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Prerequisites

Familiarity with basic category theory is asssumed. The reader is supposed to have
a working knowledge of functors. adjunctions, (locally) cartesian closed categories,
Yoneda, etc. Let’s say that the first five chapters in Mac Lane [1971] form the
starting point. A good introduction would be Barr & Wells [1990]; the parts about
sketches are not relevant though. Two points may go beyond this basic category
theory.

In the first chapter 2-categories are mentioned occasionally. Briefly, a 2-category
is a category where the morphisms between any two objects are objects for a category
again; this yields two sorts of composition — “vertical” and “horizontal” —- which



ii PREFACE

should satisfy certain interchange laws. see e.g. Mac Lane [1971]. The basic thing
used is that adjointness and equivalence are 2-categorical notions. More information
may be found in Kelly and Street {1974].

In some examples toposes occur. The expositions there are not self-contained
and the reader is referred to Johnstone [1977], Barr & Wells [1985] or Bell [1988] for
more information.

Information for reading

One of the main concerns in this work is the connection between two relations: type
theoretical “dependence on” and categorical “being fibred over”. Before plunging
into technical expositions, the reader may want to see this main line and take a look
at sections 2.1 and 5.1 first.

The category theory needed to describe calculi with type dependency is definitely
more advanced (and interesting) than the one for calculi without such dependency.
The latter “propositional” systems are described categorically in chapter 3 and the
prerequisites may be found in chapter 1, esp. sections 1,2 and 5. This organization
has been chosen to enable reading only these propositional parts. The subsequent
chapter 4 contains the technical work on type dependency.
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Introduction and summary

Categorical type theory is understood here as the field concerned both with category
theory and type theory and especially with their interplay. As such it grew out of
categorical logic. Roughly, we view a logic as a type theory in which propositions
can have at most one proof-object. Indeed, one finds that the propositional part of
the structures used in categorical logic are preordered categories (where one has at
most one arrow between two objects). Thus type theory exhibits more categorical
structure than logic. A logician might want to point out that there are no small
complete categories other than preorders. Quite reassuringly, one does have small
complete fibred categories which are not preordered, see 4.2.4 and further. These
give interesting examples in categorical type theory.

Having mentioned these differences between categorical logic and type theory, we
stress the historic continuity: the basic notions used in categorical type theory have
been developed before in categorical logic. In this thesis one finds forms of indexing,
quantification by adjoints, comprehension and algebraic theories, which are all based
on previous work in logic (especially by F. Lawvere, see e.g. Lawvere [1963], [1969],
[1970] or Kock & Reyes [1977]). We want to emphasize that these notions require
some refinements and adjustments to make them suitable for type theoretical expo-
sitions. For example, we describe quantification by adjoints to weakening functors
and not to substitution functors; therefore, a general form of weakening functor will
be introduced, see 4.1.1 and 4.1.2.

Typed lambda calculus started with Curry & Feys [1958] and Howard [1970], who
considered propositional aspects. Type dependency was brought in by de Bruijn
(with the AUTOMATH project, see e.g. de Bruijn [1970]) followed by Martin-Lof
(with his intuitionistic type theory, see e.g. Martin-Lf [1984]). In the 1980’s the field
grew rapidly, mainly by the interest shown from the computer science community.

Categorically, propositional calculi are straightforward; except maybe, for higher
order quantification, but that is not what we want to focus on now. Contexts are
simply cartesian products of the constituent types, since there is no type dependency
involved. In case such dependencies may occur, things become categorically more
interesting: contexts are no longer cartesian products, but a form of disjoint sum
is needed to model such depending chains of types. The first studies are Cartmell
[1978] and Seely [1984].

It thus turned out that the main operation which had to be explained catego-
rically was “context extension” (or “context comprehension” as we sometimes like

v



vi INTRODUCTION AND SUMMARY

to call it): given a context I and a tvpe I' F ¢ : Type. what is the meaning of the
context I'.r:0 (i.e. I extended with an extra variable declaration). For this pur-
pose, various notions have been introduced: contextual categories (Cartmell [1978],
Streicher [1989]). categories with attributes (Cartmell [1978], Moggi [1991]). display-
map categories (Taylor [1987}, Hyland & Pitts {1989], Lamarche [1988]). D-categories
(Ehrhard [1988a], [1988b]), IC of IC’s (Obtulowicz [1989]). categories with fibrati-
ons (Pitts [1989]), comprehensive fibrations (Pavlovi¢ [1990]) and comprehension
categories (Jacobs [1990]). In fact. there are so many notions around that almost
everyone working in the field can cherish a private one.

In this thesis we work exclusively with comprehension categories to describe
type dependency. Among the above alternatives, comprehension categories are in
our opinion at the right level of generality and abstraction: once the notion is fully
understood, closure properties (like under change-of-base) or generalizations (like
over a fibration) suggest themselves in an obvious way. Much of this work can be
read as a systematic exposition of categorical type theory in terms of comprehension
categories.

We briefly outline the contents of the five chapters. The first one is about
indexing of categories; it contains the basic definitions and results, mainly about fi-
brations, but also about indexed and internal categories. These are well-established,
either in the literature or in the “folklore”.

Type theory is the subject of the next chapter. The main innovation here is the
description of type systems in terms of “settings plus features”. A setting describes
the dependencies which may occur, like whether or not a proposition may depend
on a type (i.e. contain a variable of a certain type). Features — like products, sums,
exponents. axioms or constants — are added on top of a specific setting. In such a
way, one obtains individual systems.

The subsequent three chapters show how type theoretical settings can be trans-
lated into categorical settings and how type theoretical features can he tranlated
into categorical features on top of the translated settings. A categorical setting can
be understood as a generalization of Lawvere’s notion of algebraic theory. For the
settings without type dependency, the translation can be done in a relatively easy
way; it may be found directly in chapter 3. There, one finds the standard descripti-
ons for the “left plane” of the cube of typed lambda calculi from Barendregt [1991].
Translations in general are postponed until section 5.1.

Inbetween, the categorical description of type dependency is the subject of chap-
ter 4. Tt consists of a thorough investigation of comprehension categories and quan-
tification. It is the basis for the translation of settings and features in the beginning
of chapter 5 and for the categorical description of some individual systems later
in that chapter. Finally. we close with a revision of the semantics of the untyped
lambda calculus. Appropriate comprehension categories yield a new notion of “cate-
gorical A-algebra”. These are related to set theoretical A-algebras via an adjunction

— which forms an improvement with respect to the categorical structures used by
Scott and Koymans.
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As already mentioned, this work can be seen as a survey of categorical type
theory. It seems therefore appropriate to point out what we consider to be our own
contributions.

¢ The notion of a comprehension category and the related results, see sections
4.1 - 4.4. More specifically the double role these categories play: one time
as a model and one time as a domain of quantification. Also the notion of
a closed comprehension category; it can be seen as a syntax-free description
of a structure with dependent products and sums. which has good closure
properties.

e The notion of a setting (see 2.1.1), which formalizes the type theoretical rela-
tion of dependency. The exposition that “being fibred over” is the categorical
counterpart of this relation.

o The translation from type theoretical settings and features to categorical set-
tings and features. using (constant) fibrations and (constant) comprehension
categories. Constant fibrations or comprehension categories are used if the
relevant dependency does not occur, see section 5.1.

¢ A number of free constructions linking the most important notions. see 3.3.5,
4.3.10. 4.4.13 and 4.4.16.

o A categorical description of type theoretical exponents without assuming car-
tesian product tvpes. see 4.2.6.

o The description of a topos as a “split” model of the calculus of constructions,
i.e. as a model in which all the relevant structure exists up-to-equality, see
4.3.5 and 5.2.6 (i).

o The revision of the semantics of the untyped lambda calculus.

¢ A systematic exposition of categorical type theory in terms of fibrations and
comprehension categories.

We state that there is no claim to completeness in our survey. Here are two
topics which are not covered. First there is nothing about coherence of the vari-
ous mediating isomorphisms which occur when dealing with “non-split” structures.
Although coherence problems have an established categorical interest, we don’t think
they are really imporiant from a type theoretical point of view (at least not with
respect to the type theories considered here): every concrete example of a model
we know of can be presented in a “split” way. Indeed, we are particularly keen on
presenting them in such a way. In order to obtain this we use “family”-models in
which one has “substitution by composition” instead of “substitution by pullbacks”.
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Secondly, there is nothing about the interpretation of the various typed A-calculi
in their corresponding categories. A bit more categorical, we don’t describe the
various term models as free constructions. This omission seems more serious; it
is motivated by the following two reasons. (1) Writing out interpretations is very
laborious; it certainly requires technical skills but it does not seem to bring much
conceptually. (2) With the growth of experience in this field, the necessity of having
interpretations diminishes: from a certain point on. one doesn’t really see much dif-
ference anymore between the type theoretical or categorical description of a specific
system.

This brings us to the relation between type theoretical and categorical descrip-
tions. We like to see the latter as description at the “assembly” level: categorical
formulations require far more attention for details, like substitution or coherence.
Programming in type theory is much smoother and proceeds at a level where many
of these aspects are trivialized. Thus one can view typed lambda calculi as higher
level languages for certain categorical structures.



Chapter 1

Basic Fibred Category Theory

In typed and untyped lambda calculus, contexts play an important structural role.
They can be seen as indices for the terms and types derivable in that context. It
is for this reason that the categorical study of A-calculi which we are about to un-
dertake starts with the investigation of “indexing”. Fibrations form the appropriate
categorical concept; they provide a framework for describing categories parametrized
by some base category.

In order to understand how the indexing of categories takes place, it is instructive
to take a look at indexing of sets first. Indexed sets are described basically in two
ways. (1) As a family {X,},cs, which roughly means, as a map X :J — Sets, the
universe of sets. (2) Asamap f:Y — I, where I is still the index-set; the indexed
sets are then given by the fibres f 1({i}). There are obvious translations between
these two approaches and the indexing works well in cither case, see 1.1.6 for a
more mathematical formulation of this statement. For technical reasons however,
indexing of categories can best be done in the second way, i.e. with a functor p: E —
B satisfying certain properties, which make it a fibration. Every object A € B
determines a fibre category p~!(A) — written usually as E; — consisting of objects
E ¢ E with pE = A and morphism f in E with pf = 1d4. In more type-theoretical
formulation, one can think of objects A € B as contexts and of objects and arrows in
E, as types and terms in context A. Arrows between contexts in the base category B
can then be seen as substitutions, like in the abstract syntax used by Curien {1989,
[1990]. The categorical counterpart of (1) is given by so-called indexed categories,
which will be investigated in section 3 below.

This introductory chapter contains only “folklore™ material, developed mostly
by A. Grothendieck and J. Bénabou. Hence there is no claim to originality.

Although the definition of a fibration is not so difficult, it appears that one does
not obtain a practical “working knowledge” of fibrations so easily. Readers unfami-
liar with this field are urged to take ample time for this first chapter.
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1.1. Fibrations

1.1.1. Basics. Suppose we have a functor p:E — B. An object E € E (resp.
a morphism f in E) is said to be above A € B (resp. u in B) if pE = A (resp.
pf = u). A morphism above an identity is called vertical. Every object A € B
thus determines a so-called “fibre” category E4 consisting of objects above A and
vertical morphisms. It is useful to write E, (E.D) = {f: E — D | pf = u}, where
it is assumed that u:pF — pD in B. One often calls B the base category and E
the total category.

A morphism f:D — E in E is called cartesian over a morphism » in B if f
is above u and every f': D' — E with pf' = u o v in B, uniquely determines a
¢:D'" — D above v with f o é = f'. The functor p: E -+ B is called a fibration if
for every E € E and u: A — pFE in B. there is a cartesian morphism with codomain
E above u. Alternative names are fibred category or category over B. Dually,
f:D — E is cocartesian over u if every f': D -» E' with pf' = v o u, uniquely
determines a ¢: E -+ E' above v with ¢ o f = f'. And: pis a cofibration if every
morphism pE — A in B has a “cocartesian lifting” with domain E; it is called a
biftbration if it is at the same time a fibration and a cofibration.

These notions are due to A. Grothendieck.

1.1.2. ExaMPLES. Let B be an arbitrary category and let B~ be the functor cate-
gory from the partial order - — - to B. Alternatively. one can think of B~ as the
comma category (B | B). This “arrow category” B™ has morphism of B as objects
and commuting squares as morphisms. Similarly, there is a category B 77",

The functor dom:B ° — B forms an example of a fibration. Also, for every
A € B one has a fibration dom 4 : B/A — B, where B/A is the slice category having
arrows with codomain A as objects and commuting triangles as morphisms.

In case the category B has pullbacks, the functor cod . B > — B forms an example
of a fibration; cartesian morphisms in B™ are given by pullback squares. The fibres
are {(isomorphic to) the slice categories B/A. This functor cod is in fact a bifibration.
The (obvious) functor cod *:B ~~ -+ B™ is a fibration as well. Even more, the
composition B '~ — B™ —- B viclds an example of a fibration. The latter fact
can be checked by hand. but it actually follows from lemma 1.1.5 below, which says
that fibrations are closed under composition.

Every category C gives rise to a “family fibration™ Fam(C) -» Sets. The to-
tal category Famn(C) has families {X,},.; of C-objects as objects; these may be
described by a pair (I, X) with X : I — C. Morphisms (u. {f.},e1): (L. X) = (J,Y)
in Fam(C) are given by a function v:I — J such that for every ¢ € I one has
fi: X, = Yy, in C. The first projection Fam(C) — Sets then forms a fibration;
one has that (u, {f,}.cr) is cartesian iff every £, is an isomorphism.

Let Top be the category of topological spaces with continuous maps. The for-
getful functor U : Top — Sets is a fibration since a function f:I — U(X) can be
lifted to a continuous map f: f*(X) — X. where f*(X) is the set I provided with
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the topology induced by f. i.e. with opens {f~'(U) | U C X open}. It is the weakest
topology on I which makes f continuous.

Some trivial examples of fibrations are given by the identity functor C — C and
the unique functor C — 1 to the terminal category. These are both instances of the
“constant” fibration Fst: B x C — B.

Finally, here are two constructions to form a new fibration from a given one. Let
p:E — B be a fibration. The category Cart(E) is described by objects £ € E and
cartestan morphisms between them - using that cartesian morphisms are closed
under composition. We write |p|: Cart(E) — B for the obvious functor obtained by
restriction. All fibre categories of |p| are groupoids, since a morphism which is at
the same time vertical and cartesian is an isomorphism.

For the second construction, we write V(E) to denote the full subcategory of E™
with vertical arrows as objects. More explicitly, objects of V(E) are vertical arrows
a:E'" — E and morphisms (f,g9):(a:E' - E) = (3:D' - D) are f: E — D and
g:E'" — D' in E satisfying f o @« = 3 o g. One obtains an “arrow fibration”
p~ : V(E) — E — B by first applying the “codomain” functor and then p.
One has that (f.g) is p~-cartesian iff both f and g are p-cartesian. Notice that the
fibre V(E)4 is (E4) ™.

1.1.3. FURTHER INVESTIGATION. If p:E — B is a fibration and f:D — E and
f': D' — E are both cartesian morphisms over «, then f = f' in E/E by a vertical
isomorphism. Hence given u: A — B in B and E above B, it makes sense to choose
a cartesian lifting of u with codomain E; we often write u(E£): u*(E) — E for such
a choice. A collection of choices -— for every appropriate v and E — is called a
cleavage. It induces for every u: 4 — B a funclor u*:Eg — Eg4, called inverse
wmage, reindexing, relabelling or substitution functor. Different cleavages give rise
to different, but naturally isomorphic, reindexing functors. In general, one obtains
vertical natural isomorphisms (uz o v)* = v* o u* and :d* = Id, as for pullbacks in
case of cod: B ™ — B. If one happens to have identities here (for a certain cleavage),
one says that the fibration can be splt. Notice that one can always choose 1d* = Id.
A split fibration is understood here as a fibration which is given together with such a
“splitting”. The fibration Fam(C) — Sets mentioned in the examples above, has a
splitting: for u:I — J and {X,},-; one can take as cartesian lifting (u, {tdx,, }:cr)-
Similarly. one says that a fibration is cloven if it is given together with a cleavage.
For every fibration, one can use a suitable form of the axiom of choice to obtain a
cleavage.

It is important to notice that such reindexing functors u* are implcitly determi-
ned in the definition of a fibration. As is often stressed by J. Bénabou, only ntrinsic
properties of fibrations are of interest, i.e. properties which do not depend in any
way on choices of inverse images. A subtle example is the following. Let's say that
a fibration p: E — B satisfies property (*) if every reindexing functor u* has a left
adjoint ¥,. Then (x) is an intrinsic property: it does not depend on the choice of
the functors u* for a given u in B, since these are determined up-to-isomorphism
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and so are adjoints. Side-remark: it is a standard result that p satisfies (x) iff pis a
bifibration, see e.g. Jacobs [1990].

A morphism between fibrations p and q is given by a commuting square as below,
in which the functor H preserves cartesian morphisms, i.e. f is p-cartesian implies
that Hf is g-cartesian.

E D
H

p q

B K A

Given a fibration ¢: D — A and an arbitrary functor K: B — A one can form the
pullback

BxD D

o 1 K
K*(q) q
B K A

and verify that K*(q) is a fibration again. Notice that
(B g D)((B.D), (D)) = Upipipay Die(D. D),

where |J denotes disjoint union. One easily verifies that (u, f) is K*(q)-cartesian
iff f is g-cartesian. As a result, a splitting or cleavage of q can be transferred to
K*(q). Moreover, the above pullback diagram forms a morphism of fibrations. This
construction is called change-of-base (for fibrations). As a result, the “functor”
sending a fibration to its base, can be understood as a fibration itsell. Usually,
one writes Fib(B) for the “fibre” category of fibrations with base B; morphisms
in Fib(B) are called cartesian functers or functors over B. We use Fib(B) as a
“category” only in a suggestive way, since we don’t consider aspects of size. The
“category” Fib,,.(B) contains split fibrations and morphisms which preserve the
splitting on-the-nose (i.e. up-to-equality and not up-to-isomorphism).
The proofs of the next two elementary results are left to the reader.

1.1.4. LEMMA. Let p:E — B be a functor. One can form the pullback

ExB—-——-— B~
p.cod _J
p*(cod) cod
E B




1.1. FIBRATIONS 5

and define a functorT : E* —+ E X B~ by [f:E' — E|— (E,pf). Then
PrCi

p 15 a cloven fibration < T has a full and fasthful right adyornt. O

1.1.5. LEMMA. Let p:E — B and r: B — A be fibrations.
(1) The functor rp:E — A 15 a fibration, with

f s rp-cartesian &  f 1s p-cartesian and pf 1s r-cartesian.

(ii) The functor p is cartesian from rp to r.
(iii) If g: D — B is another fibration, then

F:pogqgwm Fib(B) = F:rp—-rqwm Fib(A). O

1.1.6. FIBRED 2-CELLS. Assume (K, H) and (L,G) are morphisms of fibrations
(1-cells) as below.

H
E_____4r D
G
p q
K
B____ o A
L

A 2-cell from (K, H) to (L.G) is a pair of natural {ransformations (¢ : K = L, 7 :
H — G) such that T is above 0. More precisely, every component 7 is above o,p.
In the same way, one obtains 2-structure for split fibrations.

As an application of these notions, one may verify that there is an equivalence
— which is a 2-categorical notion — over Sets,

—_—— = —

\ cod

N

Sets,

see 1.1.2 for definitions of the fibrations involved. This equivalence forms the proper
mathematical expression of the statement that the two ways of indexing sets, as
mentioned in the introduction of this chapter, are essentially the same. Remember
that the fibration Fam(Sets) — Sets is split, whereas Sets ™ — Sets is not. In
general, split fibrations are more pleasant to work with.

Change-of-base as described above also has 2-categorical aspects, as will be shown
in the next two lemmas. The first lemma deals with the 2-structure in the fibres
and the sccond one with 2-structure on the base level. The latter one is essentially
proposition 3 in Ehrhard [1988a).
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1.1.7. LEMMA. Every functor K : B — A nduces a “change-of-base™ 2-functor K™ :
Fib(A) — Fib(B). This 2-functor restricts to Fibypu(A) — Fib(B).

Proof. Straightforward. O

1.1.8. LEMMA. Let q: D — A be o fibration and K,L:B — A (arbitrary) functors
with a natural transformation o: K —» L between them. Then there is an (up-to-
wsomorphism) umique cartesian functor w0,: L*(q) — K*(q) prownided with a natural
transformation o' : K' o <o) — L',

B Lx D —-— ~£/ - D
q9 \\ "
7
\\ \\ o -
\\ 0y TN /K'
. \ B x D q
L*(q) \\ /Kq
\ <
N
B te A
K

such that the parr (0,0') 15 a 2-cell (K, K' o 10)) = (L. L") from L*(q) to q and o’
has cartesian components.

Proof. Because ¢, goes from L*(q) to K*(q) one must have that ‘o.(B, D) is of the
form (B.D). Since o(y p,: D — D is cartesian over o5, onc has that D = oj(D).
This determines the object-part of & up-to-isomorphism. Similarly, the arrow-part
is determined: for (u, f):(B.D) — (B',D')in B qu D one has o(u. f) = (u. f).

where f: D — D' is above Ku and makes by naturality of o' the following diagram
commute

D-—"a—-—— D
U;B.D)
f=K'oo(uf) f=L(uf)
”fB'.D')
D - . D\

Since o g 1) is cartesian. there can be only one such arrow. This description gives
at the same time a recipe for the construction of ¢ and ¢'. O

1.1.9. LEMMA (Fibred Yoneda). Let p: E — B be a fibration and A € B.
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(1) There 15 an equwealence of categories
E, =~ Fib(B) (domA, p).

A suitable formulation of the naturality involved may be found in the proof of pro-
position 1.53.6 below.
(ii) In case p 1s a split fibration, one obtains an wsomorphism

E, = szsp;,,(B)(domA, p).

The fibration dom,4:B/A — B is mentioned in 1.1.2 and Fib(B) (-, —) denotes
the “Hom™-category described in 1.1.6.

Proof. (1) One first uses a suitable version of the axiom of choice to obtain a cleavage
for p. An object E € E, then determines a cartesian functor Yon(E): B/4A — E
by u — u*(E) and [¢:u — v] — [the unique a:u*(E) — v*(E) above ¢ satisfying
B(E) o a = a(E)). A morphism f:E — E'in E, determines a vertical natural
transformation Yon(f): Yon(E) — Yon(E') with components Yon(f), = u*(f).

One obtains a functor ¥ : Fib(B) (domA, p) — E by F o F(idg)and o — 0,4,.
This yields the required equivalence.

(ii) The construction from (i) now yields an isomorphisin, since

(¥ o Yon)(E) = Wd%(E)=E
(Yon(E) o ¥)(F)(u) = u’(F(wds))
= Flu*'(1dy)) since F' preserves the splitting
= F(idsou)
= F(u). Qo

11.10. DEFINITION. A fibration p: E — B is called representable if it is equivalent
to a fibration of the form dom4:B/A — B for some A4 € B,

11.11. OPPOSITE FIBRATION (Bénabou [1975]). Let p:E — B be a fibration. A
fibration p°® : E“?' — B will be described which is “fibrewise” the opposite of p.
A little care is needed to do this intrinsically. Let CV = {(f1. f2) | f1 is cartesian.
f2 is vertical and dom(f,) = dom(f2)}. An equivalence relation is defined on the
collection CV by (fi. f2) ~ (91.92) < there is a vertical map h with gy o h = f
and g, o h = f,. The equivalence class of (f;, f2) will be written as [fi, f2].

The total category E°) of p°? has E ¢ E as objects. Morphisms [f;, fo]: E = D

are given by
E

/|
h

¢ ——— - -—D
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Composition is described by

—

The functor p?: E” — B is then defined by E — pE and [fi, fo] — pfi. Tt is left
to the reader to verify that

(i) p* is a fibration, with {f1, f,] cartesian iff f; is an isomorphism;
(i) p* is the fibrewise opposite, i.e. (E©?') , = (E,)™;
(iii) (p**)°* = p.

Let B be a category with pullbacks. The total category (B ™)) of the opposite
of the fibration cod: B~ — B is sometimes called the “inverse arrow category” and
denoted by Inv(B).

Taking the opposite of a splst fibration can be done without taking equivalence
classes as above.

1.2. Category theory over a base category

In the introduction of this chapter we stated that categories varying over a base
category form the subject of study in fibred category theory. In the present section
we describe how such variable categories can be provided with certain structure, like
terminals or cartesian products.

The concepl one needs to obtain such structure in fibre categories is that of a
fibred adjunction; it is an adjunction in the 2-category of fibrations (with the same
base category). Let’s describe adjunctions explicitly; equivalences are then also
well-understood.

1.2.1. DEFINITION. Let p: E -» B and q: D — B be fibrations. A fibred adjunction
from p to q consists of a pair of cartesian functors F: E — D and G: D — E forming
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an adjunction F' - G with vertical unit and counit.

F
E L D

G

B

Using the triangular identities of an adjunction, one easily verifies that the unit
is vertical iff the counit is vertical. It is also worth noticing that change-of-base
preserves fibred adjunctions, see 1.1.7.

Cartesian functors F' and G as above determine for every object A € B “fibre-
wise” functors Fl4:E4 — D4 and Glsa: D4 — E, by restriction. Since unit and
counit arc vertical, one obtains an adjunction F|4- G|4. These “fibrewise” adjunc-
tions are preserved under reindexing. The precise meaning of the latter statement
can be found in Jacobs [1990]. There, one also finds some more information about
the following quite useful result.

1.2.2. LEMMA. Let p:E — B and ¢:D — B be fibrations and H:E — D a car-
tesian functor. The functor H has a fibred left (resp. Tight) adjownt if and only +f
both

e For every A € B, the functor H|s has a left (resp. might) adjoint K(A).

o For every u: A — B n B and for every pair of reindezing functor uv* :Ep —
E, and u*:Dg — Dy, the canonical natural transformation

K(A)u* — u* K(B) (resp. u* K(B) — K(A)u? )

s an somorphism. O

The canonical map K(A)u* — u* K(B) is the transpose of u* utin) u? H|p
K(B) % H|, u* K(B). Similarly, one obtains the other one.

Of the two equivalent formulations in the above lemma, the second “fibrewise”
one is often closer to one’s intuition, because it describes the structure induced by
a fibred adjunction as structure in the fibres which is preserved under reindexing.
Morecover it has practical advantages and therefore it will be used most of the time.
The first formulation however, is more important from a theoretical point of view.

1.2.3. DEFINITION. Let & € {terminal (initial) object, binary (co-) product, (co-)
equalizer, exponent}. We say that a fibration p has fibred O’s if every fibre category
has O’s and all reindexing functors preserve the <’s.
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It is then clear what a “fibred CCC™ or a “fibred LEX categorv” is. Sometimes
this predicate “fibred” will be omitted. In Jacobs [1990] one mav find definitions of
these notions in terms of fibred adjunctions.

1.2.4. EXAMPLES. (i) Let © be as in the above definition. One has
C has ¢'s & Fam(C) — Sets has fibred O's.

Bi-implications like these will occur also for other notions © which are transferred
to the fibred context, see 4.2.5 (i), 4.4.8 (iii) and 4.5.3 (i).

(ii) The “fibration” sending a fibration to its basis (mentioned at the end of 1.1.3)
has fibred finite products: the fibration Id: B — B is terminal in F:b(B) and as
product of p:E — B and ¢: D — B one can take pop*(q):E pxq D - B (using

1.1.3 and 1.1.5).

(iii) Let B be a category with finite limits; it is easy to see that the fibration
cod:B™" — B has fibred finite limits. There is something more, every pullback
functor u” has a left adjoint ¥, given by composition. By a standard result (sce e.g.
Jacobs [1990]) one obtains that cod is a bifibration.

This B is called a locally cartesian closed category (LCCC) if every fibre (or shee)
category B/A is a CCC. Since the category B is isomorphic to the fibre above the
terminal object, it is then cartesian closed itself. In case B is an LCCC one has
that cod: B~ — B is a fibred CCC, since exponents are automatically preserved:
for u: A — B in B, one has

B/A(h. u'(f=g))

e W R m
=
~

—~~ e~ %

Hence an LCCC can also be defined as a category B having a terminal object and
satisfying the property that the functor cod:B™ — B is a fibred CCC. Later we
shall come across other characterizations, see 4.2.5 (iii) and 4.5.3 (ii). The category
Sets is an example of an LCCC; in fact, every topos is an LCCC.

1.2.5. REMARKS. When working with fibred finite products, it is often quite con-
venient to have also a global description at hand. Let p:E — B therefore be a
fibration with fibred finite products. The two constructions below make use of an
arbitrary cleavage. but they don’t depend on it.

(1) Having a fibred terminal object, implies that for every object A € B. there
is a terminal object, say 1A, in the fibre category E,4. Suppose F € E above A4 and
u:A — B in B are given. Since u*(1B) = 1A one has that E, (E,1B) contains
exactly one arrow. Hence we obtain a functor 1: B — E such that po 1 = Id.
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Moreover, one can show that 1: Idg — pis a fibred right adjoint to p in F2b6(B). We
often assume that fibred terminal objects are described by such a functor 1 from the
base to the total category.

(ii) Preservation of fibred cartesian products by reindexing functors means that
for every u: A — B in B and E, E' € Ep one has that the canonical map

Wi (mut(r') c w(Ex E')Y — u*(E)xu'(E")

is an isomorphism. Hence for any pair of maps f: D -» E and g: D' — E'in E with
pf = pg = u, say, thereis aunique h: D x D' - E x E' aboveuwithmoh=forn
and 7' o h = g o o'. This property leads us to denote h by prod(f,g). We obtain
a cartesian functor prod:p x p — p which is a fibred right adjoint to an obvious
diagonal functor.

1.2.6. DEFINITION. Let © be as in definition 1.2.3. Suppose that (K : B —» B'| L:
E — E') is a morphism between fibrations p:E — B and p': E' — B’ (cf. 1.1.3).
We say that (K, L) preserves fibred O’s if L is fibrewise a O-preserving functor.

