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Nonmetric unfolding is a powerful (nonparametric) analytical tool generating a preference-based joint
display of subjects (e.g., consumers) and objects (e.g., brands or products). Unfortunately, nonmetric
unfolding frequently produces degenerate unfolding solutions (i.e., unfolding solutions showing close-
to-perfect model fit irrespective of the data analyzed). Moreover, there are no methods to assess the qual-
ity of the unfolding solution in terms of stability and accuracy. In this paper, we resolve these important
issues simultaneously by using a bootstrapped penalized nonmetric unfolding approach. In line with the
explorative and visual nature of nonmetric unfolding, we introduce methods for visualizing the stability
of unfolding solutions. In addition, we propose numerical measures for stability and validity of nonmetric
unfolding solutions that can be used to identify accurate, nondegenerate and stable solutions. Finally, for
large scale data, as often encountered in marketing, we propose a greedy search algorithm. We illustrate
our methodology using three applications in the food domain.

� 2012 Elsevier Ltd. All rights reserved.
1. Introduction

In food science, preference mapping (Greenhoff & MacFie, 1999)
is an important tool for understanding the relationship between
product liking and sensory properties. Carroll (1972) distinguished
internal and external preference mapping as two different ap-
proaches to preference mapping. In internal preference mapping,
consumer’s hedonic responses are used to determine a spatial rep-
resentation of both products and consumers. In external preference
mapping, the sensory profiles of the products are used to produce a
multidimensional space in which sensory attributes, products and
consumers are displayed. In a well-cited review, Van Kleef, Trijp,
and Luning (2006) found that whilst external preference mapping
is more instrumental when dealing with technological tasks, inter-
nal preference mapping is perceived as having greater relevance
for marketing issues.

Both internal as well as external preference mapping comprise a
wide variety of statistical techniques, such as methods based on
principal component analysis, factor analysis, cluster analysis, mul-
tiple (polynomial) regression, partial least squares, correspondence
analysis, and multidimensional scaling. In food science, especially
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approaches involving principal component analysis are particularly
popular (e.g. Meullenet, Lovely, Threlfall, Morris, & Striegler, 2008;
Rousseau, Ennis, & Rossi, 2012; Tubbs, Oupadissakoon, Lee, &
Meullenet, 2010; Worch, Lê, Punter, & Pagès, 2012). However, as
also noted by Busing, Heiser, and Gleaver (2010) and Tubbs et al.
(2010), the (general) adequacy of principal component analysis is
under scrutiny, and multidimensional unfolding may often be con-
sidered a more appropriate method to model product preferences.

In multidimensional unfolding, subjects (e.g., consumers) and
objects (e.g., brands or products) are jointly plotted in a low
dimensional display in such a way that distances between subjects
and objects optimally represent subjects’ preferences. Originating
in the field of psychology (Coombs, 1950), the method has been
studied extensively by scholars in marketing (e.g., DeSarbo &
Rao, 1986; DeSarbo, Young, & Rangaswamy, 1997; Ho, Chung, &
Lau, 2010) and sensory research (e.g., Busing et al., 2010; Greenhoff
& MacFie, 1999; MacKay, 2001; McEwan, 1996).

An important distinction between different unfolding methods,
concerns the divide metric vs. nonmetric multidimensional unfold-
ing. The appropriateness of these two unfolding models depends
upon the measurement properties of the data. If the choice alterna-
tives are rated on an interval or ratio scale the so-called metric
unfolding model is appropriate. However, if the choice alternatives
are rated on an ordinal scale, for instance when the objects are
ranked, nonmetric unfolding is more adequate. In the nonmetric
model, transformations of the original data are allowed provided
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that their original order is preserved. In addition, nonmetric
unfolding is better able to capture nonlinear relations.

Results from an unfolding analysis should only be used when
the resulting maps accurately represent subjects’ preferences. In
this respect, two issues should be considered, in particular within
the context of nonmetric unfolding:

1. The issue of degeneration. Nonmetric unfolding may lead to so-
called degenerate solutions. Degenerate unfolding solutions
are unfolding solutions where the extent of misfit (that is the
amount of stress in the unfolding solution) becomes arbitrarily
small irrespective of the data (Borg & Groenen, 2005, Section
14.4). They often are characterized by constant distances
between the two sets of points, for example, by one set of points
on top of each other at the center of a circle containing the other
set of points. Perceptual maps showing a degenerate unfolding
solution contain many ill-positioned consumers, brands or
products, and are thus meaningless from a marketing point of
view. As a consequence, decisions (e.g., the decision as to what
new product to launch) based on the interpretation of such an
untrustworthy map are likely to be wrong as they are not sup-
ported by the preference relationships stored in the data.

2. The issue of stability assessment. As nonmetric unfolding is
essentially a nonparametric method, no specific distributional
assumptions are made concerning the model parameters (e.g.,
the location of points in the map). As a consequence, one cannot
rely on statistical inference to make an adequate assessment of
the statistical significance and stability of the unfolding solu-
tion. At present, no statistical measures are available to assess
the quality/stability of the individual points included in a non-
metric unfolding solution. Although nonmetric unfolding does
produce point estimates of the positioning of subjects and
objects, no estimates may inform us about the uncertainty of
these positions. Obviously, basing decisions on poorly posi-
tioned subjects and/or objects, is undesirable and should be
avoided.

