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Body Ca2+ and Mg2+ balance

Ca2+ and Mg2+ are essential for many physiological processes such as intracellular signalling, 
enzyme activation, neural excitability, muscle contraction and bone formation. In healthy 
individuals, the majority of total bodily Ca2+ resides in the skeleton, whereas a minor amount 
is distributed in soft tissues and extracellular fluids. After Ca2+, K+ and Na+, Mg2+ is the fourth 
most abundant cation in the human body and is distributed as following: 65% in bone, 35% 
in soft tissue, and less than 1% in plasma. Disturbed blood ionized Ca2+ and Mg2+ levels are 
associated with severe clinical symptoms mainly related to instability of the neurological and 
cardiac systems, and perturbations in bone formation. Therefore, the extracellular Ca2+ and 
Mg2+ concentrations need to be maintained within a narrow range by the concerted action 
of intestinal absorption, exchange with bone and renal reabsorption. Noteworthy, the 
kidneys determine the final excretion of Ca2+ and Mg2+ in the urine and thus accomplish an 
important role in the homeostatic control of these divalent cations.1

Renal Ca2+ reabsorption 

Plasma Ca2+ levels are maintained around 2.20-2.65 mmol/L.2 Approximately 50-60% of 
the total plasma Ca2+ is filtered by the glomeruli, either in its ionized form or in complexes 
with other ions. In the proximal tubule (PT), the Na+-driven water reabsorption increases 
the intraluminal concentration of Ca2+ leading to passive diffusion of 60-70% of the filtered 
Ca2+ through the tight junctions towards the renal interstitium (Figure 1).3, 4 In the thick 
ascending limb of Henle (TAL), a lumen-positive transepithelial voltage is the main force 
for the paracellular reabsorption of 20-25% of the filtered Ca2+. The generation of this 
electric gradient relies on the Na+, K+ and Cl- uptake by the apical Na+-K+-2Cl- cotransporter 
(NKCC2) coupled with the subsequent recycling of K+ across the apical membrane via the 
renal outer medullary K+ channel (ROMK; Figure 1).3 At the basolateral membrane, the 
Cl- channel CLC-Kb is responsible for Cl- extrusion, whereas the Na+-K+-ATPase generates 
the primary inward driving force for Na+ transport via NKCC2. Along the distal convolutions 
of the nephron, Ca2+ reabsorption relies essentially on transcellular transport.5 
Approximately 10% of the filtered Ca2+ is reabsorbed in the late distal convoluted tubule 
(DCT2) and the connecting tubule (CNT) via the epithelial Ca2+ channel, transient receptor 
potential vanilloid 5 (TRPV5; Figure 1).6 This channel co-localizes with the Ca2+-binding 
protein calbindin-D28K, an intracellular protein that buffers free Ca2+ and facilitates 
transport of bound Ca2+ towards the basolateral membrane. Ca2+ is finally extruded in the 
renal interstitium to re-enter the bloodstream by the Na+-Ca2+ exchanger (NCX1) and the 
plasma membrane Ca2+-ATPase (PMCA1b).3 The relative contribution of the collecting 
duct (CD) to overall Ca2+ reabsorption is probably negligible. In conclusion, only 1-2% of 
the filtered Ca2+ is excreted by the kidney into the urine.7
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Renal Mg2+ reabsorption 

Plasma Mg2+ levels are maintained around 0.7-1.1 mmol/L.8 Approximately 70% of the 
total plasma Mg2+ is filtered through the glomeruli. Of this amount, 10 to 20% is reabsorbed 
by the PT, whereas the majority (65-70%) is taken up in the cortical TAL. Mg2+ reabsorption 
in PT and TAL occurs via the paracellular route, as reported for Ca2+, and is driven by similar 
electrochemical forces (Figure 1). Nevertheless, PT and TAL show opposite reabsorptive 
capacity for Ca2+ and Mg2+. The reason why the bulk of filtered Ca2+ is reabsorbed in the 
PT, whereas filtered Mg2+ is mainly taken up in the TAL is not entirely clear. Probably the 
paracellular barrier of these two segments displays distinct permeabilities for divalent 
cations. Of the filtered Mg2+, 10-15 % reaches the early DCT (DCT1), where 70 to 80% is 
reabsorbed. Mg2+ transport in DCT1 is an active and transcellular process, which is critically 
influenced by cellular energy metabolism.9 DCT1 determines the final urinary Mg2+ 
concentration by reabsorbing Mg2+ via the epithelial Mg2+ channel, transient receptor 
potential melastatin 6 (TRPM6; Figure 1).10, 11 The maintenance of a negative membrane 
potential by the voltage-gated K+ channel, Kv1.1, provides the driving force for Mg2+ 
transport via TRPM6.12 The Na+-K+-ATPase, situated in the basolateral membrane of DCT1 
cells, generates a local negative membrane potential and provides a Na+ gradient for the 
thiazide-sensitive Na+-Cl--cotransporter (NCC) to facilitate transport of Na+ from the 
lumen into the cytoplasm.13 K+ is supplied to the Na+-K+-ATPase through the K+ channel, 
Kir4.1.14 Finally, the transcription factor HNF1B affects the expression of the regulatory 
protein γ-subunit that binds and modulates the activity of Na+-K+-ATPase.15 At the 
basolateral compartment, cyclin M2 (CNNM2) probably senses intracellular Mg2+ 
concentrations and regulates other Mg2+ transporters involved in the extrusion of Mg2+ 
towards the blood.16 As no evidence exists for Mg2+ being extruded from the cell via a 
Mg2+-ATPase, other driving forces, such as a Na+ gradient, might be used to transport this 
cation by secondary active transport mechanisms. Up to now the gene encoding for the 
Mg2+-extrusion protein in the kidney remains unknown. No significant Mg2+ reabsorption 
occurs in the more distal nephron segments. Overall, less than 5% of the filtered Mg2+ 
normally appears in the urine. 

Renal TRP channels

The transient receptor potential (TRP) superfamily consists of cation-selective ion channels 
with similar molecular structures, but diverse tissue expression and large functional 
heterogeneity, ranging from ion homeostasis to mechanosensation.17 TRP channels 
mediate Ca2+ influx in many cell types. Ca2+ ions in turn act as second messenger and can, 
therefore, affect various intracellular pathways, resulting in a wide scale of physiological 
consequences.
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 So far, 28 mammalian members have been identifi ed, which are divided into 7 
subfamilies on the basis of sequence homology. In the human kidney, TRP channels are 
expressed in various segments of the nephron and have been implicated in the 
pathogenesis of several kidney diseases.18, 19 Renal TRP channels include: canonical TRP 
proteins (TRPC), melastatin-related TRP proteins (TRPM), vanilloid-receptor-related TRP 
proteins (TRPV) and polycystin (TRPP). The characterization of renal TRP channels provided 
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Figure 1   Cartoon depicting the molecular players involved in the glomerular and tubular 
handling of Ca2+ and Mg2+. 

PT: proximal tubule; TAL: thick ascending limb of Henle; DCT1/2: early and late distal convoluted tubule, 
respectively; CNT: connecting tubule; CD: collecting duct; GBM: glomerular basement membrane; 
TRPC6: transient receptor potential channel subfamily C member 6; AngII: angiotensin II; AT1R: 
angiotensin type I receptor;  NFAT: nuclear factor of activated T-cells; NKCC: Na+-K+-2Cl- cotransporter; 
ROMK: renal outer medullary K+ channel; ClC-Kb: Cl- channel Kb; NCC: Na+-Cl--cotransporter; Kv1.1: 
potassium voltage-gated channel subfamily A member 1; TRPM6: transient receptor potential cation 
channel subfamily M member 6; CNNM2: cyclin-M2; Kir4.1: ATP-sensitive inward rectifi er potassium 
channel 10; TRPV5: transient receptor potential cation channel subfamily V member 5; D28K: calbindin-
D28K; NCX1: Na+-Ca2+ exchanger; PMCA1b: Ca2+-ATPase.
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new insights into renal (patho)physiology and, in particular, into the regulation of Ca2+ and 
Mg2+ homeostasis.20

TRPV5 and TRPV6
TRPV5 and TRPV6 are so far the only known highly Ca2+-selective channels in the TRP 
superfamily.21 TRPV5 was originally cloned from primary cultures of rabbit CNT cells, 
whereas TRPV6 was identified from rat duodenum.6, 22 Further investigations revealed 
that both TRPV5 and TRPV6 are mainly expressed in the Ca2+-transporting tissues, i.e. 
kidney, intestine and bone, making these channels the molecular gatekeepers of Ca2+ 
homeostasis.3 
	 Particularly, TRPV5 plays an important role in renal Ca2+ handling by fine-tuning the 
final amount of Ca2+ excreted via the urine. TRPV5 knockout mice (TRPV5-/-) displayed 
several phenotypic features related to a diminished active Ca2+ reabsorption, like 
hypercalciuria, reduced trabecular and cortical bone thickness due to disturbed bone 
morphology, hypervitaminosis D and increased intestinal Ca2+ absorption in response to 
the impaired renal Ca2+ reabsorption.23 So far, human monogenic have not been 
associated with mutations in TRPV5. 
	 TRPV6 is mainly involved in transepithelial small intestinal Ca2+ transport. TRPV6 
knockout mice (TRPV6-/-) displayed disturbed Ca2+ homeostasis, including defective 
intestinal Ca2+ absorption, increased urinary Ca2+ excretion, decreased bone mineral 
density and deficient weight gain.24 More recently, a TRPV6 knock-in mouse model 
expressing functionally inactive TRPV6 channels have been described.25 These animals 
exhibit decreased duodenal Ca2+ uptake and increased intestinal TRPV5 gene expression 
compared to wild-type mice probably as compensatory mechanism for the loss of TRPV6 
activity.25 In humans, gain-of-function polymorphisms of the TRPV6 gene have been 
found in renal Ca2+ stone patients, suggesting hyperactivation of intestinal Ca2+ absorption 
followed by absorptive hypercalciuria.26

TRPM6
Within the TRPM subfamily, TRPM6 shares with TRPM7 the unique feature of an ion channel 
coupled to a α-kinase activity, from which the nickname “chanzyme”. Functional analysis 
identified TRPM6 as a Mg2+- and Ca2+-permeable channel, although the affinity for the 
latter ion is five times lower.27 By controlling active Mg2+ reabsorption in the kidney, 
TRPM6 is the final determinant of plasma Mg2+ concentration. Two independent research 
groups identified TRPM6 as the causative gene in the autosomal recessive disorder named 
hypomagnesemia with secondary hypocalcemia (HSH [MIM 602014]).10, 11 HSH patients 
develop severe hypomagnesemia (blood Mg2+ concentrions of 0.1–0.4 mmol/L), 
secondary hypocalcemia, disturbed neuromuscular excitability, muscle spasms, tetany 
and convulsions. By use of immunohistochemistry, the TRPM6 protein was shown to 
localize at the apical membrane of DCT1 in the kidney and at the brush border membrane 
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of absorptive epithelial cells of the ileum and colon.10, 27 Accordingly, the identified 
homozygous and compound heterozygous mutations in HSH patients lead to impaired 
intestinal and renal Mg2+ absorption. During the past decade, many proteins mutated in 
inherited forms of hypomagnesemia have been found to directly affect TRPM6 or to alter 
the driving force for Mg2+ influx in DCT1 (Figure 1).28 Further insight into the regulation of 
TRPM6 activity came from the investigation of regulatory factors affecting TRPM6 α-kinase 
domain.29 The latter can act as an indirect player involved in Mg2+ homeostasis by its 
feedback action on the TRPM6-mediated Mg2+ influx. Interestingly, it was recently showed 
that dissociation of the TRPM7 kinase from the ion-conducting pore upon cleavage by 
intracellular proteases elicits two distinct functional proteins (channel and kinase) that can 
differentially localize and regulate important cellular processes, like death and differentia-
tion.30 Possibly a similar regulatory mechanism may also concern TRPM6. 

TRPC6
The TRPC subfamily is a group of Ca2+-permeable channels that are important in the 
regulation of the intracellular Ca2+ concentrations, thus modulation of various signalling 
processes. In contrast to the above renal TRP channels, TRPC6 is not involved in systemic 
homeostatic responses. The renal expression of TRPC6 received significant interest when 
gain-of-function mutations in the gene encoding for this protein were linked to familial 
focal segmental glomerulosclerosis (FSGS [MIM 603965])31, 32 and TRPC6 was shown to 
associate with the glomerular slit diaphragm (Figure 1).31 This protein complex connects 
podocyte foot processes and plays a crucial role in regulating glomerular filtration and 
preventing the leakage of proteins into the urine (Figure 1). Increased TRPC6 activity 
enhances Ca2+ influx into the podocyte, and thereby contributes to podocyte injury, 
causing proteinuria, glomerulosclerosis and progressive kidney failure.33 In addition to 
TRPC6 gain-of-function mutations leading to hereditary FSGS, TRPC6 expression correlates 
with severity of acquired podocyte injury and glomerular disease 31, 32, 34, 35 Noteworthy, 
known anti-proteinuric therapies downregulate TRPC6 expression, accompanied by 
improved podocyte outcome and amelioration of proteinuria.33, 36, 37 , Altogether, the 
study of TRPC6 regulation in the kidney improved the mechanistic understanding of TRP 
channel function and emphasizes their role as new putative therapeutic targets for the 
treatment of kidney diseases. Specifically, these findings open the possibility to directly 
target TRPC6 as treatment strategy in proteinuric glomerular diseases. 

Regulatory mechanisms of ion channel expression 

The total capacity of a cell to mediate transport of a specific ion across the plasma 
membrane is determined by the amount of ions passing a selective channel and the 
number of channels at the cell surface. Many intracellular events that occur at multiple 
levels regulate the abundance of ion channels at the plasma membrane (Figure 2). 
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 The vesicular insertion and retrieval of channels at the cell surface represents a rapid 
regulatory mechanism.  Upon retrieval, channels are targeted for degradation, while 
others are capable of re-entering the plasma membrane. Post-translational modifi cation, 
like phosphorylation or glycosylation, can aff ect the cell-surface dynamics of ion 
channels.38, 39 Moreover, intracellular signalling cascades initiated by the binding of 
growth factors or hormones to their receptors can modulate the vesicular traffi  cking 
towards the plasma membrane.38, 40

Figure 2   A model for the molecular mechanisms involved in the regulation of ion 
channel expression at the plasma membrane. 

Control of cell surface expression of ion channels occurs at several levels: 1) Transcription; 2) Post-
transcription; 3) Translation; 4); Traffi  cking; 5) Post-translation. GPCR: G protein-coupled receptor; 
cAMP: cyclic adenosine monophosphate; -100/+1: base pairs that defi ne the proximal promote, 
counting from the transcription initiation site; RE: responsive elements; ER: endoplasmic reticulum; 
P: phosphorylation site.
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	 On the other hand, transcriptional regulation of genes encoding for ion channels 
accounts for a long-term control of their abundance at the cell surface. Activation of G 
protein-coupled receptors, receptor tyrosine kinases and Ca2+-channels at the plasma 
membrane, or diffusion of lipophilic hormones into the intracellular compartment initiate 
signalling cascades that stimulate diverse families of transcription factors, either ubiquitous 
or tissue-specific.33, 41-43 Binding of the transcription factors to their responsive DNA 
elements within the proximal promoter of target genes modulates the recruitment of the 
transcriptional machinery to the transcription initiation site. Moreover, the presence of 
more distal regulatory elements (enhancer or silencer) and the level of chromatin packing 
(epigenetic regulation) also affect gene transcription. Finally, at post-transcriptional level, 
splicing, 5’-methyl capping, polyadenylation and cleavage by small RNAs, determine 
whether the mature mRNA will undergo degradation, either in exosomes or in P-bodies, 
or translation in ribosomes. Small RNAs may also silence target mRNAs through 
translational repression, therefore affecting the rate of protein synthesis and the number 
of ion channels that will reach the plasma membrane. 

The magnesiotropic transcription factor HNF1B

A novel molecular player in Mg2+ homeostasis is the hepatocyte nuclear factor 1 homeobox B 
(HNF1B).15 HNF1B belongs to a family of homeodomain-containing transcription factors. 
HNF1B binding to the DNA is mediated by a POU specific (Pit-1, OCT1/2, UNC-86; POUS) 
and an atypical POU homeodomain (POUH) that recognize the consensus sequence 5’-
RGTTAATNATTAAC-3’ (R: purine, N: unspecified nucleotide; Figure 3A). The dimerization 
domain located at the N-terminal of the protein favors the formation of HNF1B homo- or 
heterodimers with the structurally related HNF1A in a complex that also includes two 
molecules of the dimerization cofactor of HNF1, named PCBD1 (Figure 3A and 3B). Finally, 
the transactivation domain at the C-terminal of the protein is responsible for the initiation 
of transcription (Figure 3A). 
	 In many eukaryotic transcription factor families, dimerization represents an additional 
control point or even a switch in a regulatory pathway.44 So far, the functional differences 
and regulation of the HNF1B homo- or heterodimers are not well defined. It is known that 
the dimerization cofactor PCBD1 is able to bind HNF1 proteins in the nucleus and favor the 
formation of more stable HNF1 dimers, without direct binding to the DNA or interaction 
with other proteins belonging to the transcriptional machinery.45 Interestingly, PCBD1 also 
localizes in the cytosol where it acts as pterin-4-alpha-carbinolamine dehydratase. The 
enzymatic activity of cytosolic PCBD1 allows the regeneration of tetrahydrobiopterin 
(BH4), an essential cofactor in the degradation of the amino acid phenylalanine.46 
Mutations in PCBD1 have been reported as the underlying defects of a rare form of hyper-
phenylalaninemia with primapterinuria (HPABH4D [MIM 264070], Figure 3B).47-50 It was 
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demonstrated that the enzymatic function of PCBD1 is not dependent on its function as 
dimerization cofactor, and viceversa.51 
 During early embryogenesis, HNF1B is involved in the development of tubular 
structures in kidney, pancreas, liver and the genital tract,52 where its expression is 
postnatally restricted to epithelial cells. Recent studies reported that common variants 
mapping at the HNF1B locus associate with prostate and endometrial cancer risk,53, 54 but 
the functional consequences of these polymorphisms remain subject for future research. 
With respect to the adult kidney, HNF1B is expressed throughout the entire nephron, 
whereas the expression of HNF1A is restricted to the PT. Hetererozygous mutations in the 
HNF1B gene are responsible for dominant renal cysts and diabetes syndrome (RCAD [MIM 
137920]) that includes a broad range of phenotypes with both renal and extrarenal 

Figure 3   The magnesiotropic transcription factor HNF1B. 

(A) Organization of the HNF1B protein domains. D: dimerization domain; POUH: atypical POU 
homeodomain; POUS: POU specifi c domain; NLS: nuclear localization signal. (B) Structure of the 
PCBD1/HNF1-D complex. The PCBD1 dimer (dark blue and gray) binds two HNF1 dimerization 
domains (HNF1-D, light blue and gray; Protein Data Bank fi le reference: 1F93). Residues in the PCBD1 
protein that were found mutated in patients aff ected by hyperphenylalaninemia are depicted in red.
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manifestations.55 Reported defects in the HNF1B gene are whole-gene deletions in about 
50% of the patients, whereas point mutations are detected in most of the remaining 
cases, along the entire coding sequence. In a large cohort of patients, no correlation was 
found between the type of mutation and the type and severity of the disease.56 Finally, de 

novo mutations in the HNF1B gene are encountered in up to 30–50% of new cases.

Renal phenotype
HNF1B is a renal developmental gene whose mutations represent one of the genetic 
causes of familial congenital abnormalities of kidney and urinary tract (CAKUT).57 Prenatally, 
the most frequent presentation consists of bilateral hyperechogenic kidneys with or 
without cortical cysts, whereas bilateral renal hypodysplasia with few or multiple cysts is 
prevalent in early childhood. The cause of cysts formation in the context of HNF1B 
mutations resides in the impaired transcriptional activation by HNF1B of renal cystic genes, 
i.e. genes responsible for distinct cystic kidney syndromes, like Pkhd1, Pkd2, UMOD.58 
Other targets of HNF1B in the kidney include the organic anion transporters URAT159 and 
OAT360, but the pathophysiological consequences of an altered transcription of these 
genes are unknown. So far, the best characterized tubular transport abnormalities in 
HNF1B patients involves a defect in the Mg2+ reabsorptive ability of DCT, that leads to renal 
Mg2+ wasting with hypocalciuria in up to 50% of the patients. Screening for HNF1B binding 
sites in genes known to affect renal Mg2+ transport revealed a role of HNF1B in the tran-
scriptional regulation of the FXYD2 gene encoding for the γ-subunit of the Na+-K+-
ATPase.15 Furthermore, Faguer et al. described that HNF1B nephropathy in adulthood is 
frequently accompanied by hypokalemia.61

Extra-renal phenotype 
HNF1B mutations can cause maturity-onset diabetes of the young type 5 (MODY5), 
exocrine pancreas dysfunction, liver abnormalities, genital malformations and gout. 
Autosomal dominant mutations in genes encoding for various transcription factors are 
associated with different MODY subtypes: HNF4A (MODY1), HNF1A, (MODY3), insulin 
promoter factor (IPF1/PDX1; MODY4), HNF1B (MODY5) and NeuroD1 (MODY6).62 HNF4A 
and HNF1A are primarily involved in glucose sensing and insulin secretion in pancreatic 
β-cells. During early development, HNF1B regulates the expression of HNF4A and HNF1A 
in embryoid bodies, but its role in mature β-cells is not clear.62 We know that subjects with 
HNF1B mutations have an impaired insulin secretory response to glucose and 
sulphonylureas suggesting that insulin secretion defects and concomitant decline in 
β-cell mass are possibly involved. Nevertheless, the extent of the extra-renal HNF1B-related 
phenotype is highly variable and occasionally patients can reach end stage renal disease 
without developing diabetes. The evidence that HNF1B mutations can have a causal role 
in the development of new-onset diabetes after transplantation (NODAT) further supports 
its involvement in glucose metabolism and insulin sensitivity,63 even if it cannot be 

1
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excluded that the HNF1B-mediated hypomagnesemia may contribute to the onset of 
diabetes.64 NODAT is a frequent complication of kidney transplantation, partially as a 
consequence of the immunosuppressive regimens. As HNF1B mutations represent an 
additional risk factor for NODAT, the choice of immunosuppressive treatments in HNF1B 
patients should be tailored accordingly. 

Hormonal regulation of Ca2+ and Mg2+ homeostasis

In the human body, Ca2+ and Mg2+ homeostatic systems rely on three components: i) 
tissues (re)absorbing or storing Ca2+ and Mg2+; ii) sensors responding to fluctuations in 
extracellular Ca2+ and Mg2+ concentrations; and iii) hormones that modulate the transport 
and mobilization of these minerals. While the hormonal regulation governing Ca2+ 
reabsorption and mobilization from tissues has been largely investigated,65 a 
comprehensive regulatory mechanism describing systemic Mg2+ handling is still missing. 
So far, the epidermal growth factor (EGF)66, insulin38 and estrogens67 have been suggested 
as magnesiotropic hormones directly affecting plasma Mg2+ levels by increasing renal 
reabsorption via TRPM6 (Figure 4). Interestingly, Mg2+ can bind and influence the activity 
of the Ca2+-sensing receptor (CaSR), an important molecular player in the hormonal 
coordination of Ca2+ homeostasis.68 The cloning and characterization of the extracellular 
CaSR has demonstrated that Ca2+ ions can participate actively in their own regulation 
through receptor-mediated interactions. CaSR belongs to the superfamily of G-protein-
coupled receptors (GPCRs) and is expressed in a broad range of tissues. Most importantly, 
in the parathyroid glands, CaSR closely monitors blood Ca2+ levels and controls the 
handling of this cation in kidney, bone and intestine via release into the circulation of the 
parathyroid hormone (PTH; Figure 4). In other tissues, local CaSR activation triggers 
adaptive responses to micro-environmental variations in Ca2+ and Mg2+ levels. 

PTH and 1,25(OH)2D3  
In the parathyroid glands, under hypocalcemic conditions, reduced binding of Ca2+ to 
CaSR induces rapid PTH release from the secretory granules, delays PTH degradation and 
eventually results in parathyroid hyperplasia. Increased levels of circulating PTH restore 
normal plasma Ca2+ values through: i) resorption of Ca2+ from bone; ii) directly increasing 
Ca2+ reabsorption in the DCT2/CNT segments of the nephron via TRPV569; iii) stimulating 
activation of vitamin D (1,25(OH)2D3) synthesis in the PT cells of the nephron. Increased 
1,25(OH)2D3 levels activate vitamin D receptor (VDR)-mediated gene expression, resulting 
in the enhanced transcription of Ca2+ transport proteins.41 This regulatory network 
promotes absorption of dietary Ca2+ in the small intestine, Ca2+ reabsorption in the kidney 
and release of Ca2+ mineralized in bones in a PTH-independent manner.41, 70, 71 As negative 
feedback, 1,25(OH)2D3 represses the transcription of PTH72 and may have an indirect effect 
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on PTH release by increasing the expression of CaSR.73 In a hypercalcemic situation, CaSR 
inhibits PTH release and stimulates the secretion of calcitonin (CT) by the thyroid C cells. 
CT secretion represents a robust defence against hypercalcemia via decreases osteoclast-
mediated bone resorption.74 Generally, Mg2+ binds and activates the CaSR in vitro, albeit 
with a much lower affi  nity compared to Ca2+,75 and therefore may infl uence PTH release 
by the parathyroid glands. However, hypomagnesemia is mostly associated with a 
paradoxical block of PTH secretion and a resulting hypoparathyroidism.76-78 The 
diff erences between the eff ects of Ca2+ and Mg2+ on the CaSR-mediated secretory 
responses probably reside in the diff erential involvement of these cations in the cell 
signalling cascade initiated by the CaSR.68, 79 
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Figure 4   Hormonal regulation of Ca2+ and Mg2+ homeostasis. 

Maintenance of plasma Ca2+ and Mg2+ concentrations within a narrow range relies on the 
coordinated actions of the kidney, intestine and bone under the sensing control of the parathyroid 
glands. Regulation of these processes occurs by a number of hormones, including PTH, 1,25(OH)2D3, 
EGF, estrogens and insulin. The hormones that specifi cally modulate renal Mg2+ reabsorption are 
depicted in green. PTH: parathyroid hormone; 1,25(OH)2D3: active form of vitamin D; EGF: epidermal 
growth factor.
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1,25(OH)2D3: beyond Ca2+ homeostasis
In addition to primarily affecting Ca2+ homeostasis, 1,25(OH)2D3  has potent anti-prolifera-
tive, immunosuppressive and immunomodulatory activities.80 This is achieved via the 
broad expression of VDR that is not restricted to Ca2+-transporting tissues. More recently, 
clinical and pre-clinical studies demonstrated that treatment with 1,25(OH)2D3 analogues 
has a protective effect against podocyte damage in the course of various proteinuric 
diseases.81-83 As previously described, podocyte foot processes are interconnected by 
protein complexes to form the slit diaphragms that can be defined as the functional units 
of the glomerular filter (Figure 1). Proteins located in the slit diaphragms, e.g. nephrin, 
podocin, TRPC6, provide physical linkage, but also behave as signalling molecules able to 
affect the podocyte cell behaviour. Upon injury to the podocytes or mutations in one of 
the proteins of the slit diaphragm, marked proteinuria occurs, which may give rise to 
progressive renal disease. Angiotensin II (AngII) is a key contributor to the pathogenesis of 
glomerular disease, through a mechanism that possibly includes activation and regulation 
of TRPC6.33, 84 Briefly, binding of AngII to the angiotensin type I receptor (AT1R) results in 
increased intracellular Ca2+ concentrations due to the opening of TRPC6 channels at the 
plasma membrane. Ca2+-dependent activation of the phosphatase calcineurin leads to 
translocation of its substrate, the nuclear factor of activated T cells (NFAT), to the nucleus 
where it enhances the transcription of NFAT-responsive genes, such as TRPC6 (Figure 1 
and 5).33 This could give rise to a positive feedback loop that maintains and/or worsens 
the proteinuria. Indeed, Eckel et al. demonstrated that AngII-induced proteinuria was 
ameliorated in TRPC6 knockout mice (TRPC6-/-). In accordance with the central role of AngII, 
the mainstay of current anti-proteinuric treatment consists of angiotensin-converting 
enzyme (ACE) inhibition (ACEi) and/or AT1R blockade (ARBs)85, 86. In addition, calcineurin 
inhibitors are used to reduce proteinuria in some glomerular diseases.33, 87 Importantly, 
ACEi, ARBs and calcineurin inhibitors all reduce TRPC6 expression in in vitro podocyte 
injury and in vivo glomerular disease models.33 In addition to its known effect on AngII 
biosynthesis,88 1,25(OH)2D3 directly affects the expression of the structural slit  diaphragm 
proteins podocin and nephrin.89, 90 Since other TRP channel family members, such as 
TRPV5 and TRPV6, are regulated by 1,25(OH)2D3, the above data gives rise to the hypothesis 
that TRPC6 regulation by 1,25(OH)2D3, either directly or through AngII, could contribute to 
the anti-proteinuric effect of 1,25(OH)2D3.

Acquired disturbances in Ca2+ and Mg2+ homeostasis

Mutations in key regulators of Ca2+ and Mg2+ homeostasis can be causative for genetic 
forms of disturbances in these cations.28 Moreover, perturbations of mineral homeostasis 
can represent important side effects of certain therapies, e.g. immunosuppressive therapy,91-93 
diuretic treatment,94, 95 anticancer therapy by use of the EGF receptor blocking antibody 
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cetuximab or by use of cisplatin,66, 96 or can be secondary to other medical conditions like 
chronic metabolic acidosis97, 98 and diabetes mellitus type II.99 The underlying pharmaco-
logical and (patho)physiological mechanisms of these disturbances might involve the 
epithelial Ca2+ and Mg2+ channels. The class of immunosuppressants known as calcineurin- 
inhibitors (CNI) includes the active compounds tacrolimus (also known as FK506) and 
cyclosporine A. FK506 and cyclosporine A bind the cytosolic proteins FKBP12 and 
cyclophillin, respectively, causing the inhibition of the phosphatase calcineurin (Figure 5). 
The calcineurin/NFAT pathway is a broadly expressed intracellular Ca2+-responsive pathway 
that, under physiological conditions, regulates the transcription of multiple factors involved 
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Figure 5   Calcineurin/NFAT and mTOR pathways in a representative cell model and their 
inhibition by immunosuppressive treatments. 

The binding of the immunosuppressant cyclosporine A or tacrolimus (FK506) to cyclophilin or FKBP12, 
respectively, inhibits calcineurin and in turn the translocation of NFATc to the nucleus, where 
transcription of tissue-specifi c genes by NFATn/NFATc complexes cannot take place. On the other 
hand, the immunosuppressant rapamycin inhibits the mTOR pathway known to be involved in the 
cellular response to nutrients availability and growth signals. TRPM6: transient receptor potential 
melastatin 6; EGFR: epidermal growth factor receptor; VEGFR: vascular endothelial growth factor 
receptor; GLUT-2: glucose transporter type 2; NFATc: nuclear factor of activated T-cells, cytoplasmic; 
NFATn: nuclear factor of activated T-cells, nuclear; mTOR: mammalian target of rapamycin; Ins1: insulin 
1; IL-2: interleukin-2; HNF: hepatocyte nuclear factor; TRPC6: transient receptor potential channel 6.
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in cell specific functions in various tissues.100, 101 Thus, inhibition of the calcineurin/NFAT 
signalling results in a wide range of side effects. In particular, treatment with FK506 and 
cyclosporine A associate with adverse renal consequences and impaired mineral 
homeostasis, including hypercalciuria and hypomagnesemia.91-93 In vitro and in vivo 
studies demonstrated that CNI administration causes a primary defect of Ca2+ and Mg2+ 
reabsorption by specifically downregulating the expression of proteins involved in active 
transport of these cations, among others TRPV5 and TRPM6.102-106 The treatment with 
another immunosuppressive compound, rapamycin, also associates with renal Mg2+ 
wasting in mice, whereas Ca2+ homeostasis does not seem to be affected.92, 107 Rapamycin 
binds the cytosolic protein FKBP12, similarly to FK506, and inhibits the mammalian target 
of rapamycin (mTOR; Figure 5). mTOR is a serine/ threonine kinase that exists in two 
separate complexes, mTORC1 and mTORC2. mTORC1 is involved in nutrient sensing and 
growth factors signalling, whereas mTORC2, primarily regulates cytoskeleton dynamics 
via a network of small GTP-binding proteins.108, 109 Initially identified as mTORC1- specific 
inhibitor, rapamycin has been recently shown to also affect signalling through mTORC2.110 
Overall, inhibition of the mTOR pathway by rapamycin in a variety of animal models 
revealed beneficial effects on the progression of several renal disorders like, for example, 
chronic kidney disease and polycystic kidney disease.111, 112 Nevertheless, many molecular 
mechanisms at the basis of these protective effects remain elusive. So far, contrasting in 

vivo and in vitro data did not elucidate whether impaired passive107 or active113 Mg2+ 
reabsorption along the nephron of the kidney account for the rapamycin-induced renal 
Mg2+ wasting.

Aim and outline of this thesis

The general aim of this thesis was to disclose new regulatory pathways of epithelial Ca2+ 
and Mg2+ transport, mainly with respect to renal function, in order to extend our 
knowledge in the (patho)physiology of disturbances involving these divalent cations. In 
particular, primary interest was devoted to the study of novel transcriptional networks 
that control the gene expression of ion channels, transporters and hormones relevant to 
the glomerular or tubular handling of Ca2+ and Mg2+ in the kidney. Chapter 2 elucidates 
the role of the transcription factor HNF1B on the alternative transcription of the FXYD2 

gene, encoding the two isoforms of the γ subunit of the Na+-K+-ATPase. The functional 
consequences of four HNF1B mutations associated with hypomagnesemia on the iso-
form-specific promoter activity were tested using two different reporter assays. The 
molecular mechanisms of the HNF1B-mediated transcription are further elucidated in 
Chapter 3. Based on the evidence that mutations in the PCBD1 gene, encoding the 
dimerization cofactor of HNF1, associates in patients with hypomagnesemia and renal 
Mg2+ loss, in vitro studies were performed to test the ability of PCBD1 mutants to 
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co-activate the transcription of FXYD2 by HNF1B. Chapter 4 describes a cohort of patients 
with HNF1B mutations and high PTH levels that seem unrelated to the severity of the 
kidney failure. The involvement of HNF1B in the direct transcriptional regulation of the PTH 
gene was studied in vitro by luciferase-reporter assay and serially deleted promoter 
analysis. Moreover, HNF1B expression in human parathyroid tissue and in a rat parathyroid 
cell line (PT-r) was evaluated via RT-PCR and immunohistological stainings. The study 
presented in Chapter 5 proposes a molecular mechanism for the rapamycin-induced 
renal Mg2+ wasting. Extracellular signals, that are able to stimulate the mTOR pathway, 
have been linked to the regulation of TRP channels. The role of the mTOR-inhibitor 
rapamycin on TRPM6 expression and activity was, therefore, investigated. This was 
accomplished in mice treated with rapamycin and by electrophysiological techniques 
using HEK293 cells expressing TRPM6. In Chapter 6, it was studied whether the anti-
proteinuric effect of 1,25(OH)2D3 may reside, at least in part, in the regulation of the podocyte 
TRPC6 expression. To this end, the transcriptional regulation of TRPC6 by 1,25(OH)2D3 was 
investigated in injured podocytes in vitro, in a rat adriamycin-induced nephropathy model  
for FSGS as well as in 1,25(OH)2D3-deficient 25-hydroxy-1α-hydroxylase knockout mice. 
Finally, a general discussion and future perspectives are presented in Chapter 7. 