1.2.7. A FUNDAMENTAL CONSTRUCTION. Suppose a fibration p : E — B is gi-
ven which has fibred finite products. A new fibration 7: E — E is constructed in
the following way. The category E has pairs E, E' € E with pE = pE' as ob-
jects; morphisms (f.g):(E,E') — (D,D') in E are given by arrows f:E — D
and g: E x E' — D'in E with pf = pg. Composition in E is given by (f,g) o
{(h,k) = (f o h, g o th o m,k)) -— using the global product from remark 1.2.5 (ii)
— and identity by (:d, 7n'). The first projection : E — E is then a fibration with
(f.9):(E,E"Y - (D.D") is p-cartesian iff there is a vertical isomorphism,
T L3

E E X U.(DI) _7—|'_-> un(DI) . DI

N Il s
\ -
ExF'

where v = pf = pg. One easily verifies that p has fibred finite products again.
Moreover that there is a change-of-base situation,

E E
_l H

B ! E

in which both 1 (for terminals) and H are full and faithful functors. Further, (1, H)
preserves the fibred finite products. In case p is a fibred CCC, also p is fibred CCC
and the above map preserves the CCC-structure.
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The fibration p: E — E has a clear logical significance: for E € E above A, one
has that the fibre category Eg is the polynomial category E 4[r: 14 — E] obtained
from the fibre category E4 by adjoining a variable r of type E. see Lambek and
Scott [1986]. part 1, 5 and 7. It is readily established that Eg is the Kleisli category
of the comonad E x — mentioned there.

In case we additionally assume that p has fibred equalizers (i.e. that it is a filhred
LEX category), then the codomain functor V(E) — E mentioned at the end of
1.1.2 yields a similar situation. First of all. we notice that cod: V(E) — E is now
a fibration with (f,g):a@ — 3 in V(E) cartesian iff it is a pullback square in E.
This new fibration has fibred finite limits again; further, there is a change-of-base
situation,

E V(E)
_ L

B----- S S, E,
in which 1 and L are full and faithful functors; this map (1,L):p -» cod preserves
fibred finite limits. Notice that for E € E above A, the fibre category V(E)g is the
slice category E4/FE, which is — in the presence of equalizers —- the polynomial
category E4(z:14 — E]. The latter insight is attributed to A. Joyal in Lambek
[1989], see also Lambek and Scott [1986], part II, 16 exercise 2.

1.2.8. LEMMA. Let p:E — B be a fibration and ¢ € {terminal object, cartesian
product. equalizer}. Suppose the category B has O's; then

p has fibred ©’s < E has O’s and p preserves them.

Proof. We shall do the case of cartesian products.

(=) Suppose E € E above A and D € E above B are given. Then E & D =
74 p(E) x 7' g(D) -— where x denotes the product in the fibre E4, 5 —- forms a
product in the category E.

(<) For E,E' € E above A, take E x E' =§*(E & E'), where §: A — A x A is the
diagonal. O

1.2.9. DEFINITION. (i) A fibration p: E — B is said to have a generic object if there
is an object T € E such that for every E € E there is a cartesian arrow E — T.

In view of the fibred Yoneda lemma 1.1.9, this means that the induced functor
B/pT — E is essentially surjective on objects.

(ii) A morphism (K:B — B',L:E — E’) between fibrations p:E — B and
p':E' — B’ with generic objects T € E and T' ¢ E’ preserves these generic objects
if there is an isomorphism LT = T".
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1.2.10. EXAMPLES. (i) Let C be a category with a small collection of objects,
denoted by @ = Obj(C). The fibration Fam(C) — Sets then has generic object
T = (Q,1da) = {c}een € Fam(C) above Q. For every object {X,},er € Fam(C), one
has X : 1 — Q in Sets satisfying X*(T) = X*(Q,1dq) = (I,1dq o X) = (I, X).

(ii) Let B be a category with pullbacks. We write Sub(B) for the full subcate-
gory of B * with monic arrows as objects. Since monics are preserved by pullback
functors, the functor cod: Sub(B) — B is a fibration. In case B is a topos, this
fibration has a generic object, viz. the subobject classifier.

(iii) Suppose p:E — B is a fibration with finite products and a generic object.
We claim that the fibration 7: E — E from 1.2.7 then also has a generic object
and that the above map p — p is a morphism of generic objects. To prove this,
we assume that T € E above Q forms a generic object for p. Then (10.7) € E
above 10} is generic for p, since for an object (E,E') € E, we can find an arrow
u:pE — € in B satisfying v™(T) = E'. By remark 1.2.5 (i), one obtains a (unique)
arrow f: E — 1Q above u in E. Then f*(1Q,T) = (E,u"(T)) = (E,E").

The above notion of generic object is clearly intrinsic (i.e. it does not depend
on a choice of inverse images). Since we want this property, we are forced to use
such a weak notion. For split fibrations one can do better. First we mention that a
split fibration p: E — B determines an obvious fibration |p|: Sphit(E) — B, where
Split(E) has all objects from E, but only the cartesian morphisms given by the
splitting between them. The fibres of [p| are then discrete categories. For non-split
fibrations, a similar construction yiclds the groupoid fibration |p| : Cart(E) — B as
described in 1.1.2.

1.2.11. DEFINITION. (i) We say that a split fibration p: E -— B has a split generic
object if the (discrete) fibration |p|: Split( E) — B is representable. More explicitly, if
there is an object @ € B and a collection of isomorphisms ¢p: B(B,Q) — Ob)Ep)
natural in B: for u: B — B’ one has ¢g(v o u} = u*(pg(v)). In that case,
T = ¢q(2dg) yields a generic object as in the previous definition.

(ii} A pair (K:B — B',L:E — E') of functors forming a morphism of split fibra-
tions from p: E — B to p': E' — B' is a map of split generic objects ¢p: B(B,Q) —
Ob(Ep) and ¢',: B'(A, Q) — Ob(E"), if there is an isomorphism a : KQ — '
such that ¢ g(e o u) = Log(u).

In the first example above. one has a split generic object.

1.2.12. EXTENDED EXAMPLE (Realizability Models).

The category w-Set has objects A = (|4],F4), where |A] is a set and Fy CIN x |A]
is a relation satisfying Va € {A]. 3n € IN. n |4 a. Morphisms f: 4 — B in w-Set
are given by functions f:|A| — |B| for which there is a realizer n € IN such that
Ya € |Al. Ym € N. mtsa = n-m g f(a), where n - m denotes the result
of n-th partial recursive function applied to m. It is left to the reader to verify
that w-Set is an LCCC. There is a full and faithful functor A : Sets — w-Set
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given by X — (X,IN x X). It induces a morphism of fibred CCC's between the
relevant codomain fibrations. This functor A is right adjoint to the global sections
(or forgetful) functor I' : w-Set — Sets.

The full subcategory M of so-called “modest w-sets” has objects A = (|A[,F4)
satisfying Va,a' € |A]. Vn € N. ntsa & nhk;d = a = a'. As shownin
Ehrhard [1989], the inclusion functor M «— w-Set has a left adjoint © — which
constitutes a reflection. For A = (JA|.F4) € w-Set, one first defines a relation
—on|Abya—a © In€ N nkye& nhtya. Then one takes ~ to
be the transitive closure of —. Finally, one can put ©A = (|A|/~, hea), with
ntea(a] & 3Ja’' €la]. ntya'. As a consequence of this reflection, the category M
has finite limits, which are preserved by the inclusion. It is easy to verify that M
is also an LCCC and that the inclusion M <« w-Set induces a morphism of fibred
CCC’s (between the codomain fibrations).

Let PER = {R C IN x IN| R is a symmetric and transitive relation} be the set
of “partial equivalence relations”. For R € PER, onc writes Q(R) = {[n|g | n €
dom(R)}, where [n]gp = {m € IN | mRn} and dom(R) = {n € IN | nRn}. Notice
that UQ(R) C dom(R). One obtains a category PER with objects R € PER and
morphism f:R — S given by functions f:Q(R) — @Q(S) which have a realizer
n € IN such that for every m € dom(R), one has f([m]r) = [n - m]s. Interestingly,
there is an equivalence of categories,

®

[ —

M PER,

B

¥

given as follows. For A = (|A|,F4) € M, take (4) = {(n,m) | 3a € |4]. n Fa
a & mty a}. For R € PER, put ¥(R) = (Q(R), €).

Let C be w-Set or M. The category Fam.s(C) has pairs (4, X) with A € w-Set
and X :|A| — C as objects. A morphism (f.a):(A,X) — (B,Y) consists of a map
f:A — B in w-Set and an effectwe family a = {05}4¢(4. of functions a,:|X,| —
[Y#(a)]; effectivity here means that the family itself has a realizer, i.e. In € IN. Va €
|A|. Ym € IN. m b4 a = n-m realizes a,. The first projection Fam.g(C) — w-Set
is then a split fibration. There are three things worth noticing.

(i) The object T = {¥(R)}rcper above @ = A(PER) € w-Set provides the
fibration Fam.q(M) —+ w-Set with a generic object: for (A, X) € Famg(M), one
has a map |A4| X 0bj)(M) -2, PER, which yields a morphism $0 X: 4 — Qin
w-Set satisfying (¢ o X)*(T) = ($ o X)*(Q,¥) = (4,20 ¥ o X) = (4, X).

(ii) Similarly to the example in 1.1.6, there is a fibred equivalence,

Famg(w-Set) ————g——~——> w-Set”

~

cod

w-Set.
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We first define a functor Qp : Famer(w-Set) — w-Set by (A4, X) — (Uu€|A dXals B).
with n F (a.r) & fsi(n) k4 a & snd(n) Hy, r. On morphisms @ is described
by (f.a) — Ala.x).(f(a).ag(r)): the latter has a realizer because « is an effective
family. Finally., Q(A.X) becomes the projection Q¢(4,X) — A in w-Set™ and
Q(f.a) becomes (f, Qy(f,a)). Notice that Q@ = domn o Q.

(iii) The reflection M S w-Set lifts to a fibred reflection

-——— - ———

Fameg(M) <————=" - -> Fam.g(w-Set)

z /

/

w-Set,

by a pointwise construction. Later, in 5.2.7 (i) we shall see that these data imply that
Fameg(M) — w-Set is a fibred CCC. Of course, this can also be verified directly.

1.3. Indexed categories and split fibrations

As we have seen so far, fibrations describe variable categories. We shall consider
two other descriptions of categories varying over a hase category: indezed categories
in this section and internal categories in the next one. Below, we understand an
indexed category as a functor ¥ : B®” — Cat and not as a pseudo-functor. The
latter would mean that one allows isomorphisms ¥(:d) = :d and ¥(u o v) = ¥(v) o
P (u). in a coherent way, see Paré and Schumacher [1978]. Such pseudo-functoriality
is better captured in fibred category theory, where it is left implicit. This saves a
lot of trouble.

Here again, we loosely speak about very large “categories” like Cat, ICat or
Fibypiye. In this way we avoid rather cumbersome formulations.

1.3.1. DEFINITION. (i) An indezed category is a functor of the form ¥ : B — Cat.

(it) A morphism of indered categories from ¥ : B — Cat to ® : A — Cat
is a pair (K,a) where K:B — A is a functor and a: ¥ — ®K° is a natural
transformation. Notice that the components of a are functors ¥B — ®(K B). This
determines a “category” ICat.

(iii) A 2-cell (K,a) = (L,3) between morphisms (K,a) and (L,3) from ¥ :
B”? — Cat to & : A”” — Cat is a pair (0,7) where 0: K —- L is a natural
transformation and 7 : a = (®0 o 3) is a modification. The latter means that 7
is a family {r(B)}acp of natural transformations r(B) : ag — (®(opg) o Jp) :
VB — &®(K B) subject to the condition that for u: B — B' in B one has that
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7(B)¥(u) = ®(Au)r(B') as in the diagram below.

U(u)
¥(B") - -~ -——— ¥(B)
alp| B | #(0p) 0 Bp ag| 1B |¢(oy>oﬂs
$(KB') ——- ¥(KB)
&(Ku)

1.3.2. PROPOSITION. The functor ICat — Cat, sending an indezed category to s
base, 1s a spht fibration. The fibre above a category B 1s denoted by ICat(B).

Proof. For an indexed category ¥ : B®” — Cat and an arbitrary functor K: A — B,
put K*(¥) =¥ o K°P: A — Cat and K(¥) = (K, {edgxa)}aca) in ICat. O

An indexed category ¥ : B°? — Cat can be turned into a split fibration with
basis B in a standard way, called the “Grothendieck construction”. To obtain the
total category fg ¥, one takes pairs (A. X ) with X € ¥A as objects. Morphisms
(A.X)— (B.Y)in [g ¥ are pairs (u. f) withu: 4 — Bin B and f: X — ¥(u)(Y)
in ¥A. The first projection G(¥): fg ¥ — B is then a fibration which admits an
obvious splitting.

This construction forms the basis for the following result.

1.3.3. THEOREM (Grothendieck). Indezed categories are essentially the same as split
fibrations, wn the sense that there 1s a fibred equwvalence

g
ICat .~ " " Fibyy

T

Cat.
Thas qrves a categorical version of the equivalence mentioned i 1.1.6.
Proof. The functor G on objects is described above. For a morphism (K, a) : (¥ :
B*? — Cat) — (® : A” — Cat) in ICat, one defines G(K,a) = (K, [a),
where fa: g ¥ — [y ® is layed down by (A, X) — (KA, as(X)) and (u, f) =

(Ku,aa(f)).
The functor I : Fib,p, - ICat maps a split fibration p: E — B to the functor

Z(p) : B — Cat described by A — E, and u — u”*. Clearly, for a morphism
(K:B - AJH-E —» D) from p:E — B to ¢:D — A in Fib,p,, one takes
I(K,H) = (K,{Hl|a}aca), where H|4:E4 — Dy, is the obvious restriction to the
fibres. Naturality in A is obtained because H preserves the splitting on the nose.
The required fibred equivalence follows readily. O
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The above passages between ICat and Fib,p,, form in fact 2-categorical functors;
we take a look at the fibres only.

1.3.4. PROPOSITION. The Grothendieck construction yrelds for every category B a
2-functor

ICat(B) — Fibypu(B)
whech s full and faithful, both on I1-cells and on 2-cells.

Proof. This functor is full and faithful on 1-cells due to the previous result. The
2-categorical matters are left to the interested reader. O

In view of the previous theorem, indexed categories are not really needed, because
one can work with split fibrations instead. An advantage of indexed categories
however, is that they are often easier to describe. For example, the (split) fibration
Fam(C) — Sets from 1.1.2 is obtained by applying the Grothendieck construction
to the functor Sets” — Cat given by I — C!. Similarly, one obtains Fam(C) —
Cat (cf. Jacobs [1990]) from A — CA. But also Fameg(C) — w-Set in 1.2.12 is
constructed in such a way. In the sequel, we often describe split fibrations by simply
exhibiting the corresponding indexed category.

At this point one can also see that the fibred Yoneda lemma 1.1.9 is a ge-
neralization of the ordinary one. For a locally small category B and a functor
H:B° — Sets, the Grothendieck construction yields a discrete fibration G(H)
with basis B. Notice that G(B(—, A)) = domy4 : B/A — B. Using 1.1.9 (ii), one
obtains,

HA = g(H)A = FZbaplzt (domA1 )
= Fibyuu(B ( ), G(H))
= JCat(B ( ) by the previous proposition
= Sets®” ( B( H).

Notice also that G(H) is representable in the fibred sense iff H is representable in
the ordinary sense.

The next lemma states that the fibred structure appropriate for split fibrati-
ons can be described as structure in the fibres which is preserved on-the-nose by
reindexing functors.

1.3.5. LEMMA. Let p:E — B and q: D — B be split fibrations and H:E — D ¢
splitting-preserving functor. One has a split fibred adjunction F 4 H (resp. H -1G),
t.e. an adjunction wn the 2-category Fib,uy(B). of and only of both

o For cvery A € B. the functor H\y has a left (resp. mght) adjornt K(A).
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e For every u: A — B, the canonical natural transformation
K(A)u* — u" K(B) (resp. u* K(B) ~ K(A)u®™ )

15 an identity. Here u*:Eg — E4 end u*:Dg — D, are the rewndening
functors induced by the splittings of p and q. O

One should be aware of the fact that in the above formulation the canonical
transformation K (A) u* — u* K(B) should he the identity and not just K (A4) u™ =
u" K(B). The formulation we use expresses that the pair (u*,u*) is a map of
adjunctions from K(B) -4 H|g to K(A) 4 H|4 -- see Mac Lane [1971], IV 7 — resp.
(u*,u™) from H|g4 K(B) to H|4+ K(A).

Thus it is clear what a splt fibred CCC is. For example, if C is a CCC, then
Fam(C) — Sets is such a split fibred CCC.

1.3.6. PROPOSITION (Bénabou). Every fibration is equivalent to a split one.

Proof. Let p: E — B be an arbitrary fibration. Applying the Grothendieck con-
struction to the functor B — Cat given by A +— Fib, i (B)(domy, p) yields a
split fibration equivalent to p: this gives the naturality we spoke about in the Yoneda
lemma 1.1.9 (ii). O

1.4. Internal categories

As a second alternative wav of describing variable categories, we now consider inter-
nal categories. Such categories are described by a number of commuting diagrams
in a base category. which correspond to the defining equations of a category. The
base category provides the universe in which one is working; it is often called the
ambient category.

1.4.1. Basics. Let B be a category: for the time being, we assume that B has finite
limits. sce remark 1.4 3 below. An internal category Cin B is given by the following
data. First, there are objects (g and €. which should be understood as the object of
objects and the object of morphisms of C. Secondly. there is a commuting diagram,

Co
VAN
NG
, N
/ N
Co=————-C1 —— ==+,

Oy 0
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where Jy and 0, are domain and codomain maps and ¢ provides the internal category
C with identity maps. From this one constructs pullback diagrams,

m
02 — C] 03 ————— - Cl
Mo 30 60
¢, ———=Co ¢y ————~Co,
A 01 om

where C; and C; are the objects of composable pairs and triples of morphisms in
C. Thirdly, there is a “composition™ morphism m:Cy, — () satisfying

Gpom = Gyom 1 Oy = G
dom = Oom 1 Cy = Oy
moixid = m : Co X Cl —)Cl
wd. 8o
mowdxir = mp (4 x Cop = (4
Oy 1d
momxid = mowdxm : Cy — C}.

Summing up. an internal category C in B is given by a 6-tuple Cy, Cy, 8o, 01,2, m)
satisfying the above requirements.

An wnternal functor F hetween two internal categories C = ‘Cy. Cy, 8y, &y, 1, 1M
and C' = («(C}, Cy, 8. 07,¢'.m'"s consists of a pair of maps Fy: Co — Cp and Fy: € —
C] satisfying

Fg o 00 6(') o F1
Fo o] 01 = 6; o F1

Floir = 7oK
Fom = moF xF,.

In this way. a category Cat(B) is obtained. One easily verifies that Ca#(B) has finite
products. The category Cef(B) is in fact a 2-category: a 2-cell in Cat(B) is given
as follows. One has ¢ : F —> G : C — C' iff ¢ is a morphism Cy — (| making the
following two diagrams commute.

(0'00(),(;1\ ,

Co G A e
AN | |
F;/ ’ a GO 'Fl.(T o] 0] I7n’

/’ [ m’ l
R e — -G} Cp -
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The 2-categorical structure determines what internal adjunctions are. Thus we can
define internal structure in the usual way. But first we need an auxiliary notion:
an internal category is called discrete if its identity map is an isomorphism. Every
object A € B yields a discrete |4| € Cat(B) with A both as object of objects and
as object of morphisms. Next one can say that C € Cat(B) has an nternal ter-
manal object if the unique internal functor C — jt| has an internal right adjoint.
Here t € B is terminal and hence [t| € Cot(B) as well. Similarly, C has nternal
cartesian products if the obvious diagonal C — C x C has an internal right adjoint,
say prod:C x C — C. A bit less trivially, C has wnternal czponents if the functor
prod: |Cy| x C — |Cy| x C has an internal right adjoint. This functor prod is con-
structed from prod and an obvious inclusion |Cy| - C. Thus one obtains the notion
of an internal CCC.

1.4.2. EXAMPLES. (i) Let C be a small category, i.e. a category with small collec-
tions both of objects and of morphisms. Then C is internal in Sets and it forms an
internal CCC iff it is an ordinary CCC.

(ii) The category PER from the realizability example 1.2.12 is internal in w-Set.
One takes PERy = APER and PER, = (Ugscpgr- Q(R — §),F), where R — S
is the exponent ohject in the category PER described by n(R — S)m & Vil €
IN. kRl = m-kSn-l. The realizability relation F of PER, is described by
mtE (R,S,[n]lros) < m(R — S)n. This category PER forms an internal CCC
in w-Set.

1.4.3. REMARK. The above description of categories internal in an ambient (or base)
category B started from the assumption that B has finite limits. Careful inspection
shows that onc actually needs only two pullbacks, viz. C; and C3. From now on,
we allow ourselves the liberty to say the C is internal in an arbitrary category B
if there is just enough structure around to formulate the above requirements. This
matter will be of relevance for example in theorem 3.3.3.

1.4.4. DEFINITION (Externalization). There is a 2-functor

[—] : Cat(B) — Fibyy(B).

(i) For C € Cat(B). let ¥_(C) be the total category with objects (A.X) such
that X: A — (Cp in B. Morphisms (A. X) —» (B.Y) in ¥ (C) are pairs (u, f) with
u:A -» Bin Band f:A - (C satisfying dp o f = X and 0, o f = Y o w
Composition in 3 (C) is defined using composition both in B and in C. The first
projection [C]:3>(C) -» B is then a split fibration.

(ii) For ¥:C — D in Cat(B) one defines [F]: ¥(C) - Y (D) by (4,X) —
(A.Fy o X) and (u, f) — (u. Fy o f).

(iii) For 0: F — G :C -» D in Cat(B). one obtains [s]:[F] - [G] with com-
ponents [0]4,x) = (1ds. 00 X).
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Notice that for C € Cat{(B). Cy € B yields a split generic object for the fibration
[C]: ¥X(C) — B, see definition 1.2.11.

1.4.5. PROPOSITION. The externalization functor [—]: Ca(B) — Fibypu(B) 1s
(1) finite product preserving:
(i) full and faithful, both on 1-cells and on 2-cells.

Proof. (i) Straightforward.

(ii) We shall do fulness on 2-cells, which is the most complicated case. Assume
therefore that 7: [F] — [G]: C — D in Ca#(B) is given. We take o = snd(7(cydc,))
and must show that {0]4,x) = 7(4.x)- Notice that (X2 0 X) : (4,X) — (Co,2dc,)
is cartesian in 3(C). It is not hard to prove that [G](X.10 X) o rax) = [G](X.1 0
X) o [o](ax)- But then the result follows from the fact that [G] is a cartesian
functor. O

1.4.6. COROLLARY.

C 15 an wnternal CCC < [C] s a split fibred CCC.

Proof. By the previous proposition, since the CCC-structure is defined 2-categori-
cally using finite products. O

1.4.7. DEFINITION (Bénabou {1975]). A fibration is called small if it is equivalent
to a fibration of the form [C] for some C internal in the base category.

The fibration Fam.g(M) — w-Set from 1.2.12 forms an example of a small fibra-
tion: as one might have expected, there is an equivalence of categories 3 (PER) ~
Fameg(M) over w-Set. sce 1.4.2 (ii). Further on in 4.5.8, one can see that small fi-
brations can also be described without reference to internal categories, viz. in terms
of “locally small” fibrations and generic objects.

1.4.8. PROPOSITION (Internalization). Let p: E — B be a split fibration, where B
15 locally small and all fibres are small. Then there 1s an wnternal category p 1
B = SetsB” and a change-of-base situation,

B s
‘ 7 - > (B)

» l (]

B...._ Y _____.B

where Y - B - B 15 the Yoneda embedding. The functors Y and H m this diagram
are both full and farthful. Moreover. one has

p s a split fibred CCC & p 1s an mternal CCC
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and this structure 1s preserved by the map (Y. H).
(The above size restrictions could be avoided by working in a suitably larger universe
than Sets.)

Proof. Define po: B? — Sets by A — Ob)(E4) and p;:B? — Sets by 4 —
Mor(E4). It is then obvious that one obtains an internal category. The func-
tor H:E — 3(p) is described by F — (Y,,E.E.). where E:Ypl.; —> Po is de-
fined by E4(u) = u*(E). Similarly, for f:E — D one defines Hf = (Ypf.f),
where f:Y,r —— p; is described by fa(u) = u*(f') in which the vertical map
f :E — (pf)*(D) is such that pf(D) o f' = f. The rest is straightforward. O

1.5. Quantification along cartesian projections

This last section contains basically only two definitions. Examples will be given in
the third chapter. Throughout, base categories are supposed to have finite products.

1.5.1. DEFINITION. Let p: E — B be a fibration.
(1) Let A be an object of B. We say that p admits Conss-products (resp. sums)
if both

o for every B € B, every reindexing functor 75 , - Ep —» Ep, 4 has a right adjoint
II5 (resp. a left adjoint Zy).

¢ for every morphism «: B — B' in B, the canonical natural transformation
w g — Iy (ux1d)" (resp. g (u xd)" -—» u" Zp )

is an isomorphism.

(ii) We say that p admits Consp-products/sums if it admits Cons,-products/
sums for every A € B.

In the fourth chapter we shall see that Consg and Consg form so-called “compre-
hension categories”. Using these, a general notion of quantification for fibrations will
be given. At this point however, the above elementary description is more suitable.

Next we introduce morphisms of fibrations with the above forms of quantification.

1.5.2. DEFINITION. Assume (K:B — B’, L:E — E') is a morphism of fibrations
from p:E -+ B and p':E' — B’ such that K preserves finite products. We write
~p.p for the inverse of the canonical map K(B x B') -» KB x KB'.

(i} Suppose p has Consp-products via 75 g -1 II(p py and p' has Consp-products
via w5 o VIl 4 4. Then (K, L) preserves Consp-products if the canonical natural
transformation

Lolligp) — H;KB,KB') ovgp ol
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is an isomorphism. Similarly, preservation of Consg-sums means that

Sikpkp © e oL — LoZXpp,
is an isomorphism, where this time ¥(p gy 175 g in E and £{, 4 474 4 in E.
(ii) Assume p has Consg-products via 3 =I5 and p’ has Consg-products via

~

71 1 II'y. Additionally, we assume that there is an isomorphism 3 : Q' —» KQ
and use it to form 1 =vpgowdxd: KBxQ' — K(BxQ). Then (K, L) preserves
Consq-products if the canonical

Lolly =+ Myporsol
is an isomorphism. Similarly, (K, L) preserves Consg-sums if

):'KBo'y'B*oL —+ LoX¥pg
is an isomorphism.
1.5.3. DEFINITION. A split fibration admits Cons. -products/sums if it admits this

structure in such a way that the above intermediary natural transformations are
identities. Analogouslv for corresponding morphisms.

1.5.4. QUANTIFICATION FOR INTERNAL CATEGORIES. Let B be a cartesian closed
category. For every C € (Cet{(B) and A € B, one can form an internal category
C# = (C4,C#, ..., and an obvious internal diagonal functor As:C — C# We
say that C admits wnternal Conss-products (resp. sums) if this functor A4 has an
internal right (resp. left) adjoint. Internal Consg-products/sums are of course given
by internal Consg-products/sums for every A € B. It is left to the reader to verify
that
C admits internal Consg-products/sums

& [C] admits split Conss-products/sums;
analogously to 1.4.6.

1.5.5. LEMMA. Suppose p: E — B 15 a split fibration as mn 1.4.8. If p admats a split
generic object -— 1.e. Pg = Yq see definition 1.2.11 — then one has for every A € B,

p:E - B admats split Consa-products/sums

& P admats internal Consy, -products/sums.
Moreover, externalization yelds a morphism p — {p] which preserves this structure.

Proof. By the fact that

Po(B)
(Ya = po)(B)

ObfEp)

B (Yp x Yy, fo)
B(Yp.a, Ya)
B(B x 4. Q)

Ob)(Ep«.4). G

e

iR






Chapter 2

Type Systems

Generalized Type Systems (abbr. GTS's) have been introduced in Barendregt [1991]
and [199?]. They provide an abstract way of describing typed A-calculi by specifying
collections of sorts, arioms and rules. Although this description is a major step
forward in the classification of various systems, there are certain drawbacks.

e Not all systems can be described; Martin-Lo6f’s type theory, for example, is
not covered by the GTS-formalism.

¢ Handling of constants is quite problematic, certainly if they may contain va-
riables as parameters.

e Occurrence of certain dependencies is an outcome of the axioms and rules.
This is both conceptually and technically problematic.

Below we shall define Type Systems (abbr. TS’s) in such a way that the above
drawbacks disappear. Our approach is more structural and closer to a categorical
way of thinking. We first introduce a so-called “TS-setting” which determines the
dependencies that may arise in a system based on that setting. On top of such a
setting one can put “features”, like axioms, constants or products. Hence the new
picture gives us

TS's = settings + features,

where the features depend on the setting. Later, we shall show that TS-settings
correspond to certain “categorical settings”. The features can be described cate-
gorically as certain extras which can be added on top of such structures (often
by adding certain adjunctions). The main ideas underlying Type Systems will be
described in the first section below. There, we mention the features only to give the
intuition of what is going on. A more detailed treatment of (some of) these may be
found in the second section. Finally, in the third section some known systems are
redescribed in the new TS-framework.

25
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2.1. Informal description

Like in the GTS-description. we start with a set of sorts having as typical elements
». O. A etc. Some authors write prop, type. kind. set etc. for sorts, but in the
GTS-tradition there is no intended meaning. Meta-variables for sorts are denoted
by s,s', 81. 82,... The basic aspect of sorts is described by the rule

'A:s
Ta:AFa:A
Hence if something is in a sort, it may be put in the context and serve as a range

for a variable.

2.1.1. DEFINITION. A TS-setting, or simply a setting is a pair (Sort, <), where Sort
is a non-empty set and < C Sort x Sort is a transitive relation. It is called the
relation of dependency: in case s1,< s {or equivalently s, > $1). we say that s,
depends on s;: the intuition is that if a derivation has produced statements

TA:s F'a: Ak B : s,

then a may occur as a free variable in B. More informally, s; < s, means that
“grandchildren” of s; may occur in “children” of s, — where P is called a child of
Q@ if P : Q. This explains the transitivity requirement.

2.1.2. ExaMPLES. In the setting with one sort * and no dependencies (i.e. < = 0)
one can only have constant types § - A : . This setting underlies “simply typed
A-calculus™, or Al as it is called in section 2.3. In case one has * > *, then one can
have statements of the form r: A+ B(x): * for A: . Such dependency underlies
Martin-Lof's type theory.

In the system A— one has two sorts x and O and an axiom # : O, see section 2.3
or Barendregt [1991). In A— one has statements like

a:xka—> a:*
These require a dependency O < *,

2.1.3. REMARKS. (i) If s; depends on s,. the notation s, > s; is preferred to s; <
s2. Roughly, the categorical intuition is that s, is fibred over s;. The transitivity
requirement corresponds to the fact that fibrations are closed under composition,
sce lemma 1.1.5. A more detailed exposition of the categorical understanding of
these dependencies may be found in section 5.1.