The degeneracy issue is a long-standing issue in nonmetric
unfolding. Several authors have suggested different solutions
(see, for instance, Busing, Groenen, & Heiser, 2005; DeSarbo &
Rao, 1984; Heiser, 1989; Kim, Rangaswamy, & DeSarbo, 1999).
We refer to Busing et al. (2005) for an extensive overview of
the degeneracy problem and proposed solutions. Despite recent
developments, it appears that authors still resolve the degeneracy
problem by restricting themselves to metric analyses (e.g. Ho
et al., 2010; Teillet, Schlick, Urbano, Cordelle, & Guichard, 2010).
In this paper, however, we used the penalized nonmetric unfold-
ing approach proposed by Busing et al. (2005).

Penalized nonmetric unfolding relies on the values of two pen-
alty parameters. Except for some general guidelines (see results
from a simulation study by Busing et al., 2005), little is known
about the influence and importance of the penalty values. In this
paper, we show that the choice of these penalty parameters is
crucial not only with respect to avoiding degeneracy, but also
with respect to the stability of solutions. As the exact location
of points in a degenerate solution is arbitrary, its solution is nec-
essarily instable. The reverse is also likely to hold. Exploiting this
relationship, we propose to simultaneously resolve the two issues
mentioned above, that is, the degeneracy problem in nonmetric
unfolding and the absence of stability estimates of an unfolding
solution.

Currently, no stability measures exist for nonmetric unfolding.
To solve the stability issue we propose ways to depict stability of
a solution. Furthermore, we introduce numerical measures that
quantify overall stability so that an optimal (that is, a stable and
nondegenerate) solution can be selected.
The remainder of this paper is organized as follows: In the next
section, we present a brief technical account of nonmetric unfold-
ing and the degeneracy problem. Next, we consider the stability is-
sue of nonmetric unfolding solutions and provide a visualization of
the stability in an unfolding map. We then introduce stability mea-
sures and illustrate how these measures may be used to select sta-
ble nondegenerate unfolding solutions. To illustrate our approach,
we apply the proposed methodology to three data sets. An efficient
algorithm to find a stable, nondegenerate solution in the case of
large scale data is presented in Section 7. We conclude our paper
with a summary of the main results.
2. Nonmetric multidimensional unfolding

The goal of multidimensional unfolding is to obtain a low-
dimensional spatial map with subjects and objects, in such a way
that distances between subjects and objects in the map best repre-
sent the preferences stored in the data. Hence, if a subject has a
strong preference for an object, the corresponding distance should
be small. Analogously, if a subject has a weak preference for an ob-
ject, the distance should be relatively large. To construct such a
map we seek coordinates for both subjects and objects.

Let us first introduce some notation. Throughout this paper the
indices i and j correspond to subjects and objects respectively, and
the total number of subjects and objects in the sample are denoted
by n and p respectively. Now, let xi and yj denote the k � 1 coordi-
nate vectors for subject i and object j, respectively, where k is the
(user-supplied) dimensionality of the solution. The Euclidean dis-
tance between xi and yj as represented in the map is defined as:

dij ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxi � yjÞ

0ðxi � yjÞ
q

.

The preferences can be measured in several ways. For example,
subjects may indicate their preferences either by means of ratings,
rankings, or through paired comparisons. Although an important
topic, we do not concern ourselves with the method of data collec-
tion in this paper. Instead, we consider the obtained data to merely
indicate an ordering of preferences. This means that even if prefer-
ences are represented by rating data, only the order of the ratings
are modeled. If a researcher is willing to assume that observed rat-
ings can be interpreted as interval data, a nonmetric unfolding ap-
proach may not be optimal and metric methods are more
appropriate. Furthermore, we assume without loss of generality
that the preference of subject i for object j is coded in such a way
that it is represented by the dissimilarity dij. Hence, a low value
of dij indicates a high preference and a high value corresponds to
a low preference. As only rank order information is used, we may
replace the observed preferences by any monotonically nonde-
creasing transformation d̂ij ¼ fiðdijÞ yielding so-called pseudo-dis-
tances d̂ij. Thus, fi(dij) transforms the original dissimilarities
ordinally to d̂ij’s, with a separate transformation function fi for each
individual i. This case is referred to as the row-conditional case in
nonmetric unfolding.

The objective of the unfolding analysis is to find coordinate
matrices X and Y, with as rows the transposed subject and object
coordinate vectors x0i and y0j respectively, in such a way that the dis-
tances dij match the pseudo distances d̂ij in some optimal manner.
This objective is formalized by the so-called normalized stress
function.

r2
n ¼ r2

nðD̂;X;YÞ ¼
P

ijðd̂ij � dijÞ2P
ijd̂

2
ij

; ð1Þ

where D̂ is the n � p matrix with elements d̂ij. Objective (1) is min-
imized over the set of functions (transformations in D̂) and config-
urations X and Y.
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2.1. The degeneracy problem

Busing et al. (2005) showed that a degenerate unfolding solution al-
ways exist when transformations include a constant term and slope. To
see this, consider the transformation d̂ij ¼ fiðdijÞ ¼ c þ giðdijÞwhere c is
a constant. Then

P
ijðd̂ij � dijÞ2 ¼

P
ijðc þ giðdijÞ � dijÞ2. Hence, upon

choosing gi(dij) = 0, an optimal unfolding solution would result from
choosing coordinates in such a way that dij = c for all points so that
the value of the objective function becomes zero, indicating perfect
model fit. In a two-dimensional setting, such a perfect solution can
be obtained by choosing all the points X to lie on a circle with all the
points Y at its center, or vice versa. Note that degeneracies also occur
when fi(dij) correspond to interval transformations, if the transforma-
tions include an intercept and a slope (see also Busing, 2006).

