The gain would serve to
“gate” the information passed from occipital to dorsal parietal
areas. The gain would be inversely related to alpha activity in the
parieto-occipital sulcus. We suggest that a reduced gain is re-
flected in the visual evoked fields produced in posterior areas
(Fig. 6). As a consequence, subtle details are less likely to elicit a
conscious percept. Although alpha activity is likely to be con-
trolled by a top-down mechanism such as attention (Worden et
al., 2000; Medendorp et al., 2007), it is at this stage not clear which
frontal areas exert this control. It should be mentioned that our
findings pertain to how alpha power modulates visual detection
ability. A previous study by Palva and Palva (2007) argues that
alpha activity could play an active role in cognitive processing.
This argument is based on findings demonstrating cognitive
modulation of the phase relationship between alpha sources
rather than modulations in power.

What is the functional benefit of inhibiting posterior areas? One
advantage might be to reduce the flow of visual information, which
could interfere with processing in higher level areas such as working
memory maintenance This hypothesis is among others based on
findings demonstrating that alpha power increases during working
memory retention (Jensen et al., 2002; Tuladhar et al., 2007). Con-
sistent with this notion it was demonstrated in visual cued attention
experiments that alpha power increased in occipital areas ipsilateral
to the hemifield attended to, compared with when this hemifield was
ignored (Worden et al., 2000; Fu et al., 2001; Yamagishi et al., 2005;
Kelly et al., 2006; Thut et al., 2006).

We found that the alpha source representing the difference
between misses and hits is anterior to the source of the “classical”
alpha activity identified in the eyes open/closed condition (com-
pare Figs. 3b, 4c). Our results indicate that the alpha sources
anterior and posterior to the parieto-occipital sulcus serve differ-
ent functions. Given the spatial resolution of MEG, we cannot tell
whether this reflects two distinct sources or one larger source
differentially modulated over the dorsal axes. Given that several
studies have argued for a top-down-driven attention system en-
gaging the dorsal stream, the modulation of occipital and parietal
areas is likely to be related (Corbetta and Shulman, 2002; Fox et
al., 2006). More studies are required to establish if alpha sources
anterior and posterior to the parieto-occipital sulcus have differ-
ent functional roles.

One concern is that the correlation between alpha power and
discrimination ability is primarily explained by changes in vigilance.
This concern is based on the observation that both reaction times
and alpha power had higher values for misses than hits (Fig. 1d).
However, when reaction times were correlated with alpha power
(Figs. 2d, 3d), it was clear that no correlation existed. Additionally,
although hit rates did decrease over the course of the experiment,
this was not associated with systematic changes in alpha power or
reaction times (Fig. 5). Based on these findings, we conclude that the

Figure 5. Alpha power and reaction times during the experiment. a, b, The alpha power (a)
and reaction times (b) did not change during the course of the experiment. c, Hit rates were
significantly stronger in the first quartile compared with the rest. Error bars represent SEM.
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changes in discrimination ability with alpha
activity are not explained by changes in
vigilance.

Previous studies on prestimulus alpha
activity and detection ability have yielded
inconsistent results (Babiloni et al., 2003;
Ergenoglu et al., 2004). One explanation
for the discrepancies might stem from the
fact that several sources in the human
brain produce oscillatory activity in the al-
pha band (Hari and Salmelin, 1997). This
in particular becomes a problem when an-
alyzing EEG and MEG data because the
activity from different sources will mix at
the sensor level because of volume con-
duction and cross talk. By analyzing the
signals at the source level using spatial fil-
ters, we were able to disentangle the differ-
ent �10 Hz sources resulting in an im-
proved correlation between alpha power and detection ability
(Fig. 3, compare a, b). In conclusion, the combination of MEG
with spatial filters allowed us to robustly demonstrate that only
posterior alpha power with sources around the parieto-occipital
sulcus predicts discrimination ability.

Although the �10 Hz sensorimotor mu rhythm did not pre-
dict visual discrimination ability, this rhythm has been shown to
correlate with somatosensory detection in an MEG study by
Linkenkaer-Hansen et al. (2004). In sensors over sensorimotor
areas, they showed that intermediate prestimulus �10 Hz power
was associated with the highest somatosensory detection ability.
One possibility is that the �10 Hz sensorimotor mu rhythm plays
a different role for somatosensory processing than the posterior
alpha rhythm plays for visual processing; however, a direct com-
parison is complicated by the finding that the strongest alpha
sources modulating the detection ability were around the
parieto-occipital sulcus rather than primary visual cortex. In ad-
dition, Linkenkaer-Hansen et al. (2004) found that an increase in
alpha power in posterior sensors correlated with an increase in
somatosensory detection ability. This result is consistent with the
inhibition hypothesis of posterior alpha activity: when a subject is
engaged in somatosensory detection, inhibiting the visual stream
might serve to allocate resources to the sensorimotor system.