1
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Abstract

Hepatocyte nuclear factor 1 homeobox B (HNF1B) is a transcription factor involved in 
embryonic development and tissue-specific gene expression in several organs, including 
the kidney. Recently heterozygous mutations in the HNF1B gene have been identified in 
patients with hypomagnesemia due to renal Mg2+ wasting. Interestingly, ChIP-chip data 
revealed HNF1B binding sites in the FXYD2 gene, encoding the γ-subunit of the Na+-K+-
ATPase. The γ-subunit has been described as one of the molecular players in the renal 
Mg2+ reabsorption in the distal convoluted tubule (DCT). Of note, the FXYD2 gene can be 
alternatively transcribed into two main variants, namely γa and γb.
	 In the present study, we demonstrated via two different reporter gene assays that 
HNF1B specifically acts as an activator of the γa-subunit, whereas the γb-subunit expression  
was not affected. Moreover, the HNF1B mutations p.His69fsdelAC, p.Lys156Glu, p.
His324Ser325fsdelCA and p.Tyr352fsinsA, previously identified in patients with hypo
magnesemia, prevented transcription activation of γa-subunit via a dominant negative 
effect on wild-type HNF1B. By immunohistochemistry, it was shown that the γa- and 
γb-subunits colocalize at the basolateral membrane of the DCT segment of mouse kidney. 
On the basis of these data, we suggest that abnormalities involving the HNF1B gene  
may impair the relative abundance of γa and γb, thus affecting the transcellular Mg2+ 
reabsorption in the DCT.
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Introduction

HNF1B is a transcription factor that is critically involved in the early vertebrate development 
and embryonic survival. Although it was first identified in the liver,1 it is also highly 
expressed in the pancreas, kidney, lung, ovary, testis and gastrointestinal tract.2 In kidney, 
it is expressed exclusively in the tubular epithelial cells along all nephron segments.3 In the 
past decades, candidate gene strategies have led to the identification of several targets 
that are regulated by HNF1B, such as the cystic disease genes PKHD1, PKD2, UMOD, and 
SOCS-3.4-6

	 HNF1B belongs to a family of homeodomain-containing transcription factors. It 
consists of a POU specific (Pit-1, OCT1/2, UNC-86; POUS) and an atypical POU homeodomain 
(POUH) that mediate DNA binding to the consensus sequence 5’-RGTTAATNATTAAC-3’. 
HNF1B forms homo- or heterodimers with the structurally related HNF1A in a stable 
complex that includes the dimerization cofactor PCBD1. In humans, heterozygous mutations  
of HNF1B result in several congenital kidney and urinary tract abnormalities, as well as a 
variety of extrarenal phenotypes.7, 8 Since deletion of the entire HNF1B gene is frequently 
found in human patients, it seems likely that a gene dosage effect is involved. However, 
some mutated factors behave as dominant negative proteins that may possibly inactivate 
the wild-type protein.9 Recently, novel mutations in the HNF1B gene, both de novo and 
inherited, have been described.10, 11

	 Hypomagnesemia, although not deeply investigated, is often reported in patients 
carrying HNF1B defects.11, 12 Interestingly, Adalat et al. described five cases of HNF1B 
whole-gene deletions, two splice site mutations and one frame-shift mutation being 
associated with renal malformations and hypomagnesemia (< 0.65 mmol/L) due to a 
specific renal defect in the transcellular Mg2+ transport in the distal convoluted tubules 
(DCT). The DCT plays an important role in fine-tuning the plasma Mg2+ levels. Here, Mg2+ 

is actively reabsorbed from the pro-urine into the cell via the transient receptor potential 
channel melastatin subtype 6 (TRPM6)13 and subsequently extruded to the blood via an 
unknown mechanism. In the recent years, several new proteins have been linked to active  
renal Mg2+ handling by directly affecting TRPM6 or by altering the driving force for Mg2+ 
influx via the channel.14

	 Of note, bioinformatics prediction tools in combination with functional genomic 
approaches confirmed the presence of HNF1B binding sites in the FXYD2 gene, encoding 
the regulatory γ-subunit of the Na+-K+-ATPase.15 Interestingly, the missense mutation p.
Gly41Arg in the same protein was previously identified as the underlying defect of isolated 
dominant hypomagnesemia associated with hypocalciuria (IDH [MIM 154020]).16 The 
γ-subunit (FXYD2) is a type I transmembrane protein, mostly expressed in the kidney.17  Its 
gene can be alternatively transcribed into two main variants, namely γa and γb, which 
differ only at their extracellular N-termini.18 The two γ-subunit isoforms modulate the 
Na+-K+-ATPase affinities for its major physiological ligands.19 In particular, this pump is 

2



36 | Chapter 2

responsible for maintaining the normal transmembrane gradients of Na+ and K+, which in 
the kidney drive the trans-epithelial salt reabsorption. 
	 In the present study, we investigated the role of wild-type HNF1B and HNF1B 
p.His69fsdelAC, p.Lys156Glu, p.His324Ser325fsdelCA, p.Tyr352fsinsA on the alternative 
transcription of the two human γ-subunit variants. Via two different approaches based on 
reporter genes, we were able to show that wild-type HNF1B specifically induces the 
γa-subunit transcription whereas all HNF1B mutants partially prevented it, probably due to 
a dominant negative effect on the wild-type transcription factor. 

Materials and Methods 

Parvalbumin-EGFP mice
The transgenic parvalbumin-EGFP mice were obtained from the University of Heidelberg, 
Germany.20 Parvalbumin is a Ca2+-binding protein predominantly distributed in the early 
distal convoluted tubule (DCT) of the kidney 21. Briefly, the enhanced green fluorescent 
protein (EGFP) was expressed under the control of the parvalbumin gene promoter by 
bacterial artificial chromosome (BAC) transgene, resulting in the specific EGFP-labeling of 
the parvalbumin-expressing DCTs. 

DNA constructs
The human FXYD2 region from -1300 bp upstream the FXYD2b exon, till exon 2 was 
obtained by amplification of genomic DNA, using a high fidelity DNA polymerase 
(Phusion, Finnzymes), and the PCR product was cloned into a pGEM-T Easy vector 
(Promega, Fitchburg, USA). Subsequently, an EGFP SV40 polyA terminator product was 
amplified from a previous construct and cloned downstream of the FXYD2 genomic 
sequence. HNF1B full-length cDNA was amplified by PCR from HNF1B pCMV-SPORT6 
(clone IRATp970A0421D, ImaGenes), subcloned into the bicistronic expression vector 
pCINeo IRES GFP and HA-tagged at the N-terminus. HNF1B p.His69fsdelAC, p.Lys156Glu, 
p.His324Ser325fsdelCA and p.Tyr352fsinsA were obtained by site-directed mutagenesis 
according to the manufacturer’s guidelines (Stratagene, La Jolla, USA). For co-transfection 
experiments with FXYD2-EGFP pGEM T-Easy, the IRES GFP was removed from the 
bicistronic HNF1B constructs. Firefly luciferase constructs were obtained by amplification 
of the promoter regions of interest using FXYD2-EGFP pGEM T-Easy as a template and 
subcloned into pGL3-Basic vector (Promega, Fitchburg, USA). Primer sequences used for 
cloning or mutagenesis PCR are reported in Supplemental Table 1. All constructs were 
verified by sequence analysis.
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Cell culture and transfection
Human Embryonic Kidney cells (HEK293) were grown in Dulbecco’s modified Eagle’s 
medium (Bio Whittaker-Europe, Verviers, Belgium) containing 10% (v/v) fetal calf serum, 2 
mM L-glutamine and 10 ug/ml ciproxin at 37°C in a humidity-controlled incubator with 5% 
(v/v) CO2. The cells were transiently transfected with the respective constructs using poly-
ethylenimine (Polysciences Inc.) cationic polymer and analyze for protein or mRNA 
expression at 48 hours post-transfection. 

Immunohistochemistry
Immunohistochemistry was performed as previously described.22 In short, staining of 
serial sections was performed on 7-μm cryosections of periodate-lysine-paraformalde-
hyde–fixed kidney samples from parvalbumin-EGFP mice. The mouse kidney cryosections 
were incubated overnight at 4°C with the following primary antibodies: rabbit anti-γb 
(1:2,000) raised against the N-terminus peptide MDRWYLGG of the mouse γb isoform 
conjugated to tetanus toxoid as a carrier,17 and rabbit anti-γa (1:50) raised against the 
N-terminus peptide MAGEISDLSANS of the mouse γa isoform (kind gift from Prof.dr. Gerald 
Kidder, The University of Western Ontario). Sections were then incubated with Alexa Fluor 
594 conjugated secondary antibodies. Photographs of the entire cortex were taken with 
the microscope Zeiss Axio Imager 1 microscope (Oberkochen, Germany) equipped with 
the fluorescence lamp HXP120 Kubler Codix.

Immunocytochemistry
HEK293 cells, which lack endogenous HNF1B,23 were transiently transfected with wild-type 
and mutant HA-HNF1B pCINeo IRES GFP. 48 hours after transfection the cells were seeded 
on glass and fixed with 4% w/v paraformaldehyde (PFA) for 30 minutes at room 
temperature, followed by permeabilization for 15 minutes with 0.2% v/v Triton X-100 in 
PBS supplemented with 0.1% w/v BSA. After incubation overnight with a 1:100 dilution of 
a mouse anti-HA antibody  (6E2, Cell Signalling), cells were washed three sites with PBS-CM 
(1 mM MgCl2, 0.1 mM CaCl2) and incubated with a secondary Alexa Fluor 594 coupled 
goat anti-mouse antibody (1:100) for 45 minutes at room temperature. Cells were washed 
three times with PBS-CM prior mounting with DAPI–Vectashield (Vector Laboratories, 
Burlingame, CA).

Immunoblotting
Mouse kidney protein lysate was prepared as previously described.24 HEK293 cells were 
lysed in 1x Laemmli sample buffer containing 100 mM dithiothreitol and protein inhibitors, 
subsequently denatured for 30 minutes at 37°C, and then subjected to SDS-PAGE. 
Immunoblots were incubated with the following antibodies: mouse anti-HA (1:500), rabbit 
anti-γb (1:5,000), rabbit anti-γa (1:500) or rabbit anti-γ (1:500) raised against the C-terminus 
of the γ subunit (kind gift from Prof.dr. Steven J.D. Karlish, Rehovot, Israel).25 Subsequently, 
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blots were incubated with sheep horseradish peroxidase-conjugated anti-mouse or 
anti-rabbit IgG (Sigma, MO, USA) and then visualized using the enhanced chemilumines-
cence system (ECL, Pierce).

Luciferase reporter assay 
In a 12-well plate, 700 ng of the promoter firefly luciferase plasmids and 100 ng of the 
HNF1B pCINeo plasmid were transfected into HEK293 cells. For standardization of the 
transfection efficiency, 20 ng of Renilla luciferase plasmid CMV-pRL was used as a reference. 
Firefly and Renilla luciferase activities were measured with the Dual-Luciferase Reporter 
Assay (Promega, Fitchburg, USA).

Quantitative Real-Time Polymerase Chain Reaction 
HEK293 cells were transiently cotransfected in a 6-well with 1.75 μg DNA of FXYD2-EGFP 
and 30 ng of either wild-type or mutant HNF1B. The potential dominant negative effect 
was investigated by co-transfection of 15 ng of wild-type HNF1B and 15 ng of mutant 
HNF1B. The total amount of DNA was kept equal using the pCINeo empty vector. Total 
RNA isolation and reverse transcription were performed, as described previously.26 The 
cDNA was used to determine mRNA expression levels by CFX96 Real-Time PCR detection 
system (Bio-Rad) both of the target genes of interest and of the housekeeping gene hy-
poxanthine-guanine phosphoribosyl transferase (HPRT), as an endogenous control. 
Real-time RT-PCR primers (Table 1) were designed using the program Primer3 (v.0.4.0).

Data analysis
All results presented are based on a minimum of three different experiments. Values are 
expressed as means ± SEM. Statistical significance (p<0.05) was determined using 
one-tailed Students t-test or one-way ANOVA with Bonferroni’s procedure. 

Table 1  Oligonucleotide sequences used for Real-time RT-PCR analysis.

Target Forward (5’-3’) Reverse (5’-3’)

FXYD2a-EGFP GTCGATGGACGGTGGCGGCAG GTCCAGCTCGACCAGGATGG

FXYF2b-EGFP CAGGTGGTACCTGGGCGGCAG GCTGAACTTGTGGCCGTTTA

HPRT CATTATGCTGAGGATTTGGAAAG GCTTTGATGTAATCCAGCAGGTC

FXYD2a: γ-subunit of the Na+-K+-ATPase, isoform a; FXYD2b: γ-subunit of the Na+-K+-ATPase, isoform b; EGFP: 
enhanced green fluorescent protein; HPRT: hypoxanthine-guanine phosphoribosyl transferase.
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Results and discussion

HNF1B enhances FXYD2a but not FXYD2b transcription
FXYD2 gene (Gene ID: 486) maps on chromosome 11q23 and consists of seven exons 
spanning 9.2 kb of genomic DNA.15 Three transcripts are associated to this gene, with 
FXYD2a (NM001680) and FXYD2b (NM021603) being the main ones. Promoter elements 
were identified around the alternative start sites for exon-b and exon-a, that encode 
different N-termini of the γ–subunit protein (Figure 1A). The highly conserved HNF1B 
binding sites localize within the first intron of the human FXYD2 gene (Figure 1B), at 
positions +1092 and +3256 from the transcription initiation site of FXYD2b and act as 
enhancer elements.12 Nevertheless, it is unknown whether HNF1B sites may act as 
upstream regulatory elements for γa and/or downstream enhancer elements for γb. In 
order to elucidate the HNF1B transactivation activity on the alternative transcription of 
FXYD2b, the first intron of the human FXYD2 gene was cloned upstream to the proximal 
(-100) and distal (-1269) promoter of the FXYD2b isoform and linked to a luciferase reporter 
gene. HEK293 cells were transfected with the promoter-reported plasmid and luciferase 
activity was measured after HNF1B stimulation. The enhancer moderately affected γb 
promoter activity at a proximal but not at a distal position (Figure 1C). Noteworthy, γa 
promoter activity was substantially enhanced by HNF1B (Figure 1C). We conclude that 
HNF1B specifically acts as an activator of the γa-subunit. 

Characterization of HNF1B mutants
In this study, three frameshift mutations (p.His69fsdelAC, p.His324Ser325fsdelCA, p.
Tyr352fsinsA), of which one associates with hypomagnesemia, and one missense mutation 
(p.Lys156Glu) were tested for its transactivation activity on the alternative transcription of 
the FXYD2 gene. Noteworthy, HNF1B p.Lys156Glu, p.His324Ser325fsdelCA and p.Tyr352fsinsA 
have an intact nuclear localization sequence and, therefore, localized to the nucleus 
whereas HNF1B p.His69fsdelAC was mainly retained in the cytosol (Figure 2A).27  
Importantly, all mutants were checked for equal expression as shown in Figure 2B. HNF1B 
p.His69fsdelAC was not detectable at the expected molecular weight of 10 kD, probably 
due to the faster protein turnover or the different exposure of the HA epitope compared 
to the other mutants.

HNF1B mutants have a dominant negative effect on wild-type HNF1B 
transcription of FXYD2a
The human genomic region spanning from -1269 to +5393 downstream the FXYD2b exon 
was cloned in front and in frame with the EGFP reporter gene (Figure 3A, left panel). 
Upon stimulation with exogenous HNF1B in HEK293 cells, alternative transcription takes 
place eventually translating two EGFP fusion transcripts into two proteins that differ in 
their N-terminus. Dose-response assays with increasing amounts of wild-type HNF1B 

2
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Figure 1   HNF1B promotes the γa-subunit transcription initiation. 

(A) Organization of the human FXYD2 gene and its alternative transcripts. Each exon is indicated 
with its length. Numbering of the nucleotides starts from the transcription initiation site of FXYD2b. 
Alternative transcription can be initiated at exon-b (+1) or exon-a (+3327). HNF1B sites are arranged 
as duplets at positions +1092 and +3256.  Transcription initiation site.

Human duplet A    CAGCTTTGTTTGTGACCAGGGTAAATATTACCTGGCACTGTTAATGTTTAATGCCCCCACCTCATC
Human duplet B CAGCTTTTCTTGTGACCAGGGTAAATATTACCTGGCACTGTTAATGTTTAATGCCCGCACCTCGTC
Rat          CAGCCTTTCTTGTGACTAGGGTAAATATTACCTGACACTGTTAATATTTAATGCCCCCCACCTCTG
Mouse         CAGCCTTTCTTGTGACTGGGGTAAATATTACCTGACACTGTTAATATTTAATGCCCCCCCACCTCT
Rabbit         CAGCTTTTCTTGTGACCAGGGTAAATATTACCTGGCACTGTTAATGTTTAATGCCCGCACCTCGTC
Horse          GGGCCTTTCTTGTGACCAGGGTAAATATTACCTGGCACTGTTAATGTTTAATGCCCCTCCTCACCC
Dog          GGGCTTCTCTTGTGACTCGGGTAAATATTACCTGGCACTGTTAATGTTTAATGCCCCCACCTCATC
Cow          GGGCTTTTCTTGTGACCAGGGTAAATATTACCTGGCACTGTTAATGTTTAATGCCCCCACCCCATC

Consensus:                                                     GGTAAATATTACCT     TGTTAATGTTTAAT
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2

Figure 2  �Characterization of the human HNF1B mutants. 

(A) Intracellular localization of wild-type HNF1B and HNF1B mutants in transiently transfected 
HEK293 cells. Red: HA tag; Blue: DAPI (nuclear marker); D: Dimerization; POUH: POU homeodomain; 
POUS: POU specific. Scale bars: 10 μm. (B) HA-HNF1B WT (65.5 kD) and its mutants p.His69fsdelAC 
(69; 9.47 kD), p.Lys156Glu (156; 65.5 kD), p.His324Ser325fsdelCA (324; 41.5 kD) and p.Tyr352fsinsA (352, 
39.4 kD) were transiently transfected in HEK293 cells and checked for expression via immunoblotting. 
Mock (M) plasmid was transfected in HEK293 cells as negative control. β-actin was included to check 
for equal loading.

�(B) Alignment of the promoter region -1000 from the start site of exon-a of different species revealed 
highly conserved HNF1B binding sites arrange as a duplet. For the human FXYD2 gene, both duplet 
A (+1092) and duplet B (+3327) are shown. (C) Luciferase assay. HEK293 cells were transiently 
transfected with luciferase constructs carrying the γa- and γb- subunit regulatory elements. The 
promoter activity was tested with (black bars) or without (grey bars) HNF1B stimulation. 

R.F.U.: Renilla Firefly Units. Error bars indicate SEM (n=3). *, p<0.05, compared with non-stimulated condition.
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indicated 30 ng as the amount of DNA that generates the half maximal induction of the 
FXYD2a-EGFP transcription (Figure 3B).
	 To determine the effect of the HNF1B mutants on the transcription of FXYD2a and 
FXYD2b, the FXYD2-EGFP plasmid was transiently transfected into HEK293 cells and 
alternative transcripts levels were determined by use of isoform-specific primers after 
HNF1B induction. As expected, FXYD2a-EGFP mRNA was stimulated by wild-type HNF1B 
whereas the mutant transcription factors lost their transactivation properties. FXYD2b- 
EGFP mRNA was in all cases not affected (Figure 3C, left panel).

Figure 3  �Study of the alternative transcription of the human FXYD2 gene by wild-type 
HNF1B and its mutants. 

(A) Scheme of the human FXYD2-EGFP construct. FXYD2a- and FXYD2b-EGFP transcripts were 
detected by use of an isoform-specific forward primer, spanning the exon-exon junction, and an 
EGFP reverse primer. (B) FXYD2a-EGFP (black bars) and FXYD2b-EGFP (grey bars) mRNA levels after 
co-transfection with increasing DNA quantities of wild-type HNF1B. (C) (Left panel) Wild-type HNF1B 
(WT) stimulates FXYD2a-EGFP (black bars) but not FXYD2b-EGFP (grey bars) mRNA synthesis. (Right 
panel) FXYD2a-EGFP mRNA expression is significantly reduced by a dominant negative effect of 
HNF1B p.His69fsdelAC (69), p.Lys156Glu (156), p.His324Ser325fsdelCA (324) and p.Tyr352fsinsA (352) 
on the transactivation activity of wild-type HNF1B (WT). Error bars indicate SEM (n=3). *, p<0.05, 
compared to FXYD2a-EGFP mRNA stimulation by wild-type HNF1B.
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Considering the autosomal dominant inheritance of HNF1B mutations, a potential 
dominant effect was tested by co-transfection of equal amounts of plasmid DNA encoding 
wild-type HNF1B, HNF1B mutants or mock in HEK293 cells. The induction of FXYD2a 
transcription in HEK293 cells coexpressing wild-type HNF1B and each of the HNF1B 
mutants was significantly reduced in comparison with cells coexpressing wild-type HNF1B 
and mock plasmid (Figure 3C, right panel). To date, HNF1B p.Lys156Glu has not been 
associated with hypomagnesemia, but plasma Mg2+ concentrations in HNF1B mut+ 
patients remain to be extensively investigated.

γa- and γb-subunits colocalize in the DCT of the kidney
In order to investigate γa and γb expression in the DCT, parvalbumin-EGFP mouse kidney 
sections were stained with antibodies raised against the specific N-terminus of each γ 
isoform. Both γ-subunits are expressed at the basolateral membrane (Figure 4A), where 
the Na+-K+-ATPase is also localized along the nephron.28 The staining of γb was clearly 
restricted to the EGFP-positive DCTs, whereas γa-associated immunofluorescence showed 
staining of several tubular segments in the kidney cortex, in agreement with previous 
localization studies.18 Noteworthy, using serial kidney sections, we demonstrated that 
EGFP-positive tubules show overlap with the immunopositive staining of both γ variants 
(Figure 4A). 
	 The specificity of the γa and γb antibodies was further investigated via immunoblot 
on a mouse kidney lysate. Due to postranslational modifications, γ-subunit migrates on 
SDS-PAGE gels as a doublet with γb migrating faster than γa.29 As expected, staining for 
the C-terminus of the protein showed two bands (Figure 4B). Nevertheless, in our 
experimental conditions both variants were detected at a much higher molecular weight 
compared to the predicted size (7.18 kD γa, 7.34 kD γb).29 Probably other still unknown 
factors that influence gel migration are involved, as anti-γa and anti-γb antibodies clearly 
recognized the upper and the lower band of the doublet, respectively (Figure 4B). 
	 In conclusion, our data indicate that mutations in the HNF1B gene affect the expression 
of γa-subunit. We speculate that reduced amount of γa at the basolateral membrane of 
the DCT may influence Mg2+ reabsorption via three putative mechanisms: i) changes in 
the equilibrium between γa and γb expression can impair the Na+-K+-ATPase activity and 
cause an imbalance in salt reabsorption. Recently, it has been shown that dysfunction of 
the K+ channel Kir4.1 in the basolateral membrane of the DCT inhibits the Na+-K+-ATPase 
via loss of recycling, renders the membrane potential less negative, and thereby reduces 
Mg2+ reabsorption through TRPM6;30, 31 ii) γ-subunit variants can oligomerize and behave 
as an inward-rectifying cation channel that can mediate extrusion of Mg2+ to the blood.32 
Nevertheless, this hypothesis seems unlikely due to the unfavorable electrochemical 
gradient across the basolateral membrane; iii) γa and γb may interact with a still unknown 
Mg2+ extrusion mechanism, involving a primary or secondary active transporter. In the 
future, functional studies may validate one of these hypotheses.
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Figure 4   Immunohistochemical detection of γa- and γb-subunit in the DCT of the kidney. 

(A) Staining for γa- and γb-subunit (red; upper and lower panel, respectively) of serial kidney sections 
from parvalbumin–EGFP mice. In green, the EGFP positive DCTs. The asterisks in the merged panels 
indicate representative overlapping distal tubules on serial sections intensively stained for γa and γb. 
Scale bars: 50 μm. (B) A protein lysate from mouse kidney was resolved in a wide lane of a 16% 
SDS-PAGE gel. The blot was cut into three pieces and stained with anti-γb, anti-γa or anti-γ C-terminus 
antibodies (C-t). The faster-migrating band was identifi ed as the γb-subunit. The epitopes recognized 
by the isoform-specifi c antibodies are underlined in the alignment of the mouse γa- and γb-subunits. 
In grey are indicated the amino acids that diff er between the two isoforms at the N-terminus (N-t) of 
the proteins. 
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Abstract

Parathyroid hormone (PTH) plays a key role in calcium and phosphate homeostasis. 
Heterozygous mutations or deletions of the transcription factor HNF1B result in a 
heterogeneous syndrome characterized by renal cysts and diabetes, together with a 
variety of other extra-renal and renal manifestations. Since we observed hyperpara
thyroidism in several of these patients, we tested the hypothesis of a direct role of HNF1B 
in the transcriptional regulation of the human PTH gene in the parathyroid gland. We 
assessed eleven patients, nine with heterozygous HNF1B whole gene deletions and two 
with heterozygous HNF1B mutations, of which eight showed hyperparathyroidism. In two 
of these patients the hyperparathyroidism was appropriate for the level of kidney function. PTH 
could be discrepant in the others, especially given the concomitant hypomagnesemia, which is 
known to induce a paradoxical hypoparathyroidism. We demonstrated HNF1B expression in 
PTH-positive cells of human parathyroid gland. Chromatin immunoprecipitation analysis 
showed that HNF1B directly binds responsive elements within the human PTH promoter. 
Co-transfection of a PTH promoter- luciferase construct with a wild-type HNF1B construct 
resulted in a maximal reduction of 30% of PTH promoter activity. Importantly, HNF1B 
mutants lacked this inhibitory property. Serial deletions in the PTH promoter construct 
revealed that the inhibitory effect of HNF1B resides -200/-70 bp from the transcription 
initiation site. Our data demonstrate that HNF1B is a novel repressor of human PTH gene 
transcription, which could explain the early development of hyperparathyroidism in 
patients with HNF1B mutations or deletions.
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Introduction

The parathyroid gland has a central role in calcium (Ca2+) and phosphate (PO4
3-) 

homeostasis. Parathyroid hormone (PTH) regulates the synthesis of 1,25-dihydroxyvitamin 
D3 (1,25-D3), alters Ca2+ and PO4

3- (re)absorption in the kidney and intestine, and modulates 
bone metabolism.1-3 Serum PTH levels depend on direct secretion of PTH from the 
secretory granules in the parathyroid gland as well as on synthesis of new PTH molecules 
secondary to PTH gene transcription.2 PTH expression is restricted to the parathyroid 
glands in humans and is under the control of specific stimuli and repressors. A low serum 
Ca2+ alters the activation of the Ca2+-sensing receptor (CaSR) on the surface of parathyroid 
glands, leads to the rapid release of PTH from the secretory granules and stimulates PTH 
gene expression, while high Ca2+ inhibits PTH secretion.4-6 Contrary to Ca2+, high PO4

3- 
leads to increased PTH levels.6, 7 Furthermore, PTH transcription is repressed by binding of 
a complex of 1,25-D3, the 1,25-D3 receptor (VDR) and retinoic acid receptor (RXR), to 
vitamin D responsive elements (VDRE) in the promoter region of the PTH gene.8, 9 Recently, 
it was shown that PTH gene transcription is also inhibited by Fibroblast Growth Factor 23 
(FGF23), a novel phosphaturic hormone that acts though the FGFR1/Klotho receptor 
complex present in parathyroid cells.10, 11 Finally, the PTH promoter activity is regulated by 
the concerted action of tissue specific transcription factors, such as GCMB,4 and 
non-specific transcription factors, like SP1, NF-Y, CRE, GATA.12, 13

	 The hepatocyte nuclear factor 1 homeobox B (HNF1B) is a Pit-1, OCT1/2, UNC-86 (POU) 
domain transcription factor that participates in organogenesis during early embryonic 
development.14 More specifically, it regulates tubulogenesis in the liver, pancreas, kidney, 
and genital tract. In the kidney and urinary tract, HNF1B is expressed in renal tubules as well 
as developing ureters. Heterozygous mutations or deletions in the HNF1B gene are 
responsible for a dominant syndrome characterized by highly heterogeneous renal and 
extrarenal phenotypes that can comprise: i) renal malformations with or without cyst 
formation (glomerulocystic disease, cystic renal dysplasia, calyceal abnormalities, oligome-
ganephronia or solitary kidney), ii) liver and genital tract abnormalities, iii) defects in the 
exocrine and endocrine pancreatic functions including maturity-onset diabetes of the 
young type 5 (MODY5 [MIM 137920]). Furthermore, HNF1B nephropathy is distinguished by 
a large variability in renal tubular transport abnormalities.15 Functional HNF1B binding sites 
have been identified in the promoter regions of many renal cystic genes,16-18 as well as 
genes involved in tubular transport,19, 20 such as the FXYD2 gene encoding for the γ-subunit 
of the Na+-K+-ATPase. The impaired transcription of this gene by HNF1B is suggested to be 
involved in the renal Mg2+ wasting observed in almost half of the patients.21 
	 In this study, we describe the observation that PTH levels are inappropriately high in 
several patients with known HNF1B mutations and/or deletions visiting the outpatient 
clinic of our institution. Since HNF1B is a tissue-specific transcription factor highly 
expressed in the epithelia of specialized endocrine organs and tissues with secondary 
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endocrine functions,22-25 we hypothesized that HNF1B might regulate PTH expression in 
the parathyroid gland. Therefore, the aim of our study was to investigate whether HNF1B 
could act as a transcriptional regulator of the human PTH gene, possibly by directly 
affecting PTH promoter activity.

Materials and Methods

Cohort details
All patients were diagnosed by nephrologists and/or clinical geneticists at the Radboud 
University Nijmegen Medical Centre, The Netherlands. Clinical histories were collected 
from hospital records. Informed consent for genetic analyses was obtained from all 
patients. Intact PTH was measured on an Architect random access analyzer (Abbott). In a 
limited number of samples, intact PTH was measured by another method which gave 
comparable results conform the EP9 (CLSI) protocol.

DNA constructs
The 5'-promoter region of the human PTH gene (−1476/+25; + 1 designates the transcription 
start site, NM_000315.2) was obtained by amplification of genomic DNA using a high 
fidelity DNA polymerase (Phusion, Finnzymes; Forward: AAAAAAGGTACCCAGCTATA-
AAGTCATCCCGTCTT, Reverse: GGGGGGGAGCT CGCAGACCCCTTAAATGGTGA). To generate a 
Firefly luciferase reporter construct, the PCR product was cloned into a pGL3-Basic vector 
(Promega, Fitchburg, USA), using the restriction sites KpnI and SacI. Firefly luciferase 
constructs for deletion analysis were prepared with a similar cloning strategy after 
amplification of the promoter regions -1000/+25 (Forward: AAAAAAGGTACCAGTCAGA-
CATGTGGCAGCATCATG, Reverse: GGGGG GGAGCTCGCAGACCCCTTAAATGGTGA), -630/+25 
(Forward: AAAAAAGGTA CCCATGCAGTTAGTGCTTATCAAATG, Reverse: GGGGGGGAGCTC-
GCAGACC CCTTAAATGGTGA), -500/+25 (Forward: AAAAAAGGTACCCAAATTATTCTTAA 
CACTTCCTTTAAG, Reverse: GGGGGGGAGCTCGCAGACCCCTTAAATGGTGA), -200/+25 
(Forward: AAAAAAGGTACCGTCTTTGCATAAGCCCCTTGTC, Reverse: GGGGGGGAGCTCG-
CAGACCCCTTAAATGGTGA), -70/+25 (Forward: AAAAAAG GTACCCAGAGAATTGGGAGT-
GACATC, Reverse: GGGGGGGAGCTCGCAGA CCCCTTAAATGGTGA). The pRL-CMV vector 
encoding Renilla luciferase was commercially available (Promega, Fitchburg, USA) and 
used to correct for transfection efficiency. HA-HNF1B wild-type and HA-HNF1B H69fsdelAC, 
K156E, H324S325fsdelCA and Y352finsA pCINEO IRES GFP were cloned as previously 
described.26 All constructs were verified by sequence analysis. 

Reverse Transcriptase- Polymerase Chain Reaction (RT-PCR) analysis
Total RNA from human parathyroid glands and PT-r cells was isolated using Trizol (Ambion, 
Life Technologies). Total RNA (1.5 μg) was reverse transcribed and end-point PCR reactions 
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performed. Part of the RNA sample was not reverse transcribed before PCR and thereby 
served as a negative control. Sequences of the oligonucleotides used for the RT-PCR are 
shown in Table 1. 

Cell culture and transfection
Human Embryonic Kidney cells (HEK293) were grown in DMEM (Bio Whittaker-Europe, 
Verviers, Belgium) containing 10% (v/v) FBS (Thermo Fisher HyClone), 2 mM L-glutamine 
and 10 ug/ml ciproxin at 37°C in a humidity-controlled incubator with 5% (v/v) CO2. The 
cells were transiently transfected with the respective constructs using polyethylenimine 
cationic polymer (PEI, Polysciences Inc.) and assayed 48 hours post-transfection. When 
performing dose-response analysis, an empty vector (including nonsense mock DNA) 
was used to keep the total amount of transfected DNA constant. 
	 The immortalized PT-r cell line was previously isolated from rat parathyroid and 
characterized to show endogenous PTH expression, which can be inhibited by extracellular 
Ca2+, as well as 1,25-D3 via a VDR-mediated mechanism.4, 27 The PT-r cells were maintained 
in DMEM/F12 (Gibco, Life Technologies) supplemented with 10% (v/v) FBS (Thermo Fisher 
HyClone) and antibiotics (50 U/ml penicillin and 50 μg/ml streptomycin; Gibco, Life 
Technologies) under a 5% (v/v) CO2 atmosphere at 37°C. For immunocytochemistry 
experiments, PT-r cells were plated on fibronectin-coated glasses in 12-well plates at 50% 
confluence and assayed the following day.

Luciferase reporter assay 
In a 12-well plate, 700 ng of the PTH promoter-luciferase constructs and 100 ng of either 
empty vector (mock DNA) or HA-HNF1B wild-type, HA-HNF1B H69fsdelAC, K156E, H324S-
325fsdelCA, and Y352finsA pCINEO IRES GFP constructs were co-transfected into HEK293 
cells. To correct for transfection efficiency, 10 ng of pRL-CMV was used as a reference. 
Firefly and Renilla luciferase activities were measured with the Dual-Luciferase Reporter 
Assay (Promega, Fitchburg, USA).

Immunohistochemistry
Staining was performed on 6-μm sections of frozen human cadaveric parathyroid samples 
that were fixed with 100% methanol for 10 min at -20°C. Subsequently, sections were 
washed three times with TN buffer (0.15 mol/L NaCl, 0.1 mol/L Tris adjusted to pH 7.6 with 
HCl) prior incubation in blocking buffer for 30 min. Sections were stained overnight at 4°C 
with a rabbit anti-human HNF1B (1:20; Santa Cruz, sc-22840). The following day, sections 
were washed and incubated with a goat anti-rabbit secondary antibody coupled to Alexa 
Fluor 488 (1:300; Invitrogen, A11008) for 1 hour at room temperature. Sections were 
washed and incubated for 2 hours with a mouse anti-human PTH antibody (1:50; AbD 
Serotec, 7170-6216). After washing, a goat anti-mouse secondary antibody conjugated to 
Alexa Fluor 594 (1:300; Invitrogen, A11005) was applied for 1 hr. Subsequently, sections 
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were washed, incubated for 30 minutes with DAPI and mounted with Mowiol. Photographs 
were taken using a Zeiss Axio Imager 1 microscope (Oberkochen, Germany) equipped 
with a HXP120 Kubler Codix fluorescence lamp and a Zeiss Axiocam MRm digital camera.

Immunocytochemistry
PT-r cells were fixed with 4% (w/v) paraformaldehyde (PFA) for 30 minutes at room 
temperature, followed by permeabilization for 15 minutes with 0.2% (v/v) Triton X-100 in 
PBS supplemented with 0.1% (w/v) BSA. After incubation overnight at 4°C with a rabbit 
anti-human HNF1β antibody (1:50, sc-22840, Santa Cruz), cells were washed three times 
with PBS supplemented with 0.1 mmol/L CaCl2 and 1.0 mmol/L MgCl2 (PBS-CM), and 
subsequently incubated with a secondary goat anti-mouse antibody (1:100), coupled to 
AlexaFluor 594, for 45 minutes at room temperature. Cells were washed three times with 
PBS-CM prior mounting with DAPI–Vectashield (Vector Laboratories, Burlingame, CA).  
Photographs were taken using a Zeiss Axio Imager 1 microscope (Oberkochen, Germany) 
equipped with a HXP120 Kubler Codix fluorescence lamp and a Zeiss Axiocam MRm 
digital camera.

Chromatin immunoprecipitation (ChIP)
ChIP analysis was performed using HEK293 cells co-transfected with 700 ng of the human 
PTH promoter luciferase constructs, −1476/+25 or −70/+25, and 100 ng of the HNF1B 
pCINEO IRES GFP construct. Cells were harvested 48 hours after transfection and a Magna 
ChIP A assay was performed according to the manufacturer’s protocol (Merck Millipore, 
Billerica, USA). In short, cells were treated with formaldehyde to crosslink the chromatin. 
After cell lysis, samples were sonicated twice for 30 seconds on wet ice using a 22-µm 
amplitude with a Soniprep 150 (MSE, London, UK). Samples were incubated with 5.0 µg of 
rabbit polyclonal anti-human HNF1B antibody (Santa Cruz, sc-22840), rabbit IgG isotype 
antibodies as negative control or anti-trimethyl-histone H3 antibody as positive control, 
which were bound to protein A magnetic beads. Subsequently, chromatin complexes 
were eluted, the crosslinks were reversed, and the DNA was isolated. The presence of PTH 
promoter DNA was evaluated using real-time PCR targeting the human PTH promoter 
(5’-GCCTGGAGCAACACTCTAAG-3’ and 5’-CATCCTGGCTTCATGTCATCC-3’). Subsequently, 
samples were loaded on a 2% agarose gel and visualized using ProXima C16 software 
version 3.0 (Isogen Life Science, De Meern, The Netherlands).

Data analysis
Results are based on a minimum of three independent experiments, with each condition 
performed in triplicate, unless otherwise stated. Values are expressed as means ± standard 
error of the mean (SEM). Statistical significance (P< 0.05) was determined using unpaired 
Student t-tests.
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Results

PTH levels in a cohort of HNF1B patient
In this study, we retrospectively reviewed a total number of eleven patients, five familial 
and six sporadic cases, with known HNF1B mutations or whole-gene deletions visiting the 
outpatient clinic of our institution (Table 2). Nine patients had a HNF1B whole gene 
deletion, one patient had a frameshift mutation (c.18delG, p.Ser7Argfs*7) and one patient 
had a missense mutation (c.883C>T, p.Arg295Cys). Serum intact PTH levels were available 
for ten out of eleven patients. Eight out of these ten patients had hyperparathyroidism (6.6 
to 16.4 pmol/L, normal range 1.0 to 6.5 pmol/L). Eight patients had hypomagnesemia (0.41 
mmol/L to 0.65 mmol/L), while their plasma PO4

3- and Ca2+ levels were within the normal 
range. Five out of seven patients with increased PTH levels belong to the same family 
(patients I.1 through I.5), and showed concomitant hypomagnesemia. No hypomagnesemia 
was observed in a patient with a c.883C>T (p.Arg295Cys) HNF1B mutation and high PTH 
levels (patient V, Table 2). In two patients the hyperparathyroidism was initially clearly 
appropriate for the level of kidney function (patient I.2 and VI, Table 2). After renal trans-
plantation, the former patient with a c.18delG (p.Ser7Argfs*7) HNF1B mutation showed 
improved renal function and normal plasma Mg2+ levels, while the PTH levels remained 
increased. One patient underwent parathyroidectomy at the age of 23 years for primary 
hyperparathyroidism (patient VII, Table 2). This patient was 36 years of age before any 
connection between HNF1B mutations and his clinical symptoms was revealed, at which 
time he again displayed hyperparathyroidism. Urinary calcium/creatinine ratio revealed 
that nine out of ten patients whose data were available displayed hypocalciuria. Tubular 
reabsorption of phosphate (TRP) was at our below the lower limit of normal in all patients 
suggested to display hyperparathyroidism. Overall, these data suggest a link between 
HNF1B mutations or whole-gene deletions and hyperparathyroidism, distinct from 
secondary hyperparathyroidism due to renal function decline. 