(ii) An expression A in I'F A : s will be called an s-type, or simply a type, when
the sort s is not of much relevance. Similarly, an expression M in '+ M : A, where
A is an s-type, will be called an (s-)term of type A. Nolice that types and terms
arc “relative” notions: in presence of an axiom $; : sz, one has that s;-types are
Sa-terms.
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(iii) In the literature one can find “type dependency” to name the possibility of
s-term variables occurring in s-types, like in Martin-Lof's Type Theory. In our
TS-framework, this is possible in case there is a dependency of the form s > s.
Henceforth, this will be called s-type dependency.

(iv) Specifying a setting means specifying one’s type theoretical “universe of dis-
course”.

2.1.4. TS-FEATURES. We now proceed to describe informally what kind of features
can be added to a given setting (Sort, <). In this thesis we consider

(i) axioms

(ii) constants

(iii) s-closure

(iv) (s1,$2)-quantification

{v) (s1, 82)-identity

(vi) (s1, s2)-inclusion
but one could consider additional features.

Ad (i) An aziom is an ordered pair of sorts, usually written as s; : so. Such an
axiom may be added to the given setting only if s; depends on s, ——i.e. 8y > 55 —
since it enables statements like

|—Sl LSy

a:s a8

in which a grandchild of s; (viz. @ on the LHS) occurs in a child of s; (viz. a on the

RHS).

Ad (ii) A setting determines which kind of dependencies may occur in a type
system. Hence it also determines what kind of parameters a constant may have. In
general, one would like to be able to use both constant types and terms of a given
sort, possibly provided with conversions. Let’s first look at some examples.

F IN:s
F Zero: N
nIN F Suce(n):IN
n:IN F List{n):s
nmIN.m:IN + Matriz{n,m): s
n:IN,m: IN, A: Matriz{n,m) F row(n,m.A): List(n)

In these examples, Lust(n) is the type of lists of length n and Matriz{n.m) is the
type of n x m matrices. The intended meaning of the terin row(n.m.A) is then
clear. Notice that the constant type List(n) forms a child of s in which a grandchild
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of s occurs. Such things may be used only if we have s > s. Hence we come to the
following stipulations. A constant type C' may be introduced by

ap: Ap..... anp: 4, F C(A):s,

where 4, : s,, only if s > s,. In that case one can introduce constant terms of type
C by

ay: Ay, an: Apy By By, B B b M(&,8) : C(&),

possibly with conversions

ai: Ay, ... an An, 1By, .. B B b M(d,3) = N(&,3) : C(&).

Implicitly, we understand what substitution (just filling-up an open space) and
weakening are for such constants. The idea is to have generalized algebraic theo-
ries (in the sense of Cartmell [1986]) on an arbitrary setting.

Ad (iii) With the feature “s-closure™ we express that s-types are closed under
cartesian products, exponents, units etc. These may always be added to a setting.
because a rule of the form

'A:s I'B:s
'FA—-B:s

does not create new situations with respect to occurrences of variables.

Ad (iv) The feature “(sy, 52)-quantification” is used to describe dependent pro-
ducts and sums of the following form.

TFA:s I''r:AF B : s,
'FIIr:AB: s,

This rule may be used if the relevant dependency really occurs. i.e. if s5 > 3.

Ad (v) The “(sy, 89)-identity” feature describes the rule
F'FA:s F'EAM:A ''FN:A
Tk Ii(M,N): s,

which may be used if s > s;.

Ad (vi) The feature “(s,.sq)-inclusion” gives the possibility to embed s,-types
and terms in sy-types and terms, in the following way.

F'HA:s CHAM:A TN :In(A)

T'F In(A) : s T+ In(M) : In(A) Tk Out(N): A
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Tacitly, we assume that s; # s;. In some versions of the Calculus of Constructions
one can find (prop. type)-inclusion. Also in Pavlovi¢ [1990]. a similar operation oc-
curs, under the name “extent™. Let us consider the implications of these rules for
the dependencies. Suppose one has a sort s with s; > s; then

'B:s Fy:BF A(y): s
FLy: Bt In(A(y)) : sq
which creates a s > s dependency. Similarly, if one has s > s;, say occurring in

FTFA:s Iz:A+ B(r):s.

Then one can derive T',r': In(A) + Blr := Out(z')] : s. which creates a s >~ s,
dependency. Hence, use of (s;, s»)-inclusion requires that Vs € Sort. (s, = s =
Sa-8) & (8> 81 = 8> 59).

2.2. Rules

In this section we describe rules for the TS-features s-closure, (s;, $2)-quantification,
(s1.82)-identity and (s;, s2)-inclusion. We proceed mostly by first giving the forma-
tion, introduction and elimination rules for a certain type operation. Then the
conversion rules and the behaviour under substitution will be described. The rele-
vant setting will be left implicit. but is supposed to be such that the feature under
consideration may be used. In the substitution rules, the variable involved may be
a grandchild of any available sort.

2.2.1. RULES FOR CONTEXTS. Contexts are ordered lists of variable declarations.
First of all, the empty list is a context; next, there is what we like to call the contect
comprehension rule: if T' is a context and A is a type in context ' —-ie. '+ A: s
for some s € Sort - then one can add a declaration of a (fresh) variable of type A
to context I'. The result is denoted by I', z : A. Tt comes with the following rules.
'+A:s
— (projection)

T'r:AFr: A

Ir:Ay:BAF...
Ny:B,z: A AF...

if £ ¢ FV(B) (exchange)

I'FA:s k...
F,e:AF...

(weakening)

TFM:A Ir:4,A+F ..
T, Afr:= M]F (.. .)[z := M]

- (substitution)
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In the end, this last substitution rule may turn out to be derivable. We like to
mention it explicitly. since substitution will play an important categorical role.

2.2.2. START RULES. In order to get off the ground, certain basic types have to be
available; the above context projection rule then gives the possibility to form terms.
To obtain such types, one can use either axioms or constant types (if described
previously). These set the whole machinery in motion.

2.2.3. RULES FOR s-CLOSURE. For a given sort s, we consider consecutively units,
cartesian products and ezponents. A unit-type can be understood as a singleton.
Unit.

with conversion

and substitutions

Cartesian product.
'HA:s 'HB:s

I'FAxB:s
T'FM:A 'FN:B ''+L:AxB
' M- N :AxB T'kaL: A '-#'L:B
with conversions
TFM:A '-N:B TFL:Ax B
'brM,N,=M:A 'ka"M,Ny=N:B 'twl,n'ly=L:AxB
and substitutions
(Ax B)[::=R] = (A[z:= R])x(B[z:=R])
M, N|[::=R] = 'M|::=R], N[z :=R],
(rL)[z:=R] = n(L[z:=R])
(a'L)[z:=R] = «'(L[z:= R)).
Exponent.

'HA:s 'B:s
I'+A--B:s
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r:A+-L:B ''-M:A- B 'tN:A
THARAL:A— B T+ MN:B
with conversions
I''r:A+L:B '-N:A '-M:4A— B
't (A:AL)N = L{c:= N]: B THFA:AMz=M:A— B
and

(A - B)[::= R (A[z:=R]) = (B[z::=R})
(Ar:A.L)[z := R] Az (A[z:= R]).(L[z := R))
(MN)[::=R] = (M[z:=R]}(N[::=R)])

i

where substitution under the variable-binding A is done with the usual care.

2.2.4. RULES FOR (s, $2)-QUANTIFICATION.
Dependent product.

FI"AZS[ F,.TZA"B!SZ

I'F1lr: AB: s,
I''r:A+L:B F'-M:z:A.B '-N:A
TFArAL: Iz AB T+ MN: Blz := N
with conversions
r:AFL:B 'EN:A F'FM:x:A.B
't (Ar: AL)N = L[z := N]: B[z := N] I'bAr: AMr=M:1lc: A.B
and substitutions
(lr: A.B)[z := R} = Mz:(A[z:= R)).(B|z := R])
(Ar: AL)[z::= R] = Ar:(A[z:= R]).(L[z:= R)])
(MN)|z := R (M[z = R])(N[z := R)])
Dependent sums.
T'HA:s Ir:AF B:s; '-M:A '+ N:Blz:= M)

TFSrAB:s TF (M Ny :Sr:AB
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There are two sum elimination rules; the first one is usually called “weak”. to dis-
tingnish it from a “strong” version to he mentioned afterwards.

'+P:Xr: AB F'-C:s, z:Ay:B+Q:C

(weak L)
't Q where a,y):=P:C

with conversions
F-M:A ' N:B[r:= M| Fz:Ay:B+Q:C
't Q where x,y := (M,N) = Q{z:=Mlly:=N|:C

'FP:%1:AB I'-C:s, Nw:Xrn:ABFQ:C
I'+Q[w:= .,y where z,y;:=P = Quw:=P|:C

and substitutions

(Zr: A.B)|z := R) r:(Alz = R]).(B[z := R})
(M, N\[z := R] d\l[: = R] N{z:= R}
(Q where (z,y,:= P)[z:= R] = Q[::= R| where (z,y := P[z:=R)].

Notice that the variables r and y become bound in Q where (z,y; := P. There
seems to be no standard notation for the term obtained in the sum elimination
rules. We adopt the Miranda-like block expression @ where z,y) := P, because
it is quite intuitive and puts @, as the most important part, in front position.
Alternative notation is let «z,y) := P in Q or €, (P, Q).

For these (s;,$3)-sums, one requires the dependency s; > s;. In case one also
has s > s, then one can formulate a strong sum elimination rule. The difference
concerns the fact that the s,-type C' as used before may now contain a variable of
the s,-type Xr: A.B.

't+P:%5:AB Tiw:Zr:ABHC:s; T,z:A,y:BtQ:Clw:=z,y]
't Q where (z,y := P: Clw := P| (strong ¥)

The strong conversion rules are slightly different forin the weak ones.

'-M:A LHN:B[r:=M] Nz:Ay:BFQ:Clw:= @,y
T+ Q where (x,y:= (M,Ny = Qjr:= M}y := N]: Clw := (M, N)

'-P:Xr:AB Nw:T:ABFQ:C
['t- Q[w := z,y;] where r,y,:= P = Q[w:= P): Clw:= P]

The substitutions are the same.
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2.2.5. RULES FOR (s, $3)-IDENTITY.

F'tA:s

Fr-M:A

33

F'EN:A

TFI4(M,N): s,

F'FM=N:A
F}‘TM‘NZIA(M,A")

with conversion

TFL: (M, N)
TFM=N:A

T'F L: I4(M,N)

'+L= TMN IA(AI,N)

and substitutions

I4(M,N)[z:= R]
(run)z:=R] =

Lyjmg)( Mz :=

TM'z:-—-R‘.,N{:.:R]

l, N[z := R])

where the latter can in fact be deduced from the former.
The above formulation of identity rules follows Martin-Lof [1984] (where one has
81 = s2). Identity types will only play a marginal role in this thesis.

2.2.6. RULES FOR (s, 82)-INCLUSION.

FFA:s
T In(4) sy
F'FM:A 'k N:In(A)
T+ In(M): In(A) TF Out(N): A
with conversions
kM A C'F N: In(A)

Lk OQut(In{M))=M:A
and substitutions

In(A)[z := R]
In(M)[z := R]
Out(N)[z := R]

' In(Out(N)) = N : In(A)

In(A[z := R])
In{M[z := R])
Out{ N[z := R])

2.2.7. RULES FOR CONVERSION. Above, we only mentioned the main points of the
intended conversion relation and omitted the rather obvious rules to produce a

so-called “compatible equivalence relation™.

Notice that the conversion relation is

initially only defined on terms, but since terms may occur in types and hence in

contexts, onc may also have conversion on types and contexts.

The conversion
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relation on contexts is given by componentwise conversion. The following rule is of
relevance.
Fr'FM: A TFA=A4":5s r=r
I'-M: A

Later. in constructing term models of type systems. we have to consider terms. types
and contexts modulo conversion. Equivalence classes of these will be denoted by [I7].
[A], [M] etc. In doing so, variables present some difficulties; these can be handled
by either being very precise — and using de Bruijn's nameless notation —- or by
being very sloppy. We choose the latter approach.

(Eq)

In the rest of this section some relations between the above features are estab-
lished. The first two results are standard.

2.2.8. LEMMA. (i) Weak (s, s)-sums gives s-cartesian products.
(ii) (s.s)-products gives s-exponents.

Proof. (i) ForT'+ A,B : s, put A x B =Xr: AB with z fresh. For ' L: A x B,
take 7L = r where (r.y := L and n'L = y where (r,y := L; the latter may be
defined because r ¢ FV(B). Then obviously # M, N, = M and »'M, N, = N, but
also

iwL, 'Ly = mx,y, 7@,y where @,y =L
iz, where (x,y, ;== L

L.

(ii) Obvious, using weakening as in (i). O
2.2.9. LEMMA. For strong (s.s)-sums. the elimination and conversion rules menti-

oned above are equivalent to the following rules with explicit projections.

I'+P:%Zr A.B
F'FrP: A I'ta'P:Blx:= =P}

FFAM-A '+ N:Blr=N]
F'FaAMN =AM:A 'ta"M.N = N:Blr:= M|
'FP:%r:AB

I'-aPn'P =P:YXr:AB

Proof In onc direction. one takes for a term I' - P : Xr: A.B as projections 7P =
r where r.y = P and 7'P = y where r.y := P: The latter is obtained by
using C'(w) = B[r := ww] in the above strong Z-rule. Surjectivity of pairnng is
obtained as in the previous proof. The other way, one defines Q where z.y := P
as Qr .=xPlly-=='Pl. O
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In the rest of this work, strong (s, s)-sums will be used in this form with explicit
projections.

2.2.10. LEMMA (Jacobs. Moggi & Streicher [1991]).
weak (81, 82)-sums + strong (sz, s2)-sums = strong (8,, $3)-sums.

Proof. Let's use “3” for the {s;,s2)-sums and “%L” for the (strong) (ss, $2)-sums.
Assume that types ' A : 5, and I',r : A+ B : s, are given together with terms
't P:3r:ABandl,z: Ay: BFQ : Clw:= (z,y)], where I'w : 32: A.B +
C : sp. Write (" = Zw:(3r: A.B). C and Q' = ¢z,y, Q. Then T+ C' : 5, and

r: Ay : BF Q' : (' Using the weak (s;.s2)-elimination rule, one obtains
'+ Q where (x.yp := P : (' = Xw:(3z: A.B). C. Hence one can take as new
term @ with x,y = P = 7'{Q' where «r,y := P}, which is of type Clw := P,
since

m{Q' where r.y):= P} = n{Q where a2,y = ¢',y"} where z',y’):= P
n{uz', ¥y, Qlz := 2’|y :== ¥'))} where @',y =P

I

', yy where &'y, := P
= P O

2.2.11. LEMMA. Thke following holds in a type system with (81, 82)-inclusion.
(1) sy-unit = so-unat.
(ii) (sg,8)-products = (s1,s)-products;
(strong) (s, 8)-sums = (strong) (s1, s)-sums.
(iii) Suppose one additionally has strong (s3, s2)-sums and weak (s, $)-sums. The
Jollounng statements are then equivalent.

(e) The (sa,$1)-sums are strong.

(b) The induced (sy,$,)-sums & are strong.

(¢) The (s, s92)-inclusion In preserves strong sums, ve. forT'F A: s,
and ',z : A+ B : sy, the operation

CHM: S’ In(A). I(B[z := Out(z")])
[+ In(;Out(wM). Out(x'M)) : In(Sr: A.B)

s wnvertible.

Proof. (i) The type 1,, = In(1,,) with term In(¢) works as sp-unit: if I' - M : 1,,,
then ' F Qut(M) : 1,, which givesT" + OQut(M) = ¢. Hence T+ M = In(Out(M)) =
In(y): 1,

(ii) We do the sum-case. For types ' + A : s; and ',z : A - B : s, take
3r:A.B = Zr':In(A).Bjr := Out(z')]. Forterms I + M : Aand T F N :
Blr := M] = B[z := Out(s')][r' := In(Al)], one has a 3-pairing (M, N»
Jn(M),N.. The correspondmg elimination is given by @ with (x,y) = P

Qx := Oui(r')] where ',y := P.
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(iii) The implication (a) = (b) results from (ii); the reverse follows from the
previous lemma. The equivalence (b) < (c) is easy. O

The last three results of this section are based on category theoretical ideas.

2.2.12. REFLECTION LEMMA. In a type system with (s,, $2)-inclusion, weak (4. 8,)-
sums and an s;-unit one has that sy-types and terms can be “reflected” back wnto s,
wn the following way.

THB:s, THM:B
T+ In(B)=3y:B.1,, : 5 T F In(M) = (M, ) : In(B)

However, one cannot define something hke Qut on s,-terms N : In(B). A bit weaker,
one has an Qut-operation n the follounng way.

FFA:s 'k N: In(In{A))
'k Qut(N) = Qui(y) where 1y, :=N: A

Then Out 1s inverse of In o In in the sense that for '+ A : 5, one has
r-Aar: 4 '+ N : In(In(A))
['F Qut(In(In{M))) = M : A [+ In(In(Qut(N))) = N : In(In(A)).

In this way one obtains that
(1) $2-cartesian products/exponents = sj-cartesian products/erponents;
(i1) (s1.82)-products => (s81.81)-products.

Proof. We first establish that Qut is inverse of In o In.

Qut(In(In(M))) = Out(y) where y,z = dn{M).(;
= Out{In(M)) = AL
In{In(Out(N))) = InIn{Oully) where y,z: := N}

r

In In{Out{y) where 1y, z = y', ="} where y',z" := N
In(In( Out(y'))) where . 2" := N
= .  where y.:' := N

= ',z where Y.z, := N, since:z:1,
1
= N.

(i) For types ' - A;. Ay : 5,. one takes I' F A; & A, = In(In(Ay x In(Ay)) : 5
with pairing given by M. N = In( In(M), In(N) ) and first projection by fstL =
Out(wy) where y.:, := L. The rest is left to the reader.

(i1) For types ' A: s, and .0 : A+ B : sy, put Vr:A.B = In(Ilr: A.In( B)).
For T'.r : A+ L : B. an abstraction term Ar: A.L = In(Ar: A.In{L)) is obtained:
application is given by App(M.N) = Out(yN) where y, > := Al LI
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The next lemma gives a type theoretical version of a result about LCCC’s from
Freyd [1972].

2.2.13. PROPOSITION. A fype system unth strong (s, s)-sums and (s, s)-1dentitics has
s-ezponents of and only if 1t has (s, s)-products.

Proof. (if) Obvious from 2.2.8 (ii).

(only if) Assume that types ' - A : s and I',r : A+ B : s are given; one
has to construct I' F Ilr: A.B : s. The argument follows the dependent pro-
duct construction in set-theory. One takes A' = A — (Zz: A.B) and lIx: A.B =
YfA Iy a(Ar:Ax, Ar:A.n(fr)). Then for aterm ',z : A+~ L : B one has
L' = Ar: A..r, L: of type A’ and so one obtains an abstraction term Ar: A.L = (L', r)
of type ILr: A.B, where r has an obvious identity type. For terms I' - M : [lr: A.B
and ' - N : Aone has T F ndl : A — (Zr:A.B) and thus one can take
App(M.N) = r'((xM)N). O

In Freyd’s categorical proof of this result, equalizers play an important role.
To extract these from the above type theoretical proof. we must anticipate the
categorical description of Type Systems. Remember from the introduction to the
first chapter that contexts can be seen as indices for the fibre categorics of types
and terms (of a fixed sort) derivable in that context More explicitly. for every sort
s and every context I', one obtains a category with types ' - A : s as objects. A
morphism ' A:s — T FB:sisatermI',r: A+ M : B. Composition is done
by substitution and context projection yields identity morphisms; we don't write
this here. but everything should be considered up-to-conversion.

2.2.14. LEMMA. In a type system with strong (s.s)-sums and (s.s)-1dentitres, one
has “fibred equalizers”.

Proof. For types ' - A.B : s and morphisms I''x : A + M.N : B one takes
EqAM,N) = Zr: A. Ig(M.N). Then we have amapT' - Eg(AM{.N):s — '+
A : s. given by the first projection, such that composition with M and N yields
convertible terms: T',z : Eg(M,N) F Mir := nz] = N[r := nz] : B. Moreover,
for an object ' F (" : s and a morphism I'y : C + L : A which also cqualizes
Mand N,je I''y : C F Mir .= L} = N[r := L] : B, there is a unique term
T,y:CHL :EgM,N)suchthat y: CF#ol'=L: A O

2.3. Examples of type systems

Before we come to the actual description of various systems. some conventions about
our usc of the TS-features have to he mentioned.

First, constants are considered as rather ad hoc and are omitted from the system-
descniptions helow.
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Secondly, by requiring the presence of the feature s-closure, we require an s-unit,
s-cartesian products and s-exponents. Of course, there is no necessity to do so -
one can equally well require only s-exponents, even with 3-conversion only — but
this choice we make provides us with a syntax which contains usual categorical
constructions.

Thirdly, the feature (s, so)-qnantification requires some stipulations.

e In case the setting allows us to use strong sums, we want to do so, unless ex-
plicitly stated otherwise. Hence the feature (s;, s2)-quantification in a setting
with s; > s, besides s3 > 5, includes products and strong sums. In case we
want products and weak sums, we require weak (s;.s3)-quantification. Hence,
requiring ($;, 83)-quantification in s TS-setting with s, # s, amounts to the
same as requiring weak (s, $3)-quantification.

¢ Besides products and (strong) sums, the requirement of (weak) (sy, s3)-quanti-
fication also includes an sy-unit. This stipulation has practical advantages,
since it gives that (weak) (s, s)-quantification implies s-closure (see lemma
2.2.8).

Suminarizing the dependencies necessary for the features, we obtain

axiom sy : 85 onlyif s; > s,
s-closure only if (no restriction)
(1. 82)-quantification only if s, > s,
(1. 82)-identity only if s, > s
(s1.82)-inclusion only if Vs € Sort. s>>8; = s>35; & 85 = s3> s

with the remark that (s;, s3)-quantification in a TS-setting with s, > s; and addi-
tionally s > s, includes strong sums.

In the tables helow we put features which come for free as a consequence of
others between square brackets. The first three settings receive explicit names. It
may help understanding these systems to read * as propositions and O as types.

L‘ Minimal™ sottmg T Sort = { } <=

S\stem‘H\ axiom [closure—ﬁquantlh(atlon t(lentlty}mcluuon
PYRR N x
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APi denotes Martin-Lof's Type Theory.

I_ Proposmona.l settmg — Sort =—{*. O} > —___—__J
S)stem axiom | closure qudntlﬁ(atlon T identity | inclusi HJ
Ao o *
RV a5 -
Aw *:0 x O B ) ]
T A *: 0 * O (D, ) | T

The systems A2 and Aw are Girard’s second and higher order A-calculus F and Fuw.
These four systems consitute the “left plane” of Barendregt'’s cube.
The next setting combines the previous two.

[Seitig —__ Sw{={50} ¥ 0 xRty

axiom 1 closure | quantlﬁcatlon

System dentlty mclumon

HML x: 0 (3,%)
[* B)| (x*) (0.0)
weak HML | »: O | (O] | (GO0 | |
[*] | weak (x,%)
weak (0, %)

In Moggi [1991] a slightly different system called Higher Order ML (HML) is defined;
it is set up as a system with great expressive power in which one has a “compile-
time” O-part which does not depend on a “run-time™ *-part. Here we add an axiom
* : O. A comparable system called “Theory of Predicates™ is studied in Pavlovi¢
[1990].

In the next setting the previously missing dependency O = x is added.

[—Settmg T Sort_{*f‘} Te>0, *>—* CI>CI [a R
S'ys_tem [axiom cl(;ll_ré— qﬁaﬁtﬁcillon i 1dontlty 1n(luslon
TP [ xTo | [+] %) (D) 1

AP2 0 [*] | (%) Oy [~ T -
(3.%)

NPT T xO  [() G Dy 1T T T T
JR N (51 0 IO CN=1 N D
AC s | [x] ] () (Ox

IR | N Y S B U (SN I 1S, ) A I
cc *: 0 [*] [(*.%) (%.0)] (».0)

| =3 (,0) (O.%)

weak CC | +:O0 | O} [(@D) (O] ~ | (=.O0)

| [ *] [ weak (*,%)]

o Lol dwek@e | ]




40 CHAPTER 2. TYPE SYSTEMS

The first four of these systems consitute the “right plane” of Barendregt's cube.
The last three systems are different versions of the Calculus of Constructions. due
to Th. Coquand and G. Huet. The next two settings have three sorts; the first one
is due to H. Geuvers.

[Setting: _ Sort={+0,4) >0, 0-8 >4 ]
E;_st_e;n—_ E{i_(ﬁl.—~ [ closure qu_an_ti_ﬁation idngti?y_-i-nH_u?i_cTr}-I
AMOL ([*:0 O:A | > O (O.%)

In Barendregt [1991], various rather complicated systems for predicate logic are
considered (based on work of S. Berardi). Use of (parametrized) constants makes a
simplification possible. The basic form which we present below gives rise to many
ramifications. They provide various ways to do predicate logic with deductions as
proof-objects. Below, the sort A should be understood as sets.

[Seing iz {A0) w A0

System [ axiom | closure | quantification | identity | inclusion
APRED [ «:0 [ = A (A, %) T _

In this chapter one may have noticed that in classifying type systems, the emp-
hasis concerns not so much the individual systems but their underlying settings.
This remains important in later chapters.



Chapter 3

The Propositional Setting

In the previous chapter, we briefly mentioned that our categorical description of
type syvstems follows the pattern of “setting + features”. Settings involving type
dependency are the most difficult ones and the description of these will find its
place in the last two chapters 4 and 5. Here we focus our attention on the systems
A=, 2. Ax and Aw which form the “left plane” of Barendregt’s cube. The exposition
below serves at the same time as an introduction to our approach and as an overview
of examples and results, most of which are known (except the last two results of
section 3.3).

3.1. Type theoretical and category theoretical settings

On close inspection one may find that a TS-setting concerns the organization of con-
texts. The role of “categorical settings™ will be the same. Basically, we follow Law-
vere's [1963] use of algebraic theories (see also Kock and Reyes [1977]). For example,
the minimal TS-setting Sort = {*} with < = 0 gives rise to a cartesien category of
contexts (i.e. a category with finite products): take contexts I' = zy:04,.... 2,0,
as objects. Morphisms I' — A, where A = y1:71,..., Ym: Tm, are m-tuples of equi-
valence classes of terms ([Mi].....[My]) such that I' - M, : 7,. Composition is
done by substitution and identities are given by {equivalence classes of) variables.
The empty context is then terminal and concatenation of contexts yields cartesian
products. This structure is independent from (admissible) TS-features. In fact, it
is presupposed by such features.

The other way round, one may consider a cartesian category as providing con-
stants for the abovementioned setting. Objects form types (without free variables),
which combine to contexts using products. Morphisms form terms, which may con-
tain free variables. Notice that the structural rules concerning contexts (including
substitution and weakening) can be performed in this categorical setting. One of
the aims in this thesis is to describe for a TS-setting a corresponding categorical
setting in which one has the same “cxpressive power”. Because we don't work out
interpretations, this statement remains a bit intuitive - but it should become quite

41
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clear in the course of this work — especially in the first section of chapter 5. Two
differences between the type theoretical and the categorical approach are important,

e In type theory substitution is an (inductively) defined operation. In fact also
weakening is such an operation. but one needs an explicit syntax using a
shift (1), like in Curien [1990] to express this fact. In categorical settings
however, substitution and weakening are primative operations, handled both
by reindexing (with composition as a special case).

o Substitution (and weakening) in type theory preserves all available operations:
this is required by definition. In categorical settings, reindexing generally
preserves operations only up-to-isomorphism, unless explicit “split”-conditions
are satisfied. Coherence of all these isomorphisms is a topic outside the scope
of this work. The interested reader may consult Curien {1990].

Now we turn our attention to one specific setting.

In the propositional setting one has Sort = {*,0} with * = 0. Hence *-types
may contain O-terms. but not the other way round. The exchange rule (see 2.2.1)
enables us to separate contexts into a sequence of O-termvariable declarations. fol-
lowed by a sequence of #-termvariable declarations. Notationally, we exploit this
fact in the use of the following statements.

I'-B:0O and F'+OFk7:%
'o:B and F+O©FA:T

where I' = (a1: Ay, ..., an: Ap) is a “O-context” and © = (ry:0y....,Ipiom with
I'F o, :*is a “x-context™; + denotes concatenation of sequences.

A categorical setting corresponding to this propositional setting consists of a
“CC fibred over a CC”, i.e. of a fibration with fibred finite products over a base
category which also has finite products. As an illustration, we describe again how
the contexts of this propositional setting form such a fibred CC over a CC, denoted
hy p:E - B.

B obj. O-contexts T'.
mor. I' —» I = 13;: By,...,8.: B,, are n-tuples (oy,...,0,) of O-types with
I't-o,: B,
E obj. '+ 0O, where @ = /1y:01...., 200, is a *-context with T'F o, : *.

mor. T'+0 — ["+0' with[" = J;:B),....0.: B, and @' = w: ..., Y To
are pairs consisting of an n-tuple of O-tvpes & = (07,....0,): T > I'"in
B and an m-tuple of equivalence classes of *-terms ([A].. .., [M,,]) such
that T+ © F M, : 7,[d := §].
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Notice that both substitution and weakening (concerning O) are handled by re-
indexing.

The other way round, the reader may want to convince him/herself that a (split)
fibred C'C over a CC can be seen as the propositional setting, dealing with all the
context structure.

3.2. Definitions and examples

In this section, categorical versions of the type systems A—, A2, Aw and Aw will
be described. To construct such categories for these four systems, we simply add
approriate categorical features to a propositional setting consisting of a fibred CC
over a base CC.

3.2.1. WARNING. The description below is based on a rather harmless simplification,
which is used throughout the literature. A more subtle account requires techniques
which will be developed in the next chapter. The simplification is based one the
presence of cartesian product types in our stipulation about closure in the beginning
of section 2.3. This makes it possible to deal with O- and *-contexts at the “type”
level and so we can dispense categorically with two extra levels, see 5.1.1 and 5.3.4
for a full account.

Let p:E — B be a fibration with fibred finite products where B is a category
with finite products. We think of the objects of B and E as O-types and *-types
respectively. The feature O-closure corresponds to B being a CCC. The feature
%-closure corresponds to p being a fibred CCC. The axiom * : O corresponds to
p having a generic object. Finally, the (O, *}-quantification corresponds either to
Consg-products and sums or to Consg-products and (plus a terminal object for p),
depending on how many O-types one has. Hence we come to the notions described
below. Essentially. they are all contained in Seely {1987]; see also Pitts [1987] and
Coquand & Ehrhard [1987].