One solution to the degeneracy problem is to use transforma-
tions that do not include a simultaneous estimation of the constant
term and the slope. Several recommendations have been made in
this respect, see for instance, Heiser (1981, 1989), Kim et al.
(1999) and Borg and Lingoes (1987). Other recommendations have
been made by DeSarbo and Rao (1984) and Kruskal and Carroll
(1969). For a more detailed treatment of the degeneracy issue we
refer to Busing et al. (2005). In that paper, a penalized approach
is suggested that offers an adequate solution for the degeneracy
problem. This approach is further elaborated on in this paper.

2.2. Penalized nonmetric unfolding

The main idea of penalized nonmetric unfolding is to steer the
unfolding solution away from a degenerate solution. To do so, a
force is added to r2

n that assigns a penalty to unfolding solutions
that are degenerate. The penalty is incorporated as an increase in
a penalized stress criterion. To illustrate how this is actually done,
recall the normalized stress criterion defined in (1). A degenerate
solution is characterized by d̂ij’s that are all the same. To be effec-
tive, a good penalty term should have high values when the d̂ij’s are
close to constant, and small values when the mean value of the d̂ij’s
differs greatly from their variation. An objective measure that com-
pares variation to a mean value is Pearson’s coefficient of variation
which is defined as the standard deviation divided by the mean:
mðaÞ ¼ sðaÞ=�a;, where �a and s(a) denote, respectively, the sample
mean and standard deviation for vector a. In the degenerate case,
the d̂ij’s are constant and the variation coefficient becomes zero.
The penalized stress criterion can now be formulated as

r2
pðP; D̂;X;YÞ ¼ r2k

n ðD̂;X;YÞ 1þx
m2ðdÞ
m2ðd̂Þ

 !
; ð2Þ

where d = vec(D) and d̂ ¼ vecðD̂) are vectors with the observed dis-
similarities (preferences) and pseudo-distances, respectively. The
penalty parameters k and x are user-supplied constants which
determine the strength of the penalty.1 Whether the penalized non-
metric unfolding approach yields a nondegenerate solution depends
on the strength of the penalty. In their recent paper, Ho et al. (2010)
have shown that solutions obtained using the penalized approach
with k = x = 0.5 may still yield degenerate solutions. By linking the
degeneracy to stability, we formulate an approach that yields nonde-
generate and stable solutions.

3. Stability of nonmetric unfolding solutions

The stability of unfolding configurations is of great practical
importance. Unfolding solutions that are heavily influenced by
1 This criterion is currently implemented in SPSS and is used throughout this paper.
It differs slightly from Formula (8) presented in Busing et al. (2005) that does not
contain the constant m2(d) and uses raw stress rather than normalized stress. For more
details on this issue, see Busing (2010).
small changes in the data are undesirable. In addition, if a solution
is relatively stable but is located far away from the true configura-
tion, thus a solution with strong bias, its interpretation will be dis-
torted. To assess the stability and bias of a nonmetric unfolding
solution we propose to use a nonparametric bootstrap procedure
(Efron, 1982; Efron & Tibshirani, 1993).

In a bootstrap analysis, the statistical method is applied repeat-
edly to resampled data. That is, from the original sample, B new
samples of the same size, the so-called ‘bootstrap samples’, are
randomly drawn with replacement. Drawing subjects with
replacement implies that subjects may be observed more than
once (or not at all) in a bootstrap sample. Consequently, some sub-
jects may be observed more often than others in the B bootstrap
samples. To avoid this imbalance, we use the balanced bootstrap
that guarantees that each subject is drawn exactly B times after
all the B bootstrap samples are drawn,. In each individual bootstrap
sample, however, individual subjects may be drawn once, repeat-
edly, or not at all.

Each bootstrap sample is analyzed by means of nonmetric
unfolding, yielding a configuration of subjects and objects. How-
ever, each bootstrap configuration is based on a different set of
subjects. Moreover, as the configurations only represent relative
distances, a direct comparison of the location of point coordinates
representing subjects’ and objects’ location across different boot-
strap solutions is not meaningful; each unfolding configuration is
nonunique as it can be freely rotated, translated and scaled, altering
the location of subjects and objects without changing the dis-
tances. To account for this nonuniqueness, we apply Procrustean
similarity transformations (Schönemann & Carroll, 1970; Borg &
Groenen, 2005) in such a way that the bootstrap coordinates for
objects are as close as possible to their coordinates in the unfolding
solution of the original data. For convenience, this (transformed)
solution is simply referred to as ‘‘the unfolding solution’’ in the
remainder of this paper.