The influence of the ongoing state of the brain on task-related
activity has been the focus of recent studies applying functional
magnetic resonance imaging (fMRI). An fMRI study showed that
the blood oxygen level-dependent (BOLD) response in early vi-
sual areas correlated positively with performance in a visual pat-
tern detection task (Ress et al., 2000). The authors infer that the
increase in BOLD correlating with detection ability reflects a
change in local cerebral blood flow because of an attention-
related increase in prestimulus firing rates of a large population of
neurons in visual cortex. Although the poor temporal resolution
of fMRI makes it difficult to interpret the reported BOLD in-
crease as prestimulus activity, we would like to extend the hy-
pothesis. Because combined fMRI and EEG studies have demon-
strated a negative correlation between alpha power and the
BOLD signal (Goldman et al., 2002; Laufs et al., 2003), the in-
crease in the visual cortex BOLD signal correlating with visual
detection ability could be explained by a decrease in prestimulus
alpha power. More research possibly combining EEG and fMRI is
required to further investigate this hypothesis.

Our findings suggest that prestimulus alpha power reflects
functional inhibition of the visual pathway. What are the neuro-

physiological mechanisms accounting for the functional inhibi-
tion with an increase in alpha activity? Jones et al. (2000) proposed a
computational model involving mutually connected excitatory and
inhibitory neurons. The model works as follows: during the alpha
cycle, a group of inhibitory neurons fires. The firing results in
GABAergic inhibition of the excitatory neurons. These neurons are
initially hyperpolarized by the GABAergic inhibition, but because of
rebound excitation they well eventually fire. This excitatory firing in
return activates the inhibitory neurons and a new cycle starts. When
considering realistic kinetics and time scales of the receptors and
synapses involved, this mechanism will produce �100 ms rhythmic
cycles. The periods of hyperpolarization increase with GABAergic
inhibition, as does the rebound excitation. According to this scheme,
the increase in functional inhibition with alpha activity might be
explained by the GABAergic feedback silencing the excitatory cells
involved in conveying visual information (Jones et al., 2000). It
should be mentioned that models have been proposed in which
GABAergic feedback is important for the generation of gamma and
beta oscillations (Traub et al., 1999; Jensen et al., 2005). In these
models it is the direct inhibitory feedback to excitatory and inhibi-
tory neurons allowing for the fast oscillations to emerge. This is in
contrast to the model of Jones et al. (2000), where the rhythm gen-
eration is a consequence of rebound excitation after a GABAergic
inhibition. This model could be extended to include thalamic inter-
actions, which are known to play a role in the generation of the alpha
rhythm as well (Lopes da Silva, 1991; Rougeul-Buser and Buser,
1997; Hughes and Crunelli, 2005). Complementary to this idea is
that the gain of the visual stream is modulated by the alpha rhythm.
Previous experimental and theoretical work have investigated the
gain properties of neocortical neurons from sensory areas (Chance et
al., 2002). It was demonstrated that the gain of these neurons was
modulated by background synaptic input. Although the synaptic
input was assumed to be a consequence of random background
firing with no temporal structure, this framework might also be ap-
plied to understand gain modulation in the presence of rhythmic
background activity. The rhythmic background activity is likely to be
a consequence of a top-down drive, which determines the gain of the
visual system (i.e., there is a reduction in gain when alpha activity
increases). It has been proposed that gain modulation is a general
computational principle of the CNS (Salinas and Thier, 2000). We
propose the working hypothesis that gain modulation in general is
achieved by changing the oscillatory properties in the alpha band in
relevant networks.

In conclusion, the ongoing state of the brain characterized by

Figure 6. Difference in ERFs with respect to hits and misses. a, Topography of the difference between hits and misses (com-
bined planar gradient), 90 –135 ms, averaged over subjects. b, The time window is depicted by a gray bar. The time course of the
ERF difference between hits and misses averaged over subjects and averaged over the sensors depicted in a by open circles.
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spontaneous alpha activity modulates task-related behavior. There-
fore, this activity should not be disregarded when performing elec-
trophysiological and functional imaging studies. Moreover, it may
be beneficial to monitor the alpha activity not only in subjects per-
forming a task in an experimental setting, but also in people per-
forming real-life jobs where high visual performance is required.
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