3.2.2. DEFINITION. (i} A A-»-category is a fibred CCC with a generic object over a
base CC.

(ii) AMdw-category is a fibred CCC with a generic object over a base CCC.

(ili) A A2-category is a fibred CCC with a generic object T over a base CC;
additionally, the fibration admits Consg-products and sums, where = pT.

(iv) A Aw-category is a fibred CCC with a generic object over a base CCC B;
additionally, the fibration adinits Consp-products and sums.

In the literature, a Aw-category is mostly called a PL-category, after Polymorphic
Lambda calculus, see Seely [1987).

3.2.3. DEFINITION. Let ¢ be —,2.w or w.



44 CHAPTER 3. THE PROPOSITIONAL SETTING

(i) A morphism of AO-categories is a morphisin of fibrations which preserves the
relevant structure (see chapter 1).

(i) A spht AO-category is a AO-category in which the fibration and all the re-
levant structure is split. A morphism of split AO-categories preserves the structure
on-the-nose.

(iii) A AC-catepory will be called small if the fibration involved is small.

Finally. internal versions of the above notions will he mentioned. They have a
slightly more simple definition, but the actual description of internal examples is
more involved, see e.g. Asperti and Martini {1997].

3.2.4. DEFINITION. Let B be a category with finite products and C an internal
category in B.

(i) C is an internal A—-category if it is an internal CCC.

(ii) C is an internal Aw-category if B is a CCC and C is an internal CCC.

(iii) C is an internal A2-category if C is an internal CCC with internal Consc,-
products and sums.

(iv) C is an internal Aw-category if B is a CCC and C is an internal CC'C which
admits internal Consg-products and sums.

Implicitly in (iii), we assume that B is a CCC, or at least that the exponent
object CS° exists, see the definition of internal Conse,-quantification in 1.5.4.

Before describing examples of the above notions, a useful technical result will be
mentioned.

3.2.5. LEMMA (Frobenius). Let p:E — B be a fibred CCC over a CC admaitting

Consy-sums. The transpose of td xn:mg J(E) x E' — w5 2(FE) x 75 4(Xp.E") =
mp a(E x Ep.E') yields a vertical 1somorphism Lg.(m5 4(E) x E') =2 E x Lp.E'.

Proof. By Yoneda:
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Ep.a (75 4(E) x E', w5 4(E"))
Es.a(E', w5 4(E) = 75 4(E"))
Esa(E. 75 4(E = E"))

Ep(Xp.E. E= E")

Ez(E x Xp.E', E"). O

e M IR
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3.2.6. ExampLES. (i) If Cis asmall CCC, then it is an internal Adw-category in Sets.
If C only has a small collection of objects. then the family fibration Fam(C) -- Sets
is a split Aw-category.
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(ii) The fibration Famg(M) — w-Set from 1.2.12 is a split Aw-category. In fact
it is a small one. For A, B € w-Set, one has a right adjoint Tl 5 4) : Famer(M)pxa —
Famg(M)p to w5 4 by [X:B x A = M] — Ab € |B|. (Ilagja1- | X(pa)l ), where F
is described by mb f & Va € |A]. VkeIN. ktga = m-ktx,,, f(k). Indeed,
this yields a collection of modest sets again. Sums are described by ¥(g,4)(X) =
Ab € |B). ©(Useiar- 1 X b)), ), where © is left adjoint to the inclusion M < w-Set
and + is given by m £ (e,z) < fs{m) Fa a & snd(m) bx,,, z. Actually, all
reindexing functors of Fameg(M) — w-Set -— and not just the cartesian projections
—- have both a left and a right adjoint.

After definition 1.4.7 the equivalence Fam.g(M) ~ Y (PER) over w-Set was men-
tioned. It yields that the externalization 3 (PER) - w-Set is also a Aw-category.
As mentioned in Hyland [1989], change-of-base along the functor A :Sets — w-Set
(see 1.2.12) yields another Aw-category, which will be denoted by Fame,m(PER) —
Sets. Objects of Fame,,(PER) arc functions X from I to the PER. Vertical mor-
phisms a: X — Y over I are collections a = {c,},.; of maps a,: X, — Y, in PER
which have a common realizer.1.e. 3n € IN. Vi € I. n realizes a,. This Aw-category
was first described in Girard [1972].

(iii) The two basic examples from tripos theory (see Hyland, Johnstone & Pitts
(1980} and Pitts [1981]) are as follows. It is easily verified that a category C has
infinite products (resp. coproducts) iff every reindexing functor of Fam(C) — Sets
has a right (resp. left) adjoint and the Beck-Chevalley condition holds (see also 4.2.5
(i)). Hence if C is a complete Heyting algebra (considered as a preorder category
which is complete and cocomplete and cartesian closed), then the family fibration
Fam(C) — Sets is a split Aw-category.

Let B be a topos. In 1.2.10 (ii) it was already mentioned that the fibration
cod: Sub(B) — B has a generic object. It forms in fact a Aw-category. (This result
follows from applying theorem 5.2.8 to example 5.2.6 (i).)

In both these examples one has a preorder fibration, i.e. a fibration with preorder
categories as fibres. These provide so-called proof-irrelevance or truth-value seman-
tics of type theories. As explained in “Introduction and summary”, we see them as
“logical” models.

In Jacobs [1991] one can find ramifications of the notion of a split A2-category
dealing with non-extensionality. Further examples can be found there, including a
simple PER model which forms a split A2-category as defined above.

3.2.7. EXTENDED EXAMPLE (Domain models).

The following exposition is based mainly on Coquand, Gunter & Winskel [1989)].
A partial order (J,< v is called directed if the set I is non-empty and satisfies
Vi,jel. kel 1 <k& )<k A directed system over a category B is a functor
from a directed sct to B. In detail it is given by a family {B,}.er of objects of
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B. indexed by a directed set. together with a collection of maps {u,,: B, - B,},.,
satisfying u,, =wd and ¢ < ) £ kK = uy 0 u,; = 4y The category B is called
directed complete if every directed system has a colimit. In the above case this
means that there is a collection {v,: B, — B},¢; satisfying v, o u,, = v,: moreover,
for every other collection {w,:B, - C},.s with w,; o u,) = w,, there is a unique
a:B — Cin B with w, = a o v,. We write DcCat for the “category” of (not
necessarily small) directed complete categories and continuous (i.e. directed colimit
preserving) functors. It is not hard to verify that DcCat has finite products.

A domain is a bounded complete algebraic cpo. Together with continuous func-
tions, domains form a category DOM. It is a subcategory of DcCat. We write
DEP for the category of domains with “embedding projections” as morphisms: a
map X — Y in DEP consists of a pair (f¢, f?) where f: X - Y and f:Y - X
are continuous functions satisfying f? o f¢ =:id and f¢ o fP <:id. DEP is a CCC,
via continuous functors x, —: DEP x DEP — DEP, and it is directed complete,
see Smith & Plotkin {1982] and Coquand, Gunter & Winskel [1989] for the details.

We form an indexed category ¥ : DcCat®” — Cat with (continuous) func-
tors X : A — DEP in DcCat as objects of YA. Morphisms X — Y in ¥A are
continuous families {a4 € DOM(X 4, Y A)} sca where continuity of the family is
expressed by the following two conditions.

e for every u: A — B in A one has

Y(ufoaso X(u)P < ap

e for every directed colimit {v,: A, — A},c; one has

ag =] Y(0,) 04 0 X(v,)P

el

see also Coquand & Ehrhard [1987]. The Grothendieck construction applied to
¥ yields a split fibration Fameen(DEP) — DcCat. Actually, it is a split A—-
category.

Interestingly, there is a full and faithful functor

Fa'mcont(DEP) __P‘—‘“ — DcCat—’

cod

DcCat

which maps cartesian arrows to pullbacks. In the next chapter we introduce the name
full comprehension category for such a functor P. This structure passed without
explicit attention in previous work on these categories (but it was used implicitly).
As in example 1.2.12, we first define a functor Py : Fameon(DEP) -~ DcCat. For
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X :A — DEP. onc obtains a category Py(A. X) with objects (A, x) where ¢ € X A.
A morphism (A,r) = (B.y) in Py(A.X) is a map u: A — B in A satisfying
X(u)'(x) < y. It is readily established that Py(A, X) is directed complete: given
{u,:(A,.r,) — A1)} let {v,: A, > A} be the colimit of the u,,’s in A and ¢ =
L r- X(v,)(2,) in XA. Then {v,: (4, r,) > (A.z)} is a colimit in Po{A, X). For
a morphism (F,a):(A.X) - (B.Y) in Fame.n(DEP), i.e. for a continuous functor
F:A — B and a continuous family a: X — Y F, one defines Py(F.a): Py(A. X) —
Pu(B.Y) by (A.r) += (FA.as(r)) and u — Fu. The fact that the family o
is continuous guarantees that Py(F.«) is well-defined and continuous again. The
abovementioned functor P : Fameon (DEP) — DcCat™ is layed down by (A, X) —
[the (continuous) projection Py(A.,X) — A] and (F,a) +~» (F.Po(F.,a)). Actually,
this projection is a cofibration.

Finally, we establish that P is “fibrewise” full and faithful (which is enough).
That it is faithful. is easy; hence we only show that it is full. Suppose therefore
that for X.Y: A — DEP in Fam . (DEP). a continuous functor H: Py(A, X) —
Po(A.Y) is given with P(A.Y) o H = P(A,X); then one can wrile H(A,z) =
(A.as(r)). For every A € A, one obtains a continuous function a4: XA — Y A;
these functions yield a continuous family {a4}: for u: A -» B and z# € X B, put
2 = X(u)(r). Then X(u)(z) < r,s0 u:(4,z) — (B.r) in Py(A,X). Hence
Hu=u:(A as(z)) = (B,ap(r)) in Po(A,Y). But then ap(r) > Y(u)(aa(2)) =
{Y(u) o aq o X(u)P}r). This settles the first requirement about continuity; the
second one is left to the reader.

Next we mention some results about this functor P (see Coquand, Gunter &
Winskel [1989] propositions 7 and 8), which will be useful later in 4.1.6 (vi) and
4.3.2 (iv). Let X: A — DEP be an object of Fame,n(DEP). Then in case A is a
domain (as a preorder category) one has

(i) Po(A, X) is a domain;

(ii) the collection |(A, X)| of continuous “sections” H: A — Py(A, X) in DecCat
with P(A.X) o H = ud is a domain; the ordering is pointwise (in the second
component).

As a consequence of (i) above one obtains by restriction another “comprehension
category” Fameon(DEP) — DOM ™ which will be used in 4.3.2 (v). Here the
objects of Fameon(DEP) are arrows A — DEP where A is a domain. We don’t
bother to give different names to the total categories in Fameo(DEP) -» DcCat
and Fameon(DEP) - DOM. As long as we consider them together with the base
category. there is no confusion.

The main result of Coquand, Gunter & Winskel [1989] is that Fameen(DEP)
over the full subcategory of DcCat generated by the objects DEP".n ¢ IN forms
a split A—-category with (O, #)-products.
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3.3. Some constructions

Observations from chapter 1 (especially 1.4.6 and 1.5.4) easily bring us to the follo-
wing result about externalization.

3.3.1. PROPOSITION. Let O be —,2.w or w. Suppose C € Cat(B): then
C 15 an mternal AO-category & [C] 1s a split XO-category. O

Under certain size-conditions, inlernalization is also possible. see 1.4.8 and 1.5.5.
The next proposition is the main result of Asperti and Martini [1997].

3.3.2. PROPOSITION. Let p: E — B be a split fibration where B s locally small and
all fibres are small. Then
(i) p 15 a split fibred CCC = p in B = SetsB” 15 an wnternal Au-category.
(ii) p 15 a splt A2-category = pn B s an wnternal A2-category.
Further, the change-of-base situation p — [p] from 1.4.8 s a morphism of these
categories.

Proof. (i) Obvious, see 1.4.8.
(ii) By lemuma 1.5.5. O

The next result is essentially due to Pitts [1987], although the formulation used
there is different. It also yields a form of internalization. The fibration p is introdu-
ced in 1.2.7.

3.3.3. THEOREM. Let O be — or 2.
p:E = B s alO-category = D:E - E 15 a small AO-category.

Further, the change-of-base situation p — p from 1.2.7 s a morphism of these
categories.

Proof. Let p:E — B be a fibred CCC with generic object T € E above 1. We
already know from 1.2.7 and 1.2.10 (iii) that p: E — E is again a fibred CCC with
generic object (1Q,T) ¢ E The fact that p is a small fibration follows from a
general theorem to be treated in 4.5.8 (using 4.5.5 and 4.4.4 (i)). The details can
also be checked in this special case: one can form an appropriate internal category
in E with g = 1 as object of objects and Q; = (Qg & Q) x (75.o(T) = 7% (T))
as object of morphisms (where & denotes the “global” product in E, see 1.2.8). The
first projection in the fibre then yields a pair 8y.8; : € — 2 & Qg in E. It is not
hard to verify that pullbacks for €2, and €5 exist, see 1.4.1. Hence p: E -+ E is small
A-+-category.

Next, let’s assume that p is a A2-category via adjunctions g 4 75 1 Il5.
One defines product and sum functors Egpg o, — Eg for p by (E & Qy, E') —
(E.M,g.E") and (FE,Xpg.E'). The Frobenius isomorphism from lemma 3.2.5 is nee-
ded to establish the required adjunctions for these new sums. O
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Pitts [1987] goes on to embed p:E — E in the topos of presheaves Sets®” —
under certain size conditions — which yields a “topos model” of A2. Further details
may be found there.

The next construction requires some preliminary work. We consider categories
with an explicitly given cartesian closed structure. Morphisms of these are required
to preserve this structure on-the-nose. Every split A—-category yields such a CCC
by looking only at the fibre above the terminal object in the basis and forgetting
the rest. Obviously, a morphism of A—-categories yields a morphism between the
corresponding cartesian closed fibre categories. Our intention in the rest of this
section is to show that this forgetful functor has a left adjoint, i.e. that every CCC
generates a free A—-category. In order to make the presentation more accessible, we
first construct a simple (non-free) A—-category from a given CCC. Later, the free
one is derived from it. Qur construction is clearly inspired by the work in Bainbridge
et al. [1990], but dinaturality doesn’t play a role here.

Let C be a CCC. We form the category NP(C) —— where ‘N’ stands for negative
and 'P’ for positive — as follows. Objects are natural numbers n € IN. Morphisms
(F1,...,Fp):n — m are functors F,:(C)* x C® — C. Espedially, we have for
every object X € C a constant functor K% :n — 1; furthermore, we use projections
proj,:n — 1 described by (X,¥) — Y, and (f,g) — g,. Given F.n — 1, ie.
F:(CP)" x C" — C, we write F'¥:(C)" x C* — C for the “twisted” version
of F obtained as the composite of

(Cop)n x C*"=C" x (Con)n & (QPP) x (CP)™ = ((CP)" x Cn)op F co,

see Bainbridge et al. [1990] appendix AG. Notice that Fw(X.Y) = F(Y.X) and
F"“(f,g') = F(g, f): positive occurrences are changed to negative ones and vice-
versa. Now one can define composition in NP(C) by (Gq,...,Gy) o (F1,..., F,) =
(Hy,...,H). where H, = G, o (F{*,...,F* F,...,F,). Notice that ud,
(proji,...,proj,). In this way one obtains a category NP(C). It has finite pro-
ducts: 0 is terminal and n + m is the products of n and m. Hence NP(C) is an

algebraic theory in the sense of Lawvere [1963]. For arrows F,G:n —» 1, we put

I

FxG = prodo(F,G) s (CP)xC* — CxC — C;
F=G = erpo(F“.G) : (CP""xC* - C*xC -- C.

Next we define an indexed category ¥ : NP(C)? — Cat by giving the fibre
categories ¥(n) morphisms F:n — 1 in NP(C) as ohjects. Morphisms F — G in
¥(n) are families 0 = {0 ¢} ¢_on of arrows oy :F(X.X) - G(X.X)in C. There is
no dinaturality requirement for such families. Especiallv, we have constant families
Ky = {g}xccn: Kx — Ky for everv ¢: X — Y in C. For (Hy....,H,):m —
n in NP(C), we define H* = ¥(H):¥(n) — ¥(m) by F — F o H and ¢ —

{"Hlu‘.f). .n,.(Y.Y)})?Lc'"-
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This construction of ¥ : NP(C)°? — Cat is a categorical version of a construction
used a few times in Jacobs [1991] section 6. starting from a set (of ideals or per’s)
— instead of from a category — to obtain similar examples. There, the negative
and positive occurrences don’t play a role. Comparable structures are defined in
examples 5.5.6 (i), (ii).

3.3.4. PROPOSITION. Applying the Grothendieck construction to ¥ : NP(C)? —
Cat yields a (spht) A—-category.

Proof. Basically one has to show that the fibre categories ¥(n) are cartesian closed
and that this structure is preserved on-the-nose by the reindexing functors. This all
holds by the pointwise character of the construction. O

The above construction does not produce the free A—-category generated by C
because the categories NP(C) and ¥(n) are {oo big. With a term model construction
in mind, we now define appropriate subcategories NP¢(C) and ¥;(n), where 'f’
stands for frec.

NP;(C) still has objects n € IN and morphisms (Fi...., F,):n — m are still
built from F,’s from n to 1, but these arrows n — 1 are in NP¢(C) given as the
smallest collection of functors (C°?)* x C" — C satisfying

(i) A¥:n > 1L,

(ii) proy,:n — 1;

(iii) F.G:n—-1 = FxG, F=G:n--1

(iv) F:n—- 1, Hy..... H,:m—1 = Fo(H;,...,H,):m—1.
In the latter case we use composition as defined above. One easily verifies that
NP¢(C) — NP(C) is a categorv with finite products.

The fibre categories Wy(n) have arrows F':n — 1 in NP;(C) as objects. The
morphisms in these categories are in the smallest collection satisfying

(i) Ag:K% - K

(it) 1dp: F — F;

(iiiy 0. F > G. 7:G > K = to0:F - K,

(iv) 0:F —» Gin ¥y(n). H:m — nin NP;(C) = H*(o): H*(F) » H*(G) in
Ye(m):

(v) 'g: F — K for F € ¥y(n):

(M) m7:FxG—-F, «:FxG- G,

(vii) o: K > F. 7K -G = o1 : K-> FxG:
(viil) ev:(F > G)x F — G,

(ix) o: K xF—-G = Ale): K - F=G.
One easily verifies again that ¥;(n) <= ¥(n) is a category which is cartesian closed.

3.3.5. THEOREM. The Grothendicck construction applied to ¥y : NPy(C)% - Cat
yields the free A—-category gencerated by C.
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Proof. There is a unit functor nc: C — ¥,(0) given by X + K% and g — Kg. It
preserves the CCC structure. Let p: E — B be a split A—-category with a split
generic object via ¢p : B(B,Q) — Ob(Eg) and let L: C — E, preserve the CCC-
structure on-the-nose. We have to construct a (unique) morphism (Ly, L,): G(¥;) —
p of split A—-categories. such that nc followed by the restriction ¥(0) — E; is L
again. There is no choice at all for L, and L,, since their behaviour on the constant
families of objects and arrows is described by L and on the rest by the fact that the
structure should be preserved. For example L, : NP;(C) — B is given by n — Q"
(since 1+ Q) and K% = K% o !, — ¢; (LX) o !gn. Similarly one finds L,. O

As already remarked, the free A—-category G(¥) is constructed essentially as
a term model, starting from objects and arrows of C as constant types and terms.
Describing it as such enables a deeper type theoretical analysis. In this way it is
shown in Girard, Scedrov & Scott [1991] that all morphisms in the fibre categories
V¥ (n) are actually dinatural transformations. The proof makes a detour through
Gentzen’s sequent calculus.

Using these techniques. one might be able to settle whether the unit functor
nc: C — ¥4(0) in the above proof of 3 3.5 is a full embedding.






Chapter 4

More Fibred Category Theory

The categorical study of type dependency is our next subject. The main notion here
is what we call a “comprehension category™. Such a category will be used in two
different but, closely related ways: first as a categorical setting and secondly as a
domain of quantification (for a fibration). These matters can be found in the first
and second section. The third one deals with closed comprehension categories which
can be understood as categories with dependent sums and products. We show that
these categories have good closure properties.

The fourth section investigates a technique (due to J. Bénabou) of doing cate-
gory theory “on top of a given fibration”. It gives the possibility to construct more
complicated settings having different levels in the next chapter. Finally, we men-
tion some (standard) results about locally small fibrations and (a fibred version of)
Freyd’s adjoint functor theoremn.

4.1. Comprehension categories

4.1.1. DEFINITION (Jacobs [1990]). A comprehension category is a functor of the
form P : E — B satisfying

(i) cod o P:E — B is a fibration;

(ii) f is cartesian in E = 7Pf is a pullback in B.
This P is called a full comprehension category in case P is a full and faithful functor.
It is called cloven or split whenever the fibration involved is cloven or split.

Notice thal we don't require that the base category B has all pullbacks. In case
it does, P is a cartesian functor. It is easy to verify that P is a full comprehension
category if and only if P is fibrewise a full and faithful functor.

4.1 2. NoTATION For a comprehension category P:E -» B™" we standardly write
p = cod o P and Py = dom o P. The object part of P then forms a natural
transformation P : Py — p. Similarly. for c.g. @:D — A °. we write ¢ = cod o Q
and @y = dom o Q. The functors (- ) do the work of context extension (or
comprehension) as can be seen clearly in the term model example below.

53
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The components PE are often called projections (and sometimes display maps);
reindexing functors of the form PE* are called weekening functors. For an object
E € E we write |E| = {u:pE — PoE | PE o u = 1d}; elements of |[E| may be called
terms of type E. Motivation for this terminology may be found in the term model
described next.

It is our claim that a full comprehension category with a terminal object in
the basis constitutes a categorical version of the “Propositions as Types"-setting
Sort = {*} with *+ > x. To support this claim, we shall organize the contexts
of this setting as such a comprehension category P:E — B™. The objects of B
are equivalence classes [I'] of contexts. A morphism [[] — [A], where A = y; :
Ty« -2 Yn ¢ T consists of an n-tuple of equivalence classes of terms [M;]..... (M)
satisfving ' = M, : 7[yn := My, .... 51 := M, 1]. Objects of the category E are
of the form [T ¢ : %] and arrows [T b o : +] = [A F 7 : ] are pairs ([M].[N])
with [R-:f} ;] -» [AlinBand T,z : 0+ N : r[§:= M]. The functor P is then
described by [[' F o : *] — (the projection [[',x : ¢} ~ [[']). If T is of the form
Iy:0)....,Im  On, this projection is simply [z,]..... [Trm]s-

Notice that the functor P, performs “context comprehension™ [I' F ¢ : %] —
[T.7 : ¢]. Similarly. other type theoretical operations can be understood categori-
cally using this specific comprehension category.

Next we introduce a simple, but important construction to obtain so-called “con-
stant” comprehension categories.

4.1.3. EXxaAMPLE. Let B be a category with finite products and T a non-empty
collection of objects from B; T is called non-trimal if for some X € T, the collection
B(t. X ) is non-empty -- where t € B is terminal. We form a split full comprehension
category Consp:B//T - B ~ as follows. The total category B//T has pairs (4, X)
with A € B and X € T as objects. Morphisms (u. f):(4,X) —» (B.Y) in B//T
are given by two maps u: A — B and f:Ax X - Y in B. The functor Consr is
then defined by (A. X)— m:Ax X — Aand (u, f) — (u, uom, f). Notice that
the fibre above the terminal object is the full subcategory of B determined by T.
Comprehension categories of this form will be called constant because there is no
dependency involved. We condider two extremes.

(i) Tf the collection T consists of & single element, say T = {Q}. then we write
B//? and Consg instead of B//{Q} and Consiay.

(i) If T contains all objects from B. we write B for B//Qbj(B) and Consg for
Consoyym). This notation coincides with the one introduced in 1.2.7 when the con-
struction described there is applied to the fibration B — 1 (the terminal category).

The expressions “Cons,”- and “Consg”-quantification used in section 1.5 are
based on these two comprehension categories; this will become clear in the next
scction when we deal with products and sums.
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4.1.4. DEFINITION. A morphism of comprehension categories is given by a triple
(K.L,~). where (K, L) is a morphism of fibrations p — ¢ as in the diagram below

E ———— D
L
'Poép Qo’—g>q
B - K __ A

and v : QoL — K Py is a natural isomorphism satisfying KP oy = QL.

This notion of morphism is slightly more general than the one used in Jacobs
[1990]. where one has 7 = 1d.

Another way of understanding a map (K, L, ) is as a vertical isomorphism in

E—L . p

’Pi % o

B” A"
Ka

The context comprehension functors (—)p of a comprehension category “reflect”
the total category back into the basis. In case one has a fibration with a terminal
object, an obvious way of doing this is by requiring that the fibrewise global-sections
functors are representable. A bit more explicitly. let p:E — B Dbe a fibration
with terminal via 1: B — E; one requires that for £ ¢ E above A € B the map
(B/A)® — Ens given by

B%4 — Eg(1B.u'(E))

is representable (where Ens is a suitably large universe). Let PE be representing
arrow in B; then

E(1B. E)

R

U, p. Ea(1B. u'(E))

~ Uu Bsa’ B/A(u, PE)
B(B, dom(PE)).

114

Hence one obtains a right adjoint to 1: B — E. The following definition captures this
situation. This notion is introduced in Ehrhard [1988a] under the name D-category.

4.1.5. DEFINITION. (i} A comprehension category with unat is given by a fibration
p.E — B provided with a terminal object functor 1: B — E, which has a right
adjoint Py: E — B. The ensuing functor P:E -» B ' given by E — p(cg) — where
£:1Py -=> Id is counit -— then forms a comprehension category (see Jacobs (1990
for the proof).
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(ii) A morphism of comprehension categories with unit is a morphism (K, L) of
fibrations preserving the terminal in

E - -D
p|3{1 APy g T 14190
B A

K

such that the canonical map KPy — QoL is an isomorphism. The latter is obtained
by transposing TKPy = L1P, Lo L

Next, we mention some examples of comprehension categories with units and
morphisms of these. Some more examples may be found in Jacobs {1990].

4.1.6. ExamPLES. (i) Let’s go back to the constant comprehension categories from
4.1.3. Consider two categories B, A with finite products and a functor K:B — A
preserving these; we write vp g for the inverse of the canonical map K(B x B') -
KB x KB'. Assume non-empty collections T C Obj(B) and S C Obj(A) such that
K{T]C §. Then there is a morphism of comprehension categories (K, K'): Consr —
Conss, where K':B//T — A//S is defined by (B,X) ~» (KB,KX) and [(u, f) :
(B,X) - (B'.X')] — (Ku.K f o yg.x). The functor K’ preserves the splitting.

We also observe that for non-trivial T, the comprehension category Consr admits
a unit if and only if the collection T contains a terminal object.

(ii) Suppose C is a category with a terminal object ¢ such that all collections
C(t, X) are small. There is then a comprehension category with unit Fam(C) —
Sets™ given by {X,}.cr — [the projection U,c;.C(t,X,) — I]. The fibration
involved is the family fibration from 1.1.2. This comprehension category is full if
and only if the functor C(t, —): C — Sets is full and faithful. sce Jacobs [1990].

A functor H:C — D induces a functor Fem(H) : Fam(C) — Fam(D) which
preserves the splitting. In case H is full and faithful and preserves the terminal
object, it gives rise to a map of comprehension categories with unit.

(iii) Let B be a category with pullbacks. The identity functor on B ~ is then a
full comprehension category with unit. This example involves the adjoint situation

cod| - Id(_) -|dom

B

B
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(iv) Going back to the term model described before 4.1.3, one finds that if there
is a unit (as described in 2.2.3) for *, then one can define a functor 1: B — E by
[[] — [T'F 1. : #]. It is easily established that it is a terminal object functor and a
left adjoint to the context comprehension functor Py.

(v) In 1.2.12 we already described two examples of split full comprehension cate-
gories with unit, viz. the equivalence Fam.g(w-Set) -2, »-Set™ and the composition
Fameg(M) & Famegq(w-Set) s w-Set™.

(vi) The functors Fameon(DEP) — DcCat™ and Famen(DEP) — DOM™
from 3.2.7 are both examples of full split comprehension categories with unit.

Next we consider some technicalities.

4.1.7. LEMMA. Let P:E — B™ be a comprehension category. For every E € E and
u:A — pE in B one can allways choose a pullback of the follounng form.

Pou(E)
'Pgu ° — Fo
Pu*(E) l’PE
A—- —— «pE

u
Hence one can choose a pullback functor PE¥:B/pE — B/PoE by u— Poi(E).
Proof. By requirement (ii} in definition 4.1.1. O

4.1.8. PROPOSITION. Let p: E — B be a (cloven) fibration provided with a functor
Po:E — B and a natural transformation P:Py — p. Then
P forms a comprehension category
& for everyu: A — B B and E € Eg, the operation

{u"(E)] — B/B(u, PE) given by
v +—o Pyi(E)ov

1s wnvertible.
Proof. (=) By the previous lemma, using that

[w'(E)] = {v:A - Pou'(E) | Pu'(E)Yov=id}, see4.1.2
{w:A - PoE | PE ow = u}
B/B (u, PE).

1R

(<) Let's write T, g for the inverse of the above operation. We have to show that
the diagram (u,Pou(E)): Pu*(E) — PE is a pullback in B. Assume therefore
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that ©;:C — A and v4:C — PyE with PE o vy = u o v; are given. One has
v2 € B/B(u o v, PE) and thus w — T, ., g(i2) € [(u o ¢1)*(E)]. Then v' =
Potr(u*(E) o o o w: C — Pyu*(E) is the required mediating arrow  where ¢ is
an obvious iso in B. O

4.1.9. REMARKS. (i} The isomorphism B/pE (u, PE) = |u*(E)| that we just estab-
lished, can equivalently be expressed by

B(A, PE) = |J |u*(E)|

u A -pE’
using that B(A, PoE) = |, a—pg- B(u, PE). The result above shows that this
“disjoint sum”™ which is encoded in the definition of a comprehension category is
the heart of the matter. It is closely related to the context rules in type theory —
especially to what we have called “context comprehension” in 2.2.1.

(ii) The previous proposition may serve as a basis for an equational presentation
of split comprehension catcgories.

4.1.10. LEMMA. Let P:E — B™ be a comprehension category unth umit, say wna
1:B — E. Then
(i) for E € E above A one has |[E| = E, (1A, E);
(i1) for E€ E and u: B — pE one has B/pE (u, PE) = Eg (1B. u*(E));
(ili) P1:Pyl — Id 15 an 1somorphism; hence P preserves the fibred terminal.