When using a two-dimensional space, one can integrate the
unfolding solution as well as all (rotated) bootstrap configurations
in one single two-dimensional plot. In this way, a configuration is
obtained where each individual subject and object is represented
by a cloud of points. The sizes of subject and object clouds provide
a measure for stability; the smaller the size, the higher the stability.
Plotting all bootstrap points, however, leads to cluttered plots that
make it virtually impossible to identify individual subject or object
clouds. To avoid such cluttered plots we use confidence ellipses and
density plots for plotting the object and subject clouds respectively.

3.1. Confidence ellipses

For the object points, it is important to clearly indicate which
cloud belongs to which object. Therefore, plotting all bootstrap
points is not a viable option and it is more insightful to display
(1�a)% confidence ellipses around the bootstrap means. These
ellipses are constructed in such a way that for each object, the el-
lipse contains exactly (1�a)% of the corresponding bootstrap
points. Using confidence ellipses, the relative positions of the ob-
jects points are clearly depicted, and � at the same time � the sizes
and shapes of the ellipses nicely visualize stability and dependen-
cies among the points. Based on earlier work by Meulman and
Heiser (1983), Linting, Meulman, Groenen, and Van Der Kooij
(2007) have described a nonparametric procedure for calculating
confidence ellipses that exhibits greater flexibility than producing
confidence ellipses based on the bivariate normal distribution.

3.2. Density plots

For the subject points, it is typically less important to distin-
guish between individual subjects. Moreover, as most applications
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involve many subjects, plotting confidence ellipses leads to a clut-
tered plot in which it is difficult to disentangle the ellipses. How-
ever, it is informative to spot areas with small and large
concentrations of subjects. Simply plotting all the points may al-
ready show this to some extent, but as identical coordinates are
depicted only once, density effects are ignored. A smooth depiction
of cloud density can be obtained by using some form of two-
dimensional density estimation. Here, we estimate the density
using a bivariate kernel density estimation procedure proposed
by Botev (2009). The densities are indicated by color intensity.

3.3. Bias

In addition to variance, bias is of key importance to assess the
validity of an unfolding solution. Bias considers the deviation be-
tween the estimated parameters and their true population values.
A bootstrap estimate of the bias can be obtained by considering, for
each point, the distance from the coordinates in the unfolding solu-
tion to the average coordinates of the bootstrap solutions (i.e., the
center of the ellipsoid).

The suggested plotting procedures are illustrated in Section 6.

4. Stability measures

The graphical procedures proposed in Section 3, allow for a vi-
sual inspection of the stability of individual points. The bootstrap
results may also be used to obtain numerical measures for the
overall stability of an unfolding solution. To account for both vari-
ance and bias we use the mean squared error. In our bootstrap con-
text, the mean squared error (MSE) can be calculated as the mean
squared difference between bootstrap coordinates and coordinates
in the unfolding solution. For the subject points we get

MSEi ¼
1
B

XB

b¼1

ðxib � x̂iÞ0ðxib � x̂iÞ;

where, xib denotes the coordinate vector for subject i in the bth
bootstrap configuration, B denotes the number of bootstrap sam-
ples, and x̂i is the coordinate vector for subject i in the unfolding
solution. Similarly, we get for the object points

MSEj ¼
1
B

XB

b¼1

ðyjb � ŷjÞ0ðyjb � ŷjÞ;

where yjb denotes the coordinate vector for object j in the bth boot-
strap configuration and ŷj is the coordinate vector for object j in the
unfolding solution.

Taking the sum over all subjects and objects gives us measures
for the total mean squared error. However, as the scale of unfolding
solutions is arbitrary (because only relative positions are important
in unfolding analysis), the actual size of the mean squared error is
not very informative and cannot be used to compare different solu-
tions. To overcome this indeterminacy, we propose a relative mean
squared error measure.

Define the total sum of squares for the subject and object coor-
dinates as

TSSsubjects ¼
Xn

i¼1

x̂0ix̂i; and TSSobjects ¼
Xp

j¼1

ŷ0jŷj;

respectively. For each set of points we can define the relative mean
squared error (RMSE) as the total mean squared error divided by the
total sum of squares. Hence,

RMSEsubjects ¼
Pn

i¼1MSEi

TSSsubjects
¼
Pn

i¼1

PB
b¼1ðxib � x̂iÞ0ðxib � x̂iÞ

B
Pn

i¼1x̂0ix̂i
and

RMSEobjects ¼
Pp

j¼1MSEj

TSSobjects
¼
Pp

j¼1

PB
b¼1ðyjb � ŷjÞ0ðyjb � ŷjÞ

B
Pp

j¼1ŷ0jŷj
:

These measures consider the bootstrap variation around the
unfolding solution relative to the bootstrap variation around the
origin. Note that these measures may become larger than one, in
which case a solution that places all points at the origin has a smal-
ler mean squared error than the unfolding solution. It is useful to
calculate the measures for the two sets of points separately as
overall stability may be dominated by stability, or lack thereof, in
one of the two sets. For example, in the case of a degenerate solu-
tion with all subject points placed in the origin and the object
points placed on a circle around them, we may find stability for
the subjects but large instability for the objects as their locations
on the circle are arbitrary. Therefore, a joint measure needs to be
constructed. We consider the average of the two relative mean
squared errors, that is,

RMSE ¼ 1
2
ðRMSEsubjects þ RMSEobjectsÞ: ð3Þ
5. Stability and degeneracy

In nonmetric unfolding, variance and bias are the functions of
the penalty parameters. For example, by choosing a weak penalty,
a degenerate unfolding solution may be avoided in the original
sample but not in some bootstrap samples (or vice versa). Hence,
the final unfolding solution may become unstable and biased. On
the other hand, if the optimal transformations differ significantly
from linear transformations, a strong penalty (enforcing such lin-
ear transformations) may also lead to higher variance and/or bias.
We use this relationship to find appropriate values for the penalty
parameters. More specifically, our aim is to find k and x so that the
RMSE in Eq. (3) is as small as possible.

