The hexagonal compound $U(Pt_{1-x}Pd_x)_3$ shows both long-range antiferromagnetic order and high c/T-values at low temperature that are characteristic for heavy-fermion behaviour. Magnetic fields (of $12T$ along the b-axis and $13T$ along the a-axis) can suppress the ordering completely, but the large heavy-fermion contribution is still present at high fields.

1. INTRODUCTION

In the series $U(Pt_{1-x}Pd_x)_3$ superconductivity and long-range antiferromagnetic order occur besides spin-fluctuation and Kondo phenomena (1). When substituting Pd for Pt in UPt_3, the superconductivity is suppressed and a state of long-range antiferromagnetic order ($LRAF$) is created (2). The antiferromagnetic order, of the spin-density wave type, is most pronounced in the 5 at% Pd-compound, that has a Néel temperature of $5.9K$. In the specific heat ($c(T)$) this ordering is reflected as a sharp peak superimposed on a large heavy-fermion background. Neutron scattering experiments (3) on single-crystalline $U(Pt_{0.95}Pd_{0.05})_3$ show that the ordered moments ($-0.6\mu_B/\text{U-atom}$) are aligned along the b-axis. Specific heat measurements (4) in an applied field $B\geq3T$ have shown a rather strong in-plane anisotropy: $T_N(B)$ decreases faster for $B//b$ than for $B//a$.

As noted before (1,2) it is remarkable that the heavy-fermion behaviour is preserved as the $LRAF$ order sets in. This suggests that only a part of the itinerant character of the f-electrons is lost and that in the ordered state strong fluctuations, probably of the Kondo type, persist (5). Measurements of $c(T)$ of pure UPt_3 in field show that c/T increases with B and has a maximum at $20T$ where the metamagnetic transition occurs (6). However, in a field of $24.5T$, c/T is still larger than in $0T$. This shows that when the intersite correlations have collapsed at $20T$ other fluctuations (possibly of the Kondo type) persist.

In this contribution we investigate the suppression of the long-range order in $U(Pt_{0.95}Pd_{0.05})_3$ in very large magnetic fields (B up to $20T$). We also investigate the heavy fermion part of $c(T)$ as function of field.

2. EXPERIMENTAL

The specific heat measurements were performed on a single-crystalline sample of a cubic shape ($5x5x5\text{ mm}^3$), cut out by spark erosion of a crystal grown by the Czochralski method in a tri-arc furnace. The high field
specific heat measurements were carried out at the High Field Magnet Laboratory of the University of Nijmegen, using the 20T Bitter-type of coil. The experiments were performed in an adiabatic way with a sapphire sample holder equipped with a ruthenium-oxide thermometer and a nickel-chromium film as a heater (6).

From the low-T part of our data it is clear that \(\gamma (=\lim c/T) \) remains large over the whole \(T=0 \) field range. Data at 20 T reveal a \(c/T \) of 450 mJmol\(^{-1}\)K\(^{-2}\) at 2.25 K (8), which is still larger than the value for \(\text{UPt}_3 \) in 0 T. Thus the heavy-fermion behaviour is preserved in \(\text{U(PtO}_{0.95}\text{PdO}_{0.05})_3 \) at our maximum field.

Despite the difficulty to separate out the contribution of the LRAF order to \(c(T) \), we infer from our high-field data an initial increase of \(\gamma \), as observed in pure \(\text{UPt}_3 \). This suggests that the scenario for \(\text{UPt}_3 \) (6) also applies to the remaining contribution of \(\text{U(PtO}_{0.95}\text{PdO}_{0.05})_3 \), i.e. the presence of competing magnetic interactions that can be separated into a Kondo on-site type of interaction and an inter-site interaction. It would be interesting to investigate at which field \(\gamma \) passes through a maximum by extending our temperature range towards lower temperatures. Presumably this occurs near \(\sim 12 \) T (7) compared to 20 T in \(\text{UPt}_3 \). The coexistence of three types of interactions demonstrates the complex nature of the electron-electron processes in \(\text{U(PtO}_{0.95}\text{PdO}_{0.05})_3 \).

ACKNOWLEDGEMENTS

This work was supported by the "Stichting Fundamenteel Onderzoek der Materie" (FOM) with financial support from the "Nederlandse Organisatie van Wetenschappelijk Onderzoek" (NWO). The work of A.d.V. has been made possible by a fellowship of the Royal Netherlands Academy of Arts and Sciences.

REFERENCES