Proof. (1) By the adjunction 1 4 P,.

(ii) By the previous proposition and (i).
(iii) The unit n:Id --> 1Py is an iso since 1 is full and faithful. But Pl oy =
peloplyp=pleloly) =1d. O

Using (ii) in the previous lemma. one can prove that if P:E — B ' is compre-
hension category with unit, then P preserves (fibred) limits. One can also use this
fact to prove (iii).

In the rest of this section we describe a number of ways to obtain new comprehen-
sion categories from given ones. The first described below is based on a construction
from Ehrhard [1988b); the third and fifth are based on constructions from Moggi
[1991).

4.1.11. CONSTRUCTIONS ON COMPREHENSION CATEGORIES.

(1) Full completion. Given a comprehension category P:E — B °, one forms
a full comprehension category P¥:E” — B~ called by Ehrhard the heart of P,
as follows. The category EY has objects E € E and morphisms (u.v): £ » E'in
E" are given by maps u:pE — pE' and v:PoE — PoE' in B such that u o PE =
v o PE'. The functor P°:E® — B is then given by E — PE and (u,v) — (u,v).

There is a unit morphism P — P¥ by a functor 7p:E » EY with E — E
and f — pf,Pofr. This arrow is universal: for a map (K:B — A, L:E — D.4)
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from P to a full @ D — A~ one finds a unique map (K,L',v) : P° — Q where
L':EY — D is defined by E — LE and [E =5 W g EN— QY Ku,vg o Kvoyg).

(ii) Change-of-base along fibrations. Starting from a comprehension cate-
gory P:E — B~ and a fibration r: C — B, a new comprehension category r*(P)
with base category C can be chosen as follows. First form the fibration 7*(p) by
change-of-hase

CxE———  _E
rp -—]

r*(p) p
C—— -~ ——_ B

and then choose 7*(P): C X E — C by (C.E)~ PE(C):PE*(C) - C. On

arrows (f,g):(C.E) — (C" E’) where rf = pg one defines r*(P)(f,g) = (f,h), 1
which h: PE* (C) PE™((") is the unique arrow above Pyg satisfying ’PE’(C")
h=foPE(C).

An alternative description of this construction involves lemma 1.1.4. Applying
the pullback functor r* to P:p — cod yields the comprehension category r*(P) by
composition in:

The resulting 7*(P) is then determined (by choice) up to an isomorphism of com-
prehension categories.

The morphism of fibrations r*(p) — p in the above diagram is in fact a morphism
of comprehension categories r*(P) — P.

It is left to the reader to verify that #*(P) is full or has a unit in case P is full or
has a unit. Moreover, that the map r*(P) — P preseives the unit.

This change-of-base is can be extended to maps in the following way: for a mor-
phism of comprehension categories P — P' like in definition 4.1.4 and a morphism
of fibrations » — r', one obtains a morphism r*(P) — r"*(P').

(ili) Juxtaposition. Given two comprehension categories E Z,B" <2 D one
constructs another comprehension category @ - P with base category B, by first
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performing change-of-base

DxE—— —— —+E
Qosp _I

Q5(p) P
D — % -B

and then defining Q- P : D x E — B by(D,E)— QD o PE and (f,g) —
(qf,Pog)- One has cod o Q - ’P =qo Q5(p).

(iv) Localization. Let P:E — B~ be a comprehension category. For each
object A € B one can form a comprehension category P[A4] : E[A] - B[A]™ in
which A is used as initial context. The comprehension category P[A] contains that
part of P that can be seen from A.

A chain of types is a sequence Ey,.... E, of objects E; € E with pE,,; = PoF,
A chain may be empty. Let B{A] be the category with chains E,, ..., E, satisfying
pEy = A, as objects. A morphism u from Ey,....E, to Dy,..., Dy, in B[4] is a
morphism u:PyE, — PyD,, in B commuting with the chain of projections, i.c.
satsifying

PDyo...oPDpou = PEyo...oPE,.

(A little care is needed here: if one of the chains is empty, one should read A for
PoL,, or PoDyy.)

The category E[A] has non-empty chains Ey, ..., E, with pEy = A as objects. A
morphism f from E,....,E, to Dy,..., D, in E[A] is a morphism f:E, — D, in
E such that pf : Ey....,E,.y — Dy....,Dp_; in B[A].

The functor P[A] : E[A] — B[A] " is defined by

Eo,...,E" — PEn H Eo,...,En i Eo,...,En_l
f = ®f, Pof).

Without proof we mention that
a) P[A] is a comprehension category;
) P[A] is full (resp. has a unit) in case P is full (resp. has a unit);
(c) there is a morphism of comprehension categories P[A] — P;
(d) Every arrow B — A in B gives rise to a morphisin of comprehension catego-
ries P[A] — P[B]. This last point requires a cleavage.

(v) Multiplication. Suppose two (cloven) comprehension categories E N

B~ <2 Dare given. One forms a new comprehension category P ® Q with underly-
ing fibration px g=pop*(q) : E x D — B as follows. Put P® Q(E.D)=PE o
P
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Q(PE*(D)) and for (f,g):(E.D) — (E',D') take P ® O(f,g) = (pf,w), where
w is the mediating arrow. This makes ® an (up-to-isomorphism) associative and
symmetric operation. A unit for ® is formed by the identity natural transformation
on Idg. Hence cloven comprehension categories on a given base category have the
structure of a symmetric monoidal category.

(vi) Composition. Given two comprehension categories

PO ,R.o
E_4P B R A
2 T

One obtains a functor RP:E — B~ by E +— R(pE) o Ro(PE) (= r(PE) o
R(PoE) ). It forms a comprehension category if R has a unit: R then preserves
pullbacks (see also lemma 1.1.5).

4.2. Quantification along arbitrary projections

A comprehension category P:E — B determines a class of “projection” morp-
hisms {PE | E € E}. Quantification along such projections is described in the next
definition by adjoints to the corresponding “weakening” functors — which are the
reindexing functors of these projections.

4.2.1. DEFINITION. Let ¢: D -» B be a fibration and P:E — B~ be a comprehen-
sion category; we say that g admits P-products (resp. P-sums) iff both

¢ for every E € E any weakening functor PE* : D,z — Dy, has a right adjoint
II (resp. a left adjoint ).

e the “Beck-Chevalley” condition holds, i.e. for every cartesian morphism f :
E — E'in E one has that the canonical natural transformation

(pf) g — Hg(Pof)’ (resp. Zg(Pof)” — (pf)"Ep )

is an isomorphism.

The first map is the transpose of PE* (pf)* My = (Pof ) PE" e T2 (P f);
similarly one obtains the second one.

4.2.2. REMARK. Let ¢ and P be as above. We recall from 1.1.2 that the fibration
p:E — B determines a groupoid fibration |p|: Cart(E) — B. Similarly the compre-
hension category P:E —» B™ determines two functors |p|, |Po|: Cart(E) —» B and a
natural transformation between them. By change-of-base of ¢ along P :|Po| — |p|
one obtains two fibrations |p[*(g) and |Py|*(¢g) and a functor P: [p|*(g) — |Po|*(q),
see lemma 1.1.7. Using lemma 1.2 2, one can prove that g admits P-products (resp.
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P-sumns) if this functor P has a fibred right (resp. left) adjoint. This approach
generalizes definition 7 in Ehrhard [1988a). For practical reasons we chose to work
with the fibrewise formulation in used in the definition above.

In some special cases we don't mention the comprehension categories involved.

4.2.3. DEFINITION. (i) Let p: E — B Dbe a fibration on a basis with pullbacks: one
says that p has (fibred) products (resp. sums) iff p has products (resp. sums) with
respect to the identity comprehension category on B °, see 4.1.6 (iii). This is the
usual definition in fibred category theory.

(ii) Let P:E — B~ be a comprehension category; we say that P has products
(resp. sums) iff p = cod o P has P-products (resp. P-sums).

4.2.4. DEFINITION. (i) (Bénabou) A fibration is called complete if it has fibred pro-
ducts and fibrewise finite limits.
(ii) A fibration will be called small complete if it is both small and complete.

In ordinary category theory a category is sometimes called smell-complete if it
is complete. i.e. if every small diagram has a limit. Here a small complete cate-
gory/fibration is one which is both small and complete.

A result of P. Freyd (see e.g. Mac Lane [1971]. V.2, proposition 3) states that
there arc no small complete categories except preorders. Remarkably, there are small
complete fibred categories (which are not fibrewise preordered), see Hyland [1989],
Hyland, Robinson & Rosolini [1990] or (ii) below.

4.2.5. EXaAMPLES. (i) It is easily verified that a category C has infinite products
(resp. coproducts) iff the fibration Fam(C) — Sets admits products (resp. sums).
This bi-implication extends to completeness.

(ii) After definition 1.4.7 it was already mentioned that the fibration Fameg(M)
— w-Set is small. It has finite limits because M has them. Products are obtained
in the following way - - which generalizes the constructions from 3.2.6 (ii). For
f:A = B in w-Set one has II; : Famp(M)p — Fameg(M)s by [X:B —» M} —
[Aa € |A|. (Ilyes 1(a)- | Xp|,F)). The realizability relation & is described by n k¢ <
VamVbk.mbyabkkltpb = n-m- kb, pla)b).

(iii) In 1.2.4 (iii} an LCCC has been defined as a category B with finite limits
such that every slice category B/A is cartesian closed. Equivalently -- as shown in
Freyd [1972]. see also lemma 2.2.13 - one can require finite limits for B plus fibred
products for the fibration cod: B~ — B. This fibration is then complete. Note also
that it trivially has sums.

4.2.6. EXTENDED EXAMPLE.

Let B be a category with finite products and let T C Oby(B). see 4.1.6. It is not
hard to prove that the “constant™ comprehension category Consr admits products
if exponents exist in B of all objects in T'; also that Consp admits sums if 7" is closed
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under cartesian products. Hence for a constant comprehension category, products
are given by exponents and sums by cartesian products. This corresponds in type
theory to the fact that I1 is — and ¥ is x in case there is no type dependency.

In a sense. this is a remarkable result: it gives the possibility to describe type
theoretical exponents without (type theoretical) cartesian products. Let B be the
category of contexts of the minimal setting (see the beginning of 3.1) and let T be
the collection of types. One has T C Objy(B) by identifying a type with a singleton
context. This gives a term model in which right adjoints to weakening functors
correspond to exponent types and (independently) left adjoints to cartesian product
types.

Of course, at a different level (viz. the level of contexts) cartesian products do
play a role in the description of these type theoretical exponents. It is a merit of
comprehension categories to separate these levels.

It is worth mentioning a mathematical example here. Let D be a cpo. A subset
ICDiscalled an tdeal in Diff (i) L e I; (ii) r <y €1 = r € I; (iii) directed
XCI = UX € I Ideals are the non-empty closed subsets with respect to the
Scott topology. With the ordering inherited from D, they form cpos themselves.

One forms a base category B with ideals I C D" (for some n € IN) as objects.
A morphism from I C D" to JC D™ is a continuous function f: D" — D™ with
flI]CJ. The product of ideals I C D" and JC D™ is I x JC D*+™,

Now let’s assume that D is isomorphic to its own space of continuous functions
[D - D], viamaps F: D — [D — D] and G : [D — D] — D satisfying F o G =1d
and G o F = 1d. As usal, we write r -y for F(r)}(y) and Az.— for G(Az.—). An
example of such a cpo is D. Scott’s Dy, see e.g. Barendregt [1984].

In a standard way one forms an exponent of ideals I, JCD by I = J={z €
D|Vye I z-ye€ J}. In general however, a cartesian product for ideals I,J C D
does not seem to exist in D. Hence we don’t have a CCC-structure.

But taking T C Oby(B) as the collection of ideals in D! = D, yields a compre-
hension category Consr with products described by exponents. For (I,J) € B//T
one can define I 5).(f x J,K) = (I,J = K). In this way we are able to capture
these exponent ideals categorically.

4.2.7. DEFINITION. Suppose we have a diagram

E—— E'
L
B X @
q q
H

D-——— > . D
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in which (K, L) together with v : Py’L — KP, is a morphism of comprehension
categories and (K. H) is a morphism of fibrations.

(i) Suppose that g has P-products via fibrewise adjunctions P(—)* 4 II;., and
that ¢' has P'-products via P'(-)* 4 II{_,. Then the (K, L.H) diagram forms a
morphism of products if for each E € E, the canonical natural transformation

Hollg — NjponpoH

is an isomorphism.
(ii) Similarly the diagram forms a morphism of sums —- described by X(_) -
P(-)" and X{_, 4 P(-)* —if for each E € E one has canonically,

YipovhoH = HoZXpg.

4.2.8. REMARKS. (i) An exposition similar to the one above can be given about
an appropriate form of quantification for split fibrations. Every reindexing functor
should then preserve all the structure “on-the-nose”.

(ii) The reader may want to verify that the explicit definition of Consg- and
Consg-quantification (and corresponding maps) given in section 1.5 coincides with
the one presented above. using the comprehension categories Consg and Consg from
4.1.3.

In chapter 2 we described “weak” and “strong” sums in type theory. The above
definition covers the weak case. For the strong one the fibration ¢ must be (part of)
a comprehension category. This corresponds to the extra dependency required for
strong sums in section 2.2. But first, we need the technical result (i) below. The
second point generalizes the Frobenius isomorphism from lemma 3.2.5. Verifications
are easy and left to the reader.

4.2.9. LEMMA. Suppose q¢ admats P-sums as described above.

(i) For every E € E and D € D wnth gD = PyE, one has that the morphism
ingp = PE(Xg.D)onp: D — PE*(Xg.D) — Zg.D 1s cocartesian.

(ii) The transpose of 1d X ng : QD*(E) x E' — QD*(E) x @D"(Xp.E') =
QD"(E x Tp.E') yelds an 1somorphism Tp.(QD*(E) x E') = E x Lp.E'. O

4.2.10. DEFINITION. Given comprehension categories E 2, B & D, we say

that Q has strong P-sums in case @ has P-sums in such a way that every morphism

Qo(tng p) in B (cf. the previous lemma) is orthogonal to the class {QD' | D' € D}.

The latter means that for every D' € D and u, v forming a commuting square,
Qo(1ng D)

¢ —— ———oeo

QD'
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there is a unique u satisfying @D’ o w = v and w o Qu(ing,p) = u.

One easily verifies that a comprehension category Q has strong sums (i.e. strong
Q-sums, see definition 4.2.3) iff the above morphism Qq(tng p) is an isomorphism.
The latter formulation is used in Jacobs [1990] to define strong sums for compre-
hension categories. There one also finds the relation between strong sums and
indecomposability of terminal objects.

Next we mention some useful results about quantification. More results like these
may be found in Jacobs, Moggi & Streicher [1991].

4.2.11. LEMMA. ¢ admats P-products < q°F admats P-sums.
Proof. By the fact that the opposite is taken fibrewise, see 1.1.11. O

4.2.12. LEMMA. Let P:E — B~ be a comprehension category and let q : D —»
B,r:C — B be fibrations; the fibration r*(P) obtained by change-of-base 1s described
m 4.1.11 (u).

(i) q admats P-products/sums = r1*(q) admats r*(P)-products/sums; further,
the paiwr of morphisms r*(P) — P together with r*(q) — q forms a morphism of
products/sums.

(ii) Suppose q has P-products, svmilarly, ¢ has P'-products. Let’s assume further
a product-preserving pair of morphisms P — P' and g — ¢’ like wn definition 4.2.7.
A morphism of fibrations r — 7' then mnduces a product preserving pawr of maps
r*{(P) — r"*(P') and r*(q) — r'*(q').

Svmalarly for sums.

(i) A comprehension category Q@ admuts strong P-sums = r*(Q) admats strong
r*(P)-sums.

Proof. (i) Assume PE* -4 Ilg in D; we seek (¢*(P)(C. E))* 4 V(¢,g). This is done
by defining Y(c,g) : (C X D)pg-(c) = (C x D)c as (PE*(C), D) — (C,l1g.D).
Sums are handled similafly. '

(i1) Straightforward using the map r*(P) — r"*(P') from 4.1.11 (ii).

(iii) Notice that in = gy (pe~r.0y = (PE(C). mpp) : (PE*C),D) ~
Jic.p)- (PE*(C), D) and that ¢*(P)o(1n) is by definition above Ry(ing,p). Orthogo-
nality can then be lifted. O

The next lemma resembles 2.2.12.

4.2.13. LEMMA. Let q: D — B be a fibration and P:E — B’ be a comprehension
category.

(i) If there 1s a fibred reflection r — q (i.e. a fibration 71: C — B and a full and
farthful cartesian functor C — D which has a fibred left adjownt), then

(a) q has fibred finate irmits = r has fibred finite limats.
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(b) q has P-products/sums = r has P-products/sums.
Further, the functor C — D 1s continuous. 1.e. preserves the fintte hmats and pro-
ducts.

(ii) In case P is a full comprehension category with unit and sums and q has
a fibred termunal object, which 1s preserved by a full and faithful cartesian functor
G:D — E, then

G has a fibred left adyornt < g has P-sums.

Proof. (1) By a standard argument.

(ii) (=) By (i).
(«=) Define F':E - Dby E — Zg(TPyE), where T: B — D describes the terminal
object for g. Bv 4.2.9 (i), F extends to a functor, which is cartesian by Beck-
Chevalley. Then for E € E above A and D € D above B, one has

D(FE, D) = |J., . Da(Za(TPE). u'(D))

= U, .p Droe( TPE, PE*w’(D))

= U, Ere(GTRE. G(PE' W' (D))

= . ,_p Ene(1PE, PE'u*(GD))

> U, op B/A(PE. P(x’(GD))) by 4.1.10 (i)

= U,LA._;B- E4(E, «'(GD)) because P is full
~ E(E.GD). -

4.3. Closed comprehension categories

The notion of a closed comprehension category to be introduced next is of great
importance: like a CCC, an LCCC or a topos. it forms a module with pleasant
properties. It is a category with a unit and dependent products and strong sums.
Comparable “closed™ versions have been defined for other categorical notions for
tvpe dependency as mentioned in “Introduction and summary”, see Blanco [1991].

Most of this section will be devoted to examples and properties. At the end we
will be able to give categorical versions of the systems AP1, APi and A+ which are
hased on the “Propositions as Types™ sctting.

4.3.1. DEFINITION. (i) A c¢losed comprehension category (abbr. CCompC) is a full
comprehension category with unit. products and strong sums; moreover, the base
category is required to have a terminal object. The products and sums are with
respect to the compreliension category itself. see 4.2.3 (ii).

A closed comprehension category is spht if all the structure involved is split.
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(i) A morphism of CCompC'’s is a morphism of comprehension categories with
unit, which preserves the products and suins; additionally, preservation of the ter-
minal object in the basis is required.

4.3.2. EXAMPLES. (i) Let B be a category with finite limits. The identity functor
on B™' is then a full comprehension category with unit and strong sums. Moreover,

wdg~ is a CCompC ¢ Bisan LCCC.

(ii) Let B be a category with finite products. The full comprehension category
Consp from 4.1.3 has a unit and strong sums. Moreover,

Consg is a (split) CCompC <« Bisa CCC.

These two examples show that finite products and exponents are related like finite
limnits and local exponentials.

(iii) The comprehension categories Fam(Sets) — Sets™ and Fam.g(w-Set) —
w-Set™ are both closed. This is not surprising because Sets and w-Set are LCCC'’s.
But the interesting point is that all the structure is split.

Similarly, one has by composition a CCompC Fameg(M) < Fameg(w-Set) —
«-Set™, see 1.2.12 and 4.1.6 (v).

(iv) The comprehension category Fam(Sets) — Cat™ mentioned in Jacobs [1990]
is closed; this example goes back to Lawvere [1970]. The fibration involved is obtai-
ned by applying the Grothendieck construction to C »+ Sets®.

(v) The comprehension category Fomeon(DEP) — DOM ° introduced at the
end of 3.2.7 and 4.1.6 (vi) is also an example. Remember that for a domain A and
a continuous functor X : A — DEP the domain Py X has clements (a.r) where
a € A and z € X,; the ordering is given by (a,z) < (b,y) & a <b& X (x) <
y. For a continuous functor Y:PyX — DEDP one can define sum and product
ExY, IIx.Y : A - DEP by (£x.Y), = Po(Xa, Y., )) where Y, _ is considered
as a functor X, — DEP. In a similar way one takes (IIx.Y), = (X, Y4}/, the
domain of sections mentioned at the end of 3.2.7. An extensive treatment of these
constructions may be found in Palmgren & Stoltenberg-Hansen [1990).

(vi) The term model of the calculus AP1 (sce section 2.3) is an example of a split
CCompC: the comprehenston category with unit was already described in example
4.1.6 (iv). The type theoretical product and strong sum provide the appropriate
categorical structure.

4.3.3. EXTENDED EXAMPLE (Closurce model).
The following exposition is based on Scott [1976] and Barendregt & Rezus [1983];
Taylor [1985] is also of relevance. We consider the complete lattice Pw. The set
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of Scott-continuous functions [Pw — Pw| comes equipped with continuous maps
F:Pw - [Pw —» Pu]and G : [Pw - Pw] > Puw satisfying F o G = 1d and
G o F > 1d. As usual we write z - y for F(z)(y) and Az... for G(A...). Further,
we use that there is a continuous surjective pairing [—, —]: Pw x Pw — Pw with
projections w, @',

A closure is an element a € Pw satisfying a o a = a > I, wherea 0 a =
Ar.a-(a-z) and I = Az.x. Closures form a category CL by the stipulation that a
morphism #:a — b between closures is an element u € Pw satisfyingbouoa=u
(or equivalently. b o 4 = band u o @ = u). One easily verifies that CL is a CCC with
t=Ar.w, axb=Ar.{a-7z,b-n'z) and b* = Ar.bo z 0 a. For a € CL we write
w(a) = {a-¢ | z € Pw}; then wm(a) = {¢ € Pw|a-z = z} and wm(b*) = CL(a,b).

A crucial result is the existence of a closure Q with :m(Q) = Ob)CL), i.e.
a € CL & Q-a = a It gives us the possibility to define a split fibration
p: Fam(CL) - CL of “closure-indexed closures”. Objects of Fam(CL) are arrows
X:a- QinCL. Anarrow (X:a —> Q) — (Y:b — Q) is a pair (v,a) withu:a — b
in CL and a € Pw an “e-indexed family of morphisms”. The latter means that a o
ea=canda-z:X.-z—>Y . (u-z2)in CL (for all - € Pw). Here we use that X .z €
() = Oby(CL). The first projection p: Fam(CL) — CL is then a split fibration;
it has a terminal object via 1: CL — Fam(CL) by a — (Azy.w:a — Q). A right
adjoint Py : Fam(CL) — CL to 1 is described by (X :a — Q) — Az.[a-7wz, X-7z-7'z].
In this way one obtains a (full) comprehension category with unit Fam(CL) — CL™.

For X:a — Q and Y:PyX — Q one defines £x.Y, lIx.Y :a — Q by

ExY = A [ X z-m0,Y a2, Xz 7o) 'y
OxY = dzvw. Y fa -5, X -z w] - (v-(X-z-w)).

This yields a (split) CCompC.
Finally it is worth noticing that the fibration p: Fam(CL) — CL has a (split)
generic object. Hence this example supports a “type of all types”.

4.3.4. EXTENDED EXAMPLE (Separated families in a topos).

Let B be a topos with a topology 7:2 — Q. For every object A € B, the slice
category B/A is a topos again; further there is a functor A*: B -» B/A given by
B [r:Ax B — A]. In B/A, one has that A*(Q) forms a subobject classifier and
that A*(3): A*(Q) — A*(Q) is a topology. It is not hard to verify that for a monic
m in B/A one has

A A
The full subcategory SF,(B) — B ~ of “separated families™ is defined by

! X
( ! ) ;ﬁv ( ! ) is A*(j)-closed/dense. << X' gl» X is j-closed/dense.

X X
( ! ) €SF,(B) « ( ! ) is A*(j)-separated in B/A
A A
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We claim that the inclusion SF,(B) — B~ is a CCompC. This follows from the
following four results.

{i) The composite S¥,(B) — B~ 24 B is a fibration.

(ii) The inclusion SF,(B) — B’ is a full comprehension category with unit.
(iii) The comprehension category SF,(B) — B™ has strong sums.
{iv) The fibration §F,(B) — B is complete.

X
Ad (i). For a family ( lf) and a map u: B — A, let’s denote the pullback cone by
A

X

. X
u‘ﬁ) u*(X) o, X. We show that if ( lf) is separated, then also u* ( If ) .
A A

B

Therefore, assume one has a dense monic m and a pair p, ¢ withpom =ypomin

Y . Y
g |>—>1 lg
B B

In order to obtain y = ¥, it suffices to show that u«*(f) o ¢ = u*(f) o ¢ and
' o p = u' o ¥ (using the pullback in B). The first equation obviously holds; the
second one follows by moving to the fibre B/A. There one has

Y’ m Y
luog' | >———> | luog
A A

u'o¢l lu'ow

)

Ad (ii). Obvious, since the identity families are separated.

X A X
Ad (iii). For separated families ( lf) and ( lu) the composite ( luOf) is also
A B B

Y

Y
separated: given a dense monic m into ( lg) and two arrows ¢,y : ( lg) —»
B B
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X
luof |, one obtains f o ¢ = f o ¥ = h, say, by using that the family u is
A
separated in B/B. Hence we can consider ¢, ¢ as maps from the family h to f in
B/A. This yields ¢ = ¥.

X
Ad (iv). For a separated family | |f | and an arbitrary map u: A — B, the family
A
II.(X)
IL.(f) | is separated again. This result follows by an easy argument which
B

makes use of the adjunction «* - II,. Fibred finite products are obtained in the
obvious way.

The full subcategory Orth(A) — B~ of families orthogonal to an object 4 gives
rise to a similar situation, see Hyland, Robinson & Rosolini [1991]. One should
verify that the comprehension category Orth(4) — B~ has strong sums, i.e. that
orthogonal families are closed under composition.

4.3.5. EXTENDED EXAMPLE (Split topos models).
Let B be a topos. In a straightforward way, it gives rise to two CCompC’s, namely
Id:B™ — B~ (see 4.3.2 (i)) and the inclusion of Sub(B) — B * of monic arrows.
The point of this example is to show that there are two split CComp(’s which are
equivalent (over B) to those mentioned above. In split structures there is no need
to deal with nasty mediating isomorphisms: this make the effort worthwile. The
essential point in the construction below is to replace substitution via pullbacks by
substitution via composition.

In the topos B we begin by choosing for every map p with codomain Q a “kernel”
{p} such that the following diagram is a pullback,

{v}

e>———-> A

_I

-
t———~Q

where T :t — ) is the subobject classifier.

(i) Let F(B) be the category of “families of B”. Objects are maps X : 4 x A" —»
{). In informal notation, X can be understood as an A-indexed collection {X,},c4.
where X, = {a' € A' | X(a,a') = T}. A morphism from X: A x A" - Q to
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Y:B x B'— Qin F(B)is a pair (u, f) forming a commuting square as follows.

*f_.
{X} {v}
Ax A Bx B
T m
A v B

A functor g: F(B) — B is defined by [4 x A’ X, Q—Adand (u,f)— u Itisa
split fibration: for u: A »> Band Y :B x B' —» Q one can take u*(Y)=Y o uxd :
A x B' -5 Q. As indicated by the above diagram. one obtains a full comprehension
category Q: F(B) - B by [X: A x A' - Q] — [x o {X}]. The idea of using an
inclusion followed by a projection as “display maps” occurs also in Cartmell {1985],
but there only for the category of sets. The notational convention for comprehension
categories (cf. 4.1.2) leads us to denote the domain of {X} by Qu(X). Informally,
Qo(X) = Ugea- X, and for (1, f): X — Y one has f = {f,: X; = Yuia) }oca-

The functor @:F(B) — B~ yields an equivalence #(B) ~ B~ over B: for
f:C = Alet fl: AxC — Q be the character of the the monic (f,2d.. Then
A(f)= fin B/A.

This equivalence induces a CCompC-structure for @: F(B) — B™". But since we
want @ to be a sphit CCompC. the unit, product and sum have to be constructed
explicitly. Unit and sum are straightforward, but products are rather involved.

The unit is simply obtained by A— [Tor": A xt — Q]

As to sums. for objects X: A x A — Q and Y :Qy(X) x Ay — Q onc obtains
Yx.Y A x (A x A;) —» Q as the character helow.

(v} (X} xd
Qo(Y) > > Qo(X) x Ay > — = > (Ax A;) x Ay = A x (A, x Ay)

x.Y

T

f oo e .Q

In order to define products, we recall that the topos B has for every object A € B
a partial map classifier na . A > A with the property that for every monic B' > B
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and map f:B' — A there is a unique f: B — A forming a pullback as follows.
B'>—>8B

€ - - - - -

A>T S

This construction is used to form the following arrows (where X,Y are as above).

{X} n —
Qo(X) > —> A x A4, Q(Y) > > QoY)
od wdggix) QY [9)
Qo(X) > > Qo(X) Qo(X) >1> QyfX)
7 — {X} xdo{Y} —
Qo(X) >—> Qo(X) QY)>—>(Ax4)) x4
7' o {X}l X ud Y
4> 5 T, Q(Y) LASRNY. ¥

Finally, we put

a = @xid, evor xud :(Ax (4 = A))x A — (Ax A)x A,

fi = AMXoudgyx))on CAX (A= Ay) — (4 = 4)

f2 = AMXoQYoVoa) :Ax(4 =4) — (4, = 4).
One can form the equalizer e >— A x (4, = A) of 1, f2 and T1x.Y : A x (A =
A;) — Q as its characteristic. Informally one has fi{a,@) = Aa; € Ay. a1 € X,
and fa(a,0) = Aa; € A;. #(a1) € Yiaa,). The construction is so involved because in
order to get “Beck-Chevalley” on-the-nose, the dependence on X, Y may only occur
in the maps f, fs.

(ii) A second CCompC P:L(B) — B can be described more easily. The cate-
gory £L(B) -- containing the logic of B — has maps ¢: A — 2 as objects. A map
fromp: A — Qtoy:B — Qin L{B) is a pair (u, f) making
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commute. This yields a split full comprehension category P: L(B) —» B~ by ¢ —
{¢}. Notice that the splitting u*(¢*) = ¥ o u is again obtained by composition.
Using 4.1.2, we now write Py(yp) for the domain of {p}. The fibre categories are
partial orders: one has a vertical map ¢ — ¢ iff {p} C{p}iff p=> v =T.
Obviously, a unit for Pisgivenby A [Ta=Tol: 4> Q).
For p: A — Q and v : Po(¢) — 2 one obtains 3,.4: A - Qin

}

Po(¢p) >—> Po(y) >{f—> A

3,9

T
t -— 0

For the product V,.v: A — €} we need the following standard maps V¢, 8¢.