Unfortunately, it is not possible to determine analytically how
the RMSE is related to the parameters k and x. One way to deter-
mine k and x that minimize the RMSE is by employing a grid
search. For example, for k and x we consider combinations of the
values [0.1, 0.2,. . .,1.0] and [0.10, 0.20, 0.50, 1, 2, 5, 10, 20, 50,
100] for k and x, respectively. For each combination in this grid,
bootstrap analyses are performed. The combination that gives the
smallest RMSE is the most stable solution.

6. Applications

To illustrate different aspects of the proposed methodology, we
present three applications in the food domain. By showing three
applications we are able to present the nonmetric unfolding results
in some detail, and at the same time provide empirical evidence of
the efficacy of our proposed penalty parameter selection proce-
dure. In our discussion of the results, we focus on the selection
of the optimal penalty parameters for avoiding degeneracy and
maximizing stability, and the visualizations of the instability.
Interpretation of the results from a content related point of view
will be limited. For some guidelines on how to interpret unfolding
results, in particular in the food research domain, we refer to Bus-
ing et al. (2010).

Computationally, solutions in any dimensionality can be com-
puted. However, with respect to the proposed visualization tech-
niques, solutions involving three or more than three dimensions
are cumbersome. Therefore, in the following three applications
we only consider two-dimensional solutions. In Section 7, the issue
of dimensionality selection is discussed and we show that for these
three applications, a two-dimensional representation is reason-
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able. First, we make use of the so-called breakfast data (Green &
Rao, 1972). This data set is a well-known and often referred to
(see, for instance, Busing et al., 2005; Borg & Groenen, 2005). The
breakfast data consists of preference rankings for 42 individuals
(the subjects) on 15 breakfast items (the objects). Next, a data
set is used which consists of consumer ratings of different types
of donuts. Finally, we analyze data on preference rankings for
soup-ideas.
6.1. Breakfast data

In our analysis of the breakfast data, we tried to identify those
values for the penalty parameters that yield the most stable joint
configuration of objects and subjects. We used the full grid search
with k 2 [0.1, 0.2,. . ., 1.0], and x 2 [0.10, 0.20, 0.50, 1, 2, 5, 10, 20,
50, 100]. For each pair (k, x) we performed penalized nonmetric
unfolding and a bootstrap analysis with B = 1000 replications.
The resulting RMSEs as defined in Eq. (3) are found in Table 1.

Examination of the values in Table 1 reveals that the most sta-
ble unfolding solution corresponds to penalty parameters k = 0.7
and x = 10. Note that the solution corresponding to the current de-
fault values, k = 0.5 and x = 1, is considerably less stable. In Table 1,
one clearly sees that by decreasing the effect of the penalty from
the default (that is, choosing higher values for k and lower values
for x), the RMSE increases significantly. This result indicates that
the corresponding unfolding solutions are exceedingly unstable,
suggesting the possible occurrence of degeneracies. Similarly, the
effect of imposing a stronger penalty by increasing the x parame-
ter is limited, but a stronger penalty generally leads to more stable
unfolding solutions. The values in the lower left corner of Table 1
show that once the penalty becomes too weak, the RMSE increases
substantially, in some cases even exceeding one.
Table 1
Relative mean squared errors for different penalty settings based on 1000 bootstrap samp

Notes: Five smallest values are printed in boldface. Values on the lower left side of the sep
on the other side of the line.

Table 2
Alienation coefficients between solutions of the breakfast data and the optimal configurat

k x

0.1 0.2 0.5 1 2

0.1 0.1933 0.1898 0.1635 0.1614 0.1616
0.2 0.1827 0.1467 0.1398 0.1457 0.1523
0.3 0.2828 0.1773 0.1242 0.1227 0.1309
0.4 0.3960 0.2495 0.1471 0.1063 0.1108
0.5 0.4509 0.4208 0.1955 0.1267 0.0756
0.6 0.7074 0.5956 0.3258 0.1882 0.0580
0.7 0.7621 0.6902 0.4638 0.2483 0.1426
0.8 0.8164 0.7604 0.5871 0.3902 0.2095
0.9 0.8574 0.8191 0.7012 0.5817 0.2654
1 0.8923 0.8573 0.7969 0.7587 0.6976

Note: Low values indicate similarity. Boldfaced values correspond to the five most stabl
Table 1 shows that differences in stability among the most sta-
ble solutions are small. The median RMSE value over the grid is
0.0936. To see to what extent differences and similarities in stabil-
ity influence the final configurations, a quantitative comparison of
different configurations is needed. For this purpose, the alienation
coefficient as described by Borg and Leutner (1985) is relied on.
The alienation coefficient, which lies between zero and one, can
be interpreted as a measure of dissimilarity between two unfolding
configurations. It directly compares the Euclidean distances within
the unfolding configurations. A low value for the alienation coeffi-
cient indicates that the two configurations are similar (with zero
indicating a perfect match). In Table 2, alienation coefficients
between the optimal unfolding configuration and the unfolding
configurations corresponding to all other parameter combinations
are presented. We see that the optimal solution is more similar to
other stable solutions than to the default solution. In general, it
appears that as stability decreases, solutions become less similar.