HNF1B is expressed in parathyroid cells
First, we investigated HNF1B expression in human parathyroid gland tissue. HNF1B mRNA 
expression in human parathyroid glands was detected by end-point PCR and compared 
to HNF1B mRNA expression in a control human kidney sample (Figure 1A). The specificity 
of the tissue was confirmed by amplification of the PTH transcript, which was clearly 
present in parathyroid tissue but, as expected, not in the kidney. The histology of 
parathyroid glands is easily recognizable by the densely packed cells.  PTH was highly 
expressed in the cytosol of the parathyroid cells (Figure 1B). Importantly, HNF1B was 
localized in PTH-positive cells in a nuclear pattern, as shown by the co-localization with 
the nuclear marker DAPI that binds to double-stranded DNA (Figure 1B). 
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So far, PT-r cells represent the only available immortalized cell line that retains characteristics  
of parathyroid cells, including Pth expression sensitive to extracellular Ca2+ and 1,25- 
dihydroxyvitamin D3 treatment, when transiently transfected with Casr or vitamin-D 
receptor (VDR), respectively.4 In our cell culture conditions, PT-r cells expressed limited 
amount of Pth mRNA compared to the expression levels of parathyroid hormone-related 
protein (Pthrp; Figure 2). HNF1B was expressed and localized to the nucleus of PT-r cells 
(Figure 2). Casr was not detectable, as previously described by Kawahara et al.4

Figure 1  HNF1B expression in human parathyroid glands. 

(A) Endogenous expression of HNF1B in human parathyroid tissue was investigated using RT-PCR. 
PTH was included as positive control for tissue specificity and HPRT as housekeeping gene. RT+: RT 
sample; RT-: no RT control; cDNA-: no cDNA control. (B) Representative images of immunohisto-
chemical analysis of HNF1B and PTH co-localization in human parathyroid tissue. Scale bars: 20 μm. 
HNF1B: hepatocyte nuclear factor 1 beta; PTH: parathyroid hormone; HPRT: hypoxanthine-guanine 
phosphoribosyl transferase; CaSR: calcium-sensing receptor; DAPI: nuclear marker.
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Wild-type HNF1B binds the human PTH gene promoter and inhibits  
its activity
HNF1B affects transcription of target genes through binding of the POU (Pit-1, OCT1/2, 
UNC-86) domains to a DNA consensus sequence, reported in Figure 3A. Using the Consite 
program (asp.ii.uib.no:8090/cgi-bin/CONSITE/consite), prediction analysis for HNF1-binding 
sites in the -1476 bp region upstream of the transcription initiation site of the human PTH 
promoter identified two relatively well-conserved sites, at -1238 and -690 (Figure 3B). 
Demay et al. have previously suggested the presence of a poorly conserved consensus 
sequence of a POU transcription factor around position -101.12 To determine whether the 
PTH promoter is bound by HNF1B, we performed a ChIP assay using a human PTH -1476 
promoter construct transfected in HEK293 cells, which do not endogenously express 
HNF1B.28 The immunoprecipitated genomic fragment bound by exogenously expressed 
HNF1B was quantified by real-time PCR analysis, which showed a 9-fold enrichment of  
the PTH promoter when precipitated with the anti-HNF1B antibody (Figure 3C) compared 
to the rabbit IgG isotype control (Figure 3C). Using a human PTH -70 promoter construct 
no significant difference was seen between both antibodies. Immunoprecipitation with 

3

Figure 2  Rat parathyroid PT-r cells express HNF1B. 

(A) Expression profile of genes relevant to parathyroid cell physiology were investigated in PT-r cells 
using RT-PCR. Gapdh was included in the analysis as housekeeping gene. RT+: RT sample; RT-: no RT 
control; cDNA-: no cDNA control. (B) Immunostaining for Hnf1b in PT-r cells. Scale bars: 20 μm. Pth: 
parathyroid hormone; Pthrp: parathyroid hormone-related peptide; Casr: calcium-sensing receptor; 
Hnf1b: hepatocyte nuclear factor 1 beta; Gapdh: glyceraldehyde 3-phosphate dehydrogenase; DAPI: 
nuclear marker.
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an anti-trimethyl-histone H3 antibody was performed as positive control. Two percent of 
the chromatin used for immunoprecipitation (input) was also included in the analysis 
(Figure 3C). 

Figure 3  The human PTH gene as target of the HNF1B transcription factor. 

(A) Sequence logo of the HNF1B motif as from Jaspar database (ID: MA0153.1). In the human PTH 
promoter region (-1476 bp from the transcription initiation site), three putative HNF1 binding sites 
map at –1238, –690 and  –101 of the forward DNA strand (+). (B) Sequence alignment of the three 
putative HNF1 recognition sites in the PTH promoter region of diff erent mammalian species. (C) 
Binding of the PTH promoter by HNF1B was verifi ed by a ChIP assay in HEK293 cells co-transfected 
with the human PTH promoter luciferase constructs, −1476/+25 or −70/+25, and wild-type HNF1B. 
For immunoprecipitation, an anti-HNF1B antibody or a rabbit IgG isotype control antiserum was 
used. Immunoprecipitation with an anti-trimethyl-histone H3 antibody was included as positive 
control. Two percent of the chromatin used for immunoprecipitation (input) was also included as a 
control. (D) Dose-response curve of increasing amounts of wild-type HNF1B co-transfected in 
HEK293 cells with a luciferase construct carrying the human PTH gene promoter region −1476/+25  
(n=9). **, p< 0.001, compared to mock.
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To study the involvement of HNF1B in the transcriptional regulation of the human PTH 
gene, luciferase-reporter assays were performed. When wild-type HNF1B was transiently 
co-transfected with the human PTH -1476 promoter construct, a dose-dependent 
reduction of the promoter activity was observed, up to a 30% decrease compared to cells 
transfected with the mock plasmid (Figure 3D). 
	 This inhibitory effect was not demonstrated for the HNF1B H69fsdelAC, K156E, H324S-
325fsdelCA and Y352finsA mutants. When the latter were co-expressed with the PTH 
reporter construct, the promoter activity was comparable or higher to what was observed 
in mock plasmid-expressing cells (Figure 4A). In order to pinpoint the HNF1B-responsive 
region within the PTH promoter, serial deletions of the reporter construct were prepared 
(Figure 4B). HNF1B H324S325fsdelCA lacks a complete, functional transactivation domain, 
and does not downregulate PTH promoter activity. For the wild-type HNF1B, inhibition of 
PTH promoter activity persisted until −200 bp from the transcription initiation site. A 
further deletion to −70 bp no longer showed a significant difference between wild-type 
and mutant HNF1B (Figure 4B). These data demonstrate that one or more HNF1B-respon-
sive elements reside in this proximal promoter region of the human PTH gene.

3

Figure 4  HNF1B mutants lack the ability to inhibit PTH promoter activity. 

(A) Study of the human PTH promoter activity when co-transfected with wild-type HNF1B or HNF1B 
H69fsdelAC, K156E, H324S325fsdelCA and Y352finsA mutants, or the mock plasmid in HEK293 cells 
(n=3). ** P< 0.001, compared to wild-type HNF1B.
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Discussion

In the present study, we demonstrated that the nuclear transcription factor HNF1B is 
expressed in the parathyroid gland, where it reduces PTH expression by inhibiting PTH 
promoter activity upon direct binding to HNF1B recognition sites in this promoter region. 
In vitro luciferase-assays showed that HNF1B inhibits PTH promoter activity via cis-elements 
located in the proximal promoter. This inhibition is lost when HNF1B is mutated or absent. 
Altogether these findings provided explanation for our observation that PTH levels are 
often elevated in patients with HNF1B gene mutations. While further experiments are 
needed to determine which molecular pathways govern HNF1B activity in the parathyroid 
gland, our data demonstrated that HNF1B acts as a repressor of human PTH gene 
transcription.
	 Our hypothesis that HNF1B might be involved in parathyroid gland function was 
based on the observation that, in our patients with HNF1B mutations or whole-gene 
deletions, PTH levels were often relatively high compared to the degree of renal function 
decline, if present. This was even more striking given the fact that most of these patients 
were hypomagnesemic, which is usually associated with a paradoxical block of PTH 

Figure 4  Continued. 

(B) Serial deletion analysis in which the PTH promoter activity was tested in HEK293 cells in the 
presence of wild-type HNF1B (empty bars) or HNF1B H324S325fsdelCA mutant (black bars) (n=9). ** 
p< 0.001, compared to HNF1B H324S325fsdelCA; * p= 0.006, compared to HNF1B H324S325fsdelCA. 
ns: nonsignificant compared to HNF1B H324S325fsdelCA, p= 0.9. 
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secretion and a resulting hypoparathyroidism.29, 30 This was accompanied by reduced 
urinary Ca2+ excretion and renal tubular reabsorption of PO4

3- that was in the lower range 
of normal or reduced. Importantly, HNF1B was known to function as a transcription factor 
regulating gene transcription in a number of specialized endocrine organs and tissues 
with secondary endocrine functions.22-25 Previously, Adalat et al. reported plasma PTH 
levels in a cohort of patients with chronic kidney disease, in stages 1 through 3, with and 
without HNF1B-associated disease.21 They mainly focused on the hypomagnesemia 
observed in 44% of their patients with HNF1B defects, but they also reported plasma PTH 
levels were 6.3 in patients with HNF1B defects versus 4.9 pmol/L in the patients with renal 
dysplasia in the absence of such defects (P=0.2). Possibly due to the small series of patients, 
these data did not reach statistical significance. Importantly, Ca2+ and PO4

3- levels were 
within normal ranges, while the glomerular filtration rate (GFR) was similar in both groups. 
The present data clearly demonstrated that HNF1B is expressed in a nuclear pattern in the 
PTH-positive cells of human parathyroid gland as well as in the only representative 
parathyroid cell line described to date. Importantly, we demonstrated that HNF1B binds to 
the PTH promoter and that the presence of HNF1B inhibits PTH transcription, at least in 
part by a direct effect on the activity of the PTH promoter. This inhibitory effect was lost 
when known mutations in HNF1B were introduced. These data indicated that HNF1B acts 
as a functional repressor of PTH gene transcription. Loss of this inhibitory effect readily 
explains the tendency towards hyperparathyroidism in patients in which the HNF1B gene 
is deleted or mutated. So far, many regulatory pathways that control PTH secretion, both 
transcriptionally and post-transcriptionally, have been defined and several are currently 
therapeutic targets for the treatment of secondary hyperparathyroidism in the course of 
chronic kidney disease.2 These include active vitamin D (1,25-dihydroxyvitamin D3, or 
1,25-D3) analogs and calcimimetics.31-34 The best-known PTH transcriptional repressor, 
1,25-D3, acts by way of the liganded 1,25-D3 receptor-retinoic acid X receptor (VDR-RXR) 
complex binding to vitamin D responsive elements (VDRE) in the promoter region of the 
PTH gene. Interestingly, this VDRE was previously mapped to a region very close to the 
putative HNF1B-binding site in the PTH promoter.35 There might be crosstalk between 
pathways involving 1,25-D3 and HNF1B, but the exact signaling mechanism in which 
HNF1B is the final effector remains to be determined. Other possibilities include 
involvement in CaSR-mediated signaling or the recently identified FGF23-FGFR1/Klotho 
axis 36, 37. Mitogen-activated protein kinase (MAPK) pathways presumably play a role 
downstream of both CaSR and FGFR1/Klotho activation in the parathyroid gland, and an 
interaction between FGF-induced/MAPK-mediated signaling and HNF1B has been 
previously suggested in other tissues.38-42

	 Although our data clearly identify HNF1B as a negative regulator of PTH gene 
expression in the parathyroid gland, the clinical significance of these findings in patients 
with a HNF1B mutation or deletion has to be studied in larger patient cohorts. Apart from 
our observations, a single reference to a patient with hyperparathyroidism in a cohort  

3
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of 27 patients with HNF1B-associated disease, and the previously mentioned study by  
Adalat et al., there are to our knowledge no other reports of PTH levels in patients with 
HNF1B-related disease.15, 21 Of note, in our cohort of patients a concomitant hypo
magnesemia was diagnosed in the majority of individuals. It was previously reported that 
in the distal part of the nephron, impaired transcriptional regulation of the FXYD2 gene, 
encoding for the γ-subunit of the Na+-K+-ATPase, could be responsible for this 
hypomagnesemic effect.26 Extracellular Mg2+ binds and activates the CaSR in vitro, albeit 
with a much lower affinity compared to Ca2+,43, 44 and therefore may influence PTH release  
by the parathyroid glands. However, hypomagnesemia is associated with a paradoxical 
block of PTH secretion resulting in a hypoparathyroidism, possibly due to enhancement of 
G-protein mediated signaling downstream from the CaSR.29, 30 Interestingly, one patient 
in our cohort, displaying a c.883C>T (p.Arg295Cys) HNF1B mutation, showed normo
magnesemia and an endogenous creatinine clearance of >80mL/min on repeated 
measurements, but elevated PTH levels. Together, these data are in line with a putative 
role of HNF1B abnormalities in the development of primary hyperparathyroidism 
independent from extracellular Mg2+ levels. 
	 Since the Na+-K+-ATPase pump is essential to generate the driving force for PTH 
secretion45, a hypothesis that remains to be tested is whether in the parathyroid glands 
the impaired transcriptional regulation of FXYD family members due to HNF1B 
abnormalities may contribute to the onset of primary hyperparathyroidism. FXYD proteins 
are known to associate with the Na+-K+-ATPase and to modulate its kinetic properties in a 
tissue-specific manner.46 However, RT-PCR experiments we performed on human 
parathyroid samples (Figure 5) and a human tissue microarray study failed to detect 
FXYD2 expression in the parathyroid glands.47 So far, impaired renal FXYD2 expression is  
the only molecular mechanism connecting the misregulation of the Na+-K+-ATPase 
activity to a tissue-specific effect due to HNF1B mutations. 
	 In conclusion, we identified HNF1B as a novel transcriptional regulator of PTH gene 
expression in the parathyroid gland. Patients with HNF1B-associated disease display a 
tendency towards hyperparathyroidism, possibly due to the loss of the HNF1B-mediated 
repression of PTH promoter activity in the parathyroid gland. Future studies will have to 
confirm the clinical significance of HNF1B affecting the synthesis of PTH in patients with 
HNF1B mutations, e.g. by evaluating PTH levels in a larger cohort of patients, preferably 
with no renal failure and no hypomagnesemia. Furthermore, the exact HNF1B binding site 
within the PTH promoter needs to be identified, and the role of HNF1B in the responsiveness  
of parathyroid cells to extracellular Ca2+, 1,25-D3 and FGF23 has to be investigated.
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3Figure 5  FXYD2 expression in human parathyroid glands. 

Endogenous expression of the two main FXYD2 isoforms in human parathyroid tissue was 
investigated using RT-PCR. FXYD2a: γ-subunit of the Na+-K+-ATPase, isoform a; FXYD2b: γ-subunit of 
the Na+-K+-ATPase, isoform b; P: parathyroid samples; K: kidney sample; RT+: RT samples; RT-: no RT 
controls; cDNA-: no cDNA control.
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Abstract

Mutations in PCBD1 are causative for transient neonatal hyperphenylalaninemia and 
primapterinuria (HPABH4D). Until now HPABH4D has been regarded as a transient and 
benign neonatal syndrome without complications in adulthood. In our study, two adult 
patients with homozygous mutations in the PCBD1 gene were diagnosed with hypo
magnesemia and renal Mg2+ loss. One patient also developed diabetes with characteristics of 
maturity onset diabetes of the young (MODY). Our results suggest that these clinical 
findings are related to the function of PCBD1 as dimerization cofactor for the transcription 
factor HNF1B. Mutations in the HNF1B gene have previously been shown to cause renal 
malformations, hypomagnesemia and MODY. Gene expression analysis in the kidney 
showed that Pcbd1 is co-expressed with Hnf1b in the distal convoluted tubule (DCT) 
where Pcbd1 transcript levels are upregulated by a low Mg2+-containing diet. 
Overexpression in a human kidney cell line demonstrated that wild-type PCBD1 binds 
HNF1B to co-stimulate the FXYD2-promoter, whose activity is instrumental in Mg2+ 

reabsorption in DCT. Five out of seven PCBD1 mutations previously reported in HPABH4D 
patients caused proteolytic instability leading to a reduced FXYD2-promoter activity. 
Furthermore, HNF1B mutations may disturb PCBD1 localization in the nucleus, since 
PCBD1 showed an increased cytosolic localization when co-expressed with HNF1B 
mutants. Overall, our findings establish PCBD1 as an important co-activator of the 
HNF1B-mediated transcription necessary for fine-tuning of FXYD2 transcription in DCT. 
Thus, patients with HPABH4D should be monitored for previously unrecognised late 
complications, such as hypomagnesemia and MODY diabetes.
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Introduction

Hypomagnesemia is a common clinical manifestation in patients with mutations in the 
transcription factor hepatocyte nuclear factor 1 homeobox B (HNF1B [MIM 189907]).1 Hap-
loinsufficiency for HNF1B is associated with an autosomal dominant syndrome 
characterized by renal malformations with or without cysts, liver and genital tract 
abnormalities, gout, and maturity-onset diabetes of the young type 5 (MODY5; renal cysts 
and diabetes syndrome [MIM 137920]).2, 3 Hypomagnesemia (plasma Mg2+ levels <0.7 
mmol/L) with hypermagnesuria affects up to 50% of the HNF1B patients.3, 4 Patients are 
generally treated with magnesium (Mg2+) supplements to ameliorate the symptoms of 
the hypomagnesemia that are related to instability of the neurological and cardiovascular 
systems.3, 4

	 In the adult kidney HNF1B is expressed in epithelial cells along all segments of the 
nephron. The role of HNF1B in renal Mg2+ handling was, however, pinpointed to the distal 
convoluted tubule (DCT), where the final urinary Mg2+ excretion is determined.3, 5 In DCT, 
the Na+-K+-ATPase provides the necessary driving force for active Mg2+ reabsorption from 
the pro-urine into the blood.5 Heterozygous mutations in the FXYD2 gene, encoding the 
γ-subunit of the Na+-K+-ATPase, result in an autosomal dominant renal hypomagnesemia 
with hypocalciuria (IDH [MIM 154020]).6 More recently, functional HNF1B binding sites 
were identified in the promoter region of FXYD2 suggesting that impaired transcription of 
FXYD2 by HNF1B results in renal Mg2+ wasting.3, 7 Additional HNF1B target genes in kidney 
include renal cystic genes8-10 as well as genes involved in tubular electrolyte transport.11, 12 
	 HNF1B forms heterotetrameric complexes with the protein pterin-4 alpha-carbinola-
mine dehydratase / dimerization cofactor of hepatocyte nuclear factor 1 alpha (PCBD1 / 
DCOH [MIM 126090]).13 PCBD1 is a protein of 12 kDa with two distinct biological functions: 
transcriptional co-activator of HNF1-mediated transcription within the nucleus,13 and 
pterin-4α-carbinolamine dehydratase (EC 4.2.1.96) in the cell cytosol.14 The enzymatic 
activity of PCBD1, together with dihydropteridine reductase, regenerates tetrahydrobiop-
terin (BH4), which is the cofactor for phenylalanine hydroxylase (PAH) and other aromatic 
amino acid hydrolases.15 The crystal structure of PCBD1 revealed that the protein forms a 
tetramer of identical subunits comprising two saddle-like shaped dimers.16, 17 HNF1 
binding sites are located at the same surface that mediates interaction of the PCBD1 
homodimers, on the opposite side of the catalytic domain.18 PCBD1 knockout mice display 
hyperphenylalaninemia, predisposition to cataracts and mild glucose-intolerance.19 
Homozygous or compound heterozygous PCBD1 mutations in humans are associated 
with transient neonatal hyperphenyalaninemia and high urinary levels of primapterin 
(HPABH4D, or primapterinuria [MIM 264070]).20-22 To date there have been no reports of 
late complications, or possible phenotypic consequences of impaired stimulation of the 
HNF1 transcription factors. 
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	 In our study, the occurrence of hypomagnesemia and MODY diabetes was investigated  
in two patients carrying PCBD1 mutations. We evaluated whether PCBD1 plays a role in 
renal Mg2+ reabsorption by directly affecting HNF1B-regulated FXYD2 transcription, in 
order to gain new insight into the molecular basis of the PCBD1-HNF1B interaction. 

Materials and Methods

Patients
The two patients reported in this study were ascertained by contacting authors of papers 
related to hyperphenylalaninemia, tetrahydrobiopterin-deficient, due to pterin-4-alpha-
carbinolamine dehydratase deficiency (HPABH4D [MIM 264070]) as listed in the 
International Database of Tetrahydrobiopterin Deficiencies (BIODEF database, Opladen T, 
Blau N., http://www.biopku.org/biodef/).23 Informed consent to participate in this study 
was obtained and the procedures followed were in accordance with the standards of the 
medical ethics committee of each participating institution. Patients were not treated with 
any medication that could affect serum levels of Mg2+ (e.g. diuretics, calcineurin inhibitors, 
corticosteroids).
	 Patient 1 (BIODEF 272) was reported in detail previously.20 In summary, he was found 
to have borderline hyperphenylalaninemia on newborn screening, but this markedly 
increased to a peak of 2589 mmol/L at 3.5 weeks. The diagnosis of HPABH4D was suspected 
because of primapterinuria (7-biopterin), as well as a marked response to BH4. There was 
no parental consanguinity; molecular analysis confirmed the diagnosis showing that  
he was homozygous for a c.312C>T (p.Gln97Ter) mutation in the PCBD1 gene. He was 
treated with phenylalanine restriction and BH4 until 4 months of age, at which time his 
phenylalanine levels normalised without further treatment, on a normal diet. Intermittent 
follow-up into adolescence revealed normal health, growth and cognitive development. 
He was re-contacted for this study at age of 19 years; at that time it was noticed that he 
had become an insulin-dependent diabetic about 6 months previously. 
	 Patient 2 (BIODEF 329) Initial neonatal screening had shown hyperphenylalaninemia 
with high urinary levels of primapterin (7-biopterin).20, 21 This resolved after daily treatment 
with BH4. He was followed by paediatricians at the Klinik für Kinder- und Jugendmedizin 
(Karlsruhe, Germany). There was parental consanguinity, and molecular studies showed 
that he was homozygote for two separate mutations in the PCBD1 gene: c.99G>T p.
Glu26Ter, and 283G>A p.Arg87Gln.

Animal study
All the experimental procedures are in compliance with the animal ethics board of the 
Radboud University Nijmegen. The transgenic parvalbumin-eGFP mice were a kind gift 
from Dr. Monyer (University of Heidelberg, Germany).24 In the Mg2+ diet experiment, the 
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mice were fed low (0.02% wt/wt) or high (0.48% wt/wt) Mg2+-containing diets for 15 days 
(SSNIFF spezialdiäten GmbH, Soest, Germany). During the last 48h of the experiment the 
mice were housed in metabolic cages for urine collection (24h adaptation, 24h sampling). 
Blood samples were taken at the start of the experiment and just before the sacrifice. 
PV-eGFP positive tubules were isolated as described previously.25 In short, mice aged from 
4 to 6 weeks were anesthetized and perfused transcardially with ice-cold KREBS buffer (in 
mmol/L: 145 NaCl, 5 KCl, 1 NaH2PO4, 2.5 CaCl2, 1.8 MgSO4, 10 glucose, 10 HEPES/NaOH pH: 
7.4). Kidneys were harvested and digested in KREBS buffer containing 1 mg/ml collagenase 
(Worthington, Lakewood, NJ, USA) and 2000 units/ml hyaluronidase (Sigma, Houten, the 
Netherlands) for three cycles of maximal 15 min each at 37° C. Subsequently, the kidney 
tubules sized between 40-100 μm were collected by filtration. Tubules collected from the 
three digestions were ice-cooled and sorted by the Complex Object Parameric Analyzer 
and Sorter (COPAS, Union Biometrica, Holliston, MA, USA). Sorted tubules were directly 
collected in 1% (v/v) β-mercaptoethanol containing RLT buffer that was supplied by the 
RNeasy RNA extraction kit (Qiagen, Venlo, the Netherlands). Per mouse, 4,000 eGFP-fluo-
rescent tubules were collected. 4,000 tubules were pooled on a micro column for RNA 
extraction according to the manufacturer’s protocol. Subsequently, reverse transcription 
of the RNA by M-MLV reverse transcriptase (Invitrogen) was performed 1 h at 37 °C. Gene 
expression levels were determined by quantitative real-time PCR on a BioRad Analyzer  
and normalized for Gapdh expression levels. Real-time PCR primers (Supplemental Table 1) 
were designed using the online computer program NCBI/Primer-BLAST software.

Phenylalanine measurements
Phenylalanine in plasma and urine samples was measured by LC-MS/MS by a standardized 
method, in which the MS was operated in positive mode. For these MS measurements, a 
Waters Premier triple quadrupole mass spectrometer (tandem MS) interfaced with an 
electrospray ionization (ESI) source and equipped with an Alliance UPLC (Waters, 
Etten-Leur, the Netherlands) was used. Briefly, to 10 μL plasma or urine sample, 13C6-labeled 
phenylalanine was added as an internal control to correct for possible ion-suppression. 
Samples were deproteinized with methanol, diluted with water and injected on a RP C18 
column (Waters Atlantis T3, 3 μm, 2,1 x 100 mm). Samples were eluted in 17.5% 
methanol/0.1M formic acid. Positively charged [M-H]+ phenylalanine (m/z 166) and 13C6-
phenylalanine (m/z172) were selected as parent ions. After collision induced dissociation 
(CID), the loss of –NH3 and –COOH groups were chosen as quantifier ion (m/z 120 and 126, 
respectively) and the loss of –NH3, –COOH and –OH2 groups (m/z 103 and 109, respectively) 
as qualifier ions. In Multiple Reaction Monitoring (MRM) mode, the transitions m/z 166 _ 
120and m/z 166 _ 103 (for phenylalanine) and m/z 172 _ 126 and m/z 172 _ 109 (for 13C6-
phenylalanine) were measured. Phenylalanine concentrations were calculated using a 
calibration curve.

4
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DNA constructs
Human HNF1B wild-type and mutants were cloned into the pCINeo HA IRES GFP vector as 
described previously.7 HNF1B was Flag-tagged at the NH2-terminal by Phusion PCR using 
NheI and AgeI restriction sites. To obtain a HNF1B lacking the dimerization domain spanning 
residues 2-30 (Δ2-30), HNF1B was amplified using a Phusion polymerase (Finnzymes, Vantaa, 
Finland) with specific primers covering from residue p.Glu31. The HNF1B-Δ2-30 was ligated 
into pCINeo IRES GFP using AscI/AgeI restriction sites. The open reading frame of human 
PCBD1 was amplified using Phusion polymerase from PCBD1 pCMV-SPORT6 (Genbank 
BC006324, ImaGenes) and subcloned into the pCINeo HA IRES GFP vector using AgeI/EcoRI 
restriction sites. Wild-type PCBD1 was Flag-tagged at the NH2-terminal by PCR using NheI/
XhoI restriction sites. PCBD1 mutations were inserted in the construct using the QuikChange 
site-directed mutagenesis kit (Stratagene, La Jolla, CA) according to the manufacturer’s 
protocol. All constructs were verified by sequence analysis. Primer sequences used for 
cloning or mutagenesis PCR are reported in Supplemental Table 2. The FXYD2 promoter 
construct was cloned into pGL3-Basic (Promega, Fitchburg, USA) as described previously.7  
In short, the human FXYD2 promoter region that controls transcription of the γ-subunit 

isoform alpha (-3229/+91 bp from the transcription initiation site) was amplified using 
Phusion polymerase (Finnzymes, Vantaa, Finland) from genomic DNA, and cloned into 
pGL3-Basic using KpnI/BglII sites. The pRL-CMV vector encoding Renilla luciferase under 
control of a CMV promoter was commercially available  (Promega, Fitchburg, USA).

Cell culture 
Human Embryonic Kidney cells (HEK293) were grown in DMEM (Bio Whittaker-Europe, 
Verviers, Belgium) containing 10% (v/v) FCS (Thermo Fisher HyClone), 10 μl/ml nonessential 
amino acids and 2 mmol/L L-glutamine at 37°C in a humidity-controlled incubator with 
5% (v/v) CO2. The cells were transiently transfected with the respective constructs using 
polyethylenimine cationic polymer (PEI, Polysciences Inc.) at 1:6 DNA:PEI ratio for 48h 
unless otherwise stated.

Western blotting
HEK293 cells were transfected for 24h with HA-PCBD1 mutants and treated at the same 
time with 10 mmol/L MG-132 (Company). Protein lysates were denatured in Laemmli 
containing 100 mmol/L DTT for 30 min at 37 °C and subsequently subjected to SDS-PAGE. 
Then, immunoblots were incubated with a mouse anti-HA (Roche, high affinity 3F10, 
1:5,000) primary antibody and peroxidase conjugated sheep anti-mouse secondary 
antibodies (Jackson Immunoresearch, 1:10,000). 

Immunocytochemistry
HEK293 cells were seeded in 12-well plates on glass cover slips and co-transfected with 400 
ng PCBD1 constructs and 400 ng HNF1B constructs or empty pCINeo IRES GFP vector (mock 
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DNA). After 48h, HEK293 cells were fixed with 4% (w/v) paraformaldehyde (PFA) for 30 min at 
4°C, followed by the subsequent steps at room temperature: permeabilization for 15 min 
with 0.3% (v/v) Triton X-100 in PBS, incubation for 15 min with 50 mmol/L NH4Cl, and finally 
incubation in blocking buffer (16% (v/v) goat serum, 0.3%  (v/v) Triton X-100 and 0.3 M NaCl 
in PBS). After incubation overnight at 4°C with a rabbit anti-Flag M2 (Sigma F7425, 1:100) or a 
mouse anti-HA (Cell signaling technology, 6E2, 1:100), cells were washed three times with 
Tris-buffered NaCl Tween-20 (TNT; 150 mmol/L NaCl, 0.1 mol/L Tris/HCl, pH 7.5, 0.05% (v/v) 
Tween-20) and subsequently incubated with a secondary goat anti-rabbit antibody (Sigma 
A4914, 1:300) or a sheep anti-mouse (Jackson Immunoresearch, 1:300), coupled to AlexaFluor 
594, for 45 min at room temperature. After incubation with DAPI for 30 min at room 
temperature, cells were washed three times with TNT and finally mount with Fluoromount-G 
(SouthernBiotech). Photographs were taken using a Zeiss Axio Imager 1 microscope 
(Oberkochen, Germany) equipped with a HXP120 Kubler Codix fluorescence lamp and a 
Zeiss Axiocam MRm digital camera. Images were analysed by use of the software ImageJ.26

Co-Immunoprecipitation
HEK293 cells were seeded on 55 mm petri dishes and co-transfected with 5 μg PCBD1 
constructs and 5 μg of HNF1B constructs or a empty pCINeo IRES GFP vector (mock DNA). 
48h after transfection, nuclear and cytosolic fractions were prepared using the NE-PER 
Nuclear Protein Extraction Kit (Pierce). The next incubation steps were all done under 
rotary agitation at 4 °C. 35 μL of protein A-agarose beads (Santa Cruz Biotechnology) were 
previously incubated overnight at 4 °C with 2.5 μg rabbit anti-Flag antibody (Sigma F7425) 
and washed with IPP500 (500 mmol/L NaCl, 10 mmol/L Tris adjusted to pH 8.0 with HCl, 
0.1% (v/v) NP-40, 0.1% (v/v) Tween-20, 0.1% (w/v) BSA and protein inhibitors) four times. 
After sampling 60μl as input control, the remaining 180 μl of the lysate samples was added 
to the antibody-beads mixture overnight at 4 °C. Then, the beads were collected by 
centrifugation at 2000 rpm for 2 min at 4 °C and washed four times with lysis buffer. The 
proteins were separated from the beads by incubation for 30 min at 37°C in 1x Laemmli 
sample buffer supplemented with 100 mmol/L DTT and detected by immunoblotting 
using a mouse anti-HA (Roche, high affinity 3F10, 1:5,000) or a mouse anti-Flag M2 (Sigma 
F3165, 1:5,000) primary antibodies, and peroxidase conjugated sheep anti-mouse 
secondary antibodies (Jackson Immunoresearch, 1:10,000). 

Luciferase reporter assay
HEK293 cells were seeded on 12-well plates and transfected with the following DNA 
amounts: 700 ng of the FXYD2 promoter-luciferase construct, 50 ng PCBD1 constructs, 50 
ng HNF1B constructs or empty pCINeo IRES GFP vector (mock DNA). To correct for 
transfection efficiency, 10 ng of pRL-CMV was used as a reference. Firefly and Renilla 
luciferase activities were measured by use of a Dual-Luciferase Reporter Assay (Promega, 
Fitchburg, USA) 48h after transfection.

4
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Homology modelling
A homology model was built using the modelling script in the WHAT IF & YASARA Twinset 
with standard parameters.27, 28 The structure of the PCBD1 dimer in complex with the 
HNF1A dimerization domain dimer was used as a template for modelling of HNF1B (PDB 
file: 1f93). Our model contains only the dimerization domain (31 amino acids) of HNF1B 
and this has 68% sequence identity with the dimerization domain of HNF1A.

Statistical analysis
All results are depicted as mean ± standard error of the mean (SEM). Statistical analyses 
were conducted by unpaired student’s t-test when comparing two experimental 
conditions, and one-way ANOVA with Bonferroni test when comparing more conditions, 
P values less than 0.05 were considered significant.

Results

Homozygous PCBD1 mutations are associated with hypomagnesemia  
and renal Mg2+ wasting 
We diagnosed hypomagnesemia and hypermagnesuria in two patients carrying 
mutations on both alleles in the PCBD1 gene (Table 1). The patients were previously 
reported to suffer from transient neonatal hyperphenylalaninemia caused by a homozygous 
c.312C>T (p.Gln97Ter) mutation and two homozygous c.99G>T/283G>A (p.Glu26Ter/p.
Arg87Gln) mutations, respectively.20, 21 In patient 1, hypomagnesemia was corrected with 
oral Mg2+ supplements at a dose of 500 mg/day (0.64 mmol/L to 0.76 mmol/L, N 0.7-1.1 
mmol/L), though at the expense of increased magnesuria (FEMg 4.6% to 7.8%, N<2%). 
Patient 1 suffered from Mg2+-deficiency related symptoms like fatigue, muscular pain, 
weakness and cramps in arms, numbness, difficulty with memory, chest pains, and blurred 
vision. All symptoms improved after Mg2+ supplementation. An abdominal ultrasound in 
patient 1 showed slightly increased echogenicity of both liver and kidney of uncertain 
cause, but there was no evidence of renal cysts. Renal function resulted to be normal (GFR 
128 mL/min per 1.73 m2). Serum and urinary values of other electrolytes and uric acid were 
within the normal range. Laboratory investigations of patient 2 revealed a relatively high 
24h urinary Mg2+ excretion (5.25 mmol/24h, N 2-8; Table 1) in the presence of 
hypomagnesemia (0.65 mmol/L), with no secondary symptoms. Serum and 24h urinary 
Ca2+ excretion were within the normal range as well as creatinine clearance (126 mL/min, 
N 89-143). 
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Table 1  �Pertinent laboratory investigations in patient 1 (BIODEF 272) and patient 2 
(BIODEF 329).

Parameter
Patient 1

(BIODEF 272)
Patient 2

(BIODEF 329) Reference
range

Baseline On 500mg/day Mg2+ Baseline

Serum indices

   Na+ (mmol/L) 141 - 138 135-145

   K+ (mmol/L) 4.0 - 4.5 3.5-5.0

   Mg2+ (mmol/L) 0.64* 0.76 0.65* 0.7-1.1

   Ca2+ (mmol/L) 2.41 2.55 2.25 2.20-2.65

   Pi (mmol/L) 1.13 1.16 - 0.8-1.4

   Creatinine (mmol/L) 0.069 0.066 0.062 0.045-0.110

   HbA1c (%) 7.2* - 4.95 4.3-6.1

   Uric acid (μmol/L) 310 - - 135-510

Urinary indices

   Mg2+ 

   (mmol/L) 6.16 3.96 - -

   (mmol/24h) - - 5.25 2-8

   FEMg (%) 4.6* 7.8* - <2

   Ca2+ 

   (mmol/L) 4.47 3.04 - -

   (mmol/24h) - - 5.61 <7.5

   FECa (%) 0.9 1.8 - >1

   Pi (mmol/L) 40.29 13.61 - -

   FEPi (%) 17 17.6 - 5-20

   Creatinine 

   (mmol/L) 14.29 4.40 - -

   (mmol/24h) - - 14 9-18

GFR (mL/min per 1.73 m2) 128 135 - >60

CCr (mL/min) - - 126 89-143

HbA1c: glycosylated haemoglobin; FEMg: fractional excretion of Mg2+; FECa: fractional excretion of Ca2+; FEPi : 
fractional excretion of  phosphate (Pi) ; GFR: glomerular filtration rate; CCr: creatinine clearance.
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Maturity Onset Diabetes of the Young (MODY) in a patient with PCBD1 
mutations
In addition to hypomagnesemia, patient 1 was diagnosed with diabetes. Type 1 
autoimmune diabetes was excluded, since the patient lacked islet-cell antibodies and 
showed normal serum C-peptide levels (0.69 nmol/L, N 0.3-1.32 nmo/L). To test for MODY 
due to reduced function of HNF1A and/or HNF1B, patient 1 was placed on Gliclazide 80 
mg/bid instead of insulin 20-30 units/day. MODY patients are generally highly sensitive to 
sulphonylureas.29 Patient 1 responded well to the new therapy, not requiring insulin. 
Additional extrarenal manifestations in HNF1B disease include liver test abnormalities.30, 31 
Liver function tests in patient 1 revealed that the plasma levels of C-reactive protein (CRP) 
and high sensitivity C-reactive protein (hs-CRP) were significantly low at <2mg/L 
(N<9mg/L) and <0.1mg/L (N<8mg/L), respectively (Table 2). IgG was slightly low at 5.66 
g/L (N 6.94-16.18 g/L), whereas the remaining liver tests were all within the normal range. 
Based on his glycosylated haemoglobin levels, we concluded that patient 2 did not 
develop diabetes (HbA1c 4.95%, N 4.3-6.1%; Table 1).