A(Tol) ad,ud
t>—>0° C>—>CxC
_J _I
Ve b¢c
P ) L

We then put V,.9 = Vp, () o A(#) where y: A x Po(yp) —  is described by ¢ =
(6a o m. {¢} o7y} = (¥ o 7’'). This completes the example.

We proceed by investigating properties of closed comprehension categories. The
first two results are about change-of-base and localization described in 4.1.11 (ii)
and (iv).

4.3.6. PROPOSITION. (i) P s a CCompC = r*(P) 1s a CCompC.
(ii) Gwen a morphism P — P' of CCompC’s; a morphism of fibrations r — r'
determines a morphism of CCompC’s r*(P) — r'*(P').

Proof. (i) Let P be a full comprehension category with unit, products and strong
sums. 7*(P) is again full and has a unit as remarked in 4.1.11 (ii); it admits products
and strong sums by 4.2.12 (i).

(ii) By 4.2.12 (ii). O

4.3.7. PROPOSITION. Let P be a CCompC.
(i) For every object A wn the basis, P[A] s a CCompC.

(ii) For every morphism B — A in the basts, there 1s a morphism P[A] — P[B]
of CCompC'’s.
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Proof. Straightforward but laborious. 3

4.3.8. LEMMA. Let P:E — B~ be a CCompC. Then considered as a functor. P
preserves units, sums and products.

Proof. Units are preserved by lemma 4.1.10 (iii) and sums are preserved because
they are strong: P(Xg.E') ® PE o PE' = ¥pg.PE' in B/pE. As to products we
obtain for u: A — pE in B,

B/pE (v, P(IIz.E')) EA(14, v’ (lg.E"))

E4 ( 14, Hu-(E).(PE#(u))'(E') ), by Beck-Chevalley
Epyu(5) ((Pu(E))*(1A4), (PE*(u))*(E'))

Epeu(e) (1Pw(E). (PE*(u))*(E"))

B/P,E(PE*(u), PE')

R m e

1R

in which the pullback functor PE® comes from 4.1.7. The first and last step hold
by 4.1.10 (ii). O

The above lemma shows how the CCompC-structure defined “on the top level”
in terms of (fibred) adjunctions shows up in the basis for display maps. In this way
one can avoid rather cumbersome formulations of unit. product and sum for display
maps.

4.3.9. LEMMA. (i) Let P be a CCompC; the fibration wmvolved p = cod o P 15 e
fibred CCC.

(1) A morphism of CCompC’s induces a morphism between the corresponding
fibred CCC’s.

Proof. (i) Cartesian products arc given by E x E' = L. PE*(E') and exponents
by E = E' = Ilg.PE*(E'). In fact, strongness of the sums is not needed to obtain
this, see lemnma 2.2.8.

(ii) Straightforward. O

By looking at the fibre above the terminal object, one obtains from the previous
result, a forgetful functor from closed comprehension categories to CCC’s. This
observation is the basis for the next result.

4.3.10. THEOREM. Let B be a CCC; Consg:B — B~ s then the free CCompC
gencrated by B. The unit here 1s an 1somorphism.

Proof. The unit ng: B — B, is given by B +— (f.B) and u ~ (:d.u o 7'). Suppose
Q:D — A "is a CCompC with terminal t' € A and H:B — Dy is a functor which
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preserves the CCC-structure. We construct

B—-—-—- —-———2D
L
Conss L 4.9, = K(Consa)o
B_ _L_____ —O-A,

1R

forming an (up-to-isomorphism) unique morphism of CCompC’s with L| o np
H. In fact, we can only take KB = Q¢(HB) — since KB = K(t x B) =
K(Consg)o(t,B) = Qo Lna(B) = Qo(HB). Similarly, we have to take L(B, B') =
'kg(HB'), because L(B,B') = L('3(t,B')) = '4tg Lna(B') = 'z 5(HB'). Then in-
deed L| o g = H. One easily verifies that Q¢: Dy — A preserves finite products;
hence we obtain K(B x B'Y = KB x KB' =* Qu(!}g(HB')) = QoL(B, B'); the iso-
morphism =* is there because the product A B x K B' can be obtained as a pullback.
We finish by showing that L preserves products.

L(ILp,p.(B x B', B")) L(B,B'= B")

'ks (H(B' = B"))

'¥p (HB') = g5 (HB")

M85 Q(L(B, B'))" ' 5(HB")
8,89 '5o1(8.8) (HB")

8,5 '7(73.3') !;((Bxaf) (HB")
HL(B.B’)-’Y(‘B,BI) L(B x B',B"). 0

1%

iR 1R

1R

lie

At the end of the next section we shall be able to establish two similar free
constructions. We close this section with the description of categorical versions of
the type systems based on the “Propositions as Types” setting.

4.3.11. DEFINITION. (i) A AP1-category is a CCompC.

(ii) A APi-category is a CCompC with fibred equalizers. A morphism of AP:-
categories is a morphism of CCompC’s which preserves the fibred equalizers.

(iii) A Ax-category is a CCompC P:E — B~ provided with an object 2 € E
such that pQ € B is terminal and p = cod o P has a generic object above Py} € B.

Examples of APi-categories are 4.3.2 (i), (iv) and 4.3.4. Also the term model of
the calculus APi yields an example, analogously to 4.3.2 (vi) using lemnma 2.2.14.
These APi-categories are categorical versions of Martin-Lof’s type theory.

The closure model in 4.3.3 is a Ax-category. Such categories are logically in-
consistent in the sense that every proposition is inhabited. This result is known as
Gurard’s paradoz, see Girard [1972]. In Barendregt [1997] one can find a proof using
only II’s and in Troelstra & van Dalen [1990] or Jacobs [1989] a proof which makes
use of strong X’s. Pitts & Taylor [1989] contains a similar inconsistency result which
is obtained with identity types. It applies to ADPi-categories with a generic object.
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4.4. Category theory over a fibration

In the first chapter it was explained how a fibration forms a category fibred over
a base category. Now we go one step up and consider fibrations as bases This is
not as bad as it may seem, since it turns out that one can reduce matters to the
previous level. Lemma 1.1.5 lies at the basis of all this.

The first part of this section (up to 4.4.13) is a slightly extended version of the
fifth section in Jacobs, Moggi & Streicher [1991].

4.4.1. A FIBRATION AS A BASIS. Suppose a cartesian functor p between fibrations
q,7 is given as in the following diagram.

E — —B
\ p /
q / T
'
A
Every object A € A determines a “fibrewise” functor p|4: E4 — B4 by restric-
tion. One calls p a fibration over r if all these fibrewise functors are fibrations and

reindexing functors preserve the relevant cartesian structure (similarly to e.g. fibred
cartesian products). More explicilty, p is a fibration over r if both

o for every A € A, p|y is a fibration;

e for every u: A — A' in A and every reindexing functor u*: By — B, there
is a reindexing functor u* : E4 — E, forming a morphism of fibrations:

Ey — E,
u#
pla Pla
l L
Ba S _—.B,

This rather complicated notion is equivalent to a more simple one; namely
p is a fibration over r ¢ p s a fibration itself.

To verify the implication (<), notice that p|4 can be obtained from p by change-
of-base. This yields that f in E4 is p|s-cartesian iff f is p-cartesian. The rest is
not difficult. As to the implication (=), observe that if p is a fibration over r, then
f in E is p-cartesian iff f can be written as g o « where g is g-cartesian and « is
pla-cartesian — with A = g(dom f).
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Next, consider a diagram,

E E

"/
/
A

in which r,q,q'.p and p’ are fibrations with ¢ = rp, ¢ = rp' and F is a cartesian
functor from q to ¢’. One calls F' a cartesian functor from p to p' over r if both

o for every A € A, F|, is cartesian form pl4 to plar;
e poF =p.
As before. one can show that
F is cartesian p — p' over r &  F is cartesian p — p' in Fib(B).

In this way, one obtains a category Fib(r) of fibrations and cartesian functors over
r. As shown, one has Fib(r) = Fib(B). It is left to the reader to formulate what
natural transformations over r are and that the previous identification also concerns
the 2-structure. Hence adjunctions over 7: B — A are adjunctions over B (i.e. in
the 2-category Fib(B)). In order to get an even better picture, the reader may want
to verify that for F:p — p’ in Fib(B) as above and G:p' — p one has that F 4G
is an adjunction over r iff both

o for every A € A, there is fibred adjunction F|4- Gl in Fib(B,);

o for every morphism A -» A’ in A there is a “pseudo map” of adjunctions from
Fla 1 Gla to Fla G|a (see Jacobs [1990] for the definition).

As a consequence we have for example that p:E — Bisa “CCCover r” iff pis a
fibred CCC iff every pl4 is a fibred CCC and reindexing functors form maps between
these.

The above exposition is based on work of J. Bénabou; see also Pavlovi¢ [1990].

Next, we proceed to describe (closed) comprehension categories over a fibration.
The intention is to obtain this structure fibrewise, preserved by reindexing functors.



78 CHAPTER 4. MORE FIBRED CATEGORY THEORY

4.4.2. DEFINITION. Let r:B - A be a fibration. A functor P:E —» B " is a
comprehension category over t if P is a comprehension category which restricts to
a cartesian functor in

E—- -— “— — - V(B)
X /
4
A

where »™ is the “arrow fibration” described at the end of 1.1.2.

4.43. LEMMA. Let E 5 B 5 A be fibrations and P:Py —> pirp — 7 a 2-cell mn
Fib(A). Then P 1s a comprehension category over r iff both

o for cvery Ae A, Pl4:E,s — (By)” 15 ¢ comprehension category;

o for every u: A — A’ and u*: By — By, there 1s a u* :Ey — E4 forming a
morphism of comprehension categories Pl — Pla.

Morcover, P 15 a full comprehension category off all Pla’s are full.

Proof. By the observations about cartesian arrows in 1.1.5 and 4.4.1 and the fact
that P is a cartesian functor. O

4.4.4. ExaMPLES. (i) Constant comprehension categories as in 4.1.3 can also he
described over a fibration p: E — B with fibred finite products. Let T C Oby(E)
be such that for every cartesian f: E' —» Fonehas Ec¢ T = E' € T. The {ull
subcategory of E determined by T then yields a full “subfibration” of p. Let’s write
E//T for the category with objects (E, X ) where E € E and X € T satisfy pE = pX.
Morphisms (f.g): (E.X) —» (E', X"Yin E//T aremaps f:E — E'and g: E x X —
X' in E with pf = pg. A (full) comprehension category Consy:E//T — E™ over p
is obtained by (E,X)—> 7:Ex X -» E.

In the special case that T = Ob)(E), we have written E for E//T in 1.2.7. The
fibration was denoted there by p: E — E. Let’s write in this special case P: E —» E *
for the comprehension category defined above (i.e. P(E,E') = m:E x E' — E).

If B is a category with finite products, the construction above applied to the
fibration B — 1 (the terminal category) conincides with the one given in 4.1.3.

(ii) Let B be a category with pullbacks. The (obvious) functor cod *:B™7 —
B~ forms a fibration over cod: B~ — B. One obtains a full comprehension category
B~ ' — B~ over cod by [55] — [(¢d,v):uo v -» u]in B™.

(iii) Let p: E —» B be a LEX fibration (i e. a fibration with fibred finite limits).
As already mentioned at the end of 1.2.7, the functor cod: V(E) — E is a fibration
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with (f.g):a — 3 cartesian in V(E) iff (£, g) is a pullback in E. Hence we obtain
a full comprchension category over p:

dom
V(E) U Id E
cod
p~ =po cod p
B

Notice that V(B™) = B~ ™. This example generalizes the previous one.

4.4.5. DEFINITION. Let p: E —» B and r: B — A be fibrations; p forms a compre-
hension category with unit over v if there is

e a terminal object functor 1: B — E for p in F1b(B);

o a fibred right adjoint Py of 1:7 — rp in Fib(A).

4.4.6. DEFINITION. A closed comprehension category over a fibration r is a full com-
prehension category with unit P over r which admits P-products and strong P-sums;
moreover, r is required to have a fibred terminal object.

The next notion covers a special case.

4.4.7. DEFINITION. Let p:E — B be a LEX fibration; p will be called a fibred
LCCC if the comprehension category V(E) «<» E * over p is closed.

In that case every fibre category E 4 is an LCCC and reindexing functors preserve
the LCCC-structure, see lemma 4.4.3.

4.4.8. EXAMPLES. (1) The first example from 4.4.4 is of intercst again; it gives rise to
a generalization of the bi-implication obtained in 4.3.2 (ii). For a fibration p: E - B
with finite products one has

P:E—-E'isaCCompCoverp & pisafibred CCC.

The implication (=) goes as follows. P is a CCompC over p = P is a CCompC
= P =—cod o P is a fibred CCC = pis a fibred CCC, using the change-
of-base situation p — p from 1.2.7. As to the reverse implication, one defines
Sgp(E x E'.E"Y=(E,E' x E") and (g p).(E x E',E") — (E,E' => E").

(ii) One easily verifies that a category B is an LCCC if and only if cod: B~ — B
is a fibred LCCC. This follows from the fact that B is an LCCC iff all its slice
categories B/A are LCCC’s.
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(iii) The family fibration satisfies
Fam(C) — Sets is a fibred LCCC & Cis an LCCC.

The implication (<) follows from a pointwise construction. The reverse implication
follows from the fact that C is isomorphic to the fibre above the terminal object.

(iv) Streicher [1990] investigates an LCCC B and a collection of “display maps”
D satisfying the conditions (Term), (Pb) and (Sub-lcc), see loc. cit. This precisely
means that the fibration cod:B (D) — B is a fibred LCCC, where B™(D) is the
full subcategory of B™ with maps f € D as objects.

(v) The fibration Fameg(M) — w-Set from 1.2.12 is a fibred LCCC. Since M is
an LCCC itself, this result follows from a pointwise construction.

A fibration is an LCCC if and only if the all fibres are LCCC’s and reindexing
preserves the LCCC structure. Equivalently, if all slices of the fibres are CCC's
and reindexing preserves fibred finite limits and local exponentials. The next result
contains another characterization; it is based on a suggestion by 1. Moerdijk.

4.4.9. PROPOSITION. Let p: E — B be a fibration. For every object E € E above
B € B one obtains a “slice fibration” p/E:E/E — B/B. Then

p s a fibred LCCC &  every p/E is a fibred CCC.

Proof. Because for E € E and u: A — pE in B one has an isomorphism (natural
in u) between the fibre of the slice (E/E), and the slice of the fibre (E4)/u*(E).
Considering CCC-structure preserved by reindexing yields the desired result. O

In the next construction, a generalization of p from 1.2.7 is obtained by using
strong sums instead of cartesian products.

4.4.10. PROPOSITION. Let P:E — B™' be a closed comprchension category. By
change-of-base, we form the fibration p: E — E.

E=E x E E
Po.p _J
P P
P
E °_ ~B

Then i
(i) p:E — E forms part of a CCompC P over p;



44. CATEGORY THEORY OVER A FIBRATION 81

(ii) there 1s a “pseudo” change-of-base sutuation (in which 1 1s terminal object
functor),

E E
_

B 1 E

By “pseudo” we mean that the fibration obtained by performing change-of-base on p
along 1 yeelds a fibration which s equivalent instead of 1somorphaic to p.

Proof. (i) One defines P:E — E~ by (E,E') — [the projection z.E' — EJ; it
is the unique vertical map f with Pof = PE' o Po(sngg) !, using the morphism
described in lemmma 4.2.9 (i) and the fact that P is full. One uses that these in-
morphisms are cocartesian in order to define P on morphisms. The rest is laborious
but straightforward.

(ii) Easy. OO

The constructions p and p provide two ways to obtain closed comprehension
categories over p. Later on in this section we shall see that both can be understood
as free constructions. First we show that quantification for the base fibration p can
be lifted to p and p. One gets strongness of the lifted sums for free.

4.4.11. LEMMA. Let p:E — B be a fibred CCC and Q:D — B~ a comprehension
category. Then

p admits Q-products/sums = P admats p*(Q)-products/strong sums.

Proof. Assume adjunctions £p 4 @D* 4 1lp in E; we seek 3(g,py 1 p*(Q)(E.D)* -
V(e.p) in E. The product functor ¥ g py: Egp-(g) — Eg defined by (QD*(E), E') —
(E,Ip.E") yields the desired result. The analogous definition 3 p)(QD*(E), E') =
(E,Zp.E') does not work immediately; one has to use the Frobenius isomorphism
¢:Zp.(@D(E) x E'Y = E x £p.E' from lemma 4.2.9 (ii).

Strongness follows from appropriate use of this Frobenius isomorphism. First
one verifies that Po(ine.p)(op-(E).e)) = QD(E) X tnp g; then one can assume a
commuting diagram of the form

@(E) X np,g
Q(E)xE ——~ -

E x ED.E’
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Let f': QD*(E) x E' — QD" (pg)* (E x E:) be the vertical part of f. It gives

rise to a transpose f': Lp.(QD*(E) x E') — (pg)*(E1 x E;) and thus one obtains

h=pG(Ey x Ez)o f'oo™ : E x Sp.E' — E; x E; with the required properties.
O

4.412. LEMMA. Let P:E — B~ be ¢ closed comprehension category and @:D —
B™ an arbitrary comprehension category. Then

p admats Q-products/sums = P admits p*(Q)-products/strong sums.

Proof. Let’s assume adjunctions £ 4 PE* o lIg and dp - QD* 4 Vp in E;
we intend to comstruct Jgpy 7 p*(Q)E,D)* A V(E.n) in E. This is establis-
hed by Q(E‘D).(QD‘(E),E') = (E.Vpg«p).0"(E')), where a is a mediating iso-
morphism in B. A Similar definition works for sums. Strongness is obtained
as in the previous proof, this time using a “generalized Frobenius” isomorphism
ED.EQD-(E).EI = EE.H‘)}E-(D).Q'(E'). O

Remember from lemma 4.3.9 that there is a forgetful functor from CCompC’s to
fibred CCC’s. It is used in the next result.

4.4.13. THEOREM. Let p:E — B be a fibred CCC; the construction P:E — E
yrelds the free CCompC generated by p.
(P is described in 4.4.4 (i) and 4.4.8 (i).)

Proof. A unit p — p = cod o P is given by the change-of-base situation in 1.2.7. Let
@:D —> A7 be a CCompC and (K:B — A.L:E — D) be a morphism of fibred
CCC's from p to ¢ — cod o @. We have to construct an (up-to-isomorphism) unique
morphism of CCompC’s:

E—~ — -—— D
, " o
- | _
=”>l l[:Q>' N QoH =5 GPy
l
|
E— --Y% . _a

As in the proof of 4.3.10 one is forced to take GE = Qy(LE) and H(E.E') =
Q(LE)*(LE'"). The main ingredient of the remaining verifications is that @: D —
A preserves (fibred) cartesian products. which follows from lemma 4.1.10 (ii). O
4.4.14. PROPOSITION. Let P E — B 7 be a APi-category. 1.e. a CCompC with fibred
equalizers.
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(i) The functor P:E — E™ described in 4.4.10 1s a carteswan functor in

E L V(E)

P cod

E

and forms a morphisms of comprehension categores from P to the inclusion V(E) <
E™.

(ii) P 15 an equivalence i the above diagram.
Proof. (1) Obvious, since all projections ﬁ(EJ E') are vertical.

(ii) Since P is a CCompC one has that P is a full and faithful functor. Hence
it suffices to define for a vertical a:E' — E in E an object (E,E") € E with
P(E.E") = a vertically. This is done by a standard construction. see e.g. Seely
[1984]. In informal type theoretical notation, we construct the type a='(z) =
Yy: E'. Iy(r,a(y)) depending on r : E. In category theoretical formulation, we
form the following pullback in the fibre above PyE.

a YE)
/ \
/
/

1P,E PENE)-—— — — __F
’ w
rar® // PE*(a)
«
PEE)- —— — — — o .E
where var® is the unique vertical map with PE(E) o varf = ¢ : 1PE — E.

One can then show that P(a *(E)) = Po(a) in B/PyE. It follows readily that

P(E.a Y E))=ain E4/E. O
4.4.15. COROLLARY. Let P be a APi-category: cod o P 1s then a fibred LCCC. O

The functor Fam(Sets) — Cat™ from 4.3.2 (iv) is a APi-category. Indeed the
fibre categorics SetsC are LCCC's (even more, they are toposes). The term model
of the calculus APi (i.e. Martin-Lof’s type theory) also forms a APi-category. As all
fibres, the one above the terminal object (i.e. the empty context) is an LCCC. Seely
[1984]. section 3, constructs only this fibre category as a term model.

From the corollary above one obtains a forgetful functor from APi-categories to
LCCC’s by looking at the fibre above the terminal object. This forms the back-
ground for the next result.
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4.4.16. THEOREM. Let B be an LCCC; the 1dentity functor on B™ s then the free
APi-category generated by B. The unit here 1s an isomorphism.

Proof. The unit ng: B — B/t is described by B +— !5 and u — u. A APi-category
Q:D — A™ together with a morplusm H:B — D, of LCCC’s gives rise to an
(up-to-isomorphism) unique morphism of APi-categories:

BB —u«uw—— D

L
LN N v: QoH = Kdom
B K-— +~A

We put KB = Qu(HB), since KB = Kdom(!g) =2 QoL (!g) = QoLna(B) =
Qo(HB). Furthermore, we take L(f:B' — B) = (Hf)"Y(HB), where (=)' is
determined in the proof of proposition 4.4.14 (ii). We are forced to proceed like this
since f = (na(f)) '(ns(B)). O

4.5. Locally small fibrations

In this last section of chapter 4 so-called “locally small” fibrations will be investi-
gated. These are of interest in our research because of

¢ connections with comprehension categories, see 4.5.4 and 4.5.5;
e connections with small fibrations, see 4.5.8;
e their role in a fibred version of an adjoint functor theorem, sce 4.5.11.

The results are used only in section 5.2. We stress that the material presented
below is standard (except perhaps 4.5.4 and 4.5.10).

The notion to be introduced next comes from Bénahou [1975]. see also Bénabou
[1985]. A few different formulations are available. We start with the one below
because it is clearly intrinsic.

4.5.1. DEFINITION. A fibration p: E — B is locally small if for each A € B and
E.E' € E4 one can find two morphisms £: Ey -» E, & . Ey — E' in E with §
cartesian over p(€') such that for every pair f: D — E, f': D -» E' with f cartesian
over p(f'), there is a unique ¢0:D — Eywith £ oo = fand €& oo = f. Ina
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diagram,
¢
D-- -------- - > E
f £
f \ YL
El

This ¢ is then necessarily cartesian. A suggestive notation for the arrow p(£) = p(¢')
in B is mg: Hom4(E, E') — A.

We immediately mention an equivalent formulation; it involves representability
of the hom-sets in the fibres and thus explains the name “locally small”. The proof
is easy and left to the reader.

4.5.2. LEMMA. Let p:E — B be a cloven fibration; p 1s locally small +f and only of
for cach A € B and E, E’' € E,, the functor (B/A)? — Ens gwen by

BY A — Eg(u'(E), u'(E"))

15 representable — where Ens 15 a suatably large universe.

More explicitly, a morphism mg: Hom4(E, E') — A in B together with a vertical
m : wy(E) — w§(E’) in E should exist such that for every u: B — A in B and
vertical f:u*(F) — u"(E'), there is a unique v: B — Hom,(E, E') making the
following two diagrams commute.

B v Hom ,(E, E') W(E) -- - - > 7E)
u o f Ty
A u(E') ----- -> wg(E")

where the dashed arrows are the unique ones over ». O

4.5.3. EXAMPLES. (i) The fibration Fam(C) — Sets is locally small iff C is locally
small (i.e. has small hom-sets). As to the if-part, for I-indexed collections {X,} and
{X!} one finds appropriate maps 7o : U,c;-C{ X, X!) -+ I'in Sets and m : {X.}.p) —
{X:}e.p in Fam(C) over U,e1-C(X,. X!), the latier described by A(z, f). f.

The only-if-part is obtained by looking at the fibre above the terminal object
t = {0} in Sets. For X, X' € C one obtains a set A as domain of the my belonging
to {X}.{X'} considered as objects of Fam({C),. It satisfies

A = Sets/t (idy,m) = Fam(C),({X},{X'}) = C(X.X").
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(ii) Let B be a category with finite limits. Then
cod:B™ — B is locally small & B is an LCCC.
For u: B — A and f, f' € B/A one has
B/B («'(f), v'(f) = B/A(Swu’(f), ) = B/A(ux f, ).

Hence the LHS has a representing object iff the RHS has one, i.e. cod is locally small
iff all slices B/A are CCC’s.

(iii) Every small fibration is locally small. For a fibration of the form Y (C) — B
where C is internal in B. one takes for A € B and objects X, X': A — C, ahove A,
the following pullback.

™
Hom (X, X') —— o)
_
T (6o, A1)
1 X, X"
————— - Cg X Cg

We presuppose that all such pullbacks exist in the base category. It is left to the
reader to check that being locally small is an essentially categorical property, i.e.
one which is preserved under equivalence.

Part of the relevance of locally small fibrations lies in their relation to compre-
hension categories. The next result is as one would expect, given the idea behind
comprehension categories.

4.5.4. PROPOSITION. Let p: E — B be n locally small fibration. There 15 then a
“Hom"-comprehension category of the following form.

- - - P — B’
N /
< y
PP X p \ // cod
B

See 1.1.11 for the opposite of a fibration.

Proof. The domain of p°? x p is the category with pairs E, E' where pE = pE' as
objects. One takes P(E.E') = my: Hom,g(E, E') — pE. Arrows (E.E') — (D.D’)
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are pairs [fi, f2]: E — D in E°P and g: E' — D' in E with pf, = pg = u, say. We
construct

mou* (D) u*(D) p —D
i Pl

mo(E) E

m

TE) = — ——— - E
m5(9") g g

mou'(D') 00 P ——

Hence one obtains a vertical arrow (u o mg)*(D) — (u o mp)*(D’). It determines a
unique map v: Hom,p(E, E') = Hom,p(D.D') with P(D.D') o v = u o P(E,E').
Hence we put P({f. f2], 9) = (u, ). O

We recall from section 4.1 that a comprehension category has a unit if the fibre-
wise global sections functors are representable. In the presence of fibrewise expo-
nents. one easily sees that this is equivalent to representability of fibred hom-sets.
This is the content of the next result, see also Pavlovi¢ [1990].

4.5.5. PROPOSITION. Let p: E — B be a fibred CCC. Then
p s locally small &  there 1s o comprehension category with unat
P:E -» B~ such that p=codo P
Proof. Let 1:B — E describe the fibred terminal object.
(=) For E € E abeve A € B, put PE = 7y : Hom4(1lA,E}) —» A in B. Then
E1B.E) = |, , Ea(1B. v'(E))

Uu B4’ Ep (u*(14), u*(E))

Uu B_'A.B/A(u, PE)
B(B, PyE) where PoE = dom(PE).
(<) For E.FE' € E above A€ Bone has for u: B - A in B,
Ep (v"(E). «*(E')) Ep (1B, u"(E) = u"(E"))
Ez (1B, v (E = E"))
B/A(u. P(E= E')) see 4.1.10 (ii).

104
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Hence P(E = E') is an appropriate representing arrow. [

In case one has pullbacks in the base category, another description of a locally
small fibration can be given; it may be found e.g. in Johnstone [1977], A2.

4.5.6. LEMMA. Let p:E — B be a cloven fibration on a basis B with pullbacks.
Then p 1s locally small +f and only +f for all AJA' € B and E € E4, E' € Ey, the
functor (B/A x A’)°P — Ens gwen by

BY%AxA — Ep ((7ou)*(E), (n' o u)*(E'))
1s representable (where m,n' are cartesian projections). O
The next result is due to Penon [1974], see also Johnstone [1977], A6.

4.5.7. THEOREM. Let p: E — B be a locally small fibration on a basis B with pull-
backs. Then

(i) Every object E € E determines an wnternal category FulllE) wn B together
with a full and farthful cartesian functor E from the ezternalization S (Full(E)) to
E.

(ii) Let C be an wnternal category mn B. Every cartesian functor F:Y(C) — E
has an up-to-isomorphism unique factorization

. _
] S (Pull(E)) —E

>.(C)

B

where G : C — Full(E) 1s an wnternal functor which 1s the wdentity on objects.

Proof. (i) Write Qp = pF and :8,,91): 0y — Qg X §)y for the representing arrow

obtained by the previous lemma from the pair E, E. The identity on E yields a

map 1: td.ed - Gy, 01 in B/Qg x Q. Similarly, one obtains internal composition.
The object-part of E:3 (Full(E)) — E is defined by [X: 4 — Q] — X*(E).

Then

S(Full(E)(AS Q0. BS Qo) = U, S(Full(E)a(AS Q. A Q)

B/Q x Qo X,Y 0w, B0,8n)

Hence E can be extended to a full and faithful functor.
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(ii) Take E = F(idc,) € Ec, and Gy = ide, : Co — pE = §}. The map
G1:Cy1 — , is obtained from F(id¢,): F(d) — F(8:) using that

Ec, ( F(), F(81)) = Ec,(F( zdco) F(8;(1dc,)) )
Ec, (6' 8;(E)) since F is cartesian
B/ x O ( B0, 8y, (OF,0F)) by definition of (9F, 8F).

R

Then indeed,
{Eo[GIHAS Co) = X*(E) = X*(F(idc,)) = F(X*(sde,)) = F(X).
If also D € E¢, yields a diagram as above, then
D = g (D) = D(idc,) = (Do [G))ede,) = Flidg,) = E. O
4.5.8. COROLLARY. On a basis with pullbacks, one has
a fibration s small of 1t 1s locally small and has a generic object.

Proof. The only-if-part follows from 4.5.3 (iii) and the remark following definition
1.4.4. Hence we only consider the if-part. Let p: E — B be a locally small fibration
with a generic object T € E. One obtains an internal category Full(T) in B provided
with a full and faithful functor (FulfT)) — E by v + u*(T). The latter is
essentially surjective on objects because T is a generic object, see definition 1.2.9.
Hence it is a (weak) equivalence. O

The above result comes from Bénabou {1975]. In somewhat different formulation,
it also occurs in Paré and Schumacher [1978], II, theorem 3.11.1.

4.5.9. REMARKS. (i) Close inspection of the constructions above reveals that one
does not need the existence of all pullbacks in the base category or of all representing
arrows. Hence the results can be obtained if enough of these are around. This is
used in the proof of theorem 3.3.3.