Fig. 1 provides the most stable configuration for objects and
subjects, with 90% confidence ellipses. One can see that the stabil-
ity of different breakfast items differs considerably. Certain break-
fast items, in particular ‘‘toast pop-up’’ (TP) and ‘‘cinnamon toast’’
(CT) have larger ellipses around their bootstrap means than other
breakfast items. This finding indicates that the locations of these
breakfast items vary more over the different bootstrap samples.
From the density clouds, it is clear that ‘‘danish pastry’’ (DP) and
‘‘cinnamon bun’’ (CB) are the most popular breakfast items. As
far as statistical information is concerned, the confidence areas
offer a means to assess the stability of each individual object or
subject positioned in the unfolding solution. For instance,
non overlapping areas of groups of objects may indicate significant
or substantial differences in brand or product perceptions and,
conversely, overlapping areas indicate insignificant differences in
brand or product perceptions. For example, in Fig. 1 we see that
les of the breakfast data.

aration line are generally larger than 0.20 and/or at least twice as large as the values

ion with penalty parameters k = 0.7 and x = 10.

5 10 20 50 100

0.1620 0.1622 0.1623 0.1624 0.1624
0.1554 0.1564 0.1569 0.1571 0.1572
0.1415 0.1462 0.1479 0.1487 0.1490
0.1197 0.1253 0.1281 0.1293 0.1302
0.1051 0.1091 0.1109 0.1110 0.1122
0.0599 0.0721 0.0736 0.0960 0.1025
0.0475 0 0.0196 0.0452 0.0502
0.0798 0.0593 0.0469 0.0244 0.0211
0.1681 0.1431 0.0773 0.0718 0.0670
0.2231 0.1846 0.1552 0.1480 0.1459

e solutions from Table 1.



Fig. 1. Nonmetric unfolding solution for breakfast items with penalty parameters k = 0.7 and x = 10. Ellipses represent 90% bootstrap confidence ellipses. Lines between
points and centers of the ellipses depict biases. The gray to black clouds depict the density of the subjects’ bootstrap points. Darker shades of gray indicate higher densities.
The breakfast items (and labels) are: toast pop-up (TP), buttered toast (BT), English muffin and margering (EMM), jelly donut (JD), cinnamon toast (CT), blueberry muffin and
margerine (BMM), hard rolls and butter (HRB), toast and marmelade (TMd), buttered toast and jelly (BTJ), toast and margarine (TMn), cinnamon bun (CB), Danish pastry (DP),
glazed donut (GD), coffee cake (CC), and corn muffin and butter (CMB).

Table 3
Relative mean squared errors for different penalty settings based on 1000 bootstrap samples of the donuts data.

Notes: Five smallest values are printed in boldface. Values on the left and below the separation line are generally larger than 0.20 and/or either twice as large as the values on
the other side of the line.
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the breakfast items hard rolls and butter (HRB) and toast and mar-
garine (TMn) show great overlap indicating similar perception of
these breakfast items.

Conclusions: The results summarized in Table 1 show that
stability of the nonmetric unfolding solution depends on the
penalty parameters. For weaker penalty values, stability is very
low, indicating degeneracy problems. The penalty parameters
corresponding to the most stable solution differ from the SPSS de-
faults. The unfolding plot with confidence ellipses and density
clouds (see Fig. 1), brings about previously unknown aspects of
the data. For example, although CT, EMM and BMM are approxi-
mately equidistant, the confidence ellipses indicate that the posi-
tions of EMM and BMM are more stable and suggest different
locations. The position of CT on the other hand is less stable in
the two-dimensional space.
6.2. Donuts data

Next, we analyzed data concerning preferences of 57 individu-
als for 8 ‘‘ordinary’’ vanilla-flavored donuts which are offered by
different warehouses. The data were collected by a commercial
research agency. Respondents’ preferences were indicated using a
likert-type of preference scale ranging from 1 to 9 (1 = lowest
preference; 9 = highest preference). Using the same sets of values
for the penalty parameters as for the breakfast data, we performed
penalized nonmetric unfolding and a bootstrap analysis with
B = 1000 replications. The resulting relative mean squared errors
are presented in Table 3.

The smallest relative mean squared error is obtained for k = 0.5
and x = 10. The resulting configurations for objects and subjects
are provided in Fig. 2. It is clear that donuts D1 and D5 have



Fig. 2. Nonmetric unfolding solution for subjects and objects of the donuts data with penalty parameters k = 0.5 and x = 10. Ellipses are 90% bootstrap confidence ellipses.
Lines between points and centers of the ellipses depict biases. The gray to black clouds depict the density of the subjects’ bootstrap points. Darker shades of gray indicate
higher densities.
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ellipses that nearly overlap completely. Apparently, these donuts
are perceived similarly. In Fig. 2, we see that the vast majority of
subjects is on the right-hand side of the plot indicating a strong
preference for donut D7. On the top of the plot, subjects with a
preference for donuts D2 and D4 can be found. A small cluster of
subjects on the left has a preference for donuts D1 and D5 and, fi-
nally, towards the bottom of the plot we find a cluster of subjects
with a preference for donut D8.