Table 2  �Liver function tests in patient 1 (BIODEF 272).

Parameter Patient 1
(BIODEF 272)

Reference
range

Albumin (g/L) 41 38-50

Prealbumin (g/L) 0.381 0.1-0.4

CRP (mg/L) <2* <9

Hs-CRP (mg/L) <0.1* <8

α-1 antitrypsin (g/L) 1.4 0.9-2.6

C3 (g/L) 1.17 0.8-2.1

C4 (g/L) 0.18 0.15-0.5

IgG (g/L) 5.66* 6.94-16.18

IgM (g/L) 0.75 0.6-3.0

IgA (g/L) 1.99 0.7-4.0

ALT (U/L) 20* 21-72

AST (U/L) 26 15-46

ALP (U/L) 108 30-130

CRP: C reactive protein; hs-CRP: high-sensitivity C reactive protein; C3: complement component 3; C4: 
complement component 4; IgG: immunoglobulin G; IgM: immunoglobulin M; IgA: immunoglobulin A; ALT: 
alanine transaminase; AST: aspartate transaminase; ALP: alkaline phosphatase. 



Role of PCBD1 in the HNF1B disease | 81

Pcbd1 expression in the DCT is modulated by dietary Mg2+ content
We examined Pcbd1 mRNA expression levels in a mouse tissue panel using real-time 
RT-PCR. Highest expression was measured in kidney and liver (Figure 1A). To evaluate 
whether the renal abundance of Pcbd1 locates to the site of active Mg2+ transport, DCT 

4

Figure 1  Pcbd1 is expressed in the DCT of the kidney. 

(A) Tissue expression pattern of the Pcbd1 transcript. Pcbd1 mRNA expression level was measured 
in a panel of mouse tissues by quantitative RT-PCR and normalized for Gapdh expression. Data 
rep-resent the mean of 3 individual experiments ± SEM and are expressed as the percent-age of the 
total tissue expression. (B) Kidney expression pattern of Pcbd1 showed high-est expression in DCT. 
The mRNA expression levels of Pcbd1 and Hnf1b in COPAS-selected mouse DCT (black bars) and 
control (or non-selected; white bars) kidney tubules were measured by quantitative RT-PCR and 
normalized for Gapdh expression. Data represent the mean of 3 individual experiments ± SEM and 
are expressed as fold difference when compared with the expression in non-selected tubules. *, 
p<0.05 versus non-selected tubules. (C) DCT expression of Pcbd1 is regulated by dietary Mg2+ intake. 
The mRNA expression levels of Pcbd1 and Hnf1b in COPAS-selected mouse DCT kidney tubules form 
mice fed with low Mg2+-containing diets (white bars) and high Mg2+-containing diets (black bars) 
were measured by real-time RT-PCR and normalized for Gapdh expression. Data represent the mean 
of 4 individual experiments ± SEM and are expressed as fold difference when compared with the 
expression in high Mg2+-containing diets. *, p< 0.05 versus high Mg2+.
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fragments were isolated from mice expressing enhanced green fluorescence protein 
(eGFP) after the parvalbumin promoter using a complex object parametric analyzer and 
sorter (COPAS). Pcbd1 expression was significantly higher in DCT in comparison with 
whole kidney (Figure 1B). Hnf1b transcript was not enriched in the DCT fraction. 
Furthermore, Pcbd1 expression in the DCT was significantly upregulated when mice were 
fed a low Mg2+-containing diet compared to a high Mg2+-containing diet (Figure 1C). 
Mice on a low Mg2+ diet displayed a significantly lower 24h Mg2+ excretion (Figure 2B) in 
response to the hypomagnesemia (1.1 mmol/L versus 2.2 mmol/L; Figure 2A). Of note: 
C57Bl/6 mice are known to have relatively high serum Mg2+ levels compared to humans 
(normal: 1.2-1.5 mmol/L).32 Differences were not observed in the serum and urinary levels 
of phenylalanine between the experimental groups  (Figure 2C-D). 

Figure 2  Effect of dietary Mg2+ on serum and urinary Mg2+ and phenylalanine levels. 

C57Bl/6 mice were fed low (0.02% wt/wt) or high (0.48% wt/wt) Mg2+-containing diets for 15 days. 
Before sacrifice, serum and 24h-urines samples were collected for Mg2+ (A and B) and phenylalanine 
(C and D) levels determination. Results are depicted as mean ± SEM. *, p< 0.05 versus low Mg2+ 
(n=10).

 M
ag

ne
si

um
 e

xc
re

ti
on

 
(µ

m
ol

/2
4h

)

*

High Mg2+Low Mg2+

60

50

40

30

20

10

0

B

Se
ru

m
 M

ag
ne

si
um

 (m
M

)

*

High Mg2+Low Mg2+

2.0

1.0

0.5

0

1.5

2.5
A

High Mg2+Low Mg2+

40

30

20

10

0

Ph
en

yl
al

an
in

e 
ex

cr
et

io
n 

(n
m

ol
/2

4h
)

D

Se
ru

m
 P

he
ny

la
la

ni
ne

 (µ
M

)

C

High Mg2+Low Mg2+

8 0

6 0

4 0

2 0

0



Role of PCBD1 in the HNF1B disease | 83

PCBD1 enhances FXYD2 promoter activation by HNF1B
In order to investigate whether the PCBD1 p.Gln97Ter and p.Glu26Ter/p.Arg87Gln mutations 
can lead to an impairment of the interaction with HNF1B, we generated a structural 
homology model of the PCBD1–HNF1B dimerization domain (HNF1B-D) complex using 
the structure of the PCBD1–HNF1A dimerization domain tetramer (Figure 3A). Analysis of 
the homology model indicates that the hydrogen bonds in the residue stretch from 
Asn44 to Glu58 in PCBD1 and from Leu5 to Val21 in HNF1B likely forms the protein-protein 
interaction domains (Figure 3B). The p.Glu26Ter mutation leads to a major protein 
truncation and complete loss of the interaction domain. Although p.Gln97Ter does not 
directly aff ect the HNF1-binding domain of PCBD1, the mutation results in a truncation of 
the central α-helix of the protein. Consequently, the interaction domain might be 
destabilized explaining the PCBD1 dysfunction. 
 Subsequently, to test the eff ects of the mutations on PCBD1 function, we studied all 
previously described patient mutations in their ability to co-activate FXYD2 transcription in 
a luciferase assay (Figure 3C).20-22 Renal Mg2+ transport has been suggested to depend 
on the transcriptional activation of the FXYD2 gene promoter by HNF1B.3, 7 HNF1B 
signifi cantly enhanced the FXYD2 promoter activity compared to mock-transfected cells 4

Figure 3  PCBD1 co-activates HNF1B-induced FXYD2 promoter activity. 

(A) Homology model of the PCBD1–HNF1B dimerization domain (HNF1B-D) tetramer, modelled 
using the structure of the PCBD1–HNF1A dimerization domain (HNF1A-D) complex (PDB fi le 1F93). 
The PCBD1 dimer (light blue and grey) binds the HNF1B dimer (orange and grey) via helix sequences. 
The HNF1A-D monomer is shown is yellow. Residues in the PCBD1 protein that were found mutated 
in patients aff ected by hyperphenylalaninemia are depicted in red. (B) Homology model of the 
interaction site within the PCBD1–HNF1B dimerization domain (HNF1-D) complex. The bound 
HNF1B monomer (orange) forms a helix bundle with PCBD1 monomer (light blue). The HNF1A-D 
monomer is shown in yellow. The residues that diff er between HNF1B-D and HNF1A-D are visualized 
in grey.
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(Figure 3D). Interestingly, co-expression of wild-type PCBD1 further increased FXYD2 
promoter activation by HNF1B by ~1.5 fold (Figure 3D). However, among all PCBD1 
mutants, only PCBD1 p.Arg87Gln and p.Cys81Arg maintained their co-activator activity 
(Figure 3D), showing that the p.Gln97Ter and the p.Glu26Ter mutation have lost their 
ability to stimulate HNF1B-induced transcription.

Mutations detected in HPABH4D patients cause protein degradation 
of PCBD1
To explain why the PCBD1 mutants are not capable of enhancing HNF1B-induced 
transcription, we examined their subcellular localization and their capacity to bind HNF1B. 
Immunostaining for PCBD1 in transiently transfected HEK293 cells revealed that wild-type 
PCBD1 translocates to the nucleus upon co-expression with HNF1B compared to mock 
DNA (Figure 4A). 

Figure 3  Continued. 

(C) Linear representation of the secondary structure elements of the human PCBD1 protein. Red 
arrowheads indicate the positions of the patient mutations described in literature. Green balls 
indicate the histidine residues involved in the dehydratase active site (His61, His62 and His79). (D) A 
luciferase assay was performed in HEK293 cells transiently co-transfected with a Firefl y luciferase 
FXYD2 promoter construct and HNF1B or mock DNA, in the presence of wild-type or mutant PCBD1. 
A Renilla luciferase construct was co-transfected to correct for transfection effi  ciency. Firefl y/Renilla 
luciferase ratios were determined as a measure of promoter activity. Results are depicted as 
percentage compared to HNF1B/Mock transfected cells. *, p< 0.05 versus HNF1B/Mock (n=9). Mock: 
mock DNA; WT: wild-type; 26: p.Glu26Ter, 78: p.Thr78Ile, 81: p.Cys81Arg, 86: p.Glu86Ter, 87: p.Arg87Gln, 
96: p.Glu96Lys, 97: p.Gln97Ter.
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Figure 4  Several PCBD1 mutations lead to protein degradation in HEK293 cells. 

(A) Immunocytochemistry analysis of the subcellular localization of HA-tagged PCBD1 wild-type or 
HA-tagged PCBD1 mutants when co-expressed in a 1:1 ratio with Flag-tagged HNF1B or mock DNA 
in HEK293 cells. Red signal represents immunodetected HA-epitopes. Nuclei stained with DAPI are 
shown in blue. The bar represents 10 μm in each panel. Representative immunocytochemical 
images are shown. (B) HA-tagged PCBD1 wild-type, PCBD1 mutants or mock DNA were transiently 
expressed in HEK293 cells with or without Flag-tagged HNF1B. Immunoprecipitations on nuclear 
extracts using an anti-Flag antibody were separated by SDS-PAGE, and western blots were probed 
with anti-HA (upper panel) or anti-Flag antibodies (middle panel). HA-PCBD1 input (25%) expression 
was also included in the analysis (lower panel). The immunoblots shown are representative for 3 
independent experiments. (C) Western blot analysis of HA-tagged PCBD1 mutants expressed in 
HEK293 cells, treated with (+) or without (-) 10 nM MG-132 for 24h. A representative immunoblot is 
shown. Mock: mock DNA; WT: wild-type; 26: p.Glu26Ter, 78: p.Thr78Ile, 81: p.Cys81Arg, 86: p.Glu86Ter, 
87:   p.Arg87Gln, 96: p.Glu96Lys, 97:  p.Gln97Ter.
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Furthermore, PCBD1 p.Glu26Ter, p.Glu86Ter, p.Glu96Lys and p.Gln97Ter were not expressed, 
whereas p.Thr78Ile and p.Cys81Arg were detected significantly less than the wild-type 
protein. PCBD1 p.Arg87Gln was the only mutant showing a comparable expression level 
to wild-type PCBD1 (Figure 4A). In accordance with the PCBD1 expression levels observed 
in immunocytochemistry, co-immunoprecipitation studies confirmed that only PCBD1 
p.Arg87Gln, p.Thr78Ile and p.Cys81Arg were expressed and able to bind to HNF1B (Figure 4B, 
upper and lower panel). Importantly HNF1B was equally expressed in all conditions 
(Figure 4B, middle panel). To examine whether mutated PCBD1 proteins are degraded by 
the proteasomal pathway for misfolded proteins, PCBD1-expressing HEK293 cells were 
treated for 24h with 10 nM of the proteasome inhibitor MG-132. Protein expression was 
restored for all of the PCBD1 mutants, with the only exception of p.Glu26Ter (Figure 4C).

HNF1B mutations affect the subcellular localization of PCBD1 
We evaluated five HNF1B mutations (p.Lys156Glu, p.Gln253Pro, p.Arg276Gly, p.
His324Ser325fsdelCA, p.Tyr352fsinsA) for their ability to bind and functionally respond to 
PCBD1 (Figure 5A).3, 4 All HNF1B mutants, except HNF1B Δ2-30, bound PCBD1 in co-immu-
noprecipitation studies in transiently transfected HEK293 cells (Figure 5B, upper panel). 
PCBD1 and HNF1B were expressed in all conditions tested (Figure 5B, middle and lower 
panel). FXYD2 promoter-luciferase assays showed that only HNF1B p.His324Ser325fsdelCA 
and p.Tyr352fsinsA, that retained partial transcriptional activity, respond to the co-activation 
by PCBD1 to the same extent as HNF1B wild-type (~1.5 fold; Figure 5C). Importantly, im-
munocytochemical analysis revealed that co-expression of PCBD1 with the HNF1B 
mutants p.Gln253Pro and p.His324Ser325fsdelCA causes a predominant cytosolic 
localization of PCBD1 compared to the nuclear translocation observed upon co-expression 
with HNF1B wild-type (Figure 5D-E). 

Discussion

Mutations in PCBD1 have been shown to cause a transient and benign form of neonatal 
hyperphenylalaninemia.20-22 Here, we present the first follow-up study of HPABH4D 
patients reporting the onset of late complications linked to the defected activity of PCBD1 
as transcriptional co-activator of HNF1B. Our results suggest that PCBD1 acts as an 
important transcriptional regulator of FXYD2 contributing to renal Mg2+ reabsorption in 
DCT. Our observations are based on the following results: i) hypomagnesemia with renal 
Mg2+s wasting was reported in two patients carrying homozygous mutations in the 
PCBD1 gene; ii) one out of two patients was diagnosed with MODY; iii) in vitro data 
demonstrated that PCBD1 binds
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Figure 5   Eff ect of HNF1B mutations on PCBD1 binding, transcription co-activation and 
subcellular localization. 

(A) Linear representation of the human HNF1B protein. Red arrowheads indicate patient mutations 
that were tested in this study. D: dimerization domain; POUH: atypical POU homeodomain; POUS: 
POU specifi c domain; NLS: nuclear localization signal. (B) Immunoprecipitations on nuclear extracts 
using an anti-Flag antibody were separated by SDS-PAGE, and western blots were probed with 
anti-HA (upper panel) or anti-Flag antibodies (middle panel). HA-HNF1B input (25%) expression was 
also included in the analysis (lower panel). The immunoblots shown are representative for 3 
independent experiments. (C) A luciferase assay was performed in HEK293 cells transiently 
co-transfected with a Firefl y luciferase FXYD2 promoter construct and each of the HNF1B variants, 
with (black bars) or without (white bars) PCBD1. Results are depicted as percentage compared to 
HNF1B/Mock transfected cells. *, p< 0.05 compared to the HNF1B/Mock condition (n=9).
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Figure 5   Continued. 

(D) Immunocytochemistry analysis of the subcellular localization of Flag-tagged PCBD1 when 
co-expressed in a 1:1 ratio with HA-tagged HNF1B constructs or mock DNA in HEK293 cells. Red 
signal represents immunodetected Flag-epitopes. The bar represents 20 μm in each panel. The im-
munocytochemical images shown are representative for 3 independent experiments. (E) 
Quantifi cation of the nuclear versus cytosolic localization of PCBD1 when co-expressed in a 1:1 ratio 
with mock DNA (n=24) or HNF1B Δ 1-32 (n=33), WT (n=41), 156 (n=38), 253 (n=35), 276 (n=33), 324_325 
(n=37); 352 (n=36). *, p< 0.05 compared to mock; #, p<0.05 compared to WT. Mock: mock DNA; WT: 
wild-type; Δ 1-32: HNF1B lacking the dimerization domain; 156: p.Lys156Glu; 253: p.Gln253Pro; 276: 
p.Arg276Gly; 324_325: p.His324Ser325fsdelCA; 352: p.Tyr352fsinsA.
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HNF1B to co-stimulate the FXYD2-promoter, whose activity contributes to Mg2+ 

reabsorption in DCT; iv) in the kidney, PCBD1 is highly expressed in DCT and sensitive to 
dietary Mg2+ content; iv) PCBD1 mutations reported in HPABH4D patients caused 
proteolytic instability leading to degradation via the proteasomal pathway. 
	 To our knowledge, we are the first to report that PCBD1 mutations associate with 
hypomagnesemia, renal Mg2+ wasting and MODY. Laboratory investigations of both 
patients revealed a defect in renal Mg2+ reabsorption, while serum Ca2+ levels and urinary 
Ca2+ excretion were not affected. In kidney, the key sites for Mg2+ reabsorption are the 
thick ascending limb of Henle’s loop (TAL) and DCT. While defects in the molecular 
pathway for Mg2+ handling in TAL lead to a concomitant waste of Ca2+, shortcomings in 
DCT cause hypermagnesuria associated with hypo- or normocalciuria. Thus, it is likely that 
in our patients the DCT is primarily affected. Fluorescence-based sorting of DCT-eGFP 
tubules using a COPAS apparatus coupled to real-time PCR analysis confirmed an 
enrichment of Pcbd1 expression in DCT tubules compared to other nephron segments. 
This is in line with a previous immunohistochemical study showing Pcbd1 expression in 
the cortex and outer medulla of the kidney.33 Interestingly, our results evidence that Pcbd1 
expression is increased in mice fed with a low Mg2+ diet, whereas Hnf1b levels remained 
stable. This suggests that Pcbd1 expression levels are an important regulating factor of 
Hnf1b-mediated transcription in DCT. We excluded that Pcbd1 expression is modulated 
by a change in phenylalanine metabolism, since serum and urinary phenylalanine levels 
were stable in our mice. Our results demonstrated that PCBD1 enhances the FXYD2 

promoter activation by HNF1B in vitro. The relevance of FXYD2 activity in Mg2+ handling in 
DCT has been suggested previously, since both patients with FXYD2 mutations and 
patients carrying HNF1B mutations may present with hypomagnesemia.3, 6 The FXYD2 
gene encodes the γ-subunit of the Na+-K+-ATPase. To date, the exact molecular mechanism 
by which the γ-subunit regulates Mg2+ handling in DCT remains elusive.5 Further evidence 
for an impaired HNF1-mediated transcription in HPABH4D patients was provided by the 
diagnosis of MODY in patient 1. MODY is a monogenic form of autosomal dominant type 
II diabetes characterized by age of onset often below 25 years and negative pancreatic 
autoantibodies. Heterozygous mutations in HNF1B or its homolog HNF1A associate with 
MODY type 5 and type 3, respectively.34 While MODY5 is mainly linked to pancreas 
hypoplasia secondary to agenesis,35 MODY3 shows an abnormal insulin secretion due to 
impaired growth and function of pancreatic β cells. Knowing that PCBD1 acts as transcrip-
tional co-activator of both HNF1B and HNF1A, a dysregulation of HNF1B and/or HNF1A is 
potentially responsible for the MODY diagnosed in patient 1. Interestingly, our finding of 
low plasma hs-CRP levels in patient 1 is in line with two recent studies showing that 
subjects with MODY3 maintain substantially lower levels of hs-CRP than individuals with 
other forms of diabetes, including MODY5, or nondiabetic control subjects.36, 37 This 
evidence favors the diagnosis of MODY3-like diabetes in patient 1. Patient 2 was not 
diagnosed with diabetes, but he will be monitored for later onset. 

4
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	 In this study, we showed that the HPABH4D patient mutations reported in literature 
lead to protein degradation of PCBD1 via the proteasome pathway. Proteasomal 
degradation of misfolded proteins occurs often within minutes of protein synthesis, 
explaining why many of the PCBD1 mutants are not expressed in our experiments.38 Our 
data together with previous studies on proteolytic instability for the same mutants in 
both mammalian and bacterial expression systems support the hypothesis that this 
degradation process may also occur in HPABH4D patients.20, 21, 39 Considering the 
inheritance of the disease, HNF1-mediated transcription seems to be sensitive to changes 
in PCBD1 quantity only when both PCBD1 alleles are affected, suggesting that PCBD1 
probably belongs to an ancillary regulatory mechanism to which other HNF1B partners 
may participate.40 In vitro data in HEK293 cells revealed that PCBD1 p.Arg87Gln was the 
only mutant showing both a functional activity and expression level comparable to the 
wild-type protein. Nevertheless, in patient 2 p.Arg87Gln is homozygously present on both 
alleles with a p.Glu26Ter mutation.21 Thus, this condition most probably mimics a 
homozygous p.Glu26Ter mutation leading to a significant decrease in the cellular content 
of PCBD1. PCBD1 p.Glu26Ter degradation could not be rescued by proteasome inhibition, 
suggesting that its transcript is degraded by mRNA surveillance mechanisms.41, 42 PCBD1 
p.Thr78Ile and p.Cys81Arg were significantly less expressed than the wild-type protein. 
Both mutants showed binding to HNF1B, but only PCBD1 p.Cys81Arg co-activated the 
FXYD2 promoter. In the near future, it would be of interest to screen patients with PCBD1 
p.Thr78Ile and p.Cys81Arg mutations for complications related to the HNF1B disease.
	 PCBD1 monomers are small molecules that can passively diffuse from the cytosol into 
the nucleus where they form heterotetramers with the nuclear HNF1 transcription 
factors.43 It was suggested that, by assembling via the same interface, PCBD1 homotetramer 
and PCBD1–HNF1 complexes are mutually exclusive.18 Furthermore, the high stability of 
the PCBD1 homotetramer in the cytosol may be essential to compete with the formation 
of the nuclear PCBD1–HNF1 complex or to serve as a cytosolic reserve for transcriptionally 
inactive PCBD1.18, 44 In our immunocytochemical analysis, the HNF1B mutants p.Gln253Pro 
and p.His324Ser325fsdelCA significantly stimulated a cytosolic localization of PCBD1 
compared to the nuclear PCBD1 localization observed in the presence of wild-type HNF1B. 
This suggests that HNF1B mutations may disturb the stability of the PCBD1–HNF1 
complexes in the nucleus and therefore favour the formation of PCBD1 homotetramers in 
the cytosol of the cell.3, 4 Although PCBD1 is still capable of interacting with HNF1B 
mutants, the reduced nuclear localization of PCBD1 will indirectly result in a decreased 
co-activation of HNF1B. Thus, an increased cytosolic localization of PCBD1 could contribute 
to hypomagnesemia in HNF1B patients. Since the presentation and development of 
HNF1B disease is diverse, variations in HNF1B interacting proteins may be responsible for 
the phenotypic heterogeneity. Screening of HNF1B patients for polymorphisms in PCBD1 
should, therefore, be considered.
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	 In conclusion, we identified PCBD1 as a new molecular player in HNF1B nephropathy. 
Our results suggest that PCBD1 regulates the HNF1B-mediated FXYD2 transcription, 
influencing active renal Mg2+ reabsorption in DCT. So far, HPABH4D due to PCBD1 
mutations has been considered a transient, benign condition, primarily related to impaired 
BH4 regeneration. To date, 23 patients with PCBD1 mutations linked to HPABH4D are listed 
in the International Database of Tetrahydrobiopterin Deficiencies (BIODEF database, 
Opladen T, Blau N., http://www.biopku.org/biodef/).23 Here, we suggest that patients 
affected by HPABH4D should be monitored for late complications related to the 
interactions with HNF1 transcription factors, including hypomagnesemia and MODY. 
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Supplemental data 

Supplemental Table 1  �Primer sequences used for real-time PCR analysis.

Gene product Forward (5’-3’) Reverse (5’-3’)

Pcbd1 TGGACATGGCCGGCAAGGC CCCACAGCCCTCAGGTTTG

Hnf1b CAAGATGTCAGGAGTGCGCTAC CTGGTCACCATGGCACTGTTAC

Gapdh TAACATCAAATGGGGTGAGG GGTTCACACCCATCACAAAC

Pcbd1: pterin-4 alpha-carbinolamine dehydratase/dimerization cofactor of hepatocyte nuclear factor 1 alpha; 
Hnf1b: hepatocyte nuclear factor b; Gapdh: glyceraldehyde 3-phosphate dehydrogenase.

Supplemental Table 2  �Primer sequences used for cloning or mutagenesis PCR.

Gene product Primer sequence (5’-3’)

PCBD1

HA- wild-type F CGACCGGTGGCTGGCAAGCACACAGG

R CGCTCGAGCTATGTCATGGACACTGCTAC

Flag-wild-type F GCGCTAGCGCCACCATGGACTACAAGGATGACAAGGCTGGCAAA 
GCACACAGGCTG

R CGCTCGAGCTATGTCATGGACACTGCTAC

HA-Glu26Ter F GCTGTGGGGTGGAATTAGCTGGAAGGCCGTGAT

R ATCACGGCCTTCCAGCTAATTCCACCCCACAGC

HA-Thr78Ile F CACATCACGCTGAGCATCCATGAGTGTGCCGGC

R GCCGGCACACTCATGGATGCTCAGCGTGATGTG

HA-Cys81Arg F AGCACCCATGAGCGTGCCGGCCTTTCA

R TGAAAGGCCGGCACGCTCATGGGTGCT

HA-Glu86Ter F TGTGCCGGCCTTTCATAACGGGACATAAACCTG

R CAGGTTTATGTCCCGTTATGAAAGGCCGGCACA

HA-Arg87Gln F GCCGGCCTTTCAGAACAGGACATAAACCTGGCC

R GGCCAGGTTTATGTCCTGTTCTGAAAGGCCGGC

HA-Glu96Lys F CTGGCCAGCTTCATCAAACAAGTAGCAGTGTCC

R GGACACTGCTACTTGTTTGATGAAGCTGGCCAG

HA-Gln97Ter F GCCAGCTTCATCGAATAAGTAGCAGTGTCCATG

R CATGGACACTGCTACTTATTCGATGAAGCTGGC
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Supplemental Table 2  �Continued.

Gene product Primer sequence (5’-3’)

HNF1B

Flag-wild-type F CGGCTAGCCCACCATGGACTACAAGGATGACGATGACAAGTGGC 
GCGCCGTGTCCAAG

R GGCCCCCATTTGAACCGGTCG

HA-wild-type F GGCGCGCCATGGTGTCCAAGCTCACGTCGC

R TCTAGATCACCAGGCTTGTAGAGGACAC

HA-Δ2-30 F CGGGCGCGCCGAGGAGTTGCTGCCATC

R GGCCCCCATTTGAACCGGTCG

HA-Lys156Glu F CCCAGCATCTCAACGAGGGCACCCCTATG

R CATAGGGGTGCCCTCGTTGAGATGCTGGG

HA-Gln253Pro F CAGGCCTACGATCGGCCAAAGAACCCCAGCAAG

R CTTGCTGGGGTTCTTTGGCCGATCGTAGGCCTG

HA-Arg276Gly F GCAGAATGTTTGCAGGGAGGGGTGTCCCCCTC

R GAGGGGGACACCCCTCcCTGCAAACATTCTGC

HA-His324Ser325fsdelCA F CTCCAACCAGACTCAGCCTGAACCCTCTGC

R GCAGAGGGTTCAGGCTGAGTCTGGTTGGAG

HA-Tyr352fsinsA F GTCAGGAGTGCGCTAACAGCCAGCAGGGAAAC

R GTTTCCCTGCTGGCTGTTAGCGCACTCCTGAC

PCBD1: pterin-4 alpha-carbinolamine dehydratase/dimerization cofactor of hepatocyte nuclear factor 1 alpha; 
HNF1B: hepatocyte nuclear factor B.
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Abstract

The cation channel transient receptor potential channel C6 (TRPC6) is a slit diaphragm 
protein expressed by podocytes. TRPC6 gain-of-function mutations cause autosomal 
dominant focal segmental glomerulosclerosis. In acquired proteinuric renal disease, 
glomerular TRPC6 expression is increased. We previously demonstrated that acquired 
increased TRPC6 expression is ameliorated by anti-proteinuric angiotensin receptor 
blockers and angiotensin converting enzyme inhibitors. Vitamin D also has an anti-pro-
teinuric effect. We hypothesized that vitamin D reduces proteinuria by affecting TRPC6 
expression in podocytes.
	 Adriamycin-induced nephropathy increased TRPC6 mRNA and glomerular TRPC6 
protein expression, and induced proteinuria in rats. Treatment with 1α,25-dihydroxy-
vitamin D3 (1,25-D3) normalized TRPC6 expression and reduced proteinuria. In vitro, 
podocyte injury was induced by adriamycin exposure in cultured mouse podocytes, 
which increased TRPC6 expression. Treatment of injured podocytes with 1,25-D3 resulted 
in a dose-dependent reduction of adriamycin-induced TRPC6 expression. Of note, 
chromatin immunoprecipitation analysis demonstrated that the vitamin D receptor 
directly binds to the TRPC6 promoter, and 1,25-D3 reduced TRPC6 promoter activity in a 
luciferase reporter assay. In 1,25-D3-deficient 25-hydroxy-1α-hydroxylase knockout mice, 
TRPC6 mRNA and glomerular TRPC6 protein expression were increased, accompanied by 
podocyte foot process effacement and proteinuria. Importantly, 1,25-D3 supplementation 
normalized TRPC6 expression, podocyte morphology and proteinuria in these mice.
	 We demonstrated that vitamin D downregulates the enhanced TRPC6 expression in 
in vivo and in vitro podocyte injury, possibly through a direct effect on TRPC6 promoter 
activity. Thus, our results suggest that this TRPC6 downregulation could contribute to the 
anti-proteinuric effect of vitamin D.
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Introduction

Podocytes play a crucial role in the glomerular filtration barrier. Podocyte foot processes 
are connected by specialized proteins, such as nephrin and neph1, to form the glomerular 
slit diaphragm complex. This structure is closely connected to the actin skeleton through 
proteins like podocin and CD2AP, and plays an important role in cell signaling in 
podocytes.1-5 Injury to the podocyte and its slit diaphragm can lead to proteinuria and 
eventually chronic renal function decline.2 Various studies suggest that podocyte injury 
plays a crucial initiating role in several hereditary and acquired proteinuric diseases, 
including focal segmental glomerulosclerosis (FSGS) and diabetic nephropathy.6-9

	 Transient receptor potential cation channel, subfamily C, member 6 (TRPC6) is a 
calcium-conducting ion channel, which is expressed in podocytes and suggested to 
function as a slit diaphragm-associated protein.10 TRPC6 is thought to play a role in 
signaling processes at the slit diaphragm complex which, in turn, might influence the 
cytoskeleton of the podocyte.10, 11 TRPC6 gain-of-function mutations are associated with 
a hereditary form of FSGS.10, 12 Moreover, in several acquired proteinuric diseases, an 
increased glomerular TRPC6 expression was demonstrated. Therefore, it appears that 
TRPC6 plays a role in the pathogenesis of podocyte injury in both hereditary and acquired 
proteinuric diseases.13 Previously, we described a correlation between TRPC6 expression 
and severity of FGS score in an animal model for acquired FSGS.14 Furthermore, we 
demonstrated that angiotensin II activates TRPC6 and increases TRPC6 expression via a 
nuclear factor of activated T-cells (NFAT)-mediated positive feedback signaling pathway, 
which contributes to podocyte injury. Moreover, we demonstrated that angiotensin 
converting enzyme inhibitors (ACEi) and angiotensin receptor blockers (ARBs), pivotal 
therapies to reduce proteinuria, decrease TRPC6 expression in injured podocytes as well 
as in animal models for proteinuric disease. Thus, enhanced TRPC6 activity and/or 
expression appears to mediate podocyte and glomerular injury, whereas decreasing 
TRPC6 expression is associated with reduced injury and amelioration of proteinuria. 
	 In addition to ACEi and ARBs, new anti-proteinuric therapies have recently emerged, 
including treatment with vitamin D analogs.15 Cholecalciferol (vitamin-D3) is taken up in 
the gastrointestinal tract or synthesized by the effect of sunlight in the skin, after which it 
can be converted by the liver into 25-hydroxyvitamin D3 and, subsequently, to 1,25-dihy-
droxyvitamin D3 (1,25-D3) in the proximal tubule of the kidney. 1,25-D3 is classically defined 
as the active form of vitamin D, which plays a central role in Ca2+ and PO4

3- metabolism. 
With the progression of renal insufficiency, deficiency of 1,25-D3 ensues.16 However, 
1,25-D3 deficiency may not only be a consequence of, but recent studies indicated that 
1,25-D3 deficiency itself could also be the cause of renal injury. Clinical and pre-clinical 
studies demonstrated that treatment with vitamin D analogs reduces proteinuria and 
podocyte loss.17-22 It was demonstrated that podocytes express the vitamin D receptor 
(VDR) and undergo ultrastructural changes when exposed to 1,25-D3.23, 24 More recently, 
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it was shown that 1,25-D3 regulates the expression of several key podocyte proteins, like 
nephrin and podocin.25, 26 Other TRP channel family members, such as TRPV5 and TRPV6, 
are also regulated by 1,25-D3.27, 28

	 Taken together, this suggests a role for 1,25-D3 in the regulation of TRPC6 expression 
in podocyte injury and proteinuric disease. Therefore, we investigated whether vitamin D 
regulates TRPC6 expression in cultured podocytes as well as in animal models for FSGS or 
1,25-D3 deficiency. 

Materials and Methods

Adriamycin nephropathy (AN) rats
The AN model for human FSGS was induced in 8 week old Wistar rats (Charles River, 
Wilmington, USA) by a single tail vein injection with 5 mg/kg body weight adriamycin 
(Sigma-Aldrich, St. Louis, USA). Hereafter, rats were treated with daily intraperitoneal 
injections of 2.5 µg/kg bodyweight 1,25-D3 or vehicle for 6 weeks. At the end of the 
experiment, rats were housed in metabolic cages to collect 24 hour urine samples. 
Subsequently, animals were sacrificed, and kidneys and blood samples were collected. All 
animals were kept at the Central Animal Facility of the Radboud University Nijmegen in a 
standard room at a temperature of 21°C and controlled humidity. Animals were exposed 
to a 12 hours light/dark cycle with ad libitum access to food and water. All procedures 
involving animals were approved by the Animal Ethics Committee of the Radboud 
University Nijmegen, The Netherlands, in accordance with the guidelines of the Dutch 
Council for Animal Care and the European Communities Council Directive (86/609/EEC).

Podocyte cell culture
Conditionally immortalized mouse podocytes (MPC-5) were cultured at 33°C/5% CO2 and 
differentiated at 37°C in Roswell Park Memorial Institute (RPMI) Dutch modified medium 
(Invitrogen, Carlsbad, USA) supplemented with 10% v/v fetal calf serum (FCS), 1% w/v 
glutamine, 10 units/ml interferon-gamma and 1% penicillin/streptomycin as described 
previously.29 Depending on the exact experimental set-up, differentiated podocytes were 
treated with 0.25 μg/ml adriamycin and 100 nM 1,25-D3 or vehicle for 24 hours (Sigma-
Aldrich, St. Louis, USA). In these experiments, N=4-5 separate podocyte cultures were 
used per experimental condition per experiment, and all experiments were repeated at 
least twice for confirmatory purposes.

Construction of TRPC6 promoter luciferase reporter construct and 
luciferase activity assay
The 5'-promoter region of the mouse TRPC6 gene (−1500/+32; +1 designates the transcription 
start site, NM_013838.2) was obtained by amplification of genomic DNA using primers 
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5'-GACGCTCGAGTGTTGCTTCTGCAGCCCGAGTG-3' and 5'-GATCAAGCTTAGC CGCGAAAG
GAACCTTGACC-3'. The PCR product was cloned into the pGL3-Basic luciferase reporter 
vector and the cloned promoter sequence was verified  by sequence analysis. The 
pRL-CMV vector encoding Renilla luciferase under control of a CMV promoter was used as 
control for transfection efficiency (Promega, Fitchburg, USA).
	 Opossum kidney (OK) cells were cultured in DMEM/F12 (1:1) medium supplemented 
with 10% FCS, 15 mM Hepes, 2.5 mM L-glutamine and 1% penicillin/streptomycin at 37°C 
in a humidity-controlled incubator with 5% (v/v) CO2.30 Briefly, cells were seeded in a 
12-well plate and transfected the following day in serum free medium. The transfection 
mixture was prepared in 60 μl Optimem (Invitrogen, Carlsbad, USA) and consisted of 1 μg 
of either TRPC6 promoter construct or empty pGL3-basic vector, 50 ng of pRL-CMV and 
1.25 μl Lipofectamin2000 (Invitrogen, Carlsbad, USA). Four hours after transfection, cells 
were washed with PBS and incubated with culture medium containing 1% FCS, in the 
presence of 100 nM 1,25-D3 or vehicle. Cells were harvested 48 hours post-transfection 
and luciferase activity was determined using a dual luciferase reporter assay system 
(Promega, Fitchburg, USA). In these experiments, N=4-5 separate cultures were used per 
experimental condition per experiment, and all experiments were repeated at least twice 
for confirmatory purposes. 