(if) As a special case of the construction in theorem 4.5.7 (i), one can start from an
LCCC B (see 4.5.3 (ii)) and an arrow 7 in B, say with codomain 2, see e.g. Johnstone
[1977], 2.38 or Pitts [1987], 3.2. An internal category Full(7) in B is obtained, where
.80, 01} is the representing arrow corresponding to the pair 7*(7), "*(r) € B/Q x Q
obtained by pullbacks. Viewed a bit differently, ‘3.0, is the “local exponential”
(1) = 7'*(r), see 4.5.3 (ii). This Full(t) is called a full internal subcategory of B,
because it comes equipped with a full and faithful functor Y (Ful{r)) — B~. The
latter is of course a full comprehension category.

A bit more subtle, one can speak in the spirit of the first remark about a full
internal subcategory of an arbitrary ambient category B, provided there is enough
structure around to perform the relevant constructions. In terms of comprehension
categories. there is an alternative description.



90 CHAPTER 4. MORE FIBRED CATEGORY THEORY

4.5.10. DEFINITION. (i) Assume C € Cat(B): C will be called a full internal sub-
category of B if there is a full comprehension category P of the following form.

which preserves fibred terminal objects (if any).
(i) A full small fibration is a fibration which is equivalent to the externalization
[C] of a full internal subcategory C.

Indecd, given such a full internal subcategory, the relevant pullbacks and local
exponential (as in 4.5.9 (ii)) exist: put 7 = P(ide,) € B/Cy. Then (0y. 0;) is the
local exponential #*(7) = #'*(7). since for u: A —» Cy x Cp one has

Y (Cla(mou n'ou)
Y (C)a (' (edes). w'a™(idcy )

B/Co x Co( u, 80,8, )

> B/A(P(«"7"(1de,)), Plu"n"(2dc,)))
~ B/A(u'm(Plde,)), u"n"(Plde,)))
> B/Cy x Co (Tyu"n*(7), 7r"(‘r))

1%

B/Cy x Cy ( ux w*(r), 7r"(‘r))

Now suppose C has an internal terminal object. There is then a {erminal object
functor 1: B — Y (C) which satisfies by assumption P1 = id( . Then P is a
comprehension category with unit, since

> (C)(14, X)

e

B™ (P14, PX)
B~ (ldA, ’PX)
B(A, PyX) using :d; ) < dom.

I

1%

As remarked after lemma 4.1.10, P is then a continuous functor. It is in fact the
internal global sections functor, analogously to 4.1.6 (ii). Hyland [1989], 0.1 uses
this description to define full internal subcategories.

Using the above terminology, one can say that if p: E — B is a A—s-category,
then the total category E contains a {ull internal subcategory, see 3.3.3. The com-
prehension category involved there is P:E — E™, see 4.4.4 (ii).

Finally, we mention without proof an adjoint functor theorem. It is basically a
translation of theorem 1.9 in Paré and Schumacher {1978], IV.
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4.5.11. THEOREM. Suppose G 1s a carteszan functor wn

E-—-% ___.p

B

where p and q are locally small fibrations Further, suppose that p 1s complete and
that G 1s continuous (1.e. preserves the fibred finate limits and products). Then
G has a fibred left adgoint  off

the following solution sct condition is satisfied:

for every A € B and D € D, there are objects B € B and E € Eg such
that for every E' € E4 and vertical f: D -» GE', one can find

e u:A->BwmB
o a:D — G(u*(E)) m Dy
e g:u'(E)— E' mE,

such that G(g)eca = f. O






Chapter 5

Applications

In this final chapter the type theoretical and categorical lines come together. In the
first section the main ideas of how to translate type theoretical settings and features
into categorical ones are described. The subsequent three sections work out the
details for the calculi CC, HML and AHOL together with APRED. The part about
HML is borrowed from Jacobs. Moggi & Streicher [1991].

The last section is about the untyped A-calculus. It can be considered as spin-off:
using that “untyped” can be understood as “typed with only one type” we are lead
to use monoid constant comprehension categories for the semantics of the untyped
A-calculus. As main new result we obtain an adjunction between categorical and set
theoretical A-algebras (see theorem 5.5.10).

5.1. From type theory to category theory

The theory developed in the previous chapters allows us to construct for a given type
theoretical setting a categorical one; it will consist of fibrations and comprehension
categories suitably linked together. Next we can show how type theoretical features
(on top of a certain setting) correspond to categorical ones (on top of the translated
setting).

This section will consist of two parts: the first one about the translation of
settings and the sccond one about the translation of features. The second part will
be a bit shorter; more extensive expositions of a number of examples can be found
in the other sections of this chapter.

Settings and features in type theory can be found in chapter 2.

5.1.1. TRANSLATION OF SETTINGS. As stressed in chapters 2 and 3, a (type theo-
retical) setting determines the organization of contexts. In the translation below,
we therefore loosely speak about objects of a certain category as “contexts”. More
precisely, we speak about s,,. .., s,-contexts when these contexts contain s,-types
(for all ¢). This makes sense, since one cannot always separate contexts into more
simple ones consisting of types of a single sort. For example, in a setting with s; > s,
and s, > 51 contexts will consist of alternating sequences of s;- and se-types.

93
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The translation of settings follows the next four guidelines.

(1.1) Every sort s requires a separate full comprehension category P(s) with a ter-
minal object in the basis. Objects of the base category are to be understood
as contexts containing §'-types for s > s'. Morphisms between such contexts
are “‘substitutions”, i.e. sequences of terms. OQbjects in the total category are
s-types. Morphisms in the fibres are then single terms between such s-types.

(1.2) If thereis no s-type dependency.ie. s 3 s, then P(s) is required to be constant.
i.e. to be of the form Consyy,y:B//T(s) —» B, where T(s)C Oby(B) is the
collection of s-types, see 4.1.3. The base category B is required to have finite
products.

Implicitly, we require that both these points yield comprehension categories over
appropriate fibrations. These fibrations are determined by the rest of the structure.

(2.1) If g, s are two different sorts with s not depending on sg, i.e. s ¥ 50, then we
require a fibration from a category of s. so-contexts to a category of s-contexts.
Such a fibration should have a terminal object functor, which describes empty
Sp-contexts.

(2.2) If s  sp as above, but also s ¥ s. then the fibration described before should
be constant. i.e. of the form Fst: A x B —» A (or Snd: A x B — B. depending
on how one starts).

In these latter two principles one may read for s also a sequence of sorts.

These points guide the constructions below: the examples should make clear
how to apply them. For example, what to take as a base for the whole categorical
setting can be discovered by inspection of the dependencies: one should start with
the sort(s) which do not depend on any other. The pictures of the categories of
contexts roughly follow the ordering >: if s; > s, then s;-contexts will be fibred
over sp-contexts; >-cycles shrink to a single category. We hope that such details
will become clear as we proceed.

The minimal setting Sort = {*} with < = 0.

Using (1.1) and (1.2) we obtain a constant comprehension category
B//T(x) _ 4 Consry B
where B is a category with finite products. Here one does not really need that this
comprehiension category is over a fibration (in a degenerate sense though, it can be
understood as a comprehension category over the fibration from B to the terminal
category).
In the beginning of chapter 3 (hefore comprehension categories were introduced)

we said that such cartesian categories B formed the appropriate setting. The above
picture is slightly more precise. A term model example of this setting may be found
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in the beginning of section 3.1. There a base category B of contexts is formed. For
T(x) C Oby(B) one takes the collection of *-types (where a type o is identified with
the singleton context r:0).

The propositions as types setting Sort = {*} with * > =,
An appropriate setting consists of a structure of the form
E_JP. B
where P is a full comprehension category with a terminal object in the base category
B, see (1.1). A term model example of this setting is described after 4.1.2.
The propositional setting Sort = {*.0} with » > O.

The starting point is a base category B for the O-contexts. It forms by (1.2) the
basis for a constant comprehension category Consr(n). On top of B one has by (2.1)
a fibration p: E — B from O. *-contexts to O-contexts. Finally, E forms the basis
for a constant comprchension category Consrqy : E//T(x) — E™ over p, see 4.4.4
(i). In a diagram,

-

E//T(+) __{ Conspyy___E

rl 1

B//T(0) __§ Consrey B

Here, B is a category with finite products and p: E — B is a fibration with finite
products. Only this part was presented as constituting the propositional setting in
chapter 3. However there was a warning that it formed a simplified version, see
3.2.1. The above picture forms the appropriate refinement.

A term model example p: E — B for this setting has been described at the end
of section 3.1. For T(0O) C Oby(B) and T(x) C Ob)(E) one takes the collection of D-
resp. *-types.

The setting Sort = {*,0} with » > 0, * > %, 0 > 0.

Basically the same analysis as before applies, except that the relevant comprehension
categories are not constant. Hence one obtains

E_4P____B

—_——

D _UP@O)____A
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where P(x) is a comprehension categorv over r. A term model for this setting may
be found in Jacobs. Moggi & Streicher [1991].

The setting Sort = {*,0} with * > O, % > », 0> 0, 0 > .

Obviously an appropriate categorical setting will consist of two comprehension ca-
tegories: one for * and one for 0. Since these sorts are mutually depending on each
other, their contexts cannot be separated. Hence the picture looks like this.

- —_——

E | P(x) B PO) Yy D

where P(*) and P(0) are full comprehension categories and B is a category with
a terminal object. In terms of display categories, one has a base category with two
collections {P(*)(E) | E € E} and {P(0O)(D) | D € D} of display maps.

The setting Sort = {+,0,A} with « = 0, O > A, *> A,

One starts with a base category A of A-contexts. On top, there should be two
fibrations: one from A, O-contexts to A-contexts and one from A, O, x-contexts
to A, O-contexts, using (2.1) twice. By composition one obtains a new fibration
from A, O, *-contexts to A-contexts. The latter corresponds to the transitivity
requirement imposed on the dependency relation in definition 2.1.1. Because there
are no dependencies of the form s > s, the three comprehension categories involved
are constant.

E//T(+) _ _{ Consrey _ _E

——e——

A/T(8) U Conspy A

In this diagram Conspo) is a comprehension category over r and Consr.) is a
comprehension category over p.

The setting Sort = {x,A,0} * > A, %> 0.

Since the two sorts A.O are mutually independent. they determine by (2.2) two

constant fibrations A &+ A x B B, where A contains O-contexts and



5.1. FROM TYPE THEORY TO CATEGORY THEORY 97

B the A-contexts. On top of A x B one has a fibration from 0O, A, »-contexts to
O, A-contexts. Finally one has three constant comprehension categories:

E//T(s) _{ Consr) _E

Fst /
A//T(0O) U COTLSTL_L.A /

B//T(A) 4 Consrs)B
Here, Consy(.) is a comprehension category over p.

51 2. TRANSLATION OF FEATURES. Type theoretical features require a certain set-
ting as background. Similarly for categorical features. This makes it difficult to
describe them uniformily. We mention the three main guidelines. Afterwards a few
exemplaric cases are described.

(3.1) The feature (s, $2)-quantification corresponds to the requirement that the com-
prehension category P(s,) has both

e P(sy)-products and (strong) P(s;)-sums, in case P(s;) and P(sp) have
the same base category. Else, one first has to perform change-of-base
on P(s,) along a suitable fibration r connecting the two base categories;
the requirement then is that P(s;) has r*(P(s;))-products and (strong)
r*(P(s,))-sums. Hence in this case one first has to move P(s;) “upwards”

One requires strong sums if s; > s,, see the first stipulation about
quantification in the beginning of section 2 3.

e P(s;) has a unit; this requirement is a result of the second stipulation
about quantification in section 2.3.

(3.2) The axiom feature s; : s, is described by a generic object: there should be
an object € in the total category of P(s,) above the terminal such that — in
case the base categories are the same — the fibration cod o P(s;) has a generic
object above P(s1)o(€?). In case the hase categories don’t match, one first has
to perform change-of-hase on the fibration cod o P(s;) along a suitable terminal
object functor connecting the base categories. Hence in this case one first has
to move cod o P(s;) “upwards”.
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(3.3) The feature s-closure corresponds to the requirement that

e Consy(,y is a CCompC, if s ¥ s.
o codo P(s)is a fibred CCC.if s > s.

The second point is of minor relevance: it seems a bit strange to require only
s-closure in a setting with s > s

In (3.1) one can see the advantage of the double role that comprehension categories
play: at one time as a “model” and at another time as domain of quantification. It
enables this high level description of the quantification rules.

Probably a good example to start with is the structure

* P
E P()—»B* ©) D

cod /

o N\ |7 we)
I

LY

B
where P(x) and P(0) are full comprehension categories and B is a category with a
terminal. As argued above. it forms a categorical version of the setting Sort = {*,0}
with* » O, * > %, O > 0, O = *. Let’s consider some relevani features, see section
2.3.

The (s;.s2)-quantification rule simply corresponds to the comprehension ca-
tegory P(s2) having a unit and P(s,)-products and strong P(s;)-sums -— where
81,82 € {*.0}.

Axioms arc described by generic objects. In this case, * : O corresponds to
having an object © € D such that

e p(O)(§2) € B is terminal;
o there is a generic object for p(x) above P([1)o(f2) € B.

The inclusion (s, s3) corresponds to the presence of a full and faithful functor
I:E — D forming a morphism of comprehension categories. Such structures with
inclusion will be considered more closely in the next section.

A categorical version of the propositions as types setting Sort = {*} with
* > * consists as we have seen several times now of a full comprehension category
P(*): E — B~ with a terminal object in the basis B. By (3.1), (*, x)-quantification
corresponds to P(*) heing a closed comprehension category. The axiom * : * corre-
sponds to having an object 2 € E above the terminal together with a generic object
above P(%)p(§2). The feature (=, *)-identity types correspond to fibred equalizers (in
the presence of strong sums. sce lemma 2 2.14). In this way we find the notions of
a AP1, A* and APi-category as defined at the end of section 4.3.
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In the minimal setting Sort = {*} with < = () one can only have the feature
*-closure. This amounts to the requirement that the corresponding constant com-
prehension category of the form Consr.):B//T(x) — B~ is closed. Essentially
this means that the collection of x-types T(x) contains a unit and is closed under
cartesian products and exponents, see 4.2.5 (iv).

The remaining systems will be considered in the next three sections. In 5.3 and
5.4 one may find examples where the change-of-base described in (3.1) and (3.2) is
necessary.

5.2, CC-categories

In the previous section we already looked in some detail at the setting Sort = {*,0}
with * > O, * > %, O > 0O, 0 > *, [t was argued that a corresponding categorical
setting consists of two comprehension categories with the same basis. Categorical
studies in the literature of such structures all assume the feature (*.0)-inclusion,
motivated both by concrete examples and by the presence of this feature in early
formulations of the calculus of constructions. Both on the type theoretical side and
on the categorical side one has that the (%, )-inclusion “transports” features: it
enables more economical formulations since certain features result from others. The
underlying categorical structure will now he depicted as

g I ___.p._ 2 .p

cod

B

where 7: E — D is the — full and faithful — (. O)-inclnsion functor and @ is a full
comprehension category. As aresult. QZ:E - B is a full comprehension category
again. Such a diagram underlies the work in Hyland and Pitts [1989].

The first definition below concerns weak CC-categories which have weak (#, *)
and (0. x)-sums. see section 2.3. Subsequent definitions will deal with ramifications.
After some examples and constructions we take a brief look at the role of small
complete fibrations (cf. 4.2 4 and 4.2.5 (ii)). These have received much attention,
especially in Hyland [1989]. Our own contribution in this section concerns the
split topos model in example 5.2.6 (i) and a systematic presentation in terms of
comprehension categories.

5.2.1. DEFINITION. A weak CC-category is a structure E 2. D % B as
above where

e Qisa CCompC,ic. aclosed comprehension category;



100 CHAPTER 5. APPLICATIONS

e p=codo QT : E — B is a fibration and 7 is a full and faithful cartesian
functor (from p to ¢ = cod o Q) which has a fibred left adjoint;

e there is an object {2 € D such that ¢ € B is terminal and p has a generic
object above Q,) € B

This definition is quite compact and needs some unravelling; therefore we use
lemma 4.2.13. By the reflection E 5 D, the fibration p has a terminal object
which is preserved by Z. Then P = Q7 : E — B is a full comprehension category
with unit. Again by the reflection, P has Q-products and weak sums. Especially,
P has (P-) products and weak sums. Thus, the reflection yields all the structure
of the calculus “weak CC”, see section 2.3. The notion of a (weak) CC-category is
essentially due to Hyland and Pitts [1989].

The first ramification we mention concerns strengthening the weak (x,*) and
(3, *)-sums. This cannot be done separately, see section 2.2, especially 2.2.10 and
2.2.11 (ii). In view of our stipulation to treat strong sums as the “normal” situation,
we speak simply of a “CC-category” instead of a “strong CC-category”. Again we
use a compact formulation: only strong (*, *)-sums are required. By lemma 2.2.10
one obtains strongness of the (CJ, *)-sums as a result.

5.2.2. DEFINITION. A CC-category is a weak CC-category E LD % B in
which P = @7 is a CCompC.

5.2.3. DEFINITION. A (weak) CC-category will be called split if the fibrations in-
volved are split and all units, products and sums as well as the generic object are
split.

In case one is willing to view a logic as a type theory in which propositions have
at most one proof-object, the name introduced below makes sense.

5.2.4. DEFINITION. Consider a (weak) CC-category E -2, D £ B as defined
above. It will be called logicel if the “fibration of propositions” p = codo QI : E —
B is a preorder (i.e. has preorder categories as fibres).

Notice that if in a weak CC-category E <, D -2, B~ the functor T is an
equivalence, @ becomes a A+-category. i.e. a CCompC with a suitable generic object
yielding a type of all types. The next notion covers the case when the other functor
Q is an equivalence. It goes back to Ehrhard {1989)].

5.2.5. DEFINITION. A dictos is a weak CC-category E Z, D % B~ in which
@ is an equivalence. The base category B is then an LCCC. In the sequel. we shall
loosely speak about “a dictos E — B™",

Later in this section the notion of a dictos will be investigated further.
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5.2.6. EXAMPLES. (i) An easy example is obtained from a fopos B. As in 1.2.10
(ii) we write Sub(B) for the full subcategory of B™ consisting of monic arrows. One

obtains a logical CC-category Sub(B) — B~ 4, B~. The reflection comes from
the fact that every morphism in a topos has a unique epi-mono factorization, see
e.g. Johnstone [1977], 1.52.

Using the split CCompC’s @:F(B) — B~ and P:L(B) — B~ described in
4.3.5, one can improve the above topos example a bit by describing it as a split
CC-category. The only thing left to verify is that the fibration p: £L(B) — B has
split Q-products and strong sums. This will be done below; the notation is as in
4.3.5.

For X:Ax A" - Qin F(B) and ¢: Qp(X) — Q one defines two maps ¢y, ¢, :
Ax Qo(X) - Q by

or = (a0 mo{X}orh) > (pon)
P2 (baom mo{X}on"y) & (pon)

Then one takes Vx.p = Vgux) © Alp1) and 3x.¢ = 3g,x) © Alpa) — where for
C € B. 3-:QF — Q is the standard map obtained as character of the monic part
ofmoes:e>-0° x (- NC.

(1i) A second (split) CC-category is obtained as follows.

Famg(M) ——I——» Fameg(w-Set) —Q—-—- w-Set™

i

w-Set
The equivalence Q, the reflection Z and the generic object are described in 1.2.12.
QT is a CCompC as mentioned in 4.3.2 (iii).

(iii) The above two examples are dictoses. Here is another one. Let C be a
complete Heyting (pre-) algebra, considered as a (small complete) category. Since
C has infinite coproducts, the fibration Fam(C) — Sets from 4.1.6 (ii) has sums,
see example 4.2.5 (i). It yields by lemma 4.2.13 a fibred left adjoint to Fam(C) —
Sets ’. Thus one obtains a logical dictos.

(iv) Term models of the calculi CC and weak CC as described in section 2.3 also
yield appropriate examples. The construction is by now familiar so we only give a
sketch. A (weak) CC-cateogry E <, D -2, B~ isobtained as follows. Objects of
B are (equivalence classes of ) contexts [I'] with sequences of terms (*‘substitutions”)
between them. Objects of E are [[* t- o : %] and objects of D are [['+ A : O]. The
functor 7 is then given by [T F o . %] — [T F In(c) : O}. Finally. Q([I'+ A: 0)]) is
the usual projection [['.a : 4] -— [T].
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The next two results go further in unravelling the structure of a weak CC-
category.
5.2.7. PROPOSITION. Let E -5 D -2 B~ be a weak CC-category. We write
P =0T andp=codo P:E — B for the “fibration of propositions”. Then

(1) p 1s a fibred CCC;

(ii) p s a full small fibration.  (cf. definitron 4.5.10 (u))

Proof. (i) Analogously to lemma 4.3.9 (i), using that P is a full comprehension
category with unit, products and weak sums. As remarked in the proof there, the
result does not require that the sums are strong.

(ii) Bv proposition 4.5.5 (<=) and (i) above, one obtains that p is locally small.
Since p has a generic object, corollary 4.5.8 tells us that p is small, provided the
relevant constructions can be performed, see remark 4.5.9 (i). We check these details.

Let T € E above Qo2 € B be generic for p, where Q € D is above the terminal
t € B. Let's write Cp = Qo). The following pullback in B yields the product
Co X Co.

!

Co x Co —1——’ Co
_
w on

Co———1t
Q0

Notice that 7 is obtained as Q(Q0Q*(Q)). The pair 8,8y = P(r*(T) = ="(T)) in
B/(y x (Y is obtained as in the proofs of 4.5.7 (i) and 4.5.5 (<=). We have to check
that the pullbacks of composable tuples and triples ('3 and Cj (described in 1.4.1)
can be formed. But these are both obtained by pulling back dp = 7 o (8. 1), Since
the latter is a composition of P- and Q-projections, this can always be done, see
lemma 4.1.7.

We conclude that p is a small fibration. Since P is a full comprehension category
with unit, p is a full small fibration. O

5.2.8. THEOREM (I'rom weak CC to Aw). Let E I, D £ B™ be a weak CC-
category. Lett € B be the termunal and p = cod o QT : E — B. By change-of-base
we form

E' — - --E -— - —~E
_] _J
P 4 P
Q
Dj—-->D-—~--B

Then p" 15 a Aw-category. (see definition 3.2.2)
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Proof. The base category D, of p” is a CCC since cod 0 @: D — B is a fibred CCC,
see lemma 4.3.9 (i). p' is a fibred CCC since it is obtained by change-of-base from
a fibred CCC p, see (i) in the previous proposition. p" has a generic object because
p has a generic object T € E above Qo) € B with @ € D,. Finally we have to
find products and sums for p" along cartesian projections. For D. D' € Dy, we have
D x D' = Xp.QD*(D'). The first projection 7: D x D' — D is Q(D.QD*(D"),
where @ : D —» D * is the CCompC defined in 4.4.10. Analogously to lemma 4.2.12
(i) one can verify that p' in the above diagram has @-products and sums. Hence p”
has products and sums along cartesian projections. O

In Jacobs, Moggi & Streicher {1991} one may find how - in the other direction

every Aw-category can be turned into a CC-category.

The content of the next result goes back to Hyland [1989], 3.1, proposition 2 and
to Ehrhard [1989], corollary 1. We made some changes in the formulation.

5.2.9. THEOREM. Let p: E — B be a fibration where B 1s an LCCC. Then
p s full small complete <& there s a dictos P:E - B~ with p=cod o P
For the relevant notions, see 4.5.10 (ii). 4.2.4 (ii) and 5.2.5.

Proof. (<) By 5.2.7 (ii} one has that p is a full small fibration. By the reflection
E S B’ it follows that p inherits completeness from cod: B~ -> B.

(=) By definition 4.5.10 there is a full comprehension category (with unit) P:E —
B~ such that p = cod o P. A left adjoint to P is obtained from the adjoint functor
theorem 4.5.11. Indeed p and cod are locally small and complete fibrations and P
is a continuous functor (see the argumentation after definition 4.5.10). It can be
shown that for every u: A’ — A in B/A there is an object E € E4 such that for
every E' € E4 and f € B/A(u. PE') one can find o € B/A(u, PE) and g: E — E'
in E4 with Pgg o a = f. This yields the solution set condition mentioned in
theorem 4.5.11. One takes E = ¥,.1A4'. where X, denotes the “sum” obtained by
a higher order definition in terms of products (which are available). In informal
type theoretical formulation: ¥,.D — I..,.(II,.(D — r)) — r. For the solution
mentioned above. one takes for y : u the term a(y) = Ar: *. Az II,.(14" > r). zy»
and for w : X,.1A" the term g(w) = f(wu(Ay : w.Az : 14" y)). Then indeed

gla(y)) = f(y). O

As an application of this theorem it can be shown that there are no non-logical
models of the calculus of constructions with families of sets as types and set-indexed
collections as propositions.

5.2.10. PROPOSITION. The “famuly model” from 4.1.6 (n) satisfies

Fam(C) — Sets™ s a dictos < C 15 a complete Heyting pre-algebra.
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Proof. The implication (<) is example 5.2.6 (ii). As to {=>) one has

Fam(C) — Sets™ is a dictos = Fam(C) — Sets is small complete
= Cis equivalent to a small complete category
= Cis a complete Heyting pre-algebra.

The latter implication is based on a result of P. Freyd, see e.g. Mac Lane [1971],
V.2, proposition 3. O

5.3. HML-categories

As shown in 5.1.1 a categorical version of the setting Sort = {*.0} with * = O, * >
*, O > O looks like this

E_IP B

D_ 42 A

where P is a full comprehension category over r. By dressing this setting up with
appropriate features one obtains the notion of a HML-category. We don’t give any
concrete examples but show instead how Aw-categories and CC-categories can be
transformed into HML-categories — which indirectly yields examples. At the end of
this section. we reconsider features for the propositional setting — which is a special
case of the one above with P and Q constant comprehension categories.

The next definition and the subsequent two theorems are borrowed from Jacobs,
Moggi & Streicher [1991]. Remember from section 2.3 that the features for HML are
(3,0), (%, *) and (O, *)-quantification and an * : J-axiom. The following categorical
description follows the guidelines (3.1) and (3.2) in 5.1.2. Notice that the change-
of-basc as described there is used twice.

5.3.1. DEFINITION. An HML-category is given by a setting as above in which
e Qisa CCompC;
e P is a CCompC over r;
e P admits r*(@)-products and strong sums:

e there is an object £ € D such that ¢f2 € A is terminal; further, the fibration
p' obtained by change-of-base as below has a generic object above Qo2 € A.

E-—- —-E
| |

p

|
i
A —1——>B
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5.3.2. THEOREM. (i) Every Aw-category can be transformed into an HML-category.
(i) Every HML-category can be transformed mto a Aw-category.
(iii) The output of first applying (1) and then (u) s 1somorphic to the wmput.

Proof. (i) Let p: E — B be a Aw-category. 1.e. a fibred CCC on a CCC B, with a
generic object and Consg-products and sums. One forms

S

E_JP __E

B_| Consp___B
This structure forms an HML-category since
e Consg is a CCompC, see example 4.3.2 (ii).
e P:E - E~ is a CCompC over p, sec example 4.4.8 (i); moreover, it has
p*( Consg)-products and strong sums by lemma 4.4.11.

e The generic object for p also works here, by the change-of-base situation p — p
described in 1.2.7.

(1) Suppose an HML-category as describe above is given. We form the fibration
?" by change-of-hase

Fr————— E--——E
| _
P’ r p
Q
D,e—>D ——2 _ v A ! .5

where t € A is terminal object. Then
¢ D, is CCC, since ¢ = cod o Q is a fibred CCC. see 4.3.9 (i).
e p" is a fibred CCC, since fibred CCC’s are preserved by change-of-base.

¢ The generic object T for p' above Qo2 € A where §) € D, yiclds a generic object
for p": for every E € E and D € D, with pF = 1QyD, there is a morphism
u: QoD — Qo in A with «*(T) = F in E'. Since Q is a full comprehension
category there is a (unique) f: D - Q in D, with Qpf = u. But then we are
done.

e p" has products and sums along cartesian projections, by an argument similar
to the one in the proof of theorem 5.2.8.

(iii) By the change-of-base situation p — p from 1.2.7 and the fact that B, ~ B. O

5.3.3. THEOREM. (i) Ewvery CC-category can be transformed mto an HML-category.
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(ii) Doing CC -~— HML — Aw and CC — Ao yeelds equivalent results.
(The transformation CC —— Aw is described in theorem 5.2.8.)

Proof. (i) Asume we have a CC-category as in definition 5.2.2. One forms
E_yp
p| |1
D_{Q __ B

——

where P = QT is a CCompC. Hence P is a CCompC over p by 4.4.10, admitting
p*(Q)-products and strong sums by lemma 4.4.12. The generic object of the CC-
category also works here, because of the “pseudo” change-of-base situation § — p
from 4.4.10.

(i) Again by the “pseudo” change-of-base situation p — p. O

Finally we take a brief look at the features for the refined propositional setting

—————— -

p 1
B//T(0) _ _\ Consyyy __ B.

as described in section 5.1. Following (3.1) - (3.3) in 5.1.2 we obtain the following
features.

5.3.4. REDEFINITION. The above setting will be called

(i) a A—-category if Consy(,) is a CCompC over p; further. if there is an object
(t,Q) € B//T(O) above the terminal such that above 2 € B there is a generic object
for the fibration ¢ obtained by change-of-base:

« —————B//T(+)

q cod o Consy.)

1
B——+FE
(ii) a Aw-category if it is a A—-category in which Conspqy is a CCompC'.
(iii) a A2-category if it is a A---category in which Consr(.) has p*( Consy)-
products and sums.
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(iv) a Aw-category if it is both a Aw-category and a A2-category.

The notions introduced earlier in definition 3.2.2 are special cases in the above
redefinition: one can take T(x) = Oby(E) — we then write P for Consp(.), see 4.4.8
(i). Furthermore, for a A—-category and a A2-category one takes T(0) = {02} and
T(O) = Oby(B) for a Aw-category and a Aw-category.

One might ask about the motivation for these refined descriptions of the minimal
and propositional settings and their features. We mention two points.

¢ This refined description comes out as a result of a general method of translation.
As such, it has more value than the somewhat ad hoc notions introduced in
definition 3.2.2.

e In case one is interested in modelling calculi having exponent-types but no
(cartesian) product-types (as used e.g. in Barendregt [1991], [1997]), only the
refined framework can be used. see the discussion in example 4.2.6.

5.4. AHOL-categories and APRED-categories

This section follows the same pattern as the previous one: AHOL- and APRED-
categories are defined by dressing up the correspond settings from section 5.1 with
appropriate features following 5.1.2. No concrete examples are given, but it is shown
how to obtain these from Aw-categories (as defined in 3.2.2).