Comparing these results with those of the breakfast data, we
note that to achieve stability for this data a stronger penalty seems
necessary. However, recall that the strength of the penalty relies
not only on the parameter values but also on the variation coeffi-
cient of the observed preferences. For these data, the variation
coefficient of 0.22 is quite low compared to a value of 0.56 for
the breakfast data. This means that we need to divide the x values
in Table 3 by (0.22/0.56)2 = 6.5, to get comparable penalty values.
Hence, x = 5, in Table 3, corresponds to x = 0.77 for the breakfast
data.

From Table 3 it is clear that in nearly each row the RMSE value
drops considerably at some value for x. For instance, the RMSE for
the solutions with k = 0.5 and x = 5 and the optimal solution with
Table 4
Alienation coefficients between solutions of the donuts data and the optimal configuratio

k x

0.1 0.2 0.5 1 2

0.1 0.3044 0.2385 0.1565 0.1890 0.1789
0.2 0.4965 0.5242 0.5276 0.4139 0.1235
0.3 0.5908 0.6330 0.6624 0.6227 0.1353
0.4 0.6627 0.6530 0.6207 0.7140 0.6774
0.5 0.6342 0.6996 0.6778 0.7372 0.7266
0.6 0.7466 0.7392 0.7140 0.6903 0.7481
0.7 0.7774 0.7587 0.7339 0.7207 0.7614
0.8 0.8039 0.7850 0.7595 0.7418 0.7266
0.9 0.8180 0.8031 0.7820 0.7690 0.7591
1 0.8257 0.8147 0.7994 0.7905 0.7847

Notes: Low values indicate similarity. Boldfaced values correspond to the five most stab
k = 0.5 and x = 10 drops from 0.5098 to 0.0731. Thus, changes in
the penalty parameters have large effects on the stability of the
solutions. To see whether these changes in stability are also re-
flected by changes in the configurations, we again consider the
alienation coefficients with the most stable configuration. The re-
sults can be found in Table 4.

Again one finds the most stable solutions are quite similar,
whereas the less stable solutions tend to be somewhat different.
There are also some striking exceptions here. For example, the
solution obtained for k = 1 and x = 100 has a much larger relative
mean squared error indicating great instability. Comparing the cor-
responding configurations yields an alienation coefficient of
0.1080. This indicates considerable similarity between the config-
urations. Apparently, the solutions are quite similar in terms of rel-
ative positions, but they differ greatly in terms of stability.

Rating data are often considered as interval data and in such
cases metric methods are often employed. However, for these data,
the solution obtained from metric unfolding is clearly different
from the optimal (non)metric solution. The alienation coefficient
between the metric solution and the optimal solution is 0.4641.
Furthermore, as can be seen in Fig. 3, which shows the solution
n with penalty parameters k = 0.5 and x = 10.

5 10 20 50 100

0.1741 0.1745 0.1753 0.1758 0.1761
0.1624 0.1664 0.1682 0.1693 0.1697
0.1124 0.1536 0.1604 0.1628 0.1635
0.0298 0.0900 0.1434 0.1536 0.1562
0.1293 0 0.0847 0.1247 0.1401
0.7358 0.0597 0.0452 0.0815 0.1012
0.7668 0.2420 0.0583 0.0610 0.0652
0.7528 0.6318 0.1024 0.0645 0.0669
0.7631 0.7694 0.4119 0.0858 0.0754
0.7815 0.7719 0.8053 0.2594 0.1080

le solutions in Table 3.



Fig. 3. Metric unfolding solution for (unlabeled) subjects and objects of the donuts
data.
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after Procrustes rotation based on the object points (i.e. the do-
nuts), the metric solution yields a plot that makes it difficult to dis-
tinguish preferences for donuts 1, 2, 3, 5, 6, and 8.

Conclusions: For the donuts data, the influence of the penalty
parameters on stability and degeneracy is again severe. The SPSS
default values perform badly in this setting. This can be explained
to some extent by the low variability in the data. Furthermore,
although in general stable solutions differ from instable ones, we
find that for these data, certain stable solutions are quite similar
to instable ones. Consequently, determining penalty parameters
merely to avoid a degenerate solution may yield a solution that
is highly instable, making it cumbersome to interpret.