Chromatin immunoprecipitation (ChIP)
ChIP analysis was performed using OK cells transfected with the TRPC6 promoter luciferase 
reporter construct or the empty pGL3-basic vector without promoter. Cells were treated 
with 100 nM 1,25-D3 as described above. Cells were harvested 4 hours after transfection 
and a Magna ChIP A assay was performed according to the manufacturer’s protocol 
(Merck Millipore, Billerica, USA). Briefly, proteins were cross-linked to the DNA with 
formaldehyde, subsequently cells were lysed and samples were sonicated two times for 
30 seconds on ice at 22µm amplitude using a Soniprep 150 (MSE, London, UK). Samples 
were incubated with 5.0 µg of rabbit polyclonal anti-vitamin D receptor antibody (ab3508, 
Abcam, Cambridge, USA) or with rabbit IgG isotype antibodies as control. Immunopre-
cipitates were enriched with protein A magnetic beads. Subsequently chromatin 
complexes were eluted, the cross-links reversed, and the DNA was isolated. The presence 
of TRPC6 promoter DNA was evaluated in real-time PCR with specific primers corresponding 
to the TRPC6 promoter region (5’-CTCAACGCATGTCCCCATAC-3’ and 5’-GTAACACCAAG
GGAGGGC-3’). Subsequently, samples were loaded on a 2% agarose gel and visualized 
using Proxima C16 (Isogen, De Meern, the Netherlands). 

1,25-D3-deficient 25-hydroxy-1α-hydroxylase KO mice
The 1,25-D3-deficient 25-hydroxy-1α-hydroxylase KO mice were previously generated by 
targeted ablation of exon 8 encoding the heme binding domain of the enzyme. Mice 
were genotyped using PCR and Southern blot analysis, as described previously.31 
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Five-week-old WT and KO mice were given daily intraperitoneal injections with 500 pg 
1,25-D3 (Sigma-Aldrich, St. Louis, USA) or vehicle for 6 weeks. At the end of the experiment 
mice were housed in metabolic cages to collect 24 hour urine samples. Subsequently, 
animals were sacrificed, kidneys and blood samples were collected. 

Analytical procedures
Urinary albumin and creatinine levels were determined by radial-immunodiffusion and 
enzymatic colorimetry, respectively. Serum Ca2+ levels were measured by spectro
photometry.32

Real-time PCR analysis
RNA was isolated from cultured podocytes or kidney cortex and reverse transcribed 
(Transcriptor Kit, Roche Diagnostics, Mannheim, Germany). Real-time quantitative PCR was 
performed using SYBR Green Supermix (Roche) on a MyiQ Real-Time PCR detection 
system (Bio-Rad Laboratories, CA, USA) as described previously.14 TRPC6 expression was 
quantified by the delta-delta cycle threshold (Ct) method using glyceraldehyde 
3-phosphate dehydrogenase (GAPDH) as the housekeeping gene. In these experiments, 
N=4-5 separate cultures were used per experimental condition per experiment, and all 
experiments were repeated at least twice for confirmatory purposes. 

Immunohistochemistry
Glomerular expression of TRPC6 and desmin was determined by semi-quantitative scoring 
of immunofluorescence staining in 2 mm cryosections as described previously.14 In rat 
kidneys, TRPC6 was probed using a rabbit polyclonal antibody against the C-terminal tail 
of rat TRPC6 (Abcam, Cambridge, USA). TRPC6 expression in mice kidneys was detected by 
a rabbit polyclonal antibody against the N-terminal tail of mouse TRPC6 (Alomone, 
Jerusalem, Israel). Desmin expression was detected using a goat polyclonal antibody 
against the C-terminus of mouse and rat desmin (Santa Cruz, Santa Cruz, USA). Alexa-
conjugated secondary antibodies were used subsequently. Glomerular TRPC6 and desmin 
expression was scored semi-quantitatively on a scale from 0 to 5 based on the extent of 
TRPC6 immunofluorescence staining and 0 to 10 for desmin staining in the glomerulus as 
described previously.14 Scoring was performed independently by two investigators, who 
scored 35 to 50 glomeruli per animal on blinded sections. 

Transmission Electron Microscopy
For electron microscopy, we used immersion fixation. Small fragments of cortex were 
fixed in 2.5% glutaraldehyde dissolved in 0.1 M sodium cacodylate buffer, pH 7.4, overnight 
at 4°C and washed in the same buffer. The tissue fragments were postfixed in palade-
buffered 2% OsO4 for 1h, dehydrated, and embedded in Epon812, Luft’s procedure (Merck, 
Darmstadt, Germany). Ultrathin sections were contrasted with 4% uranyl acetate for 45 
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min and subsequently with lead citrate for 5 min at room temperature. Podocyte 
effacement was analysed by blinded scoring of the glomeruli in a Jeol 1200 EX2 electron 
microscope (JEOL, Tokyo, Japan).

Statistical analysis
All results are depicted as mean ± SEM. All statistical analyses were conducted by 
two-tailed student’s t-test when comparing 2 treatment groups or experimental 
conditions, and ANOVA when comparing 3 or more treatment groups or conditions, using 
SPSS (IBM, New York, USA). P values less than 0.05 were considered significant. 

Results

Effect of 1,25-D3 on TRPC6 expression in an in vivo FSGS model
To study the in vivo effects of vitamin D on TRPC6 expression and proteinuria in an animal 
model for FSGS, control and adriamycin-exposed rats (adriamycin nephropathy; AN) were 
treated with 1,25-D3 or vehicle. Vehicle-treated AN rats exhibited an increased albumin/
creatinine ratio compared to vehicle-treated control rats, which was significantly 
ameliorated by 1,25-D3 treatment (Figure 1A). 1,25-D3 treatment did not alter urinary 
albumin/creatinine ratio in control rats. AN rats showed increased TRPC6 mRNA (Figure 1B)  
and glomerular TRPC6 protein expression (Figure 1C). By co-staining for TRPC6 and 
nephrin, we could demonstrate that the enhanced TRPC6 expression occurs primarily in 
podocytes (data not shown). Importantly, 1,25-D3 treatment significantly reduced adriamycin-
induced TRPC6 mRNA as well as protein expression. Furthermore, TRPC6 expression was 
not significantly altered by 1,25-D3 in control animals. In addition, glomerular desmin 
expression, as a measure of podocyte damage, was increased in AN rats, but significantly 
reduced upon treatment with 1,25-D3 (Figure 1D).

Effect of 1,25-D3 on TRPC6 expression in podocyte injury in vitro 
In the adriamycin-induced podocyte injury model, TRPC6 expression was significantly 
increased when compared to vehicle-treated control cells (Figure 2A). When injured 
podocytes were treated for 24 hours with 100 nM 1,25-D3, TRPC6 expression was similarly 
reduced. Furthermore, a dose-dependent reduction of adriamycin-induced TRPC6 
expression was observed when adriamycin-injured podocytes were treated with 
increasing concentrations of 1,25-D3 (Figure 2B). In contrast, no effect of 1,25-D3 on TRPC6 
expression was seen in uninjured control podocytes.

Effect of 1,25-D3 on TRPC6 promoter activity
In order to evaluate whether 1,25-D3 directly regulates TRPC6 transcription, possibly 
through vitamin D-responsive elements (VDRE) in the TRPC6 promoter, the 1500 bp 
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Figure 1  �Effect of 1,25-D3 on TRPC6 expression and proteinuria in the rat adriamycin-
induced nephropathy (AN) model for FSGS. 

AN was induced in Wistar rats by a single injection of adriamycin (1 mg/ml). Subsequently, AN or 
control (CTR) rats were treated with 1,25-D3 (2.5 µg/kg) or vehicle (VEH) for 6 weeks. Proteinuria is 
depicted as albumin/creatinine ratio (A), TRPC6 mRNA expression (B) was determined by real-time 
qPCR and glomerular TRPC6 protein expression (C) and desmin protein expression (D) were 
determined by semi-quantitative immunohistochemistry. Representative immunohistochemical 
images are shown (C and D) *, p < 0.05 vs VEH-treated controls, †, p < 0.05 vs VEH-treated AN.
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Figure 2  �Dose-dependent effect of 1,25-D3 on TRPC6 expression in podocyte injury. 

Cultured podocytes were exposed to adriamycin (ADRIA) or vehicle (VEH) in absence or presence of 
1,25-D3 (100nM) for 24 hours (A). Cultured podocytes were treated with adriamycin (ADRIA-treated) 
or vehicle (VEH) and subsequently treated with different concentrations of 1,25-D3 (100 pM – 1 µM) 
or vehicle (VEH) for 24 hours (B. TRPC6 mRNA levels were determined by real-time qPCR and 
quantified by the delta-delta cycle threshold (Ct) method using GAPDH as the house-keeping gene. 
Results are shown as percentage compared to vehicle-treated control podocytes. *, p < 0.05 vs VEH/
VEH-treated, †, p < 0.05 vs ADRIA.
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upstream of the mouse TRPC6 transcription start site were cloned upstream of the 
luciferase reporter gene. Opossum kidney (OK) cells were subsequently transfected with 
either the mouse TRPC6 promoter luciferase reporter construct or an empty vector that 
does not contain transcriptionally active elements, and treated for 48 hours with 100 nM 
1,25-D3 or vehicle. Treatment with 1,25-D3 significantly reduced the activity of the TRPC6 
promoter by about 25%, compared to the vehicle-treated cells (Figure 3). Luciferase 
activity was not altered by 1,25-D3 in cells expressing the empty vector. 

ChIP analyses of VDR binding to the TRPC6 promoter region
To determine whether the above described effect of 1,25-D3 on TRPC6 promoter activity 
is mediated by direct binding of the VDR to the TRPC6 promoter, we performed a ChIP 
analysis. OK cells were transfected with the mouse TRPC6 promoter luciferase construct 
(TRPC6) or empty vector (empty) and treated with 100 nM 1,25-D3 for 4 hours. After the 
ChIP assay, we performed a real-time PCR analysis, which showed a 16-fold enrichment of 
the TRPC6 promoter when precipitated with the anti-VDR antibody (Figure 4: anti-VDR 
lane) compared to the rabbit IgG isotype control (Figure 4: IgG lane). Two percent of the 

Figure 3  �Effect of 1,25-D3 on TRPC6 promoter activity. 

A luciferase assay was performed in OK cells transiently transfected with a Firefly luciferase TRPC6 
promoter construct or empty vector, after 48 hours of treatment with 100 nM 1,25-D3 or vehicle 
(VEH). A Renilla luciferase construct was co-transfected to correct for transfection efficiency. Firefly/
Renilla luciferase ratios were determined as a measure of promoter activity. Results are depicted as 
percentage compared to vehicle-treated cells transfected with the TRPC6 promoter construct. *, p < 
0.05 vs VEH-treated empty vector, †, p < 0.05 vs VEH-treated TRPC6 construct.
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chromatin used for immunoprecipitation was included as a control (Figure 4: input lane). 
Using the empty vector no significant difference was seen between both antibodies  
(data not shown).

TRPC6 expression and glomerular injury in 1,25-D3-deficient mice
To study the in vivo effect of 1,25-D3 deficiency, we used 25-hydroxy-1α-hydroxylase 
knockout (KO) mice, which are unable to synthesize 1,25-D3.33 These KO mice showed a 
significantly increased albumin/creatinine ratio compared to their wild-type (WT) 
littermates (Figure 5A). Subsequently, 1,25-D3 supplementation in 25-hydroxy-1α-
hydroxylase KO mice reduced albumin/creatinine ratio to WT levels, without restoring the 
hypocalcemia in these mice. At sacrifice, serum Ca2+ concentrations were 2.09±0.01mM, 
1.37±0.03mM and 1.39±0.04mM for WT, KO and KO supplemented with 1,25-D3, 
respectively. Importantly, 25-hydroxy-1α-hydroxylase KO mice demonstrated an increased 
TRPC6 mRNA (Figure 5B) and glomerular TRPC6 protein expression (Figure 5C). By 
co-staining for TRPC6 and podocin, we could demonstrate that the enhanced TRPC6 
expression occurs in podocytes (data not shown). Furthermore, 1,25-D3 treatment 
normalized TRPC6 mRNA and protein expression in these mice. Expression of desmin was 
significantly increased in 25-hydroxy-1α-hydroxylase KO mice, which was restored to 
normal levels by 1,25-D3 treatment (Figure 5D). Electron microscopy analysis clearly 
demonstrated more, and in some segments total, podocyte foot process effacement in 
proteinuric 1,25-D3-deficient mice. Hardly any effacement could be detected in their WT 
non-proteinuric littermates, as shown in the representative images in Figure 5E. The 
extent of podocyte effacement was quantified as 1.9±0.1% in WT versus 15.3±2.9% in the 
25-hydroxy-1α-hydroxylase KO animals. When treated with 1,25-D3, the podocyte foot 
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Figure 4  �Vitamin D receptor (VDR) binds to the TRPC6 promoter region. 

To determine whether the VDR directly binds the TRPC6 promoter region we performed a chromatin 
immunoprecipitation (ChIP) analysis. OK cells were transfected with the mouse TRPC6 promoter 
luciferase construct or the empty vector without promoter, and treated with 100 nM 1,25-D3. After 
chromatin immunoprecipitation using an anti-VDR antibody or a rabbit IgG isotype control 
antiserum, DNA was isolated and a (real-time) PCR with specific primers designed for the TRPC6 
promoter was performed. Real-time PCR showed a 16-fold enrichment of signal using the anti-VDR 
antibody (anti-VDR lane) compared to the isotype control (IgG lane) in the presence of the TRPC6 
promoter construct, whereas this enrichment was absent using the empty vector (not shown). As a 
control 2% of the chromatin used for the immunoprecipitation is shown (input lane).
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process effacement in 25-hydroxy-1α-hydroxylase KO animals completely recovered to 
2.2±0.7%, and glomerular ultrastructure was not distinguishable from WT mice.

Discussion

The present study demonstrated that 1,25-D3 downregulates TRPC6 expression both in 
injured podocytes as well as in animal models for FSGS and 1,25-D3 deficiency. The 
increased glomerular TRPC6 expression and proteinuria in the AN rat model for human 
FSGS, were both significantly ameliorated by 1,25-D3 treatment. In vitro, the enhanced 
TRPC6 expression in injured podocytes was dose-dependently reduced by 1,25-D3 
application. We demonstrated that the VDR binds directly to the TRPC6 promoter region 
and, accordingly, 1,25-D3 inhibits TRPC6 promoter activity. Interestingly, 25-hydroxy-1α-
hydroxylase KO mice, which are 1,25-D3 deficient, showed significantly enhanced 
glomerular TRPC6 expression levels along with a remarkable proteinuria associated with 
podocyte foot process effacement. In line with the aforementioned results, 1,25-D3 
supplementation reversed both the increased TRPC6 expression as well as the proteinuria, 
and normalized podocyte morphology. Taken together, we demonstrated that vitamin D 
downregulates the enhanced TRPC6 expression in in vitro and in vivo podocyte injury, 
possibly through a direct effect on TRPC6 promoter activity. 
	 The present study is the first to show that TRPC6 promoter activity and expression is 
regulated by means of a nuclear hormone receptor, the VDR. TRPC6 was generally 
regarded to be a primarily receptor-operated channel, regulated by cell surface receptors 
like the angiotensin II type 1 receptor (AT1R).14 34 The TRP channel family members TRPV5 
and TRPV6 are also transcriptionally regulated by vitamin D. However, these channels are 
not regarded as primarily receptor-mediated signaling proteins, but rather involved in 
transcellular Ca2+ transport across the gastrointestinal and renal epithelia, processes 
known to be governed by vitamin D.35-37 
	 While the TRPC6 promoter activity can be inhibited by 1,25-D3 in uninjured OK cells, 
in cultured podocytes and in vivo in the rat kidney 1,25-D3 appears to reduce TRPC6 
expression only in injured podocytes, but not in uninjured podocytes. One explanation 
could be the length (~1500bp) of the cloned TRPC6 promoter region for the luciferase 
reporter construct. In this cloned region there could be less transcription sites compared 
to the native promoter in its chromatin context. Therefore the native TRPC6 gene in the 
cultured or in vivo podocytes might be regulated more strictly by other (transcription) 
factors, which are unable to affect our 1500 bp promoter construct or are not even present, 
like higher order chromatin structures. A second explanation could be that the kinetics of 
the turnover and relative expression of the luciferase protein is different from the TRPC6 
mRNA and protein. A third explanation could be, that the basal TRPC6 promoter activity is 
regulated by another transcriptional complex in a specific chromatin context in uninjured 
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Figure 5  �TRPC6 expression, proteinuria and podocyte foot process effacement in 1,25-
D3-deficient 25-hydroxy-1α-hydroxylase KO mice. 

25-hydroxy-1α-hydroxylase KO mice were supplemented daily with 1,25-D3 (500 ng) or vehicle for 6 
weeks. Proteinuria is depicted as albumin/creatinine ratio (A), TRPC6 mRNA expression (B) was 
determined by real-time qPCR and glomerular TRPC6 protein expression (C) and desmin protein 
expression (D) were determined by semi-quantitative immunohistochemistry. *, p < 0.05 vs 
VEH-treated controls, †, p < 0.05 vs VEH-treated AN. Representative images showing podocyte 
morphology as determined by electron microscopy (E).
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cultured or in vivo podocytes compared to the TRPC6 promoter activity in injured 
podocytes and/or OK cells. 
	 In general, transcriptional regulation of vitamin D-responsive genes occurs through 
interaction of the nuclear VDR complex with vitamin D responsive elements (VDRE) in the 
promoter region of these target genes.38 In this study, we demonstrated that the VDR 
indeed binds to the TRPC6 promoter region. For positively regulated genes, a VDRE 
consensus sequence is available. Genes that are negatively regulated by vitamin D are 
sparse and, next to TRPC6, include the genes encoding parathyroid hormone and 
renin.39-41 When the negative vitamin D-responsive promoter sequences (nVDRE) in these 
genes were identified, they did not comply with the consensus sequence.42, 43 Similarly, 
the TRPC6 promoter region did not contain sequences complying with the VDRE 
consensus sequence (data not shown). Thus, TRPC6 appears to be part of a select group 
of genes that are negatively regulated by vitamin D.
	 The relationship between proteinuria and increased TRPC6 activity and/or expression 
was demonstrated in several acquired human proteinuric diseases and animal models.10, 

12, 13, 44-46 In addition, downregulation of TRPC6 expression by e.g. ARBs, ACEi or calcineurin 
inhibitors correlated with reduced proteinuria in proteinuric animal models.14, 47, 48 
Recently, Eckel et al. illustrated the potential beneficial anti-proteinuric effect of 
downregulating TRPC6 expression by showing reduced AngII-mediated albuminuria in 
TRPC6 KO compared to WT mice.49 In the present study, we demonstrated that 1,25-D3 
treatment significantly reduces glomerular TRPC6 expression and proteinuria, as well as 
expression of the podocyte injury marker desmin in the rat AN FSGS model. To further 
evaluate the importance of 1,25-D3, we used the 25-hydroxy-1α-hydroxylase KO model, 
which displays undetectable levels of 1,25-D3.33, 50 Glomeruli showed increased TRPC6 
expression, which was paralleled by a similarly increased expression of the podocyte 
damage marker desmin. Electron microscopy showed podocyte foot process effacement 
in the KO mice. To confirm that the enhanced TRPC6 expression was 1,25-D3-mediated 
and to test whether damage could be prevented, mice were supplemented with 1,25-D3, 
which normalized glomerular TRPC6 expression and proteinuria. Theoretically, the 
observed effects could also result from e.g. the striking hypocalcemia interfering with 
TRPC6 function in the podocytes of 25-hydroxy-1α-hydroxylase KO mice, but the relatively 
low dose of 1,25-D3 supplementation did not significantly increase serum Ca2+ levels in 
these mice. The current study is the first to describe the glomerular and proteinuric 
phenotype in this animal model of 1,25-D3-deficiency. However, our results by no means 
prove a causal relationship between increased TRPC6 expression and the glomerular 
phenotype in this particular model. Taken together though, our data do show that 1,25-D3 
downregulates the enhanced TRPC6 expression in FSGS, while 1,25-D3 deficiency results 
in increased TRPC6 expression, which was proven 1,25-D3-sensitive.
	 While our TRPC6 promoter luciferase reporter and ChIP analyses suggested that 
TRPC6 promoter activity is a specific target of vitamin D, this does not rule out that in vivo, 
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other mechanisms could also contribute to the downregulation of TRPC6 expression by 
vitamin D. Importantly, the gene encoding renin, important in AngII biosynthesis, is 
negatively regulated by vitamin D. As we previously showed that AngII enhances TRPC6 
expression by stimulating a calcineurin/NFAT-mediated feed-forward pathway in adriam-
ycin-induced podocyte injury, this could certainly be an additional mechanism reducing 
TRPC6 expression 14. Interestingly, recent studies in mice with cardiomyocyte-specific 
deletion of the VDR demonstrated that vitamin D inhibits the calcineurin/NFAT signaling 
pathway in the cardiomyocyte, which also includes TRPC6.51 Thus, the demonstrated 
vitamin D-mediated inhibition of TRPC6 promoter activity could serve to counteract the 
effect of the transcription factor NFAT on the TRPC6 promoter. Furthermore, TRPC6 will 
certainly not be the only mediator of the effect of vitamin D on glomerular injury and 
proteinuria. Several studies described the protective role of 1,25-D3 in different proteinuric 
disorders such as FSGS and diabetic nephropathy, in which the authors hypothesized that 
1,25-D3 acts on various pathways.18-20 For example, 1,25-D3 upregulates expression of 
various structural podocyte proteins such as podocin and nephrin.52, 53 Nephrin was 
shown to inhibit TRPC6-phospholipase C complex formation, surface expression and 
activation.54 Therefore, in addition to inhibiting TRPC6 expression directly, 1,25-D3 could 
also affect TRPC6 indirectly via nephrin.
	 Altogether, our results add important new data to our understanding of the regulation 
of TRPC6 expression in podocytes. The transcriptional regulation of TRPC6 by 1,25-D3 
demonstrated in cultured podocytes and illustrated in a rat FSGS model as well as in 1,25-
D3-deficient mice, suggests that TRPC6 downregulation could indeed contribute to the 
anti-proteinuric effect of vitamin D.
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Abstract

The mammalian target of rapamycin (mTOR) is a serine/threonine kinase that has recently 
emerged as an important signaling molecule in several renal diseases. The inhibitor of 
mTOR, rapamycin, is a potent immunosuppressant used in the anti-rejection therapy after 
organ transplantation and known to induce renal magnesium (Mg2+) wasting. However, 
the underlying molecular mechanism remains unknown. The present study investigated 
the effects of rapamycin on the regulation of the epithelial Mg2+ channel, transient 
receptor potential melastatin 6 (TRPM6), the key molecular player in the fine-tuning of 
renal Mg2+ excretion in the distal convoluted tubule (DCT). Administration of rapamycin 
to mice by daily intraperitoneal injections for one week significantly reduced the renal 
mRNA expression of TRPM6. The mRNA expression levels of hepatocyte nuclear factor 
homeobox B (HNF1B) and epidermal growth factor (EGF), which play a role in Mg2+ 

reabsorption in DCT, displayed a similar downregulation. The expression levels of the 
marker genes for the thick ascending limb of Henle (TAL), claudin-16 (CLDN16) and 
claudin-19 (CLDN19), were upregulated in the rapamycin-treated group compared to the 
control group. None of the other tested genes known to be involved in renal Mg2+ 
reabsorption either in TAL or DCT were affected by the rapamycin treatment. Patch-clamp 
analysis revealed that rapamycin does not directly affect TRPM6-mediated currents in 
human embryonic kidney cells transiently transfected with TRPM6, but significantly 
inhibited the EGF-stimulated TRPM6. Stimulation of TRMP6 activity by insulin, another 
magnesiotropic hormone, was not influenced by rapamycin. In conclusion, inhibition of 
the mTOR pathway by the immunosuppressant rapamycin decreased renal TRPM6 
expression in vivo and inhibited the stimulatory effect of EGF, but not insulin, on TRPM6 
activity in vitro, providing a molecular explanation for the rapamycin-induced hypermag-
nesuria. 
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Introduction

Rapamycin has been used for many years as chemotherapeutic agent and component of 
antirejection therapy for recipients of organ transplants who mainly developed toxicity to 
other immunosuppressive medications, like the calcineurin inhibitors (CNI, cyclosporine A 
[CsA] and tacrolimus [FK506]). It is a potent inhibitor of the mammalian target of rapamycin 
(mTOR).1, 2 The availability of a specific inhibitor of mTOR, such as rapamycin, helped to 
identify a large signaling network that integrates information on nutrient availability and 
growth factors to control protein synthesis and cell size.3, 4 mTOR is a serine/threonine 
kinase that exists in two separate complexes, mTORC1 and mTORC2.4 These complexes 
differ in two scaffolding proteins, raptor and rictor, respectively, which connect mTOR to 
distinct intracellular pathways. mTORC1 is involved in nutrient sensing and growth factors 
signaling, whereas mTORC2 primarily regulates cytoskeleton dynamics.3-5 Initially 
identified as mTORC1-specific inhibitor, rapamycin has been recently shown to also affect 
signaling through mTORC2.6, 7 Upon entering the cell, rapamycin binds the cytosolic 
FK506-binding protein of 12 kDa (FKBP12) to finally act as allosteric inhibitor of the mTOR 
kinase activity.4 Activation of mTORC1 begins with stimulation of the lipid kinase phos-
phatidylinositol 3-kinase (PI3K) that leads to the phosphorylation of Akt at the amino acid 
residue Thr308.8 Phosphorylated Akt in turn activates mTORC1 through a cascade of 
downstream intermediates that include the tuberous sclerosis complex (TSC) and Rheb, a 
Ras family GTPase that directly activates mTOR.9 Stimulation of mTORC1 results in the 
phosphorylation of 4EBP and p70S6K that promote cell growth and proliferation.10 Relative 
to mTORC1, little is known regarding the upstream regulation and downstream functions 
of mTORC2. Insulin and growth factors directly stimulate the kinase activity of mTORC2,11 
but the mechanism is currently unknown. The best-characterized downstream events to 
mTORC2 are the phosphorylation of Akt at Ser473 and the regulation of actin cytoskeleton 
through PKC.12 Interestingly, mTORC1 and p70S6K can exert negative feedback on the 
upstream signaling molecules, like the insulin receptor substrate (IRS) proteins, which are 
required to activate the PI3K-Akt pathway downstream of the insulin receptor,13 and the 
core mTORC2 component rictor, which leads to an attenuation of Akt activation.14 
	 Hyperactivation or overexpression of the mTOR molecule was found in various solid 
tumor malignancies,3 while, more recently, mTOR has emerged as an important modulator 
of several forms of renal diseases.15, 16 Inhibition of the mTOR pathway by rapamycin in a 
variety of animal models revealed beneficial effects on the progression of diabetic 
nephropathy,17 non-diabetic forms of chronic kidney disease18 and polycystic kidney 
disease.19 Furthermore, inhibitors of mTOR improve survival in patients with metastatic 
renal cell carcinoma.20, 21 On the other hand, inhibition of mTOR with rapamycin-based 
regimen delays recovery of renal function after acute kidney injury,22, 23 increases risks of 
allograft failure and mortality compared to CNI,24-26 and associates with inappropriately 
high fractional excretion of Mg2+.27-30 In the kidney, the bulk of Mg2+ in the pro-urine is 
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reabsorbed in the proximal tubule (PT) and thick ascending limb of Henle (TAL) of the 
nephron by a passive transport route.31 The fine-tuning of the final Mg2+ excretion occurs 
in the early distal convoluted tubule (DCT) via an active transcellular process. In DCT, the 
epithelial cation channel TRPM6 facilitates transport of Mg2+ from the pro-urine into the 
cell.31 So far, a single study investigated the renal TRPM6 expression in rats administrated 
with rapamycin.28 The authors showed that TRPM6 expression in DCT is upregulated as a 
compensatory mechanism to the upstream defect in Mg2+ reabsorption in the TAL.28 On 
the other hand, an in vitro study suggested that rapamycin treatment of renal tubular 
epithelial cells decreased endogenous TRPM6 expression by affecting the stability of 
TRPM6 mRNA.32 Many extracellular and intracellular mediators influence TRPM6 protein 
abundance and activity at the plasma membrane.33 Recently, epidermal growth factor 
(EGF) and insulin, two well-known upstream activators of the mTOR pathway, have been 
implicated as magnesiotropic hormones.34, 35 The stimulation of the EGF receptor (EGFR) 
and insulin receptor (IR) lead to an intracellular cascade involving Rac1 that promotes 
trafficking of TRPM6 to the plasma membrane.34-38 Nevertheless, the effects of rapamycin 
on the EGF- and insulin-mediated TRPM6 stimulation are unknown. Thus, the role of mTOR 
in the cascade of molecular events that lead to impaired renal Mg2+ handling during 
rapamycin treatment is still vague. The aim of the present study was, therefore, to 
determine the effect of rapamycin on the regulation of the epithelial channel TRPM6, also 
in response to the magnesiotropic hormones EGF and insulin.

Materials and Methods

Animal model
The animal experiment reported in this study was previously described by the Chien-Te 
Lee et al.39 Briefly, adult male C57BL6 mice (weight: 15–20 g) were maintained in a temper-
ature-controlled and light-cycled environment, and had ab libitum access to water and 
food (1.0% wt/wt Ca2+ and 0.5% wt/wt Mg2+). According to the experimental design, 
animals were divided into two groups: control group and rapamycin-treated group (n=8 
per group). All the treatment animals received daily administration via intraperitoneal 
injections for 1 week (1 mg/kg/day, Sigma, St. Louis, Mo., USA). After this period, mice were 
sacrificed and kidneys were harvested. Animal protocols were approved by the Institutional 
Animal Care and Use Committee (IACUC) of Chang-Gung Memorial Hospital, Taiwan, and 
all animal procedures were performed according to the IACUC policy.

Cell culture and transfection
Human embryonic kidney (HEK) 293 cells seeded in 12-well plates were maintained at 37 
ºC in Dulbecco’s modified Eagle’s medium (DMEM, Bio Whittaker Europe, Vervier, Belgium) 
supplemented with 10% (v/v) fetal calf serum (PAA, Linz, Austria), 2% (v/v) L-glutamine, 10 
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μl/mL essential aminoacids and 0.01 mg/mL ciproxin at 37 ºC in a humidity controlled 
incubator with 5% (v/v) CO2 atmosphere. For patch clamp experiments, cells were 
transiently transfected with 1 μg of pCINeo-IRES-GFP construct encoding wild-type 
TRPM6 or mock DNA using Lipofectamine 2000 (Invitrogen Life technologies, Breda, The 
Netherlands).

Electrophysiology
After 48 h transfected cells were plated at low density on 18 mm glass coverslips coated 
with fibronectin (Roche Diagnostics, Almere, Netherlands). The whole-cell configuration 
of the patch-clamp technique was used. Experiments were done in an EPC-9 patch-clamp 
amplifier controlled by the Pulse software (HEKA Electronik, Germany). Borosilicate patch 
pipettes had resistances between 2-3 MΩ after being filled with intracellular solution. 
Series resistances (≤5 MΩ) were monitored after each sweep with the automatic 
capacitance compensation option of Pulse software. Experiments were performed at 
room temperature (22 ºC). 24 h prior to experiments, medium was replaced to FCS-free 
DMEM medium. To study TRPM6-evoked outward Na+ currents, a stimulation protocol 
consisting of repetitive voltage-ramps from -100 mV to +100 mV over 450 ms duration 
from a Vh of 0 mV was applied. TRPM6 currents were allowed to develop for 200 s to reach 
steady-state. Extracting the current amplitudes at +80 and -80 mV from individual ramp 
current records provided an assessment of the temporal development of membrane 
currents. Current densities were obtained by normalizing the current amplitude to the cell 
membrane capacitance. Current-voltage (I/V) relations were established from the ramp 
protocols.  The extracellular bath solution consisted of (in mmol/L): 150 NaCl, 1 CaCl2, 10 
HEPES (pH 7.35 adjusted with NaOH). The intracellular solution consisted of (in mmol/L): 
150 NaCl, 10 Na2EDTA, 10 HEPES (pH 7.2 adjusted with NaOH). The analysis and display of 
patch-clamp data were performed using Igor Pro software version 6.0 (WaveMetrics, Lake 
Oswego, OR, USA). To test the effect of EGF and insulin on TRPM6, HEK293 cells were 
treated for 60 min with 10 nmol/L EGF (Sigma Aldrich, St. Louis, USA) or 10 nmol/L insulin 
(Sigma Aldrich, St. Louis, USA) in the presence and absence of 100 nmol/L rapamycin (LC 
Laboratories, Woburn, MA, USA). Either rapamycin or DMSO was added to cells 30 min 
after starting EGF or insulin treatment. 10 nmol/L EGF, 10 nmol/L insulin and 100 nmol/L 
rapamycin were added to the extracellular solution while running the patch clamp 
experiments. 

Reverse Transcriptase- Polymerase Chain Reaction (RT-PCR) analysis
A quarter of a mouse kidney was homogenized in 800 μl TRIzol, and mRNA was extracted 
using a mix of isoaminoalcohol/phenol/chloroform (1:25:25) and then precipitated by 
isopropanol. Subsequently, reverse transcription (RT) of the RNA by M-MLV reverse 
transcriptase was performed 1 h at 37°C according to manufacturer’s specifications 
(Invitrogen). RT-PCR reactions were performed using samples pooled from four to five 
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animals. The cDNA was mixed with Power SYBR green PCR Mastermix (Applied Biosystems, 
Foster City, CA) and the exon-intron-exon overlapping primers reported in Table 1. 

Gene expression levels were determined by quantitative real-time PCR on a BioRad 
Analyzer and normalized for GAPDH expression levels. Real-time PCR primers were 
designed using the online computer program NCBI/Primer-BLAST software.

Statistical analysis
All results are depicted as mean ± standard error of the mean (SEM). Statistical analyses 
were conducted by unpaired student’s t-test when comparing two experimental 
conditions, and one-way ANOVA with Bonferroni test when comparing more conditions. 
P values less than 0.05 were considered significant.

Table 1  �Oligonucleotide sequences used for RT-PCR analysis.

Gene product Forward (5’-3’) Reverse (5’-3’)

TRPM6 AAAGCCATGCGAGTTATCAGC CTTCACAATGAAAACCTGCCC

EGF GAGTTGCCCTGACTCTACCG CCACCATTGAGGCAGTATCC

NCC CTTCGGCCACTGGCATTCTG GATGGCAAGGTAGGAGATGG

HNF1B CAAGATGTCAGGAGTGCGCTAC CTGGTCACCATGGCACTGTTAC

FXYD2a GATCTGTCAGCGAACAGTG GCGGACGGTTTCATAGTCGTAC

FXYD2b CTACCATGGACAGGTGGTA GCGGACGGTTTCATAGTCGTAC

CNNM2 v.1 GTCTCGCACCTTTGTTGTCA GTCGCTCCGACTGAGAGAAT

CNNM2 v.2 CTCACAGCCTCTCCAGGG AGGAAGAGCTGAGCTGGTTG

CLDN16 GTTGCAGGGACCACATTAC GAGGAGCGTTCGACGTAAAC

CLDN19 GGTTCCTTTCTCTGCTGCAC CGGGCAACTTAACAACAGG

NKCC2 GGCTTGATCTTTGCTTTTGC CCATCATTGAATCGCTCTCC

GAPDH TAACATCAAATGGGGTGAGG GGTTCACACCCATCACAAAC

TRPM6: transient receptor potential melastatin 6; EGF: pro-epidermal growth factor; NCC: Na+-Cl--cotransporter; 
HNF1B: hepatocyte nuclear factor B; FXYD2a: γ-subunit of the Na+-K+-ATPase, isoform a; FXYD2b: γ-subunit of the 
Na+-K+-ATPase, isoform b; CNMM2 v.1: cyclin M2, variant 1; CNNM2 v.2: cyclin M2, variant 2; CLDN16: claudin-16; 
CLDN19: claudin-19; NKCC2: Na+-K+-Cl--cotransporter; GAPDH: glyceraldehyde 3-phosphate dehydrogenase.
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Results

Rapamycin treatment in mice modulates the renal expression of 
magnesiotropic genes
Lee et al. previously reported that rapamycin treatment induces severe renal Mg2+ wasting 
in mice (fractional excretion of Mg2+ [FEMg] 8.8% in the control group versus FEMg 29% in 
the rapamycin-treated group) without aff ecting serum Mg2+ concentrations.39 The 
authors also showed that rapamycin treatment has no eff ects on Ca2+ homeostasis in 
mice.39 Changes in the expression levels of many proteins that are involved in the 
paracellular Mg2+ reabsorption in TAL and in the transcellular Mg2+ reabsorption in DCT 
could contribute to the observed phenotype (Figure 1). 
 To elucidate the molecular mechanisms of the rapamycin-induced hypermagnesuria, 
the renal mRNA levels of several magnesiotropic genes were determined by real-time 
quantitative PCR analysis. Among the genes involved in the Mg2+ handling in DCT, 

rapamycin treatment signifi cantly decreased TRPM6, EGF and hepatocyte nuclear factor 
homeobox B (HNF1B) expression in the mouse kidney (Figure 2). The mRNA levels of the 
Na+-Cl−-cotransporter (NCC), the two splice variants of cyclin-M2 (CNNM2 v.1 and CNNM2 

6
Figure 1   Cartoon depicting the molecular players involved in renal Mg2+ reabsorption in 

TAL and DCT. 

After the fi ltration in the glomeruli, the bulk of Mg2+ in the pro-urine is reabsorbed in the proximal 
tubule and TAL by a passive transport route. Fine-tuning of Mg2+ reabsorption occurs by regulation 
of an active transcellular route in DCT. TAL: thick ascending limb of Henle; DCT: distal convoluted 
tubule; NKCC: Na+-K+-2Cl- cotransporter; ROMK: renal outer medullary K+ channel; ClC-Kb: Cl- channel 
Kb; CLDN16: claudin-16; CLDN19: claudin-19; NCC: Na+-Cl--cotransporter; TRPM6: transient receptor 
potential cation channel subfamily M member 6; HNF1B: hepatocyte nuclear factor 1 homeobox B; 
FXYD2: γ-subunit of the Na+-K+-ATPase; EGF: epidermal growth factor; EGFR: epithelial growth factor 
receptor; CNNM2: cyclin-M2. 
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v.2) and the two isoforms of the γ-subunit of the Na+-K+-ATPase (FXYD2a and FXYD2b) 
were not affected (Figure 2).

Figure 2  �Effect of rapamycin treatment on mRNA expression levels of genes involved in 
the active transcellular Mg2+ transport in DCT. 