Remember the features for AHOL are *- and O-closure, (O, *)-quantification and
x:0,0: A axioms.

5.4.1. DEFINITION. We consider the categorical setting described in 5.1.1 for the
setting Sort = {*,0, A} with x > O, 0 > A, % > A. It is called a AHOL-category
if

o Consr(.) is a CCompC over p;

Consr(ay is a CCompC over r;

Consy.y has p*( Consy(a))-products and sums;

there is an object (¢,€2,) € B//T(D) such that the following fibration obtained
by change-of-base has a generic object above Q,;

o ———~E//T(»)
] /

cod o Consr(.)

-
B-————~E


file:///HOL-CATEGORIES

108 CHAPTER 5. APPLICATIONS

e thereis an object (¢,Q=) € A//T(A\) such that the following fibration obtained
by change-of-base has a generic object above 2.

¢ ——— -~ ~BJ/T(+)
| |

cod o Consrn)

A—1 —.mB
5.4.2. THEOREM. FEvery Aw-category on a small base category can be transformed
mnto a AHOL-category.

Proof. Let p: E — B be a fibred CCC on a small CCC with a generic object and
Consp-products and sums. We lift it to a AHOL-category by the family construction
described in 1.1.2. The functor Fam(p): Fam(E) — Fam(B) given by {E,},er —
{pE.}:cr is a fibration over Fam(B) — Sets; let's write r for the latter fibration.
One easily verifies that Fam(p) is a fibred CC(C again. Hence we consider

Fam(E) ___4U_____ Fam(E)

Fam{p)| |Fam(1)

Fom(B) Yy R Fam(B)
| [{t}-
Sets//T(A) 4 Sets

For T(A) we take {Oby(B)} using that B is small. It yields a generic object for r.
Since Bis a CCC, r: Fam(B) — Sets is a fibred CCC. Hence one obtains a constant
CCompC R over r, see 4.4.8 (i). One has R({4,};. {B.};) = {74, 5, : A, x B, =
A},

Similarly. using that Fam(p) is a fibred CCC over r, one obtains a constant

CCompC Fam(E) — Fam(E)™ over r. The axiom # : O and the (O, x)-quantification
follow from a pointwise construction. 0O

We turn to APRED-categories. Remember that the features are x, A-closure,
(&, *)-quantification and an * : 0 axiom.

5.4.3. DEFINITION. The categorical setting described in 5.1.1 for Sort = {*. A,O0}
with * > A, > O will be called a APRED-category if

o Consyq.y is a CCompC over p;
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o Consr(sy is a CCompC;

o Consryay has p* Snd’( Consr(a))-products and sums;

o there is an object (¢,Q) € A//T(0) such that the following fibration obtained
by change-of-base has a generic object above Q.

. E//T(0)
N (

cod o Consp

1

- xt
A -———H+AxB — E

where — x t is the terminal object functor for the fibration Fst: A x B — A.
5.4.4. THEOREM. FEvery Aw-category can be transformed into a APRED-category.

Proof. Let p:E — B be a Awv-category. We_are going to use the base catcgory
B to model both O- and A-contexts. Therefore, we first form the fibration p’' by
change-of-base in

E' E
r p
BxB Prod B

The rest is then straightforward: p'is a fibred CCC and thus one obtains a constant
CCompC over p'. Let T € E be generic for p and put Q = pT' € B. Then Consq is
used to model 0. The constant CCompC Consg is used to model A. O

5.5. The untyped lambda calculus revisited

D. Scott often stressed that the untyped A-calculus should be considered as a special
form of typed A-calculus, viz. as a calculus with one type (satisfying e.g. @ = 2 —
). Following this view we obtain a new notion of model for the untyped A-calculus
by considering “monoid” constant comprehension categories which have a single
type. We include non-extensional abstraction in our investigation via S. Hayashi's
“semi-adjunctions”. At the end of this section we compare our new notion to the one
consisting of a “CCC with a reflexive object™ as introduced by Scott and further
developed by Koymans, see Scott [1980], Koymans [1982], [1984] and Barendregt
(1984].

The categorical concepts used in this section will all be described “on-the-nose”,
i.e. without mediating isomorphisms. We first recall the notion of a semi-adjunction
from Hayashi [1985]). The subsequent lemma comes from Jacobs [1991].
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A semi-functor F-C — D 1s a ‘functor’ except that it needs not preserve iden-
tities. Another semi-functor G:D — C is a right semi-adjont ol F — notation
F 4, G — if there are collections {axy. 3xy}xecyep such that the big four
squares in the following diagram commute (for all f. g).

axy
Y D(FX.Y)._____  C(X.GY) X
/SX.Y |
f fo—oFyg Gfo-og g
(lxlwyl
Y’ D(FX.Y)._____  C(X'.GY" X'
BX’,Y’

5.5.1. LEMMA. Suppose F i, G as described above, but with F' an ordinary functor;
then — omatting indices — one has

(1) Joa=1d, 1e. D{(FX,Y) 1s a retract of C(X, GY).

(ii) a(uo Fr)y=a(u)ov Guoa(v) = aluov).

(iii) 3(u) o Fv = F(uo v) B(Guor)=uod(v)

Proof. (i) (8 o a)(u) = ud o B(a(u)) o F(rxd) = 3(G(ed) o a(u) o 1d) =1d o u o
F(ud) = u.
(ii) & (iii) Similarly. O

Further, two more notions are needed. A morphism of semi-adjunctions from
(F,G,{a,3}: C - D to JF",G', {d/,F} : C' > D' consists of a pair of functors
(K:C - C'.L:D — D' such that

LF F'K and G'L = KG
Kax,y = a'KX.LYL and L,@X‘y = g'KX.LYK‘

Finally, a sem:-CCC is a category provided with semi-adjunctions for semi-terminal,
product and exponent. In equantional presentation, it is a *CCC” except that one
does not have ! = ud;, (r,7"y = 1d and A(er) = 1d, see Hayashi [1985] for more
details.

Next we describe semi-products and sums for split comprehension categories. It
is a straightforward generalization of ordinary products and sums as described in
section 5.2 (except that we now require everything “up-to-equality”).

5.5.2. DEFINITION. Let P.E — B™ be a split comprehension category.
(1) P has seme-products (resp. semu-sums) if both
e for each E € E, the weakening functor PE* has a right semi-adjoint Iy (resp.
a left semi-adjoint Eg);
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e for each cartesian f:E' — E in E the pair «(pf)*, (Pof)*) is a morphism of
semi-adjunctions PE* 4, [Ig — PE"™ -+, g
(resp. (Pof)*, (pf)*, is a morphism £z 4, PE* — Xg H, PE"™).
(ii) A morphism (P:E —» B™) — (P':E' — B'™) of comprehension categories
with semi-products consists of a pair of functors K: B — B' and L:E — E' such
that

e K, L' is a morphism of split fibrations p — p';

e K, L.:d) is a morphism of comprehension cateogries (see 4.1.4);

e for cach E € E, the pair L |5, Llp,g) is a morphism of semi-adjunctions
PE* A, llg — P(LE) 4, I .

Similarly for semi-sums.

5.5.3. DEFINITION. Let B be a category with terminal object ¢ and let € B. One
says that

(i) 2 is non-empty if B(t. Q) is non-empty;

(ii) € has enough pownts if for all f,g: Q2 — A in B,

Vrit—= Q. for=gor = f=g.

Constant comprehension categories are described in 4.1.3. For details about
the semantics of the untyped A-calculus, we refer to Barendregt [1984], especially
chapter 5.

5.5.4. DEFINITION. (i) A categorical A-algebra is given by a base category B with
finite products containing a non-empty object 2 such that the constant comprehen-
sion category Consg:B//Q? — B™ has semi-products.
(i1} A morphism of categorical A-algebras (B,Q) — (B', ') is a functor K: B —
B’ such that
o KQ =0 and Kt = ¢, the terminal object in B'; moreover, K(!4) =!ga;
o for every A € B one has K(A x Q) = (KA) x Q¥ with K(740) = x40 and
K(m'yq) = Tkaars
¢ the pair (K, K') is a morphism Consq - Consq of comprehension categories
with semi-products.
(The functor K': B//Q — B'//Q' is defined in 4.1.6 (i).)
This yields a category Cat-A-Alg.

One might wonder why we don’t simply require that K preserves all cartesian
products (on-the-nose) in the second point in (ii) above. But that would be too
strong- the counit functor ¢ in the proof of 5.5.10 Lelow satisfics (n +m) = Q**™
" x Q™ = ¢(n) x g(m). In the domain of ¢, + is x. 1is @ and e(n) = Q". As it
stands, the second requirement above says precisely that (K, K”’,1d) is 3 morphism
of comprehension categories, see the second point in 5.5.2 (ii).
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5.5.5. DEFINITION. Let (B. Q) be a categorical A-algebra. It will be called
(i) a categorical A-model if Q has enough points:
(ii) a categorical Anj-algebra if Consq has ordinary products;
(iii) a categorical An-model if it is both a categorical A-model and a An-algebra.

Let (B.Q) be a categorical A-aigebra as described above. Recall from 4.1.3 that
the fibre categories (B//Q1),4 are monoids. i.e. categories with only one object, viz.
(A4,9Q). Morphisms in (B//Q)4 are arrows f: A x O — Q in B. Composition in
(B//Q)4 is given by ge f = g o \m, f; the projection 7': A x @ — Q serves as
identity. Reindexing along u: B — A is done by u*(f) = f o u x 1d.

The product semi-adjunctions are described by maps

a(A)

— _ __B(Ax0, Q)

3(4)

A map a(A)(f): A x Q@ — Q should be understood as the result of abstraction in the
underlined 2 in f: (A x ) x @ — Q. This follows from the fact that a(A)(f)eh =
alf e Consg(A.2)*(h)), see lemma 5.5.1 (ii). More explicitly. it gives the following
naturality condition

a(A)(f)o by = a(A)Nfom, hon xud)

B((AxQ)xQ Q)

Because one abstracts in the underlined 2 a form of “twisting” is often necessary.
A deeper analysis of categorical )-algebras may be found after the following
examples.

5.5.6. EXAMPLES. (i) Let D be a reflexive cpo via maps F : D — [D — D] and
G : D — D] — D with F o G = 1d, see Barendregt [1984], 5.4. As usual we write
a-b= F(a)(b) and Az.— = G(Ar.—).

A base category D is formed with n € IN as objects; n can be considered as
the context containing the first n variables from an enumeration {z, | n € IN}.
Morphism n -- m are sequences (fy,..., fm) where each f, is a continuous function
D" - D, ie. f, € [D" — D]. Composition in D is done in the obvious way and
identities are sequences of projections. The object 0 € D is terminal and n + m is
a product. Thus D is an algebraic theory. As distinguished object (“Q") we take
1 € D. Notice that 1 is a non-empty object iff the cpo D is non-empty.

The product semi-functors I, : (D//1)p4y1 — (D//1), are given by (n +1,1) —
(n,1) and f — AF,z € D™ Ay, f(£,y,2 - y). The a’s and 3's as described above
are given by

a(n)(f) = ARz e D™ Ay f(7,y,3)
3(n)(g) = AE.y,z€ D2 g(&z)-y.

One easily verifies that (D.1) is a categorical A-model. In case G o F = 1d —
i.e. D= [D — D] — it becomes a categorical Az-model.
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(ii)) Let M = (D, -, K, S) be a A-algebra, see Barendregt [1984], 5.2. One writes
1, = Arg...I,.-7g...T,; inductively, one can define 1 = I = SKK and 1,,, =
S(K1,). see loc. cit. 5.6. Let’s put (D" - D) = {a € D | 1,-a = a}. Then
(D® — D) = D; we write 1 for 1, and (D — D) for (D! — D).

Let D be a base category, once again with n € IN as objects, but with m tuples

(ay.-.-,a,) with a, € (D" — D) as morphisms n — m. Then (b;,...,b) o
(a,---,am) ={c1,...,0x) wheree, = Azy...z,.b(a121 ... 2,.) ... (@any ... Tp). The
identity on n is (Ary...Z,.210,... AZy... Ty L,). The category D has terminal 0

and products n +m as before. Hence it is an algebraic theory again. We take 1 € D
as distinguished object.

The comprehension category Cons;:D//1 — D™ has semi-products: for mor-
phisms a € (D™? = D) in (D//1)us1 and b € (D! — D) in (D//1), one takes

a{n)(a) = Ary...Tp2y. ary...Tpyz
B(n)(b) = Axry...zpyz bry...xTazy.
Then g(n)(a(n)(a)) = 1,42 -a = a.

In case M is a A-model,ie. VT € D. a-z =b-7 = 1-a=1"-b, one obtains a
categorical A-model: suppose morphisios (ay,-...am), (b1,.-.,bgp): 1 = min D are
given with Vz:0 — 1. (a3,...,am) o r = (b1....,b,) o r. Then a,.b, € (D — D)

1

satisfyVr € D. a,-7 =b,-r. Hencea,=1.a,=1-b, = b,. Thus the object 1 € D
has enough points.

The next result describes the structure given by the fibred semi-products of a
categorical A-algebra in a down-to-carth way.

5.5.7. LEMMA. Let B be a category with finste products and 2 € B be a non-empty
object. Then
(i) (B,Q) is a categorical A-algebra 1f and only of there ws a map

app : AIxQ - O
together unth an operation
A=) @ B(Ax9Q,Q) - B(4,Q)
such that

app o A(f) x d
A(f o g x 1d)

f
A(f)og.

(ii) (B.Q) 15 @ categorical An-algebra of and only of there are app and A as mn (1)
which additionally satisfy

Alapp) = id.
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Proof. For the (if)-part of (i) and (i1), one defines
a(A)f) = Mfowmxid, m'om)
B(A)g) = appo.gowxid, 7' om.

In order to prove the (only if)-part, we first unravel the structure given by the
semi-products. Let a(A), 3(A) be as described before the examples. The naturality
conditions following from lemma 5.5.1 (ii),(iii) are

a(A)(f) o m, by a(A)fom, horm xdy)
I(A)g) o m, howxd B(A)g o . ).
The “Beck-Chevalley” condition — the second point in 5.5.2 (i) — implies that for
u:B — Ain B one has
alA)(flouxid = a(B)(f o (ux:id)x2d)
FA)g)o(uxd)xwd = F(B)(goux1id).

Applying B(t) to n':t x @ — Q yields a map G{t)(z"):(+ x Q) x @ — Q. By

arranging the input appropriately, one obtains
app = 3(t)(n)o ', m : AxQ — Q.

For an arrow f:AxQ — Qin Bone has f o7 : (A x Q) x Q — Q by
introducing an extra “dummy” variable. It enables us to apply a{A) which yields
an arrow A x @ — Q. Finally. we remove the first “dummy” Q by substituting an
arbitrary element cp:¢ — Q - which exists because {2 is non-empty. Hence we have

AMf) = a(A)(fom) o uadieyoly : A — £
An easy argument shows that the definition of A(f) does not depend on a choice for
co: 1if we would have taken ¢;:t — Q then ¢ = ¢; 01q: 2 — Q satisfies p 0 ¢y = ¢4
and thus

a(A)(form) o wd.cyo!

a(A)(fom) o mypon’ o ad,cooly
= a(A)(for) o gdcool,

the latter by naturality of a(A). We (‘ompute

app o Mf) xd = J(t)(7') o (lgvq, 7. m o A(f)om "
= J(t)(n') o laxa. T A(f)om
= 3(t)(n") o (Igxed)xed o ad, \(f)om,
= J(A)r' olyxd) o malA)(fom)ormxid o ad.cooly

by Beck-Chevalley for .3
= J(A)a'o m. a(ANfow)) o nd,cgo!,
by naturality of .3(A)
= fomouud.cyo!
by lemma 5.5.1 (i)
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Assuming g: B — A one obtains

A(f o g x1d)

a(B)(fogxiwdorm) o ad, cgo !p)
= a(B)(fomo(gxid) xid) o d,coo!p
= a(A)(for) o gxid o qd, oo !lp)
by Beck-Chevalley for a
= a(A)(fom) o @d,coolay 0 g
= Af)og.
In case (B,(?) is a An-algebra, one has a(A) o B(A) = id. In order to prove
Alapp) = 1d, we first notice that app o 7 = 3(Q)(7) : (2 x ) x Q@ — . Indeed,

Bt)n") o laxq, 7, m o w
B#t)(x') o (lgxd)xed o im,mom
= B(Q)r") o 7, mow xud
by Beck-Chevalley, as before
B (7' o m,m)
by naturality

app o

BQ)(m).
Hence one obtains
Mapp) = a(Q)(apperw) o ad,cgoh

= a(@)(B(Q)(m)) o wd, cgoly

= mo ad,cgoh

= d. m]
5.5.8. EXAMPLES. (i) Suppose B is a CCC which has a reflexive object . The
latter means that there are maps F:Q — Q% and G: Q% — Q with F o G = 1d.
Such structures are used by Scott and Koymans for the semantics of the untyped
A-calculus. Using the above lemma one easily obtains a A-category (B,(1); one
defines
app = evo F xd
Mf) = GoA(f).

This yields the required equations.

app o AMf)xwd = ev o Fxud o (GoA(f)) xd
= er o A(f) xud

AMfogxud) = G o A(fogxd)
= GoAlf)og

= A(f) o g
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Moreover, in case (B, ) 1s extensional in the sense of Scott and Koymans — which
means that G o F = :d and thus 2% = Q —- then

Aapp) = G o Afev o F x1d)
G o F
= d.

Notice that a categorical A-algebra as it is used here is “more economical” than the
structure used by Scott and Koymans: in our case the base category B need not
have exponents (see the discussion at the end of this section).

(i) We investigate what app and A are in the examples in 5.5.6. In the first
case one has app:1+1 — 1 as a continuous function D x D — D described by
(z,y) > z-y For f:in+1—1in D one has A(f) = A7 \y. f(Z,y). This is as one
would expect.

In the second case one starts from a (set-theoretical) A-algebra. One has app =
Ary.zy € (D? - D). L a &€ (D™! — D) then Aa) = Az;y...Tp. Ay-aIy - Tpy =
1, - a. which. indeed is in (D" — D).

The formulation obtained in lemma 5.5.7 in terms of app and A is quite practical.
It will be extended to morphisms.

5.5.9. LEMMA. Let (B,Q) and (B', Q') be categorical A-algebras. A functor K:B —
B’ 15 a morphism of categorical A-algebras of and only of

« KO =0 and K(\4) ='ka:
o K(mq0) = mgan ond K(7y o) = "o
o K(app) = app' and K(A(f)) = N(KTf).

Proof. We have to show that the third requirement above is equivalent to the third
requirement in definition 5.5.4 (ii); the latter boils down to Ka(A4) = o' (K A)K and
KJ(A) = J(KA)K. Thus, using the definitions of a(A) and J(4) from the proof
of 5.5.7, the (if)-part is easily established.

In the reverse direction, one obtains K(app) = app’ and K(A(f)) = N(K f) for
the description of app and A in the same proof. One has to use that A(f) does not
depend on the constant ¢g occurring in the definition of A(f). O

Let (B.{1) be a categorical A-algebra. For a,b € B(A.Q?) put a-b = app o «,b.
We write |[Q?]| for the (non-empty) collection B(t,§) and claim that ¢||Q][,) is a
A-algebra as described in Barendregt [1984]. Abstraction is done as follows. For a
term a(r).? x 2 -» § containing a free variable r one takes

Ar.a(r) = Ma{r)) : t — Q.
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Then

(Ar.a(z))-b = app o A(a(z)), b
= app o Aa{z))xd o ad,b
= a(z) o ad,b
= a(b).

Let’s write

1]

o txOx-ex0 - Q
(R ——
ntimes

for the :-the projection. One has

= A

-
S

(71)
AA((73 - 73) + (73 73))))
= Am
= A (
which yields essentially de Bruijn's nameless notation.
Notice that for a € ||§2|| one has 1-a = Ay.a -y = A app © a x 2d). Hence if
(B, ) is a categorical A-model, one obtains the (£)-rule.
Vee|Q. a-x=b-z
= Vr:t—- Q. appoaxidoud, ry=appobxidoud n
= appoaxid=appobxid, since ¢t x (1 =  has enough points
= 1l:a=1-b
And if (B, 2) is a categorical An-algebra, then (n) holds.

Ay.a-y = Mappoa x:d)

Aapp) © o
= a.

Let’s write A-Alg for the category with (set theoretical) A-algebras D, -, K, S)
as objects; we allow D to be a collection of arbitrary size. Morphisms are maps
between the underlying collections preserving application and K. S, see Barendregt
[1984], 5.2.2 (ii).

The assignment (B, ) — ||Q|[, ) forms the object-part of a “forgetful” functor
U : Cat-A-Alg — A-Alg: for a morphism K :(B,{) — (B'.(Y') of categorical
A-algebras, one has UK :{IQ|] — ||€'|| defined by a — Ka. By lemma 5.5.9, K
preserves app and ) on-the-nose; hence UK is a morphism of A-algebras.

5.5.10. THEOREM. The forgetful functor U : Cat-A-Alg — A-Alg has a left
adjoint; the unit of the adjunction s an wdentity.
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Proof. The object-part of a functor F' : A-Alg — Cat-A-Alg is described in
example 5.5.6 (ii). For a morphism of A-algebras h : . D, — :D'."; one defines
Fh:(D.1) - (D',1) by n — n and (a4,...,a5) = (k(ay)....,h(an)). By lemma
5.5.9 and proposition 5.1.14 (i) from Barendregt [1984]. h preserves the relevant
structure. Notice that the underlying collection of UF(:D,-) is ||1|| = D(0, 1) =
(D° — D) = D. One obtains UF = 1d.

A counit e: FU(B, Q) — (B, Q) is defined on objects by n — Q". To define it on
morphisms, we need some notation. For an element a € ||| we define a™ : Q" — Q

by a™ = (a o lgn)-#7 ... 7" where 7*: Q" — Q is the t-th projection.
On a morphism (@i, ...,am):n — m in FU(B,Q) — where a, € (||]* — [|Q]))
— we put £(ay,...,am) = <a(1"),...,a(,,’;‘)) : Q" - Q™ One has ¢(Ary...T,.1,) =
((Axy...zp.z,) 0 1)-m}-. .-} = 7], Hence ¢ preserves identities and the projections
n « n+ 1 — 1. Composition is preserved since
eAzy...xp.bla1zy. .. Zn) ... (QnT1. .. 2y)) = bﬁm) o (a(l"). oalm™

In order to show that ¢ is a morphism of categorical A-algebras it suffices by lemma
5.5.9 to check

e(app) = (Ary.zy)?® see 5.5.6 (ii)
-

app o (m,m"

= app.
and for a € (|||™"! - ||Q|).
e(Ala)) = €(1,-a) see 5.5.6 (ii)
= (aol)-ml-...-mp
= Ar.(aol)-my-...-°0-x sincel,,;-a=a
= Mappo((ao!)-n7-...-70) x1d)
= A(ao)-al - oAm])

= Ae(a)).
Finally, the triangular identities boil down to
eF =ud and Ue = ud.
These are easily verified. O

The pattern obtained here is the same as established in Jacobs [1991]. 7.4.3 for
the second order A-calculus A2: the functor from categorical to set theoretical models
has a left-adjoint-right-inverse.

The next two theorems deal with some categorical properties of categorical
A-algebras.
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5.5.11. THEOREM. Let (B,Q) be a categorical A-algebra. By defination Consg has
sema-products; it also has semi-sums.

Proof. The standard (non-surjective) pairing from A-calculus yields “combinators”
fst.snd : Q — Q and pair: Q x Q —  satifying fst o pasr = 7 and snd o par = =’
In A-calculus notation, fsi(z) = :K,snd(z) = :K' — where K' = Ary.y — and
parr(r,y) = Az. zry. A bit more categorically, fst = 1dq - (K o lg),snd = idg (K’ o
'q) and pair = A(x' - (m o 7) - (7' o 7)).

For the semi-adjunctions 4,0y 4, Consa(A,(1)*, maps

a(A)

B(AxQ, Q) B((Ax Q) xQ, Q)

B(A4)

are required. One takes

a(A)(f)
3(A)9)

fo wmom, paro ' om, 'y

o «m, fsto 'y, sndo 7.
g s s

Then a(A) o 3(A) =1d. O

5.5.12. THEOREM. Let (B,Q) be a categorical A-algebra. We write Fst = cod o
Consq : Bf/Q2 — B for the fibration involved. Then

(i) Fst 1s a fibred monoud. 1.e. all fibre categories are monods;

(i1) Fst 15 a fibred semi-CCC, u.e. all fibre categories are semi-CCC’s and re-
mdezing preserves this structure.

Proof. (1) Obvious, since one starts from a single type Q.

(ii) Remember (from 4.1.3) that composition in the fibre categories (B//Q)4 is
described by ge f = g o . f,. We define the semi-CCC structure. see Hayashi
(1985).

(a) V' =coolaxn: A x — ., where ¢g:t — § is an arbitrary constant; then
Vef=coolaxgom fr=coolan ="

(b) mo=fston', my =sndon’: AxQ — Q. Further. for f,g: Ax Q2 - Q one
takes f,gn = parro f, g see the proof of the previous result for the combinators
fst, snd and pawr. One has mpo f.g, = f. m e (f,9;, = g and «f.g e h =

feh . geh,.

{c) ev=appo fst,snd o' :AxQ - Q. For f: A x Q — Q one takes A(f) =
Mfomom, pairow xd). Then eve "A(f)og, by = A(f)e g h,. A(feige
o.M )= A(f)egand eve mp. m, =ev. O

The previous theorem indicates how to ohtain a “CCC with reflexive object”
from a categorical A-algebra. The next two facts should be used.
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o Taking the Karoubi envelope of a semi-CCC C yields a CCC K(C), see Hayashi
[1985].

o If Q = Q% in a semi-CCC C, then :dg is a reflexive object in K(C). The latter
1s easily verified.

Obviously, the object, say €, of a monoid semi-CCC satisfies Q = Q7. Hence taking
the Karoubi envelope of one of the fibre categories of a categorical A-algebra yields
a CCC with a reflexive object.

Finally we are in a position to compare our new notion of “monoid constant
comprehension category with semi-products” with the “CCC with reflexive object”
as used by Scott and Koymans. We mention the advantages of our approach.

e It captures “untyped” as the monoid-case in a “typed world”. Explicitly: con-
stant comprehension categories describe simply typed A-calculi, i.e. calculi on
the minimal setting. Monoid constant comprehension categories describe the
untyped A-calculus. This follows a general categorical understanding of “un-
typed”.

o It describes the 3- (plus naturality-) rules by semi-adjunctions and the addi-
tional 7-rule by ordinary adjunctions. This also fits into a general categorical
pattern, see e.g. Hayashi [1985]. Jacobs [1991].

o It gives rise to the adjointness in theorem 5.5.10 between categorical and set
theoretical models. In the Scott-Koymans approach, turning a CCC with re-
flexive object first into a A-algebra and then again into a category yiclds incom-
parable results. This is due to the fact that the Karoubi envelope introduces
unnecessary junk. see Koymans [1984], Barendregt [1984].

¢ It enables a direct and uniform presentation of concrete examples, see 5.5.6
(1).(i1). In order to present (ii} as CC'C with a reflexive object, one first has to
take the Karoubi envelope.

However, we have to concede that the notion of a CCC with a reflexive object is
more elementary.
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Samenvatting

Het onderhavige proefschrift is opgebouwd uit vijf hoofdstukken. Het cerste gaat
over indicering van categorieén. De typentheoretische motivatie ligt in het feit dat
een context een index vormt voor de categorie van typen en termen die afleidbaar
zijn in die context. Het centrale begrip is ‘vezeling’ (fibration, in het Engels) zoals
geintroduceerd door Grothendieck. Een aantal elementaire definities en resultaten
wordt besproken. Zijdelings worden twee alternatieve vormen van indicering be-
schreven: ‘geindiceerde categorieén’ en ‘interne categorieén’.

In het tweede hoofdstuk komt typentheorie aan de orde. Gebaseerd op een
categorische intuitie wordt het typentheoretische begrip ‘achtergrond’ (in het Engels,
setting) ingevoerd. Een achtergrond bestaat uit een verzameling soorten voorzien
van een transitieve relatie die beschrijft wat afhankelijk mag zijn van wat. Een
achtergrond kan bijvoorbeeld bepalen dat een propositie af mag hangen van een
type, dat wil zeggen, dat een propositie een variabele van een type mag bevatten.
Een achtergrond bepaalt tevens welke ‘aspecten’ (features, in het Engels) toelaatbaar
zijn. Voorbeelden van aspecten zijn exponenten, producten, sommen en identiteiten.
Om bijvoorbeeld afhankelijke producten te kunnen vormen moet de achtergrond
waartegen men werkt betreffende afhankelijkheid bevatten. Aldus wordt een typen-
systeem begrepen als een achtergrond plus een aantal daardoor toegestane aspecten.
Verschillende bekende systemen worden zo opnieuw beschreven. Dit vergemakkelijkt
de overgang naar een categorische beschrijvingswijze.

Een achtergrond kent typenafhankelijkheid indien er een soort is die van zichzelf
athangt. Achtergronden zonder deze eigenschap zijn categorisch eenvoudig: con-
texten kunnen simpelweg als cartesische producten beschreven worden. De systemen
A—, A2, Aw en Mw die het linkervlak van Barendregt’s cubus vormen hebben cen-
zelfde achtergrond zonder typenafhankelijkheid. Beschrijving van de bijbehorende
categorieén vindt men in hoofdstuk drie.

Achtergronden met typenafhankelijkheid zijn iets minder eenvoudig te beschrij-
ven. In hoofdstuk vier wordt de benodigde theorie ontwikkeld. Het centrale be-
grip hier is ‘comprehensie categorie’. Zo'n structuur bescrijft de organisatie van
contexten, die nu niet meer als cartesische producten begrepen kunnen worden:
vanwege de athankelijkheid is een vorm van disjuncte vereniging vereist. Een com-
prehensie categorie geeft een passende categorische beschrijving van zulke disjuncte
verenigingeun en de bijbehorende projecties. Verder wordt een algemeen begrip van
quantificatie voor vezelingen beschreven in termen van comprehensie categorieén.
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Deze twee ingrediénten worden aan een gedetailleerd onderzock onderworpen. De
resulterende inzichten worden vervolgens in het vijide hoofdstuk aangewend: eerst
om een algemene schets te geven van de omzetting van typentheoretische achter-
gronden en aspecten in overeenkomstige categorische; daarna om enkele individuele
typensystemen categorisch te beschrijven; tenslotte om de categorische semantiek
van de ongetypeerde lambda calculus te herzien. Zogenaamde ‘constante’ com-
prehensie categorieén met één type geven een adequate beschrijving.
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