The effect of rapamycin (1 mg/kg/day via daily intrapertioneal injections for one week) on renal 
mRNA expression levels of TRPM6, HNF1B, EGF, NCC, CNNM2 v.1, CNNM2 v.2, FXYD2a and FXYD2b in 
mice were determined by real-time quantitative PCR analysis. Data are presented as mean +/- SEM. 
*, p<0.05 versus control, n=3.
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Subsequently, the mRNA expression levels of the Na+-K+-2Cl− cotransporter (NKCC2) and 
the tight junction proteins claudin-16 (CLDN16) and claudin-19 (CLDN19), all located in the 
thick ascending limb of Henle (TAL), were determined. The NKCC2 expression levels were 
not significantly changed, whereas CLDN16 and CLDN19 were both upregulated in the 
rapamycin-treated group (Figure 3).

Rapamycin inhibits TRPM6 activation by EGF, but not by insulin
We further investigated the possibility of an effect of rapamycin on TRPM6 activation by 
use of the patch-clamp technique. Incubation with rapamycin of HEK293 cells transiently 
transfected with TRPM6 did not affect TRPM6 activity compared to mock-transfected cells 
after 30 min treatment (Figure 4). Nevertheless, rapamycin significantly inhibited the 
stimulatory effect of the magnesiotropic hormone EGF, but not of insulin, on the 
TRPM6-mediated currents (Figure 4). 

6

Figure 3  �Effect of rapamycin treatment on mRNA expression levels of genes relevant to 
the passive paracellular Mg2+ transport. 

The effect of rapamycin (1 mg/kg/day via intrapertioneal injection) on renal mRNA expression levels 
of CLDN16, CLDN19 and NKCC2 in mice were determined by real-time quantitative PCR analysis. Data 
are presented as mean +/- SEM. *, p<0.05 versus control, n=3. 
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Discussion

In this study, we demonstrated that the rapamycin-induced renal Mg2+ wasting in mice 
associates with decreased mRNA levels of the epithelial Mg2+ channel TRPM6 in DCT, and 
of the gene encoding the EGF precursor protein pro-EGF, involved in the hormonal 
regulation of TRPM6.34 The renal mRNA level of HNF1B that is relevant to Mg2+ reabsorption 
in DCT was also decreased in mice treated with rapamycin. Overall these observations 
indicate that rapamycin interferes with the cross-talk between TRPM6 and EGF inhibiting 
the mTOR-mediated pathway that possibly involves HNF1B. These molecular events will 
ultimately lead to the renal Mg2+ wasting observed in vivo.
	 In rats, administration of human EGF significantly upregulated TRPM6 mRNA levels in 
parallel with an amelioration of the renal ability to reabsorb Mg2+.40 These findings 
suggest that administration of EGF has a positive effect on the Mg²+ homeostasis in vivo.40 
Furthermore, long-term treatment with EGF increased TRPM6 expression via the ERK-AP1 
(c-Fos/c-Jun) pathway in vitro.41, 42 Thus, rapamycin could indirectly inhibit TRPM6 
expression by decreasing EGF levels. Alternatively, rapamycin may directly interfere with 
the activation of AP1 transcription factors or other mTOR-mediated transcriptional events 
responsible for TRPM6 gene transcription. Interestingly, Ikari et al. suggested that a PI3K/
Akt/mTOR pathway sensitive to rapamycin is involved in the regulation of the stability of 

Figure 4  �Rapamycin inhibits TRPM6 activation by EGF, but not by insulin. 

Average current density (pA/pF) of TRPM6 channels was measured in HEK293 cells after overnight 
starvation in 0% v/v FCS followed by treatment with vehicle (control, n=20), 100 nmol/L rapamycin 
(n=13) for 30 min, 10 nmol/L EGF (n=22) for 1 h or 10 nmol/L insulin (n=12) for 1 h. Co-incubation 
experiments were conducted by adding 100 nmol/L rapamycin to EGF- (n=13) or insulin-(n=10) 
treated cells during the last 30 min. Data are presented as means +/- SEM. *, p<0.05 versus control;  
#, p<0.05 versus EGF treatment in the absence of rapamycin; ns: non significant compared to insulin 
treatment in the absence of rapamycin.
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TRPM6 mRNA, rather than a direct effect on gene expression. However, our evidence that 
rapamycin, as calcineurin-inibitors (CNI),40, 43 associates with a significant decrease in 
TRPM6 mRNA levels in vivo opens the possibility of common transcriptional networks 
between the calcineurin/NFATc and mTOR pathways important to TRPM6 expression. It 
was reported that mTOR phosphorylates the transcription factor NFATc4, one of the 
substrates of the phosphatase calcineurin.44 Moreover, a complex network of HNF 
transcription factors is under the control of both the calcineurin/NFATc45, 46 and the mTOR 
pathway.47 Among the HNF factors, HNF1B plays an important role in renal Mg2+ 
reabsorption, but no HNF1B binding sites were predicted in the TRPM6 gene promoter.48 
Noteworthy, in our experiment, HNF1B mRNA expression was significantly downregulated 
in mice treated with rapamycin. Future investigations should address the role of HNF1B in 
the calcineurin/NFATc and mTOR pathways, and its relevance to TRPM6 gene transcription. 
Interestingly, the expression of the magnesiotropic gene FXYD2 that is under the transcrip-
tional control of HNF1B was not affected by rapamycin. This finding indicates that other 
HNF1B target genes may be involved in the rapamycin-induced renal Mg2+ loss. A previous 
study in rats treated with rapamycin28 suggests a decrease in the Na+-K+-2Cl- cotransporter 
(NKCC2) expression in TAL as the main cause for the observed hypermagnesuria with Na+ 
and K+ wasting, indicating a disturbance in the Mg2+ paracellular reabsorption. In the 
latter study, renal TRPM6 mRNA levels were increased. Our results not only show that 
TRPM6 is decreased, but also that NKCC2 expression remains stable upon rapamycin 
treatment in mice. Differences in the genetic background of the animals and in the 
methodologies used for rapamycin administration may be responsible for these 
discrepancies. Surprisingly, in our study two major players in the paracellular Mg2+ 
reabsorption, the tight-junction proteins claudin-16 (CLDN16) and claudin-19 (CLDN19), 
were significantly upregulated. The increased expression of the heteromeric complex 
CLDN16/19 should augment the paracellular cation permeability instead of associating 
with Mg2+ wasting in urine.49, 50 Recently, it was shown that claudin-14 (CLDN14) directly 
interacts with CLDN16 to act as a negative regulator of paracellular cation permeability.51 
Therefore, the upregulation of CLDN16 and CLDN19 could be a compensatory response to 
changes in CLDN14 expression.
	 We decided to further investigate the effect of rapamycin on TRPM6 stimulation by 
EGF. In vitro, EGF induces rapid incorporation of functional TRPM6 channels into the plasma 
membrane via activation of the PI3K-Akt-Rac1 axis.37 Rac1 is a member of the Rho family 
GTPases implicated in actin remodeling and membrane trafficking.37 In particular, Rac1 is 
an important PI3K-Akt effector responsible for TRPM6 insertion into the membrane upon 
exposure to EGF and insulin.35, 38 In the present study, rapamycin inhibited the 
EGF-dependent stimulation of TRPM6 activity at the cell surface of HEK293 cells. It is 
reasonable to believe that this effect is probably mediated by a block of the mTOR-rictor 
(mTORC2) complex rather than by inhibition of the mTOR-raptor (mTORC1) complex.6, 52, 53 
Indeed mTORC2 is a known regulator of cytoskeletal organization through the Rho family 
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GTPases.54 Furthermore, knockdown of rictor, but not of raptor, has been previously 
described to aff ect epithelial transport processes.55 However, in many cell lines, the 
mTORC2 assembly is inhibited only after prolonged rapamycin treatment.6 Thus, it cannot 
be excluded that inhibition of mTOR within the mTORC1 complex may participate in the 
inhibitory eff ect of rapamycin on the EGF-stimulated TRPM6 activity. 
 Although insulin and EGF initiate similar signaling cascades that ultimately increase 
the cell membrane abundance of TRPM6 (Figure 5),35, 38 rapamycin failed to inhibit the 
stimulatory eff ect of insulin on TRPM6. This observation may have diff erent causes. Firstly, 
a dose-related eff ect of rapamycin could be important. Possibly, the signaling transduction 
initiated by IR and EGFR may require diff erent rapamycin concentrations to be inhibited in 
our cell model due to the diff erential expression levels of the receptors. Secondly, it is 

Figure 5   Schematic representation of the role of the mTOR pathway in the vesicular 
insertion of TRPM6. 

EGFR activation by EGF binding and IR stimulation by insulin leads to the activation of a PI3K/Akt/
mTOR/Rac1 pathway. Rac1 in turn increases the distribution of the endomembrane TRPM6 channel 
to the plasma membrane and augments the infl ux of Mg2+.
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possible that insulin and EGF-mediated pathways are not equivalent and/or that they are 
subjected to different feedback mechanisms.56 Future investigations should aim to 
understand how EGF and insulin treatment differentially modulate the mTOR pathway 
and its final targets responsible for TRPM6 insertion in the plasma membrane. 
	 The evidence that rapamycin inhibits the EGF-dependent stimulation of TRPM6 has 
significant relevance in cancer therapy. One of the main causes of acquired hypo
magnesemia due to renal Mg2+ wasting is the use of the anticancer treatments cetuximab 
and erlotinib, two EGFR inhibitors.34, 57, 58 Both cetuximab and erlotinib reduce 
EGF-stimulated TRPM6 activity and consequently impair Mg2+ reabsorption in the 
kidney.34, 58 Of note, it is increasingly recognized that disruption of the mTOR signaling by 
rapamycin has an important role in cancer likely due to inhibition of cell growth and 
proliferation.21, 59, 60 Temsirolimus, an analogue of rapamycin, has been recently approved 
by the Food and Drug Administration for the treatment of metastatic renal cell 
carcinoma.20, 21 Interestingly, by the use of xenograft models derived from a variety of 
tissue types, it was shown that rapamycin produces a synergistic effect with erlotinib on 
the cell growth inhibition.61, 62 Nevertheless, in patients, this synergistic effect could also 
occur with respect to the renal Mg2+ wasting. Thus, caution should be given when treating 
cancer patients receiving combinational treatment with Mg2+ lowering compounds, like 
rapamycin and EGFR inhibitors. 
	 The clinical relevance of studying a relation between rapamycin treatment and Mg2+ 

balance extends to diabetes research. Several studies suggest that treatment with 
rapamycin leads to hyperglycemia and insulin resistance.63 In two recent randomized 
controlled trials, rapamycin was more diabetogenic than CNI.25, 64 Moreover, the 
replacement of CNI by rapamycin was associated with a worsening of insulin resistance.65 
Besides a direct diabetogenic effect of the immunosuppressive treatment,66-68 the 
drug-induced hypomagnesemia can be an independent predictor of new-onset diabetes 
after transplantation (NODAT) in renal transplant recipients.69 There is growing evidence 
suggesting that Mg2+ deficiency is a significant risk factor for the development of insulin 
resistance and subsequently diabetes mellitus type 2.35, 70-72 In a retrospective study, van 
Laecke et al. reported that hypomagnesemia was in part causative for the CNI-induced 
diabetes in their cohort of patients, whereas rapamycin appeared to have an intrinsic 
diabetogenic effect that was not linked to Mg2+ levels.69 Our observation that rapamycin 
does not affect the stimulatory effect of insulin on TRPM6 trafficking is in line with the 
hypothesis of a Mg2+-independent origin of the rapamycin-induced NODAT. 
	 In conclusion, elucidation of the molecular mechanisms responsible for the rapamycin-
induced renal Mg2+ wasting extended our knowledge of the regulation of the epithelial 
channel TRPM6 to the mTOR pathway, and will refine the pharmacologic therapy for the 
pathophysiological conditions that require rapamycin treatment. 
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Introduction

The maintenance of Ca2+ and Mg2+ homeostasis is essential for many physiological 
functions including intracellular signaling processes, enzymatic reactions, neuronal 
excitability, muscle- contraction and bone formation. The human body preserves plasma 
Ca2+ and Mg2+ concentrations within a narrow range due to an efficient homeostatic 
system encompassing the parathyroid gland, intestine, bone and kidney. The last 
determines the final amount of Ca2+ and Mg2+ excreted in the urine by controlling the 
reabsorption of these cations from the pro-urine back into the blood. Overall, Ca2+ and 
Mg2+ fluxes across the plasma membrane of epithelial renal cells are facilitated by i) 
sensors sensitive to extracellular fluctuations in Ca2+ and Mg2+ concentrations; ii) endo- 
and paracrine hormones; iii) cation-selective ion channels and transporters. In general, the 
total capacity of a cell to mediate transport of a specific ion through the plasma membrane 
is determined by both the activity and the amount of ion channels and transporters at the 
cell surface. Many intracellular processes regulate the abundance of these molecules at 
the plasma membrane, including gene transcription, post-transcription, translation, post-
translational modifications and trafficking. 
	 This thesis is mainly directed at elucidating novel transcriptional networks that control 
gene expression of ion channels, transporters and hormones relevant to Ca2+ and Mg2+ 
handling in the kidney. In particular: i) new roles for the transcription factor HNF1B in PTH 
and FXYD2 gene transcription are unraveled, which extend our knowledge on renal Ca2+ 
and Mg2+ transport; ii) the HNF1B-interacting protein, PCBD1 is proposed as a new 
molecular player in renal Mg2+ reabsorption in the distal convoluted tubule (DCT); iii) it is 
demonstrated that 1,25(OH)2D3 downregulates TRPC6 gene expression in podocytes 
injury, which is important for understanding the regulation of Ca2+ fluxes in glomerular 
(patho)physiology; iv) finally evidence for a role of rapamycin in  the regulation of TRPM6 

in the DCT is provided, which contributes to the molecular explanation of the rapamycin-
induced hypermagnesuria.

Postnatal roles of HNF1B 

Hepatocyte nuclear factor 1 homeobox B (HNF1B) is a developmental transcription factor 
first isolated in human hepatocytes.1 HNF1B plays a crucial role in the organogenesis of 
several tissues, such as gut, pancreas, liver, lung, and kidney.2 The syndrome associates 
with deletions and/or single point mutations in HNF1B is a dominantly inherited disease 
and is generally referred to as renal cysts and diabetes syndrome (RCAD [MIM 137920]). 
HNF1B abnormalities have drawn significant attention in pediatric nephrology as an 
important cause of prenatally hyperechogenic kidneys with or without cysts, whereas 
renal hypodysplasia with few or multiple cysts is the most frequent presentation in early 
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childhood.3, 4 The HNF1B nephropathy also comprises slow renal decline and tubular 
transport abnormalities, and is often accompanied by a highly heterogeneous non-renal 
phenotype including maturity-onset diabetes of the young (MODY [MIM 606391]) type 5, 
gout, pancreas hypoplasia as well as liver and genital tract abnormalities.5, 6 More recently, 
hypomagnesemia with hypocalciuria and hypermagnesuria due to defective renal Mg2+ 

Table 1  �Overview of some HNF1B and HNF1A target genes identified experimentally.

Tissue
HNF1B HNF1A

Gene Protein +/- Ref. Gene Protein +/- Ref.
Kidney URAT1 Urate anion exchanger 1 + 8 URAT1 Urate anion exchanger 1 + 8

OAT1 Organic anion transporter 1 + 9 OAT1 Organic anion transporter 1 + 9

OAT3 Organic anion transporter 3 + 10 OAT3 Organic anion transporter 3 + 10

OAT4 Organic anion transporter 4 + 11 OAT4 Organic anion transporter 4 + 11

TMEM27 Collectrin + 12 TMEM27 Collectrin + 12

SOCS3 Suppressor of cytokine signaling 3 - 13 NPT1 Na+-dependent Pi transport protein 1 + 20

PkhD1 Polycystic kidney and hepatic disease 1 protein + 14 NPT4 Na+-dependent Pi transport protein 4 + 20

Umod Uromodulin + 14 SGLT2 Na+-glucose cotransporter 2 +
21
22

Pkd2 Polycystin-2 + 14 GLUT2 Glucose transporter member 2 + 23

Kif12 Kinesin-like protein Kif12 + 15 CLCN5 H+-Cl--exchange transporter 5 + 24

CDH16 Ksp-cadherin + 16

FXYD2 γa-subunit Na+-K+-ATPase +
7

This thesis

Liver Vitamin D-binding protein Vitamin D-binding protein - 17 Vitamin D-binding protein Vitamin D-binding protein - 17

AFM α-albumin + 18 AFM α-albumin + 18

PAH Phenylalanine-4-hydroxylase + 25

Serpina1 α1-antitrypsin + 26

FGA/FGB α/β-fibrinogen + 27

OATP1B1-3 Solute carrier organic anion transporter member 
1B1-3

+ 28

Pancreas GLUT2 Glucose transporter member 2 + 19 GLUT2 Glucose transporter member 2 + 29

INS-1 Insulin + 30

L-PK L-type pyruvate kinase + 29

TMEM27 Collectrin + 31

PDX-1 Pancreas/duodenum homeobox protein 1 + 32

Parathyroid PTH Parathyroid hormone - This thesis

Tissue-speficic expression of genes whose transcription is regulated by HNF1B and/or HNF1A. +/-: positive or 
negative transcriptional regulation of the target genes by the HNF1 factors; Ref.: number of the corresponding 
reference in the text.
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reabsorption in DCT was observed in up to 50% of children with HNF1B abnormalities.7 
Table 1 summarizes some relevant target genes of HNF1B and of its homolog HNF1A in 
postnatal tissues.7-32 HNF1B and HNF1A form heterotetramers and bind to the same DNA 
consensus sequence, but may regulate gene transcription with different potency.9, 18 Of 
note, HNF1B can act both as inhibitor and as stimulator of gene transcription, most 

7
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probably due to the binding to alternative interacting proteins and/or due to different 
epigenetic modifications. Importantly, it was demonstrated that HNF1B plays a role in the 
epigenetic bookmarking of gene expression throughout mitotic chromatin condensation.33

	 To date, several questions remain unanswered concerning the role of HNF1B in renal 
electrolyte handling, and many of its upstream regulators and downstream targets are still 
unknown. The studies presented in chapters 2, 3 and 4 of this thesis extend our 
knowledge about the (patho)physiological relevance of the HNF1B-mediated transcription 
in the homeostatic control of Ca2+ and Mg2+ via the identification of the HNF1B target 
genes, FXYD2a and PTH (Chapter 2 and 3, respectively), and the functional characteriza-
tion of mutations in the HNF1B interacting protein PCBD1 (Chapter 4).

HNF1B stimulates FXYD2a gene expression in the DCT

HNF1B nephropathy is one of the few monogenic forms of renal hypomagnesemia 
identified at the molecular level so far.34 In the postnatal kidney, HNF1A expression is 
restricted to the proximal tubule (PT), whereas HNF1B is expressed in the epithelial cells 
throughout the entire nephron. However, the hypomagnesemia reported in almost 50% 
of the patients with HNF1B mutations specifically originates in the DCT, where a defect in 
active Mg2+ reabsorption leads to renal Mg2+ loss accompanied by secondary 
hypocalciuria. The mechanism leading to this phenotype is ascribed to the direct control 
of the FXYD2 gene expression by HNF1B in the DCT. Bioinformatical prediction tools in 
combination with luciferase reporter assays and chromatin immunoprecipitation (ChIP) 
experiments confirmed the presence of HNF1B binding sites in the FXYD2 gene promoter.7 
FXYD2 encodes the γ-subunit of the Na+-K+-ATPase.35 At the basolateral membrane of the 
DCT, the Na+-K+-ATPase generates opposing Na+ and K+ gradients that allow high 
transcellular transport rate of Na+ and favor the formation of a negative membrane 
potential. In DCT, active Mg2+ reabsorption from the pro-urine into the blood occurs via 
the apical epithelial Mg2+ channel, transient receptor potential melastatin 6 (TRPM6). In 
this segment of the nephron, the chemical driving force for Mg2+ is limited because the 
extra- and intracellular Mg2+ concentrations are in the same millimolar range. Thus, Mg2+ 
reabsorption through TRPM6 is primarily driven by a favorable membrane potential 
established by the voltage-gated K+ channel, Kv1.1, and energized by the action of the 
Na+-K+-ATPase. Other proteins play key roles in regulating Mg2+ balance within the DCT, 
either by directly affecting TRPM6 or by altering the driving force for Mg2+ influx via the 
channel, like the thiazide-sensitive Na+-Cl--cotransporter (NCC), the Cl- channel CLC-Kb 
and the K+ channel Kir4.1.36 Interestingly, the c.121G>A (p.Gly41Arg) mutation in FXYD2 is 
the underlying defect in isolated dominant hypomagnesemia with hypocalciuria (IDHH; 
OMIM 154020).37, 38 
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The FXYD2 gene can be alternatively transcribed by activation of the promoter prior to 
exon γa or exon γb (Figure 1). Therefore, the γ-subunit of the Na+-K+-ATPase exists in two 
isoforms, γa- and γb-subunit, that diff er just at their extracellular N-termini. Because the 
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Figure 1   Overview of the regulatory mechanisms of the γ-subunit isoforms in a DCT cell 
model. 

HNF1B exclusively transactivates FXYD2a expression. Subsequently, FXYD2a and FXYD2b transcripts 
can encounter degradation or translation into proteins. Changes in the γa/γb-subunits abundance 
at the basolateral membrane due to either a γ-subunit p.Gly41Arg mutation or HNF1B  mutations 
could lead to hypomagnesemia via several mechanisms: i) misregulation of the Na+-K+-ATPase 
activity, as pump or signaling molecule; ii) dysregulation of a still unknown Mg2+ extrusion 
mechanisms; ii) impaired Mg2+ extrusion by γa/γb oligomers. ER: endoplasmic reticulum; Src: 
proto-oncogene tyrosine-protein kinase; MAPK: mitogen-activated protein kinase; +1: transcription 
initiation site.
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HNF1B binding sites are located upstream the transcription initiation site of exon γa but 
downstream exon γb, in chapter 2 of this thesis it was tested whether both promoters are 
regulated by HNF1B. By use of two different reporter gene assays, it was demonstrated 
that HNF1B specifically acts as an activator of FXYD2a promoter activity, whereas FXYD2b 

expression was not affected. Moreover, the HNF1B mutations p.His69fsdelAC, p.
His324Ser325fsdelCA, p.Tyr352fsinsA and p.Lys156Glu prevented transcriptional activation 
of FXYD2a via a dominant negative effect on wild-type HNF1B. Renal Na+-K+-ATPase is 
associated with the γ-subunit at the basolateral membrane of all nephron segments, but 
to a less extent in cortical TAL (cTAL) and cortical collecting ducts (cCD), where the 
γ-subunit is expressed at lower levels.39, 40 In the kidney cortex, γa-subunit was described 
to be the predominant isoform in PT, whereas γb-subunit was the main isoform in cTAL, 
DCT and CNT.39, 40 In chapter 2, it was demonstrated by immunohistochemistry on 
mouse kidney sections that γa-subunit is also expressed in the DCT where it co-localizes 
with the γb-subunit. In conclusion, it is suggested that abnormalities in HNF1B impair the 
relative abundance of γa- and γb-subunit, thus affecting the transcellular Mg2+ 
reabsorption in DCT. 

Physiological implications of FXYD2 expression
FXYD proteins are a family of seven small single span membrane proteins that regulate the 
Na+-K+-ATPase by modifying its kinetic properties in a tissue-specific manner.35 The 
γ-subunit is the most abundant protein of the FXYD family expressed in the kidney. Both 
γa and γb variants modify the Na+-K+-ATPase activity via reduction of the affinity for Na+ 
and decrease of the Vmax.40-42 Furthermore, in vitro assays using recombinant proteins and 
functional studies using the γ-deficient renal Na+-K+-ATPase isolated from FXYD2 knockout 
(FXYD2-/-) mice demonstrated that the γ-subunit strongly protects the pump against 
thermal denaturation.43, 44 This evidence indicates that the γ-subunit plays a structural 
role that is important for the stability of the pump at the basolateral membrane of renal 
cells.43, 44 It is paradoxical that on one side the γ-subunit reduces the Na+-K+-pumping 
capacity, whereas on the other side it stabilizes the Na+-K+-ATPase at the cell surface, 
which over time increases the pump density and capacity. Most probably a combination 
of these two actions determines the final biological effect on the Na+-K+-ATPase. In order 
to understand the physiological role of the γ-subunit, it is important to consider that none 
of the established kidney-derived cell lines express the γ-subunit under regular culture 
conditions. However, it is possible to induce FXYD2 gene expression in kidney cells by 
several stress-inducers, for example hypertonicity, heat shock, exogenous oxidation and 
chemical stress.45, 46 47 Importantly, induction of FXYD2 upon cellular insults appears to be 
a protective mechanism essential  for cell survival.48 

Of note, the γ-subunit p.Gly41Arg mutation prevents trafficking of wild-type γ-subunit, 
but not of the α/β subunits of the Na+-K+-ATPase, to the cell surface where the lack of 
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wild-type γ-subunit abrogates its functional effects on the pump.37, 49 To date, it is still 
unknown how changes in the γ-subunit expression at the basolateral membrane of DCT, 
due to γ-subunit p.Gly41Arg mutation or HNF1B mutations, cause hypomagnesemia. 
Several hypotheses can be postulated (Figure 1): i) over time, the lack of association with 
γ-subunit and loss of stabilization of α/β subunits compromise the ability of the cell to 
maintain the driving forces, i.e. trans-epithelial voltage and Na+ gradients necessary for 
active Mg2+ transport via TRPM6;43, 46 ii) changes in the relative abundance of γa- and 
γb-subunit can modulate the Na+-K+-ATPase activity and thereby affect the transcellular 
Mg2+ reabsorption. Although, both γa and γb isoforms decrease the Na+ affinity of the 
pump, it was shown that post-translation modifications can alter the affinity of the pump 
for Na+, K+ and ATP in a isoform-specific manner;42, 50 iii) a diminished γ-subunit oligomer-
ization may affect the ability of this protein to directly mediate extrusion of Mg2+ towards 
the blood.51, 52 However, this hypothesis seems unlikely due to the unfavorable electro-
chemical Mg2+ gradient across the basolateral membrane in vivo; iv) a decrease in γ-subunit 
expression may affect a still unknown Mg2+ extrusion mechanism. Recently, the CNNM2 
protein was proposed to participate in the basolateral Mg2+ extrusion in DCT.53 It would 
be of interest to test the effect of the γ-subunit on the Mg2+-sensitive Na+ currents 
mediated by CNNM2 in vitro; v) finally, γa- and γb-subunit could differentially modulate the 
ability of the Na+-K+-ATPase to act as a receptor and to initiate the ouabain signaling 
pathway. The latter, in turn, could affect the activation status of important molecular 
players involved in Mg2+ reabsorption in the DCT.54, 55 Surprisingly, FXYD2-/- mice exhibit 
normal blood and urine Mg2+ values,44 indicating that the presence of wild-type γ-subunit 
per se is not required for the maintenance of the Mg2+ balance. This evidence may suggest 
the existence of a compensatory mechanism by other renal FXYD proteins in mice 
compared to humans. Furthermore, inducing hypomagnesemia in FXYD2-/- mice, for 
example via a low Mg-containing diet, may be necessary to generate a stress in the tubular 
cells of the kidney and therefore observe a renal phenotype in these animals. Overall, the 
high complexity in the regulation of the renal Na+-K+-ATPase via the γ-subunit isoforms 
suggests how small changes in the activity of these proteins can significantly unbalance 
the electrolyte handling by the kidney. Further investigation is needed to unravel if and 
how γ-subunit isoforms differentially affect active Mg2+ reabsorption in the DCT. So far, 
Mg2+ research has been obstructed by the absence of appropriate techniques to monitor 
changes in Mg2+ concentrations in cell samples. Recently, our laboratory successfully 
implemented the use of the stable isotope 25Mg to measure Mg2+ transport by cell 
monolayers. The measurement of 25Mg content in the apical and basolateral medium of 
polarized kidney cells co-transfected with TRPM6 and each of the γ-subunit isoforms 
represents a valuable approach to study the role of the γ-subunit in Mg2+ transcellular 
transport. 

7
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HNF1B downregulates PTH gene expression in 
parathyroid glands

Chapter 3 describes PTH as previously unrecognized HNF1B target gene. Parathyroid 
hormone (PTH) is released into the circulation by the parathyroid glands in response to 
changes in the extracellular Ca2+ and PO4

3- concentrations. PTH subsequently restores 
Ca2+ and PO4

3- homeostasis by regulating the synthesis of active vitamin D (1,25-dihy-
droxyvitamin D3, or 1,25(OH)2D3) in PT, altering Ca2+ and PO4

3- (re)absorption in the kidney 
and intestine, and modulating bone metabolism.56-58 Serum PTH levels depend on both 
the rapid secretion of PTH stored in secretory granules within the parathyroid gland and 
the synthesis of new PTH molecules secondary to PTH gene transcription (Figure 2). Of 
note, secondary hyperparathyroidism (HPT) classically occurs during the course of chronic 
kidney disease (CKD). Under physiological conditions, a low plasma Ca2+ reduces the 
activity of the Ca2+-sensing receptor (CaSR) on the surface of parathyroid glands, which 
leads to the rapid release of PTH from the secretory granules and promotes PTH mRNA 
stability.59, 60 Conversely high Ca2+ inhibits PTH secretion and favors PTH mRNA 
degradation.59, 60 Contrary to Ca2+, high PO4

3- leads to increased PTH levels.60, 61 
Furthermore, PTH transcription is repressed by binding of a complex of 1,25(OH)2D3, the 
1,25-D3 receptor (VDR) and retinoic acid receptor (RXR), to vitamin D responsive elements 
(VDRE) in the promoter region of the PTH gene.62, 63 In CKD, the increase in plasma PO4

3-, 
the prolonged decrease in plasma Ca2+ as well as a reduced 1a-hydroxylase-mediated 
1,25(OH)2D3 conversion lead to a secondary increase in serum PTH.64 The study reported 
in chapter 3 provides evidence of early HPT disproportionate to the renal function in a 
cohort of eleven patients with HNF1B deletions or mutations, due to the direct involvement 
of HNF1B in PTH gene transcription. In our cohort of HNF1B patients, two cases showed 
HPT compatible with eGFR or creatinine clearance values, whereas the remaining patients 
displayed a discrepant correlation between PTH levels and kidney function. The possibility 
of diabetic nephropathy is excluded since our patients were not diagnosed MODY. Serum 
Ca2+ and PO4

3- levels were both within the normal range, as well as the renal tubular 
reabsorption of PO4

3-. Hypomagnesemia was diagnosed in the majority of individuals. 
Importantly, hypomagnesemia is clinically associated with a paradoxical block of PTH 
secretion and a resulting hypoparathyroidism rather than HPT.65, 66 This supports the 
hypothesis of a putative role of HNF1B abnormalities in the development of HPT 
independent from extracellular Mg2+ levels. Interestingly, most of the HNF1B patients in 
the cohort displayed hypocalciuria. It is suggested that the early HPT may contribute to 
this phenotype. Due to the retrospective character of the study, data concerning 
1,25(OH)2D3 and 25-OH-D3 levels were not available for analysis. Immunohistochemical 
analysis demonstrated that HNF1B is expressed in the nuclei of PTH-positive cells of 
human parathyroid gland and in the rat parathyroid PT-r cell line. PT-r cells were the first 
available immortalized cell line that retained characteristics of parathyroid cells, i.e. 
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secretion of PTH into the cell culture medium and sensitivity to Ca2+ regulation.67 
Subsequent characterizations of these cells reported that PT-r cells retain PTH expression 
sensitive to Ca2+ and 1,25(OH)2D3  treatment, but did not endogenously express CaSR and 
VDR.68, 69 Furthermore, they mainly express and secrete PTH-related peptide (PTHrP) 
compared to PTH.70 Based on these studies, HNF1B over- and under-expression levels in 
PT-r cells would provide limited advances in the understanding of the role of HNF1B in 
parathyroid (patho)physiology. Alternatively, the human embryonic kidney cells (HEK293) 
were used to perform further investigations. In vitro studies showed that wild-type HNF1B 

7
Figure 2   Overview of the regulatory mechanisms of PTH expression and secretion in the 

parathyroid gland. 

HNF1B and 1,25(OH)2D3 negatively regulate PTH gene expression. Activation of the complex Klotho/
FGFR1 by FGF23 and changes in the extracellular Ca2+ and Pi modulate instead PTH mRNA stability 
and secretion. VDR: vitamin D receptor; RXR: retinoic acid X receptor; FGF23: fi broblast growth factor 
23; FGFR1: fi broblast growth factor receptor 1; CaSR: Ca2+ sensing receptor; Pi: inorganic phosphate; 
ER: endoplasmic reticulum; +1: transcription initiation site.

AAAAA

Golgi

Cytosol

ER

AAAAA

VDR/RXR
HNF1B

Nucleus

PTH

PTH

Degradation

CaSR

Ca2+

Pi

1,25(OH)
2
D

3

Klotho FGFR1

FGF23

FGFR1

FGF23

AAAAA

Pi

+1

Mg2+

PTH mRNA

Na+

K+

α

β

Na+-K+

ATPase

+
+

+
- -

 -

Parathyroid cell



150 | Chapter 7

inhibits PTH promoter activity with a maximal reduction of 30% upon binding to 
responsive elements that resides -200/-70 bp from the transcription initiation site, while 
HNF1B mutants lack this inhibitory effect. Taken together, these data suggest that HNF1B 
is a transcriptional repressor of PTH gene expression in the parathyroid gland, which could 
explain the early development of HPT in patients with HNF1B mutations or deletions. An 
intriguing additional explanation for the phenotype observed in our cohort of patients 
could involve a putative regulation of CaSR by HNF1B. Interestingly, patients affected by 
familial hypocalciuric hypercalcaemia (FHH [MIM 145980]) due to inactivating mutations in 
CaSR present with normal or increased PTH levels and hypocalciuria. Therefore, a 
hypothesis could be that HNF1B mutations downregulate CaSR expression leading to a 
FHH-like phenotype including HPT and hypocalciuria. This clinical presentation would be 
the result of the effect of HNF1B on PTH and CaSR expression in the parathyroid together 
with an effect of HNF1B on CaSR expression in kidney. In silico and in vitro data should 
investigate the presence of functional HNF1B binding sites in the promoter region of CaSR. 
Other downstream HNF1B target genes that could be relevant in setting circulating PTH 
levels are the FXYD genes. Since the Na+-K+-ATPase pump is essential to generate the 
driving force for PTH secretion,71 the impaired transcriptional regulation of FXYD family 
members due to HNF1B abnormalities may contribute to the onset of HPT. Preliminary 
data in chapter 3 showed that neither FXYD2a nor FXYD2b are expressed in human 
cadaveric parathyroid samples. This does not exclude that FXYD2 expression may be 
induced under certain pathological conditions (e.g. primary or secondary HPT due to 
uremia or parathyroid cancer), or that other FXYD protein may be involved. Overall, many 
regulatory pathways that control PTH secretion, both transcriptionally and post-transcrip-
tionally, have been defined (Figure 2) and several are currently therapeutic targets for the 
treatment of secondary HPT in the course of CKD, including active vitamin D analogs and 
calcimimetics.57, 72-75 Recently, it was shown that PTH gene transcription is also inhibited 
by Fibroblast Growth Factor 23 (FGF23), a novel phosphaturic hormone that acts though 
the FGFR1/Klotho receptor complex present in parathyroid cells.76, 77 In this respect, little 
is known about the signaling cascades in which HNF1B is the final effector in adult tissues. 
Signaling downstream the FGF23-FGFR1/Klotho axis as well as the CaSR and interaction 
with the VDR/RXR complex may affect HNF1B-mediated transcription. Further studies are 
needed to evaluate the role of HNF1B in the responsiveness of parathyroid cells to 
extracellular Ca2+, 1,25(OH)2D3 and FGF23.

PCBD1: an important player in the HNF1-mediated 
transcription

The bifunctional protein pterin-4 alpha-carbinolamine dehydratase/dimerization cofactor 
of hepatocyte nuclear factor 1 alpha (PCBD1) is able to co-activate the HNF1-mediated 
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transcription in the nucleus of the cell.78 In fi gure 3 the main organs co-expressing PCBD1, 
HNF1A and HNF1B are reported together with representative HNF1 target genes relevant 
to tissue physiology. Additionally, in the cytosol of kidney and liver cells, PCBD1 (EC 4.2.1.96) 
is required for tetrahydrobiopterin (BH4) regeneration during the catalytic event of 
phenylalanine hydroxylation by the enzyme phenylalanine-4-hydroxylase (PAH [EC 
1.14.16.1]). Chapter 4 describes PCBD1 as an important regulator of the transcriptional 
machinery that associates with HNF1B in kidney and that contributes to Mg2+ reabsorption 

7

Figure 3   Schematic representation of the PCBD1, HNF1A and HNF1B transcriptional 
network. 

In the adult pancreas, HNF1A regulates the expression of INS-1, possibly via HNF1B and PCBD1 
interaction. A putative role of HNF1 factors in the transcriptional regulation of FXYD2 in pancreas can 
be speculated. The transcription of many liver-specifi c proteins is under the control of HNF1 factors. 
Furthermore, in the liver, cytosolic PCBD1 is involved in the phenylalanine metabolism together with 
the enzyme phenylalanine-4-hydroxylase (PAH). After the liver, the kidney is the second tissue with 
the highest abundance of the PAH transcript. In the kidney, HNF1A is mainly expressed in the proximal 
tubule (PT), whereas HNF1B is expressed in all segments of the nephron. In the PT, HNF1A regulates 
the expression of many genes, among others SGLT2 and NPT1-4. In the distal convoluted tubule 
(DCT), HNF1B is involved in the transcellular reabsorption of Mg2+ from the pro-urine into the blood 
through TRPM6 via regulation of FXYD2. ?: question marks indicate the still not defi ned localization 
of PCBD1 and PAH in PT and DCT. AFM: α-albumin; FXYD2: γ-subunit of the Na+-K+-ATPase; INS-1: 
insulin; NPT: Na+-dependent Pi transport protein; Serpina 1: α1-antitrypsin; SGLT2: Na+-glucose 
co-transporter 2.
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in the DCT. Hypomagnesemia with renal Mg2+ wasting was reported in two patients who 
were diagnosed neonatal hyperphenylalaninemia and primapterinuria (HPABH4D [MIM 
264070]) due to homozygous p.Gln97Ter and p.Glu26Ter/p.Arg87Gln mutations in the 
PCBD1 gene. A similar renal manifestation is reported in 50% of the patients with HNF1B 
mutations and, therefore, suggest that the ability of PCBD1 to co-activate HNF1-mediated 
transcription may be affected in patients with HPABH4D. HPABH4D is a benign and 
transient condition that resolves after daily BH4 supplementation and/or diet control, and 
the patients demonstrated normal growth and development.79 Importantly, the study 
presented in chapter 4 is the first follow-up investigation of patients affected by HPABH4D 
reporting the onset of late complications linked to the defected activity of PCBD1 as tran-
scriptional co-activator. In patient 1, hypomagnesemia was corrected with oral Mg2+ 
supplements at a dose of 500 mg/day, though at the expense of hypermagnesuria. 
Furthermore, symptoms of the hypomagnesemia like fatigue, muscular pain, weakness 
and cramps in arms improved after Mg2+ supplementation. Renal function (GFR 128 mL/
min per 1.73 m2) resulted to be normal whereas ultrasonography showed slightly 
increased echogenicity of both liver and kidney with no evidence of renal cysts. The 
absence of any abnormality in blood and urine Ca2+ levels in the reported patients 
pinpoints to a primary defect in Mg2+ reabsorption in DCT, rather than impairment of Ca2+ 
and Mg2+ reabsorption in the TAL. Gene expression analysis in sorted DCT-eGFP tubules 
proved that PCBD1 is present in the DCT, where HNF1B regulates active Mg2+ reabsorption 
by controlling FXYD2 expression (chapter 2). Future immunohistochemical analysis 
should aim to identify the exact (sub)cellular localization of PCBD1 in the different nephron 
segments. Based on the nuclear or cytosolic localization of PCBD1, it will be possible to 
speculate on segment-specific functions of the protein. To study the effect of PCBD1 
patient mutations on the interaction with HNF1B (Figure 4), HEK293 cells were transiently 
co-transfected with PCBD1 mutants and wild-type HNF1B, and co-immunoprecipitation 
experiments were performed. Briefly, PCBD1 p.Glu26Ter, p.Glu86Ter, p.Glu96Lys and p.
Gln97Ter were not expressed, whereas p.Thr78Ile and p.Cys81Arg were expressed 
significantly less than the wild-type protein due to proteasomal degradation. PCBD1 p.
Arg87Gln was the only mutant showing a comparable expression level to the wild-type 
protein. Nevertheless, in patient 2 p.Arg87Gln is homozygously present on both alleles 
with a p.Glu26Ter mutation that most probably lead to the early degradation of the PCBD1 
transcript by mRNA surveillance mechanisms.80, 81 All the PCBD1 mutants that show 
protein expression (p.Thr78Ile, p.Cys81Arg and p.Arg87Gln) retained the ability to bind 
HNF1B suggesting that the mutations did not cause structural rearrangements at the 
interaction interface with HNF1B. Based on a structural homology model of the PCBD1–
HNF1B dimerization domain (HNF1B-D) complex, the residue stretches from Asn44 to 
Glu58 in PCBD1 and from Leu5 to Val21 in HNF1B are essential for protein-protein 
interactions (Figure 4). FXYD2-promoter co-activation was compatible to the expression 
levels of the PCBD1 proteins. Wild-type PCBD1 increased FXYD2 promoter activation by 
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HNF1B of approximately 1.5 fold. However, among all PCBD1 mutants, only PCBD1 p.
Arg87Gln and p.Cys81Arg maintained their co-activator activity. Surprisingly, despite 
similar protein expression to p.Cys81Arg, PCBD1 p.Thr78Ile was not functional. Prediction 
tools excluded Thr78 to be a putative phosphorylation site that could therefore play a role 
in the regulation of PCBD1 activity (Figure 4). Alternatively, mutations at Thr78 or Cys81 
may have diff erent structural consequences on the PCBD1-HNF1B interaction site. The 
screening of patients with PCBD1 p.Thr78Ile and p.Cys81Arg mutations for complications 
related to the HNF1B disease could confi rm the in vitro fi ndings. Subsequently, the 
hypothesis that HNF1B mutations could aff ect PCBD1 binding and FXYD2-promoter 
co-activation was tested. All the HNF1B mutants (p.Lys156Glu, p.Gln253Pro, p.Arg276Gly, 
p.His324Ser325fsdelCA, p.Tyr352fsinsA) had an intact dimerization domain and, therefore, 
showed binding to wild-type PCBD1, whereas only the HNF1B p.His324Ser325fsdelCA and 
p.Tyr352fsinsA mutants, that retained a residual transcriptional activity, showed response 
to PCBD1 co-activation. Interestingly, immunocytochemical experiments showed that 
HNF1B p.His324Ser325fsdelCA and p.Gln253Pro mutations disturb PCBD1 localization in 
the nucleus compared to wild-type HNF1B, leading to an accumulation of PCBD1 in the 
cytosol. Of note, HNF1B p.Gln253Pro was previously associated with hypomagnesemia, 
whereas no defi nitive correlation has been reported for the other mutant.82 This fi nding 
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Figure 4  Structural model of the PCBD1–HNF1B interaction. 

(A) Homology model of the PCBD1–HNF1B dimerization domain (HNF1B-D) tetramer, modeled 
using the structure of the PCBD1–HNF1A dimerization domain (HNF1A-D) complex (PDB fi le 1F93). 
The PCBD1 dimer (light blue and grey) binds the HNF1B dimer (orange and grey) via helix sequences. 
The HNF1A-D monomer is shown is yellow. Residues in the PCBD1 protein that were found mutated 
in patients aff ected by hyperphenylalaninemia are depicted in red. In blue, the amino acid residues 
predicted as putative phosphorylation sites by NetPhos 2.0. (B) Homology model of the interaction 
site within the PCBD1–HNF1B dimerization domain (HNF1-D) complex. The bound HNF1B monomer 
(orange) forms a helix bundle with PCBD1 monomer (light blue). The HNF1A-D monomer is shown 
in yellow. The residues that diff er between HNF1B-D and HNF1A-D are visualized in grey.
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suggests that the instability of the PCBD1-HNF1B complex in the nucleus will favor a 
cytosolic localization of PCBD1 resulting in a decreased co-activation of HNF1B at the 
promoter of its target genes. Thus, an increase of PCBD1 in the cytosol of the cell could 
contribute to the onset of hypomagnesemia in some HNF1B patients. To date, five 
additional proteins, apart from PCBD1, were identified by two-hybrid system as HNF1B-
interacting partners in the human fetal kidney, i.e. DAK, E4F1, HADH, TRIM26 and ZFP36L1.83 
It is not known whether the binding of HNF1B to all these proteins is relevant in the adult 
kidney. Assuming that genes encoding for proteins binding HNF1B are potential 
magnesiotropic genes, subjects with idiopathic hypomagnesemia could be screened for 
mutations in those genes. Furthermore, screening of HNF1B patients for polymorphisms 
in interacting proteins should be considered. Since the presentation and development of 
HNF1B disease is diverse, variations in HNF1B binding partners may be responsible for the 
phenotypic heterogeneity.

Extra-renal findings in patients with PCBD1 mutations 
In the study reported in chapter 4, patient 1 was also diagnosed with MODY. MODY is a 
monogenic form of autosomal dominant type II diabetes. Mutations in HNF1B or its homolog 
HNF1A associate with MODY type 5 and type 3, respectively.84 While MODY5 is mainly linked 
to pancreas hypoplasia secondary to agenesis, MODY3 shows an abnormal insulin secretion 
due to impaired growth and function of β–cells. Knowing that PCBD1 acts as transcriptional 
co-activator of both HNF1B and HNF1A, it cannot be excluded that a concomitant impaired 
regulation of HNF1B and HNF1A activity may be responsible for the diabetes observed in the 
patient. The fact that MODY characterizes for dominant inheritance, while mutations in 
PCBD1 associate with a recessive phenotype, suggests that HNF1 factors are important in 
controlling the expression of genes essential for glucose metabolism. On the other hand, 
HNF1-mediated transcription is impaired only when both PCBD1 alleles are affected, 
meaning that PCBD1 probably belongs to an ancillary regulatory mechanism to which other 
HNF1B partners may participate.83, 85 Accordingly, HNF1 function in PCBD1 knockout 
(PCBD1-/-) mice is only slightly impaired, as animals are mildly glucose-intolerant in contrast 
to the HNF1A knockout (HNF1A-/-) mice, which are diabetic.86 Of note, the gene expression of 
PCBD1, glucose transporter member 2 (GLUT2), insulin (INS-1) and L-type pyruvate kinase 
(L-PK) was significantly reduced after birth in the pancreatic β-cells of HNF1A-/- mice, 
suggesting that these changes are caused by HNF1A deficiency and are likely to contribute 
to the molecular defects in HNF1A-/- islets.87 Interestingly, FXYD2 was recently proposed as a 
novel pancreatic β-cell biomarker.88 Furthermore, FXYD2-/- mice are more glucose tolerant 
compared to the wild-type animals which probably resides in the substantial hyperplasia in 
pancreatic β-cells observed in the knockout mice.89 In the future, the study of the regulatory 
axis including PCBD1, HNF1B/HNF1A and FXYD2 in the pancreas will provide new insights 
into insulin sensitivity and glucose metabolism.
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	 Additional extra-renal findings in PCBD1 patients include unexplained elevated liver 
enzymes.82 However, in patient 1, ALT, AST, and ALP were in the lower-to-normal range. 
Interestingly, low plasma hs-CRP levels were detected, which is in line with two recent 
studies showing that subjects with MODY3 maintain substantially, lower levels of hs-CRP 
than individuals with other forms of diabetes, including MODY5, or nondiabetic control 
subjects.90, 91 This evidence favors the diagnosis of MODY3-like diabetes in patient 1.
	 In conclusion, patients affected by HPABH4D should be monitored for late 
complications related to the lack of interaction between PCBD1 and HNF1 factors, including 
hypomagnesemia and MODY. 

1,25(OH)2D3 regulates TRPC6 expression in podocyte injury

1,25(OH)2D3 plays an important role in the hormonal regulation of Ca2+ homeostasis. Two 
key channels involved in Ca2+ (re)absorption, TRPV5 and TRPV6, as well as PTH and the 
Ca2+ binding proteins calbindin-D28K and calbindin-D9K, are transcriptionally regulated by 
1,25(OH)2D3.92-94 Beyond its homeostatic role, clinical and pre-clinical studies demonstrated 
that treatment with vitamin D analogs reduces proteinuria and podocyte loss in glomerular 
disease.95-98 The anti-proteinuric activity of 1,25(OH)2D3 involves the transcriptional 
regulation of some key podocyte proteins, like nephrin and podocin, that preserve 
glomerular filtration by maintaining a functional glomerular slit diaphragm complex.99, 100 
Interestingly, the receptor-mediated TRPC6 channel was recently shown to be part of this 
complex.101 TRPC6 gain-of-function mutations are associated with a hereditary form of 
focal segmental glomerulosclerosis (FSGS).101, 102 Furthermore, several other inherited and 
acquired proteinuric diseases associate with an increased glomerular TRPC6 expression 
and activity.101-106 The data presented in chapter 5 demonstrated that 1,25(OH)2D3 is able 
to reduce the enhanced TRPC6 expression in in vitro and in vivo models of podocyte injury, 
suggesting that the TRPC6 downregulation potentially contribute to the anti-proteinuric 
effect of 1,25(OH)2D3. By use of an adriamycin nephropathy (AN) model for human FSGS in 
rats, it was shown that increased glomerular TRPC6 expression and proteinuria were both 
significantly ameliorated by 1,25(OH)2D3 treatment, in association with a decreased 
expression of the podocyte injury marker desmin. In vitro, the enhanced TRPC6 expression 
in injured podocytes was dose-dependently reduced by 1,25(OH)2D3 application, whereas 
no effect of 1,25(OH)2D3 on TRPC6 expression was seen in uninjured podocytes. ChIP 
experiments using chromatin from opossum kidney (OK) cells expressing a TRPC6 
promoter construct demonstrated that the downregulation of TRPC6 promoter activity 
upon 1,25(OH)2D3 treatment occurs via direct binding of the VDR/RXR complex with the 
TRPC6 promoter. Interestingly, 25-hydroxy-1α-hydroxylase-/- mice showed significantly 
enhanced glomerular TRPC6 expression levels, podocyte foot process effacement and 
remarkable proteinuria. 1,25(OH)2D3 supplementation reversed both the increased TRPC6 
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expression as well as the proteinuria, and normalized podocyte morphology. The 
possibility that low concentrations in serum Ca2+ in the 25-hydroxy-1α-hydroxylase-/- mice 
may interfere with TRPC6 function and, therefore, contribute to the observed phenotype, 
can be excluded, because the relatively low dose of 1,25(OH)2D3 supplementation did not 
significantly normalize the hypocalcemia in these mice. Anyway, it is important to consider 
that additional mechanisms could indirectly contribute to the downregulation of TRPC6 
expression by 1,25(OH)2D3 in podocyte injury. Firstly, in adriamycin-induced podocytes 
damage, angiotensin II (AngII) enhances TRPC6 expression by activation of a calcineurin/
nuclear factor of activated T-cells (NFAT)-mediated pathway.107 Since 1,25(OH)2D3 

negatively regulates the gene encoding for renin, essential in AngII biosynthesis, renin 
downregulation could indirectly contribute to the reduction in TRPC6 expression by 
1,25(OH)2D3.107 Furthermore, there are indications that 1,25(OH)2D3 directly inhibits the 
calcineurin/NFAT signaling pathway.108 Finally, 1,25(OH)2D3 increases the expression of 
various structural podocytes proteins, such as podocin and nephrin.99, 100 Nephrin in turn 
was shown to inhibit TRPC6-phospholipase C complex formation, surface expression and 
activation.109 Thus, follow-up experiments should reveal whether the expression of other 
structural podocyte proteins and the activation of, for example, the calcineurin/NFAT 
pathway are affected in 25-hydroxy-1α-hydroxylase-/- mice. These experiments should 
aim to ultimately define the regulatory role of 1,25(OH)2D3 on the functional network 
existing between TRPC6 and the other glomerular slit diaphragm-associated proteins in 
the course of podocytes injury.

Targeting TRPC6 regulatory mechanisms in the treatment of proteinuric 
kidney diseases
Increased TRPC6 activity or expression causes podocyte dysfunction in patients affected 
by inherited and acquired proteinuric diseases, possibly due to the detrimental increase in 
Ca2+ influx across the cell membrane.110 This Ca2+ influx is thought to activate deleterious 
intracellular signaling cascades leading to disruption of the actomyosin contractile 
apparatus essential to normal podocyte function111 and, in the most severe cases, to 
apoptosis. Indeed, transgenic podocyte-specific overexpression of a TRPC6 active mutant 
induced podocyte foot process effacement and albuminuria in mice.104 Therefore, 
downregulating or blocking TRPC6 may be therapeutically beneficial in proteinuric kidney 
diseases. Accordingly, the study reported in chapter 5 of this thesis suggested that 
inhibition of TRPC6 gene expression by 1,25(OH)2D3 could be one of the molecular 
mechanisms at the basis of the anti-proteinuric effect of vitamin D analogs observed in 
many clinical and pre-clinical investigations (Figure 5).95-98 
	 TRPC6 is also known to be a receptor-operated channel, regulated by cell surface 
receptors like the angiotensin II type 1 receptor (AT1R). The renin-angiotensin system (RAS) 
plays a critical role in modulating proteinuria and progression of kidney injury.112, 113 It was 
demonstrated that binding of AngII to AT1R activates TRPC6 channels and increases TRPC6 
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gene expression via a calcineurin/NFAT-mediated signaling pathway, which contributes to 
podocyte injury (Figure 5).107 Most importantly, angiotensin converting enzyme inhibitors 
(ACEi), angiotensin receptor blockers (ARBs) and calcineurin inhibitors, pivotal therapies in 

7

Figure 5   Overview of the regulatory mechanisms of TRPC6 expression and activity in a 
podocyte cell model. 

Binding of AngII to AT1R induces opening of the TRPC6 channels at the plasma membrane leading 
to increased intracellular Ca2+ concentrations, activation of calcineurin and thus translocation of 
NFAT to the nucleus where it ultimately enhances TRPC6 transcription. 1,25(OH)2D3 instead negatively 
regulates TRPC6 gene expression. Post-translation modifi cations, like phosphorylation and 
glycosylation, can further regulate TRPC6 expression and activity at the plasma membrane within 
the slit diaphragm complex. AT1R: angiotensin type I receptor; AngII: angiotensin II; NFAT: nuclear 
factor of activated T cells; VDR: vitamin D receptor; RXR: retinoic acid X receptor; ER: endoplasmic 
reticulum; +1: transcription initiation site.
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reducing proteinuria, decreased TRPC6 expression in in vitro podocyte studies as well as in 
animal models for human FSGS.107, 114-116 Moreover, experimental data in cultured 
podocytes suggests that blocking Ca2+ influx by applying LaCl3 or blocking TRPC6 using 
the TRPC channel blocker 2-aminoethyldiphenylborane (2-APB), abrogates the deleterious 
activation of calcineurin/NFAT signaling, further supporting that specific TRPC6 blocking 
compounds could show therapeutic promise.107 Recently, Eckel et al. illustrated the 
potential beneficial anti-proteinuric effect of downregulating TRPC6 expression by 
showing reduced AngII-mediated albuminuria in TRPC6 knockout (TRPC6-/-) compared to 
wild-type mice.116 Most importantly, they demonstrated that the lack of TRPC6 is generally 
not harmful in mice, and thus that reducing TRPC6 expression is a plausible therapeutic 
approach. This also raises the question whether blockade of TRPC6 channel activity would 
be favorable, both in acquired proteinuric disease and in patients with TRPC6 mutations. 
While the precise mechanism underlying the development of kidney disease caused by 
mutations in TRPC6 remains to be defined, fifteen TRPC6 mutations have been described 
in literature to associate with FSGS, of which ten have demonstrated increased Ca2+ flux 
due to either enhanced channel activity or increased plasma membrane expression.101, 

102, 105, 106, 117-120 Three of the TRPC6 mutations identified were not functionally tested, 
whereas two mutations did not produce apparent changes in current amplitude. These 
data suggests that other abnormalities, rather than increased Ca2+ influx, could result in 
the disease in the affected patients. Most probably these mutations lead to altered 
interactions with other slit-diaphragm proteins or downstream signaling proteins possibly 
due to impaired post-translational modifications  (e.g. phosphorylation)109, 121 or structural 
remodeling. Noteworthy, all TRPC6 mutations identified so far map to the terminal domains 
of the protein that have been proven to be essential regions for protein-protein interactions 
in analogous with other TRP channels.122, 123

	 Overall, the multiple mechanisms involved in TRPC6 regulation, its role in activating 
deleterious signaling cascades in podocytes and its identification as a target for known 
anti-proteinuric agents identifies TRPC6 as a new putative therapeutic target in the 
treatment of proteinuric kidney diseases. However, the most important question will be 
whether specific TRPC6 targeting provides clinical advantage over the currently available 
treatment modalities. In the future, a synergistic multidrug therapy blocking various 
molecular players in this signaling cascade could represent an eligible approach for the 
treatment of proteinuric diseases. 

Molecular mechanisms of the rapamycin-induced renal 
Mg2+ wasting

Perturbations in mineral homeostasis can represent severe side effects of immuno
suppressive therapies. Rapamycin has been used for many years as chemotherapeutic 
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agent and component of anti-rejection therapy for recipients of organ transplants who 
mainly developed toxicity to other immunosuppressive medications, like the calcineurin 
inhibitors (CNI) cyclosporine A (CsA) and tacrolimus (FK506). Inhibition of the mammalian 
target of rapamycin (mTOR) with rapamycin-based regimen associates with inappropri-
ately high urinary fractional excretion of Mg2+. So far, contrasting in vivo and in vitro data 
did not fully elucidate whether impaired passive paracellular Mg2+ reabsorption in the TAL 
or defected active Mg2+ reabsorption in DCT may account for the rapamycin-induced 
renal Mg2+ wasting.124, 125 The findings in chapter 6 indicate that chronic treatment with 
rapamycin in mice lead to hypermagnesuria accompanied by downregulation of the renal 
mRNA levels of the epithelial Mg2+ channel TRPM6, that is responsible for the fine-tuning 
of Mg2+ reabsorption in DCT. Investigation of the mRNA expression levels of other genes 
that regulate TRPM6 transport ability revealed that HNF1B and epidermal growth factor 
(EGF) were downregulated in the rapamycin-treated group. On the contrary, the mRNA 
expression levels of two major players in paracellular Mg2+ reabsorption in TAL, the tight 
junctions proteins claudin-16 (CLDN16) and claudin-19 (CLDN19), were upregulated upon 
rapamicin treatment. The expression of the TAL marker gene Na+-K+-2Cl- cotransporter 
(NKCC2) in the rapamycin-treated group did not significantly differ from the control group. 
Overall, these data indicate that the downregulation of TRPM6 expression in DCT is 
probably the main molecular mechanism at the basis of the rapamycin-induced hyper-
magnesuria. Yet, mRNA data can give an incorrect view of the protein expression. For this 
reason it is essential to perform additional Western blotting and/or immunohistochemis-
try experiments. Whether the downregulation of the transcription factor HNF1B 
contributes to the decrease in TRPM6 gene transcription remains to be tested. Surprisingly, 
the increased expression of the heteromeric complex CLDN16/19 should augment the 
paracellular cation permeability given that a CLDN16 or CLDN19 deficiency or inactivation 
decreases permeability and leads to renal Ca2+ and Mg2+ wasting.126, 127 Recently, it was 
shown that claudin-14 (CLDN14) directly interacts with CLDN16 to act as a negative 
regulator of paracellular cation permeability.128 Therefore, upregulation of CLDN16 and 
CLDN19 could be a compensatory response to changes in CLDN14 expression. 
	 In the kidney of mice treated with rapamycin, EGF mRNA levels were significantly 
decreased. EGF, together with insulin, are two well-known upstream activators of the 
mTOR pathway and have been implicated as magnesiotropic hormones.129, 130 Stimulation 
of the EGF receptor (EGFR) and insulin receptor (IR) lead to an intracellular cascade 
involving Rac1 that promotes trafficking of TRPM6 to the plasma membrane.130, 131 By use 
of the patch clamp technique in HEK293 cells overexpressing TRPM6, a rapid disturbance 
in EGF-stimulated TRPM6 activity upon acute exposure to rapamycin was observed. 
Importantly, mTOR is a serine/ threonine kinase that exists in two separate complexes, 
mTORC1 and mTORC2. mTORC1 is involved in nutrient sensing and growth factor signaling, 
whereas mTORC2, primarily regulates cytoskeleton dynamics via a network of small 
GTP-binding proteins.132 The inhibitory effect of rapamycin on EGF-stimulated TRPM6 
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activity is most probably mediated by block of the mTORC2-Akt axis rather than by 
inhibition of the mTORC1 signaling.133 Gene silencing experiments by use of siRNA against 
the mTORC1 and mTORC2 specific proteins, raptor and rictor respectively, could provide 
insights into the molecular mechanism responsible for this inhibitory effect of rapamycin 
on the EGF-stimulated TRPM6. Although insulin and EGF initiate signaling cascades that 
ultimately increase the cell membrane abundance of TRPM6, rapamycin failed to inhibit 
the stimulatory effect of insulin on TRPM6. This suggests the insulin and EGF-mediated 
pathways are not identical and/or that they are subjected to different feedback 
mechanisms mediated by mTOR. Of note, the expression levels of hormone and growth 
factor receptors may vary among different cell lines and the observed rapamycin effect on 
the stimulated TRPM6 activity may be specific to HEK293 cells.134 Thus, a comparative 
biochemical study should be performed in order to investigate the mTOR-pathway 
responsiveness downstream IR and EGFR in the presence or absence of rapamycin in 
different renal cell lines. 
	 In addition to a stimulatory effect on TRPM6 activity, long-term treatment with EGF 
increased TRPM6 gene expression via the ERK-AP1 (c-Fos/c-Jun) pathway in vitro.135, 136 
Furthermore, administration of human EGF in rats significantly upregulated the TRPM6 
mRNA levels in kidney accompanied by an amelioration of the renal ability to reabsorbed 
Mg2+.137 In summary, rapamycin may lead to renal Mg2+ wasting according to several 
mechanisms: i) direct inhibition of a signaling cascade responsible for TRPM6 gene 
transcription; ii) indirect inhibition of TRPM6 transcriptional regulation by decreasing EGF 
levels; iii) blockade of EGF-dependent stimulation of TRPM6 activity.

Future perspectives 

Ion transport across the plasma membrane of epithelial cells depends on the abundance 
and activity of ion channels and transporters at the cell surface as well as proper (post)
transcriptional control by hormones and transcription factors. The studies reported in this 
thesis illustrated new regulatory mechanisms that modulate gene expression or trafficking 
of some key proteins involved in Ca2+ and Mg2+ handling by renal cells, namely the 
γ-subunit of the Na+-K+-ATPase, PTH, TRPC6 and TRPM6. In particular, this research has 
increased our knowledge on the (patho)physiological role of one major regulator of gene 
expression in kidney, pancreas and liver, the transcription factor HNF1B. Nevertheless, the 
presented data also raise new intriguing questions that future investigations should 
address. Firstly, dysregulation of FXYD2 expression has been pinpointed as the underlying 
cause of hypomagnesemia observed in almost 50% of the HNF1B patients, even if the 
exact molecular mechanisms remain elusive. To date, targeted screening for HNF1B 
binding sites in the promoter region of other genes known to be involved in renal Mg2+ 
reabsorption failed to identify alternative causative genes. A genome-wide analysis 
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combining chromatin immunoprecipitation with next-generation sequencing technology 
(ChIP-Seq) would enable the profiling of HNF1B binding sites along the kidney genome. 
This high-throughput screening could lead to: i) the identification of HNF1B binding sites 
in promoters of other genes directly involved in electrolyte homeostasis; ii) the 
identification of HNF1B binding sites in promoters of genes encoding for other transcription 
factors or small RNAs that could represent novel (post)transcriptional networks in kidney 
physiology; iii) the understanding of the role of HNF1B in PT where HNF1A and the 
interacting protein PCBD1 are highly expressed (Figure 3). Furthermore, future 
investigations should elucidate how extracellular stimuli, like hormones and growth 
factors, can influence HNF1B-mediated transcription and its binding to regulatory proteins 
(e.g. PCBD1) or other transcription factors (e.g. VDR). Identification of HNF1B upstream 
regulators will extend our knowledge on the functional role of this transcription factor in 
the (patho)physiology of multiple organs. Moreover, drug therapies, like rapamycin 
treatment, target key cell signaling pathways that control downstream transcriptional 
events. Interestingly, mutations in HNF1B associate with pathological conditions whose 
onset and progression are known to involve the deregulation of mTOR, i.e. cystic kidney 
diseases and hypomagnesemia.138 Studying the crosstalk between the mTOR pathway 
and gene transcription by HNF1B in the kidney may provide new molecular insights into 
the role of rapamycin as therapeutic treatment in many renal diseases.  Furthermore, 
subsequent studies should aim to the understanding of Ca2+ signaling in podocytes. 
Increased TRPC6 activity or expression at the podocyte cell membrane mediates Ca2+ 

influx with consequent detrimental increase in the intracellular free Ca2+ concentrations, 
cell injury, proteinuria and, ultimately, kidney failure. It would be of great interest to further 
explore the regulation of TRPC6 expression and activity. Many hormones (PTH and 
PTH-related peptide),139, 140 growth factors (EGF and VEGF)141, 142 and signaling pathways 
(CaSR signaling cascade and mTOR pathway)138, 143 have been found to affect glomerular 
dynamics. These regulatory mechanisms could potentially have an effect on TRPC6 
regulation. Of note, a novel emerging paradigm suggests that the antagonistic effects of 
TRPC6 and TRPC5-mediated Ca2+ currents are relevant for cytoskeletal remodeling and 
cell motility in podocytes.110 These events in podocytes have been correlated with 
proteinuric kidney disease.111 Therefore, agents targeting TRPC6 and/or TRPC5 channels 
may be a novel therapeutic approach to glomerular diseases. Overall, understanding the 
transcriptional regulation of ion channels, transporters and hormones involved in 
epithelial transport and unrevealing the responsiveness of these regulatory pathways to 
extracellular stimuli will help to design new therapeutic strategies for the treatment of 
inherited and acquired diseases associated with glomerular and tubular defects in the 
kidney. 7
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Summary

Chapter 1: Introduction
The maintenance of Ca2+ and Mg2+ homeostasis is essential for many physiological 
functions including intracellular signaling processes, enzymatic reactions, neuronal 
excitability, muscle contraction and bone formation. The human body preserves plasma 
Ca2+ and Mg2+ concentrations within a narrow range due to an efficient homeostatic 
system encompassing parathyroid gland, intestine, bone and kidney. The latter determines 
the final amount of Ca2+ and Mg2+ excreted in the urine by controlling the reabsorption of 
these cations from the pro-urine into the blood. After filtration in the glomeruli, the bulk 
of Ca2+ and Mg2+ in the pro-urine is reabsorbed in the proximal tubule (PT) and thick 
ascending limb of Henle (TAL) by a passive transport route. Fine-tuning of divalent cation 
reabsorption occurs in the distal convoluted tubule (DCT) and connecting tubule (CNT) 
where approximately 10-15% of the filtered Mg2+ and 10% of the filtered Ca2+ are 
reabsorbed. As a consequence, only 1-2% of the filtered Ca2+ and 5% of the filtered Mg2+ 

are excreted into the urine. Mutations in key regulators of Ca2+ and Mg2+ transport in 
epithelial renal cells cause inherited forms of disturbances in these cations. Moreover, 
perturbations of Ca2+ and Mg2+ handling can be secondary to other medical conditions 
or to certain drug therapies, such as immunosuppressive treatment. Many intracellular 
events regulate the abundance of ion channels and transporters at the plasma membrane 
at multiple levels, including transcription, post-transcription, translation, post-translation 
and trafficking. This thesis is mainly directed at elucidating novel transcriptional networks 
that control the gene expression of ion channels, transporters and hormones, relevant to 
the handling of Ca2+ and Mg2+ by the glomerular podocyte and tubular cells of the kidney.

Chapter 2: �HNF1B regulates the expression of the γa-subunit of  
the Na+-K+-ATPase

The transcription factor hepatocyte nuclear factor 1 homeobox B (HNF1B) plays an 
important role in the embryonic kidney development, but also in the regulation of tubular 
transport in the postnatal kidney. Mutations in HNF1B are responsible for an autosomal 
dominantly inherited syndrome with renal and extra-renal consequences. The 
HNF1B-related nephropathy includes renal hypomagnesemia, suggested to be due to the 
dysregulation of FXYD2 expression in DCT. The FXYD2 gene encodes two main isoforms of 
the γ-subunit of the Na+-K+-ATPase, the γa- and γb-subunits. In this thesis, by use of two 
different gene reporter assays, it was demonstrated that HNF1B specifically acts as an 
activator of FXYD2a promoter activity, whereas FXYD2b expression was not affected. 
Moreover, the HNF1B mutations p.His69fsdelAC, p.His324Ser325fsdelCA, p.Tyr352finsA and 
p.Lys156Glu prevented transcription activation of the FXYD2a promoter via a dominant 
negative effect on wild-type HNF1B. Immunohistochemical analysis on mouse kidney 
sections showed that the γa-subunit is expressed at the basolateral membrane of the DCT 
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where it co-localizes with the γb-subunit. In conclusion, abnormalities in HNF1B impair the 
relative abundance of γa- and γb-subunits at the cell surface, and thereby affect the 
transcellular Mg2+ reabsorption in DCT.

Chapter 3: HNF1B regulates PTH gene transcription
The parathyroid hormone (PTH) is released into the circulation by the parathyroid glands 
in response to changes in the extracellular Ca2+ and PO4

3- concentrations. Secondary hy-
perparathyroidism (HPT) classically appears during the course of chronic kidney failure. In 
a cohort of eleven patients with HNF1B mutations and/or deletions, PTH levels were inap-
propriately high compared to the level of kidney function. Immunohistochemical analysis 
demonstrated that HNF1B is expressed in the nuclei of PTH-positive cells of human 
parathyroid gland and in the rat parathyroid PT-r cell line. Chromatin immunoprecipitation 
(ChIP) analysis demonstrated that HNF1B directly binds responsive elements within the 
human PTH promoter. In vitro luciferase-assays showed that wild-type HNF1B inhibits PTH 
promoter activity with a maximal reduction of 30%, while the HNF1B mutants p.
His69fsdelAC, p.His324Ser325fsdelCA, p.Tyr352finsA and p.Lys156Glu lacked this inhibitory 
property. Serial deletions in the PTH promoter revealed that the inhibitory effect of HNF1B 
resides -200/-70 bp from the transcription initiation site. Taken together, these data 
suggested that HNF1B is a transcriptional repressor of PTH gene expression in the 
parathyroid gland, which could explain the early development of HPT in patients with 
HNF1B mutations or deletions.

Chapter 4: Mutations in PCBD1 cause hypomagnesemia and MODY
The PCBD1 gene encodes the enzyme pterin-4 alpha-carbinolamine dehydratase, that is 
also known to co-activate HNF1-mediated transcription in the cell nucleus. Mutations in 
PCBD1 were previously shown to impair the catalytic function of the protein leading to an 
autosomal recessively inherited disease, characterized by hyperphenylalaninemia with 
high urinary levels of primapterin (HPABH4D, or primapterinuria). In this thesis, a long-term 
follow-up study of two HPABH4D patients revealed that homozygous mutations c.312C>T 
(p.Gln97Ter) and c.99G>T/283G>A (p.Glu26Ter/p.Arg87Gln) in PCBD1 associate with 
hypomagnesemia and renal Mg2+ wasting. The renal manifestation is a common finding 
in patients with mutations in HNF1B. Of note, the patient with a p.Gln97Ter mutation was 
also diagnosed with maturity-onset diabetes of the young (MODY), whose underlying 
defects include mutations in HNF1A or HNF1B. Gene expression data revealed that PCBD1 
is present with HNF1B in DCT, where its transcript levels are modulated by changes in 
dietary Mg2+. Overexpression studies in a human kidney cell line demonstrated that 
wild-type PCBD1 binds HNF1B to co-stimulate the FXYD2 promoter, whose activity is 
instrumental in Mg2+ reabsorption in DCT. However, the PCBD1 p.Gln97Ter and p.Glu26Ter 
mutations, as well as four other PCBD1 mutations previously reported in HPABH4D 
patients, caused proteolytic instability of PCBD1. This consequently abolished the 
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co-stimulatory effect on the FXYD2-promoter activity. Of note, HNF1B p.Gln253Pro and 
p.His324Ser325fsdelCA mutants showed binding to PCBD1, but lead to an accumulation of 
PCBD1 in the cytosol compared to the nuclear localization observed upon co-expression 
with wild-type HNF1B. The reduced abundance of PCBD1 in the nucleus will indirectly 
result in a decreased co-activation of HNF1B that could in part contribute to the 
hypomagnesemia observed in HNF1B patients. Overall, our findings indicate that PCBD1 is 
an important co-activator of the HNF1B-mediated transcription, necessary to fine-tune 
Mg2+ reabsorption in the DCT. 

Chapter 5: �Vitamin D downregulates TRPC6 overexpression in  
podocyte injury

Beyond a homeostatic role, pre-clinical and clinical studies demonstrated that treatment 
with vitamin D analogs reduces proteinuria and podocyte loss in glomerular disease. The 
antiproteinuric activity of 1α,25-dihydroxy-vitamin D3 (1,25(OH)2D3) is associated with the 
transcriptional regulation of nephrin and podocin, two podocyte proteins that preserve 
glomerular filtration by maintaining a functional glomerular slit diaphragm complex. This 
complex also includes TRPC6, a receptor-mediated signaling protein mediating Ca2+ influx 
in podocytes. TRPC6 gain-of-function mutations are associated with a hereditary form of 
focal segmental glomerulosclerosis (FSGS). Furthermore, several other inherited and 
acquired proteinuric diseases associate with an increased glomerular TRPC6 expression 
and activity. When investigating the transcriptional regulation of TRPC6 by 1,25(OH)2D3, it 
was demonstrated that 1,25(OH)2D3 was able to reduce the enhanced TRPC6 expression 
in both in vitro podocyte injury and the in vivo adriamycin-induced nephropathy model 
for FSGS. ChIP experiments in combination with luciferase assays showed that the 
inhibition of TRPC6 transcription upon 1,25(OH)2D3 treatment occurred via direct binding 
of the liganded VDR/RXR complex to the TRPC6 promoter. The 1,25(OH)2D3 deficiency in 
25-hydroxy-1α-hydroxylase knockout mice increased TRPC6 expression and induced 
proteinuria, together with partial podocyte foot process effacement. Furthermore, 
1,25(OH)2D3 supplementation in 25-hydroxy-1α-hydroxylase knockout mice reversed both 
the increased TRPC6 expression as well as the proteinuria, and normalized podocyte 
morphology. In conclusion, TRPC6 downregulation could contribute to the antiprotein-
uric effect of vitamin D.

Chapter 6: �Molecular mechanisms of rapamycin-induced renal  
Mg2+ wasting

Rapamycin is an immunosuppressive drug primarily used as antirejection therapy for 
recipients of organ transplants. Inhibition of the mammalian target of rapamycin (mTOR) 
with rapamycin-based regimens associates with inappropriately high urinary fractional 
excretion of Mg2+, hypothetically due to impaired Mg2+ reabsorption in DCT. In this regard, 
the chronic treatment with rapamycin in mice decreased renal mRNA levels of the 
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epithelial Mg2+ channel TRPM6, whose expression in the kidney is restricted to the apical 
membrane of DCT. Among other genes known to affect the transcellular Mg2+ 

reabsorption in DCT, the gene encoding the EGF precursor protein pro-EGF, involved in 
the hormonal regulation of TRPM6, and HNF1B were downregulated by rapamycin. In 
contrast, the mRNA levels of two major players in paracellular Mg2+ reabsorption in TAL, 
the tight junction proteins claudin-16 (CLDN16) and claudin-19 (CLDN19), were increased 
upon rapamycin treatment. This could be due to regulation of claudin-14 (CLDN14) that 
controls the CLD16-19 complex. Electrophysiological analysis showed that rapamycin 
rapidly inhibited the stimulatory effect of EGF on TRPM6 currents in vitro, while it did not 
interfere with the pathway that stimulates TRPM6 activity upon exposure to insulin, 
another magnesiotropic hormone. Additional experiments should aim to characterize the 
signaling cascades downstream of insulin and EGF receptors that ultimately affect mTOR 
activation and, thus, TRPM6 activity. Overall, these observations suggest that the 
downregulation of TRPM6 expression and inhibition of its hormonal regulation in the DCT 
contribute to the renal Mg2+ wasting observed upon chronic treatment with rapamycin. 

Chapter 7: Discussion and future perspectives
Ca2+ and Mg2+ transport across the plasma membrane of epithelial renal cells depends on 
the abundance and activity of ion channels and transporters at the cell surface, as well as 
proper hormonal control, as also evidenced by the studies reported in this thesis. A 
scientific question that remains unsolved, is how changes in the expression of the 
γ-subunit of the Na+-K+-ATPase at the basolateral membrane of the DCT cause 
hypomagnesemia. Additionally, a complete profiling of HNF1B binding sites along the 
kidney genome is currently missing. A genome-wide analysis combining ChIP for HNF1B 
with next-generation sequencing technology (ChIP-Seq) may unravel new transcriptional 
pathways in renal Ca2+ and Mg2+ handling. Currently, little is known about the hormonal 
control of the HNF1B-mediated transcription and of the HNF1B binding to regulatory 
proteins, like PCBD1. Finally, future investigations should elucidate how the renal transcrip-
tional network that includes HNF1B is targeted by Mg2+-wasting drug therapies like 
rapamycin. Moreover, great interest resides in the characterization of Ca2+ fluxes and 
Ca2+-mediated signaling cascades in podocyte (patho)physiology. In particular, 
understanding how the expression and activity of the Ca2+ channel TRPC6 are modulated 
may lead to the development of novel therapeutic approaches to proteinuric kidney 
diseases. In conclusion, dissecting the transcriptional regulation of proteins involved in 
renal Ca2+ and Mg2+ handling, and the responsiveness of these regulatory pathways to 
extracellular stimuli, can ultimately help to design new therapeutic strategies for the 
treatment of inherited and acquired diseases associated with impaired Ca2+ and Mg2+ 
handling by glomerular or tubular cells in the kidney. 
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Samenvatting

Hoofdstuk 1: Inleiding
Het behoud van Ca2+ en Mg2+ homeostase is essentieel voor vele fysiologische functies, 
waaronder intracellulaire signaaltransductieprocessen, enzymatische reacties, neuronale 
exciteerbaarheid, spiercontractie en botvorming. Het menselijk lichaam houdt de plasma 
Ca2+ en Mg2+ concentraties binnen een nauwe marge door een efficiënt homeostase 
systeem, welke de bijschildklier (glandula parathyreoïdea), darm, nier en bot omvat. De 
nieren bepalen de uiteindelijke hoeveelheid Ca2+ en Mg2+ die wordt uitgescheiden in de 
urine, door  resorptie van deze kationen vanuit de pro-urine naar het bloed. Na filtratie in 
de glomeruli wordt het grootste deel van Ca2+ en Mg2+ in de pro-urine geresorbeerd in 
de proximale tubulus (PT) en het dikke opstijgende been van de lis van Henle (TAL) 
middels passief paracellulair transport. De fijnafstemming van de resorptie van deze 
divalente kationen gebeurt in de het distaal convoluut (DCT) en de verbindingsbuizen 
(CNT), waarin circa 10-15% van het gefilterde Mg2+ en 10% van het gefilterde Ca2+ weer 
wordt heropgenomen. Hierdoor wordt slechts 1-2% van het gefilterde Ca2+ en 5% van het 
gefilterde Mg2+ uitgescheiden in de urine. Mutaties in cruciale regulatoren van het Ca2+ 
en Mg2+ transport in epitheliale niercellen veroorzaken erfelijke stoornissen in de 
homeostase van deze kationen. Bovendien kunnen verstoringen van Ca2+ en Mg2+ 

uitscheiding secundair aan andere aandoeningen of therapieën, zoals bepaalde immuno-
suppressiva, ontstaan.
	 Verscheidene intracellulaire processen reguleren de ionkanalen en transporteurs op 
de plasmamembraan op o.a. transcriptioneel, post-transcriptioneel, translationeel, post-
translationeel niveau, alsmede via beïnvloeding van het transport van en naar de 
plasmamembraan. Dit proefschrift is vooral gericht op het ophelderen van nieuwe trans-
criptionele netwerken, welke de genexpressie van ionkanalen, transporteurs en hormonen 
betrokken bij transport van Ca2+ en Mg2+ in de glomerulaire podocyt en tubulaire cellen 
van de nier reguleren.

Hoofdstuk 2: �HNFB1 reguleert de expressie van de ya-subunit van  
het Na+-K+-ATPase

De transcriptiefactor hepatocyte nuclear factor 1 homeobox B (HNF1B) speelt een 
belangrijke rol in de embryonale ontwikkeling van de nier, maar ook in de regulatie van 
tubulaire transportprocessen in de postnatale nier. Mutaties in HNF1B zijn verantwoorde-
lijk voor een autosomaal dominant erfelijk syndroom met renale en niet-renale 
symptomen. De HNF1B-gerelateerde nefropathie omvat o.a. renale hypomagnesiëmie 
door een veronderstelde dysregulatie van FXYD2 expressie in DCT. Het FXYD2 gen codeert 
voor twee isovormen van de γ-subunit van Na+-K+-ATPase, de γa en de γb-subunit. In dit 
proefschrift werd door middel van van twee verschillende reporter assays aangetoond 
dat HNF1B fungeert als een specifieke activator van de FXYD2a promotor activiteit, terwijl 
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FXYD2b transcriptie niet werd beïnvloed. Bovendien verhinderden de HNF1B mutaties 
p.His69fsdelAC, p.His324Ser325fsdelCA, p.Tyr352finsA en p.Lys156Glu de activatie van de 
FXYD2a promotor via een dominant negatief effect op wild-type HNF1B. Immunohisto-
chemische analyse van muizen nier coupes toonde aan dat de ya-subeenheid tot 
expressie komt in de basolaterale membraan van de DCT, waar het co-lokaliseert met de 
γb-subeenheid. Concluderend kan worden gesteld dat HNF1B mutaties het evenwicht in 
de expressie van γa- en γb-subeenheden op het celoppervlak reduceren, waardoor de 
transcellulaire Mg2+ resorptie in DCT wordt beïnvloed.

Hoofdstuk 3: HNF1B reguleert PTH gen transcription
Het paraathormoon (PTH) wordt door de bijschildklier in de circulatie uitgescheiden ten 
gevolge van veranderingen in de extracellulaire Ca2+ en PO4

3- concentraties. Secundaire 
hyperparathyreoïdie (HPT) treedt klassiek op tijdens de progressie van chronisch nierfalen. 
In een cohort van elf patiënten met HNF1B mutaties en/of deleties bleken de PTH-concen-
traties discrepant hoog in relatie tot de mate van nierfunctieverlies. Immunohistochemi-
sche analyse toonde aan dat HNF1B tot expressie komt in de celkern van PTH-positieve 
cellen in de humane bijschildklier en in de rat PT-r bijschildkliercellijn. Chromatine immu-
noprecipitatie (ChIP) analyse toonde aan dat HNF1B bindt aan regulatoire elementen 
binnen de humane PTH promotor. In vitro luciferase-assays toonden aan dat wild-type 
HNF1B de PTH promotor activiteit remt met een maximale reductie van 30%, terwijl bij de 
HNF1B mutanten p.His69fsdelAC, p.His324Ser325fsdelCA, p.Tyr352finsA en p.Lys156Glu 
deze remmende eigenschap ontbrak. Uit seriële deleties in de PTH promotor blijkt dat de 
remmende werking van HNF1B tussen -200 en -70 bp van de transcriptie initiatieplaats ligt. 
Samen suggereren deze data dat HNF1B een repressor is van PTH gentranscriptie in de 
bijschildklier. Dit zou de vroege ontwikkeling van HPT bij patiënten met HNF1B mutaties of 
deleties kunnen verklaren.

Hoofdstuk 4: Mutaties in PCBD1 veroorzaken hypomagnesiëmie en MODY
Het PCBD1 gen codeert voor het enzym pterine-4 alpha-carbinolamine dehydratase, een 
co-activator van de HNF1-gemedieerde transcriptie in de celkern. Eerder werd aangetoond 
dat mutaties in PCBD1 de katalytische functie van het eiwit remmen, hetgeen leidt tot een 
autosomaal recessief erfelijke ziekte, gekarakteriseerd door hyperphenylalaninemie met 
hoge concentraties van primapterine in de urine (HPABH4D oftewel primapterinurie). In 
dit proefschrift werd in een lange-termijn follow-up studie van twee HPABH4D patiënten 
aangetoond dat de homozygote mutaties c.312C>T (p.Gln97Ter) en c.99G>T/283G>A (p.
Glu26Ter/p.Arg87Gln) in PCBD1 geassocieerd worden met hypomagnesiëmie en renaal 
Mg2+ verlies. Zoals hierboven beschreven is een renale hypomagnesiëmie een veel 
voorkomende bevinding bij patiënten met mutaties in HNF1B. Bij de patiënt met een p.
Gln97Ter mutatie werd ook maturity-onset diabetes of the young (MODY) gediagnosti-
ceerd, een ziektebeeld dat veroorzaakt kan worden door onder meer mutaties in HNF1A 



Summary – Samenvatting – Riassunto | 181

of HNF1B. PCBD1 komt tot co-expressie met HNF1B in DCT, waarvan het transcriptie niveau 
wordt gemoduleerd door veranderingen in Mg2+ in de voeding. Middels overexpressie 
experimenten in een humane niercellijn werd aangetoond dat wild-type PCBD1 aan 
HNF1B bindt en de FXYD2 promotor co-stimuleert. FXYD2 activiteit is van essentieel 
belang bij de Mg2+ resorptie in DCT. Daarentegen veroorzaakten de PCBD1 p.Gln97Ter en 
p.Glu26Ter mutaties, zowel als vier andere PCBD1 mutaties die eerder werden beschreven 
bij HPABH4D patiënten, proteolytische instabiliteit van PCBD1. Hierdoor werd het 
co-stimulerend effect op de FXYD2-promotoractiviteit opgeheven. Van belang is dat 
HNF1B p.Gln253Pro en p.His324Ser325fsdelCA mutanten weliswaar binding aan PCBD1 
vertoonden, maar in tegenstelling tot de nucleaire lokalisatie waargenomen bij 
co-expressie met wild-type HNF1B, leidden tot een accumulatie van PCBD1 in het cytosol. 
De afname van PCBD1 in de kern zal indirect resulteren in een verminderde co-activatie 
van HNF1B, hetgeen mogelijk bijdraagt aan de hypomagnesiëmie bij HNF1B patiënten. 
Kortom, onze bevindingen wijzen PCBD1 aan als een belangrijke co-activator van de HNF1B- 
gemedieerde transcriptie, noodzakelijk voor de fijn afstemming van Mg2+ resorptie in de DCT.

Hoofdstuk 5: �Vitamine D downreguleert TRPC6 overexpressie  
bij podocytschade

Klinische en pre-klinische studies hebben aangetoond dat, naast een homeostatische rol, 
behandeling met vitamine D en haar analogen proteïnurie en podocytschade 
verminderen bij glomerulaire ziekten. De antiproteïnurische activiteit van 1α,25-dihydroxy-
vitamine D3 (1,25(OH)2D3) is geassocieerd met regulatie van nephrine en podocine, twee 
podocyteiwitten die onderdeel uitmaken van het glomerulaire slit diafragma, complex 
welke van cruciaal belang is bij de glomerulaire filtratie. Dit complex bevat ook TRPC6, een 
receptor-gemedieerd ionkanaal betrokken bij Ca2+ influx in podocyten. TRPC6 gain-of-
function mutaties veroorzaken een erfelijke vorm van focale segmentale glomeruloscle-
rose (FSGS). Bovendien zijn diverse andere erfelijke en verworven proteïnurische ziekten 
geassocieerd met een verhoogde glomerulaire TRPC6 expressie en activiteit. De transcrip-
tionele regulatie van TRPC6 door 1,25(OH)2D3 werd onderzocht in in vitro podocytschade-
modellen, in een rat adriamycine-geïnduceerde nefropathie model voor FSGS en in 
1,25(OH)2D3-deficiënte 25-hydroxy-1α-hydroxylase knockoutmuizen. Er werd aangetoond 
dat 1,25(OH)2D3 de verhoogde expressie van TRPC6  zowel in deze in vitro als in in vivo 
modellen van podocytschade vermindert. ChIP experimenten in combinatie met 
luciferase assays toonden aan dat de downregulatie van TRPC6 transcriptie na 1,25(OH)2D3 

behandeling plaatsvindt via directe binding van het VDR/RXR complex aan de TRPC6 
promoter. De 1,25(OH)2D3 deficiëntie in 25-hydroxy-1α-hydroxylase knockout muizen 
verhoogde de TRPC6 expressie, proteinurie en podocytvoetjesversmelting. Behandeling 
met 1,25(OH)2D3 voorkwam zowel de verhoogde TRPC6 expressie alsmede de proteïnurie 
en normaliseerde de morfologie van de podocyten. Concluderend kan TRPC6 down-
regulatie bijdragen aan het antiproteïnurisch effect van vitamine D.
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Hoofdstuk 6: �Moleculaire mechanismen van rapamycine-geïnduceerd 
Mg2+ verlies

Rapamycine, een remmer van de zoogdier target of rapamycin (mTOR), is een immuno-
suppressief medicijn dat o.a. wordt gebruikt als anti-afstotingstherapie voor ontvangers 
van orgaantransplantaten. Rapamycine-gebaseerde behandelingen zijn geassocieerd 
met een toegenomen fractionele excretie van Mg2+ in de urine, mogelijk door verminderde 
Mg2+ resorptie in DCT. Chronische behandeling met rapamycine verminderde bij muizen 
de renale mRNA niveaus van het epitheliale Mg2+ kanaal TRPM6, waarvan de expressie in 
de nier beperkt is tot de apicale membraan van DCT. Naast andere genen die betrokken 
zijn bij de transcellulaire Mg2+ resorptie in DCT, was het gen dat codeert voor het EGF 
precursor eiwit pro-EGF gedownreguleerd. Dit eiwit is betrokken bij de hormonale 
regulatie van TRPM6 en HNF1B. Daarentegen werden de mRNA niveaus van twee 
belangrijke, bij het paracellulaire Mg2+ resorptie in TAL betrokken, tight junction eiwitten 
claudin-16 (CLDN16) en claudin-19 (CLDN19) opgereguleerd na rapamycine behandeling. 
Dit zou mogelijk een effect kunnen zijn van beïnvloeding door claudin-14 (CLDN-14), 
welke het CLDN16-19 complex reguleert. Elektrofysiologische analyse toonde aan dat 
rapamycine snel het stimulerende effect van EGF op TRPM6 functie remde, terwijl het 
geen invloed had op de TRPM6 activatie na blootstelling aan insuline, een ander 
magnesiotroop hormoon. Aanvullende experimenten zouden gericht moeten zijn op de 
karakterisering van de signaaltransductie cascades van insuline en EGF-receptoren, die 
uiteindelijk van invloed zijn op mTOR activatie en daarmee op TRPM6 activiteit. 
Samengevattend kan geconcludeerd worden dat deze resultaten suggereren dat de 
downregulatie van TRPM6 en de remming van de hormonale regulatie daarvan bijdragen 
aan het renale Mg2+ verlies bij chronische behandeling met rapamycine.

Hoofdstuk 7: Discussie en toekomstperspectieven
Ca2+ en Mg2+ transport over de plasmamembraan van epitheliale niercellen hangt af van 
expressie en activiteit van ionkanalen en transporteurs op het celoppervlak, zowel als van 
een goede hormonale controle daarvan, zoals ook blijkt uit de studies beschreven in dit 
proefschrift. Een wetenschappelijke vraag die onopgelost blijft, is hoe veranderingen in 
de expressie van de γ-subeenheid van het Na+-K+-ATPase in de basolaterale membraan 
van de DCT hypomagnesiëmie kan veroorzaken. Daarnaast ontbreekt momenteel een 
volledig overzicht van de HNF1B bindingsplaatsen in genen die tot expressie komen in de 
nier. Een genoom-brede analyse die ChIP voor HNF1B combineert met next-generation 
sequencing technologie (ChIP-Seq) zou nieuwe transcriptionele cascades betrokken bij 
renale Ca2+ en Mg2+ verwerking kunnen ontrafelen. Verder is er weinig bekend over de 
hormonale regulatie van HNF1B-gemedieerde transcriptie en van HNF1B binding aan 
regulerende eiwitten zoals PCBD1. Tenslotte zal toekomstig onderzoek moeten uitwijzen 
op welke wijze het transcriptionele netwerk in de nier, waar o.a. HNF1B onderdeel van 
uitmaakt, het doelwit is van Mg2+ verlagend therapieën zoals rapamycine. Bovendien is er 
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grote belangstelling voor de karakterisering van Ca2+ influx en Ca2+-gemedieerde signaal-
transductiecascades in de (patho)fysiologie van de podocyt. In het bijzonder begrip van 
de modulatie van TRPC6 expressie en activiteit in podocyten kan leiden tot de ontwikkeling 
van nieuwe therapeutische aangrijpingspunten bij de behandeling van proteïnurische 
nierziekten. Het ontleden van de transcriptionele regulatie van eiwitten betrokken bij 
Ca2+ en Mg2+ transport in de nier, en de reactie van deze regulerende cascades op extra-
cellulaire stimuli, zal uiteindelijk bij kunnen dragen aan ontwikkeling van nieuwe 
therapeutische strategieën. Dit zou belangrijke consequenties kunnen hebben voor de 
behandeling van erfelijke en verworven ziekten die geassocieerd zijn met verminderde 
Ca2+ en Mg2+ verwerking door glomerulaire of tubulaire cellen in de nier.
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Riassunto

Capitolo 1: Introduzione
Il mantenimento dell’omeostasi di Ca2+ e Mg2+ è essenziale per molte funzioni fisiologiche,  
quali i processi di segnalazione intracellulare, numerose reazioni enzimatiche, la trasmissione 
neuronale, la contrazione muscolare e la formazione ossea. Il corpo umano mantiene le 
concentrazioni plasmatiche di Ca2+ e Mg2+ in uno stretto intervallo di valori grazie ad un 
efficiente sistema omeostatico che comprende le paratiroidi, l’intestino, le ossa e i reni. 
	 I reni determinano le quantità finali di Ca2+ e Mg2+ eliminate nelle urine controllando 
il riassorbimento di questi cationi dalla pro-urina al sangue. Dopo la filtrazione nei 
glomeruli renali, la maggior parte di Ca2+ e Mg2+ nella pro-urina è riassorbita tramite un 
processo di trasporto passivo nel tubulo prossimale e nel tratto ascendente spesso 
dell’ansa di Henle del nefrone. Il trasporto attivo di Ca2+ e Mg2+ avviene nel tubulo distorto 
distale e nel tubulo reuniente, dove circa il 10-15% del Mg2+ filtrato e il 10% del Ca2+ filtrato 
sono rispettivamente riassorbiti. In conclusione, solo l’1-2% del Ca2+ e il 5% del Mg2+ filtrati 
sono eliminati nelle urine. 
	 Mutazioni in proteine coinvolte nella regolazione del trasporto di Ca2+ e Mg2+ nelle 
cellule epiteliali renali possono causare disturbi ereditari del trasporto di questi cationi. 
Inoltre, alterazioni nell’omeostasi di Ca2+ e Mg2+ possono originare da altre condizioni 
mediche o dall’uso di determinate terapie farmacologiche, come il trattamento con im-
munosoppressori. 
	 L’abbondanza di canali ionici e trasportatori nella membrana plasmatica dipende da 
molti eventi intracellulari, come trascrizione, modifiche post-trascrizionali, sintesi proteica, 
modifiche post-traduzionali e traffico di membrana. Questa tesi è principalmente diretta 
a delucidare nuovi network trascrizionali che controllano l’espressione genica di canali 
ionici, trasportatori e ormoni importanti per il trasporto di Ca2+ e Mg2+ nei podociti dei 
glomeruli renali e nelle cellule tubulari del nefrone. 

Capitolo 2: HNF1B regola l’espressione della subunità γa della Na+-K+-ATPasi
Il fattore nucleare epatocitario 1B (HNF1B) è un fattore trascrizionale coinvolto nello 
sviluppo embrionale del rene, ma anche nella regolazione del trasporto degli elettroliti 
nel rene in età adulta. Mutazioni nel gene HNF1B sono responsabili di una sindrome a 
trasmissione autosomica dominante con conseguenze renali ed extra-renali. Tra le 
patologie renali connesse a mutazioni in HNF1B si annovera l‘ipomagnesemia renale, 
dovuta all’insufficiente trascrizione genica di FXYD2 nel tubulo distorto distale. Il gene 
FXYD2 codifica le due principali isoforme della subunità γ della Na+-K+-ATPasi, denominate 
γa e γb. 
	 In questa tesi sono stati utilizzati due saggi con geni reporter per dimostrare che 
HNF1B attiva specificatamente il promotore FXYD2a, mentre l’espressione di FXYD2b non è 
influenzata. È stato inoltre provato che le seguenti mutazioni in HNF1B p.His69fsdelAC,  
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p.His324Ser325fsdelCA, p.Tyr352fsinsA e p.Lys156Glu impediscono l’attivazione trascrizionale  
del promotore FXYD2a tramite un effetto dominante negativo su HNF1B wild-type. L’analisi 
immunoistochimica di sezioni renali di topo ha infine dimostrato che la subunità γa è 
espressa insieme a γb nella membrana basolaterale del tubulo distorto distale. 
	 In conclusione, anomalie in HNF1B alterano l’abbondanza relativa delle subunità γa e 
γb della Na+-K+-ATPasi alla superficie cellulare, influenzando il riassorbimento transcellulare 
di Mg2+ nel tubulo distorto distale.

Capitolo 3: HNF1B regola la trascrizione del gene PTH
L’ormone paratiroideo (PTH) è rilasciato in circolo dalle ghiandole paratiroidee in risposta 
ai cambiamenti nelle concentrazioni extracellulari di Ca2+ e PO4

3-. L’insorgenza di iperpa-
ratiroidismo secondario è frequente nei casi di insufficienza renale. In una coorte di undici 
pazienti con mutazioni e/o delezioni in HNF1B, i valori di PTH nel sangue erano troppo 
elevati rispetto ai livelli di attività renale. 
	 In questo capitolo è riportata la dimostrazione, mediante analisi immunochimica, che 
HNF1B è presente nel nucleo di cellule paratiroidee umane positive all’espressione di PTH 
e nel nucleo della linea cellulare paratiroidea di ratto, PT-r. Esperimenti di immunoprecipi-
tazione della cromatina (ChIP) hanno inoltre evidenziato che HNF1B lega specifici elementi 
responsivi presenti nel promotore del gene umano PTH. Saggi in vitro con la luciferasi 
hanno in particolare provato che la forma wild-type di HNF1B inibisce del 30% l’attività 
trascrizionale del promotore di PTH, mentre le mutazioni p.His69fsdelAC, p.His-
324Ser325fsdelCA, p.Tyr352fsinsA and p.Lys156Glu in HNF1B annullano tale effetto. 
Delezioni seriali del promotore di PTH dimostrano infine che la regione minima necessaria 
per osservare l’effetto inibitorio di HNF1B risiede tra -200 e -70 paia di basi dal sito di inizio 
della trascrizione. 
	 Questi dati suggeriscono, dunque, che HNF1B è un repressore della trascrizione del 
gene PTH nelle ghiandole paratiroidee. Tale dimostrazione potrebbe spiegare il precoce 
sviluppo di iperparatiroidismo in pazienti con mutazioni e/o delezioni in HNF1B. 

Capitolo 4: Mutazioni nel gene PCBD1 causano ipomagnesemia e MODY
Il gene PCBD1 codifica l’enzima pterin-4 alpha-carbinolamine deidratasi, una proteina che 
è anche conosciuta come co-attivatore della trascrizione genica mediata da HNF1B. È 
stato precedentemente dimostrato che mutazioni in PCBD1 alterano l’attività catalitica 
della proteina, causando una malattia a trasmissione autosomica recessiva (HPABH4D o 
primapterinuria) caratterizzata da iperfenilalaninemia e alto contenuto urinario di primapterina. 
	 In questa tesi è riportato uno studio a lungo termine di due pazienti affetti da 
HPABH4D, che attesta che le mutazioni in omozigosi c.312C>T (p.Gln97Ter) e c.99G>T/283G>A 
(p.Glu26Ter/p.Arg87Gln) in PCBD1 sono associate ad ipomagnesemia e perdita di Mg2+ 

nelle urine. È interessante notare che queste manifestazioni renali sono comuni in pazienti 
con mutazioni in HNF1B. Inoltre, al paziente con la mutazione p.Gln97Ter è stato anche 
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diagnosticato maturity-onset diabetes of the young (MODY), una forma monogenica di 
diabete causata da mutazioni in HNF1A o HNF1B. Dati di espressione genica hanno 
evidenziato che PCBD1 è presente con HNF1B nel tubulo distale contorto di topo. 
L’espressione di PCBD1, ma non di HNF1B, in questo segmento del nefrone è modulata da 
cambiamenti nel contenuto di Mg2+ nella dieta. Esperimenti condotti in cellule renali 
umane hanno dimostrato che PCBD1 normalmente lega HNF1B nel nucleo e quindi 
co-stimola il promotore del gene FXYD2a, a sua volta coinvolto nel processo di 
riassorbimento del Mg2+ nel tubulo distale contorto. Le mutazioni p.Gln97Ter e p.Glu26Ter, 
così come altre quattro mutazioni in PCBD1 precedentemente identificate in pazienti 
affetti da HPABH4D, causano instabilità proteolitica di PCBD1 e quindi aboliscono la co-
stimolazione del promotore di FXYD2a. Invece le mutazioni p.Gln253Pro e p.His-
324Ser325fsdelCA in HNF1B non influiscono sull’abilità di HNF1B di legare PCBD1, ma 
causano una localizzazione citosolica di PCBD1, diversa dalla localizzazione nucleare 
osservata in presenza di HNF1B wild-type. La ridotta quantità di PCBD1 nel nucleo 
potrebbe indirettamente avere come effetto una diminuzione della trascrizione genica da 
parte di HNF1B, e ciò potrebbe contribuire all’ipomagnesemia osservata nei pazienti con 
mutazioni in HNF1B.  
	 In conclusione, i risultati riportati in questo capitolo indicano PCBD1 come un importante 
co-attivatore della trascrizione genica attivata da HNF1B, necessario per il controllo del 
riassorbimento di Mg2+ nel tubulo distale contorto.  

Capitolo 5: �La vitamina D diminuisce l’espressione del gene TRPC6 in 
cellule podocitarie lesionate

Studi clinici e pre-clinici dimostrano che gli analoghi della vitamina D, oltre ad avere un 
ruolo omeostatico, riducono la proteinuria e la perdita di cellule podocitarie nel corso di 
malattie glomerulari. L’attività antiproteinurica della forma attiva della vitamina D, nota 
come 1,25(OH)2D3, si basa sulla regolazione trascrizionale di nefrina e podocina, due 
proteine podocitarie che preservano la filtrazione glomerulare mantenendo intatto il 
complesso proteico del diaframma di filtrazione. Questo complesso include anche TRPC6, 
un canale ionico coinvolto nell’influsso di Ca2+ nei podociti. Mutazioni gain-of-function in 
TRPC6 sono associate ad una forma ereditaria di glomerulosclerosi focale e segmentaria 
(FSGS). Inoltre, altre malattie ereditarie o acquisite che causano proteinuria sono associate 
ad un aumento dell’espressione e dell’attività glomerulare di TRPC6. 
	 In questo capitolo, è stato dimostrato che la somministrazione di 1,25(OH)2D3 riduce 
l’aumentata espressione di TRPC6 in un modello di lesioni podocitarie in vitro, ma anche in 
ratti affetti da nefropatia indotta dopo trattamento con adriamicina e usati come modello 
animale di FSGS. Esperimenti di ChIP e saggi di luciferasi hanno mostrato che la 
diminuzione della trascrizione di TRPC6 dopo trattamento con 1,25(OH)2D3 si verifica 
tramite il legame del complesso recettoriale 1,25(OH)2D3/VDR/RXR al promotore del gene 
TRPC6. La carenza di 1,25(OH)2D3 in topi knockout per il gene 25-idrossi-1 alfa-idrossilasi è 
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associata ad un aumento dell’espressione glomerulare di TRPC6, ad una parziale riduzione 
delle digitazioni tra i podociti e a proteinuria. La somministrazione di 1,25(OH)2D3 in questo 
modello animale riduce l’aumentata espressione di TRPC6 e la proteinuria, e normalizza la 
morfologia dei podociti. 
	 In conclusione, la diminuzione dell’espressione di TRPC6 è uno dei meccanismi che 
contribuisce all’effetto anti-proteinurico della vitamina D. 

Capitolo 6: �Meccanismi molecolari alla base della perdita di Mg2+ nelle 
urine dopo trattamento con rapamicina

La rapamicina è un farmaco immunosoppressivo usato principalmente come terapia 
anti-rigetto in pazienti sottoposti a trapianto d’organo. Il trattamento con rapamicina 
inibisce la molecola di segnale intracellulare mTOR e causa un’elevata frazione di escrezione 
renale di Mg2+, forse a causa di un difetto nel riassorbimento di Mg2+ nel tubulo distale 
contorto. 
	 A tale proposito, in questo capitolo viene dimostrato che il trattamento cronico con 
rapamicina riduce nei topi l’espressione genica renale di TRPM6, il canale ionico permeabile 
al Mg2+, localizzato sulla membrana apicale del tubulo distale contorto. Tra gli altri geni 
noti per essere importanti nel riassorbimento transcellulare di Mg2+ nel medesimo tratto 
del nefrone, anche il fattore di crescita epiteliale (EGF), coinvolto nella regolazione 
ormonale di TRPM6, e HNF1B mostrano una diminuzione dei livelli di mRNA in seguito al 
trattamento con rapamicina. Al contrario, l’espressione genica di due proteine delle 
giunzioni occludenti, la claudina-16 (CLDN16) e la claudina-19 (CLDN19), essenziali per il 
riassorbimento paracellulare di Mg2+ nel tratto ascendente spesso dell’ansa di Henle, è 
maggiore negli animali trattati con rapamicina rispetto ai controlli. Tale risultato potrebbe 
essere causato da variazioni nei livelli di mRNA della claudina-14 (CLDN14), che regola il 
complesso CLDN16-19. Esperimenti di elettrofisiologia hanno dimostrato che la rapamicina 
inibisce rapidamente la stimolazione da parte di EGF delle correnti ioniche mediate da 
TRPM6 in vitro, mentre non interferisce con l’effetto stimolatorio che l’insulina esercita 
sull’attività di TRPM6. In futuro, ulteriori esperimenti saranno finalizzati alla caratterizzazio-
ne dei processi di segnalazione intracellulare a valle dei recettori per l’EGF e per l’insulina 
che influenzano l’attivazione di mTOR e quindi l’attività di TRPM6. 
	 In breve, lo studio riportato in questo capitolo suggerisce che la diminuzione dell’e-
spressione di TRPM6 e della sua regolazione ormonale nel tubulo distale contorto del rene 
contribuisce alla perdita di Mg2+ nelle urine dopo trattamento cronico con rapamicina. 

Capitolo 7: Discussione e prospettive future
Il trasporto di Ca2+ e Mg2+ attraverso la membrana plasmatica delle cellule epiteliali renali 
è condizionato dall’abbondanza e dall’attività di canali ionici e di trasportatori sulla 
superficie cellulare, ma anche da un appropriato controllo ormonale, come dimostrato in 
questa tesi. Una domanda che rimane irrisolta è come cambiamenti nell’espressione della 
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subunità γ della Na+-K+-ATPasi sulla membrana basolaterale del tubulo distale contorto 
possano causare ipomagnesemia. Sarebbe inoltre interessante conoscere il profilo 
completo dei siti di legame di HNF1B nel genoma renale. Esperimenti di ChIP per HNF1B 
associati a tecnologie di sequenziamento di nuova generazione (ChIP-Seq) potrebbero 
rivelare nuovi network trascrizionali coinvolti nel trasporto di Ca2+ e Mg2+ nel rene. Inoltre, 
la nostra conoscenza circa il controllo ormonale della trascrizione mediata da HNF1B e del 
legame di HNF1B a proteine accessorie è ancora limitata. Studi futuri dovrebbero infine 
investigare come il network di fattori trascrizionali che include HNF1B è influenzato dal 
trattamento con terapie farmacologiche che causano uno stato di deficienza di Mg2+, 
come ad esempio la rapamicina.
	 Di grande rilevanza clinica è la caratterizzazione del ruolo dei flussi di Ca2+ nella (pato)
fisiologia dei podociti. In particolare, comprendere come l’espressione e l’attività del 
canale ionico per il Ca2+, TRPC6, sono modulate nei podociti potrebbe portare allo 
sviluppo di nuovi approcci terapeutici per il trattamento di malattie renali associate a 
proteinuria. 
	 In conclusione, lo studio dei meccanismi molecolari che influenzano la trascrizione di 
proteine coinvolte nel trasporto renale di Ca2+ e Mg2+, e l’analisi della regolazione ormonale 
di tali eventi rappresentano le basi per lo sviluppo di nuove strategie farmacologiche per 
la cura delle malattie ereditarie e acquisite associate a disturbi del trasporto di Ca2+ e Mg2+ 
nelle cellule podocitarie e tubulari del rene. 
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ChIP	 chromatin-immunoprecipitation
CLC-Kb	 chloride channel protein CLC-Kb
CLDN14	 claudin-14
CLDN16	 gene encoding claudin-16
CLDN19	 gene encoding claudin-19
CNNM2	 cyclin M2
CNT	 connecting tubule
D28K	 calbindin-D28K

DCoH	 dimerization cofactor of hepatocyte nuclear factor 1-alpha
DCT	 distal convoluted tubule
DCT1	 early distal convoluted tubule
DCT2	 late distal convoluted tubule
EGF	 epidermal growth factor
EGFR	 epidermal growth factor receptor
FGA/FGB	 genes encoding α/β-fibrinogen respectively
FXYD2	 gene encoding Na+-K+-ATPase pump, subunit γ 
FSGS	 focal segmental glomerulosclerosis
GBM	 glomerular basement membrane
GLUT2	 gene encoding glucose transporter type 2
GPCR	 G protein-coupled receptor
HNF1A	 hepatocyte nuclear factor 1 homeobox A
HNF1B	 hepatocyte nuclear factor 1 homeobox B
HPABH4D	 hyperphenylalaninemia, BH4-deficient, D
HPT	 hyperparathyroidism
hs-CRP	 high-sensitivity C reactive protein
IL-2	 interleukin-2
INS-1	 gene encoding insulin-1
Kif12	 Kinesin-like protein Kif12
Kir4.1	 K+ channel, inwardly rectifying subfamily J, member 10
Kv1.1	 K+ voltage-gated channel subfamily A, member 1
L-PK	 gene encoding L-type pyruvate kinase
MODY	 maturity-onset diabetes of the young			 
mTOR	 mammalian target of rapamycin 
NCC	 Na+-Cl- cotransporter
NCX1	 Na+-Ca2+ exchanger
NFATc	 nuclear factor of activated T-cells, cytoplasmatic
NFATn	 nuclear factor of activated T-cells, nuclear
NKCC2	 Na+-K+-Cl- cotransporter 2
NODAT	 new-onset diabetes after transplantation
NPT1-4	 gene encoding Na+-dependent Pi transport protein 1-4
OAT1-4	 gene encoding organic anion transporter 1-4
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OATP1B1-3	 gene encoding solute carrier organic anion transporter member 1B1-3
PAH	 phenylalanine-4-hydroxylase
PCBD1	 pterin-4 alpha-carbinolamine dehydratase
PDX-1	 gene encoding pancreas/duodenum homeobox protein 1
Pkd2	 polycystin-2
PkhD1	 gene encoding polycystic kidney and hepatic disease 1 protein
PMCA1b	 plasma membrane Ca2+-ATPase
PT	 proximal tubule
PTH	 parathyroid hormone
PTHrp	 parathyroid hormone- related peptide
Rac1	 ras-related C3 botulinum toxin substrate 1
RCAD	 renal cysts and diabetes syndrome
ROMK	 inward rectifying ATP-sensitive K+ channel
RXR	 retinoid X receptor
SGLT2	 gene encoding Na+-glucose co-transporter 2
SOCS3	 gene encoding suppressor of cytokine signaling 3
TAL	 thick ascending loop of Henle
TMEM27	 gene encoding collectrin
TRPC6	 transient receptor potential channel, subfamily C, member 6
TRPM6	 transient receptor potential channel, subfamily M, member 6
TRPV5	 transient receptor potential channel, subfamily V, member 5
TRPV6	 transient receptor potential channel, subfamily V, member 6
UMOD	 gene encoding uromodulin
URAT1	 gene encoding urate anion exchanger 1
VDR	 vitamin D receptor
VDRE	 vitamin D-responsive element
VEGFR	 vascular endothelial growth factor receptor
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