6.3. Soup idea data

We analyzed data from 76 untrained consumers, all between 18
and 35 years old, who were invited in a testing laboratory owned
by a commercial research agency. All respondents were given the
name of 11 product ideas for ready-made soups as well as a short
description including a list of (special) ingredients of each soup.
They were asked to rank-order 11 ideas for new soups (without
tasting). In addition, purchase intention for each soup idea was
measured using a 5-point scale including the scale points ‘certainly
won’t buy’ (1), ‘probably won’t buy’ (2), ‘don’t know’ (3), ‘probably
will buy’ (4) ‘certainly will buy’. The cumulative percentage of
Table 5
Relative mean squared errors for different penalty settings based on 1,000 bootstrap sam

k x

0.1 0.2 0.5 1 2

0.1 0.1874 0.2091 0.1808 0.1811 0.1839
0.2 0.1675 0.1409 0.1366 0.1455 0.1553
0.3 0.2529 0.1741 0.1228 0.1168 0.1259
0.4 0.6181 0.2938 0.1461 0.1163 0.1084
0.5 1.3997 0.6824 0.2204 0.1350 0.1116
0.6 2.4036 1.0084 0.3532 0.1858 0.1301
0.7 1.3064 1.4642 0.4916 0.3066 0.1704
0.8 1.1362 1.0423 0.7224 0.4794 0.2432
0.9 1.4213 1.0480 0.5238 0.7691 0.4744
1 1.2755 1.3754 0.8270 0.5822 1.1569

Notes: Five smallest values are printed in boldface. Values on the left and below the separa
the other side of the line.
‘4’and ‘5’ scores (that is, respondents who consider buying the
product/soup idea) was referred to in this study as the top 2-box
percentage of purchase intention.

The following product ideas for soups were included (with la-
bels between brackets):

– Tomato soup, creamy (Tl).
– Tomato soup with special herbs (T2).
– Spicy tomato soup (T3).
– French type of Mustard soup. (F1).
– French type of Mushroom soup (F2).
– Vegetable soup, asparagus (V1).
– Vegetable soup, broccoli (V2).
– Vegetable soup, Celery (V3).
– Pea soup (P).
– Oriental soup, Thai vegetable (O1).
– Oriental soup, chicken tikka soup (O2).

Tables 5 and 6 provide the RMSE’s for all combinations of penalty
parameters, and the alienation coefficients with respect to the best
solution, respectively. A similar picture as seen in the previous two
applications emerges. Increasing the strength of the penalty as com-
pared to the default generally leads to a more stable solution. How-
ever, especially if the k penalty parameter becomes too small (that
is, too strong) stability eventually decreases. The lower left corner
of the table again shows that a weak penalty leads to very unstable
solutions. The smallest RMSE for this data is obtained when k = 0.6
and x = 20. The resulting configuration, with 90% confidence ellip-
ses, is provided in Fig. 2. As with the previous application, the default
values of k = 0.5 and x = 1 (in SPSS), yielded a solution that is clearly
less stable than the optimal solution. Hence, SPSS users may not ob-
tain a solution that is optimal in terms of stability.

In Fig. 4, we see that soups (soup ideas) are clustered quite
naturally; vegetable soups are close to each other, tomato soups
are near, the two oriental soups as well as the mushroom and
mustard soups (French-type of soups) are close to each other
with overlapping ellipses. It seems that they are difficult to
distinguish from each other. Although the pea soup is in the prox-
imity of the tomato soups, the small ellipses indicate that it is
perceived differently. When inspecting the subjects, we see a
large cluster of subjects close to the tomato soups. These consum-
ers indicated a strong preference for either one of the tomato
soups or the pea soup. A second cluster of subjects is situated be-
tween the oriental and French-type soups. For these consumers,
the tomato soups are not their first choice but the tomato soups
do receive larger rankings than the vegetable and pea soups, indi-
cating that most consumers have expressed a strong preference
for tomato soup ideas.
ples of the soup data.

5 10 20 50 100

0.1861 0.1867 0.1872 0.1872 0.1872
0.1635 0.1661 0.1671 0.1677 0.1691
0.1373 0.1423 0.1457 0.1468 0.1470
0.1159 0.1200 0.1228 0.1254 0.1262
0.1083 0.1099 0.1112 0.1124 0.1126
0.1129 0.1077 0.1066 0.1104 0.1111
0.1304 0.1216 0.1205 0.1177 0.1140
0.1581 0.1426 0.1395 0.1355 0.1354
0.2094 0.1744 0.1585 0.1554 0.1527
0.3964 0.2331 0.1969 0.1908 0.1838

tion line are generally larger than 0.20 and/or at least twice as large as the values on



Table 6
Alienation coefficients between solutions of the soup idea data and the optimal configuration with penalty parameters k = 0.6 and x = 20.

k x

0.1 0.2 0.5 1 2 5 10 20 50 100

0.1 0.2133 0.2128 0.1407 0.1271 0.1251 0.1252 0.1254 0.1255 0.1256 0.1257
0.2 0.1796 0.0978 0.0786 0.0864 0.0927 0.0969 0.0981 0.0987 0.0990 0.1146
0.3 0.3080 0.1887 0.0541 0.0502 0.0758 0.0819 0.0838 0.0846 0.0852 0.0853
0.4 0.4317 0.2692 0.1291 0.0672 0.0425 0.0689 0.0757 0.0776 0.0785 0.0787
0.5 0.4975 0.4281 0.2083 0.1238 0.0674 0.0535 0.0584 0.0626 0.0624 0.0624
0.6 0.5643 0.5069 0.3016 0.1901 0.1181 0.0584 0.0144 0.0000 0.0446 0.0485
0.7 0.7372 0.5951 0.5514 0.2860 0.1738 0.1033 0.0806 0.0588 0.0479 0.0284
0.8 0.8283 0.7373 0.6696 0.3409 0.2485 0.1554 0.1303 0.0948 0.0876 0.0859
0.9 0.8730 0.8417 0.7977 0.6211 0.3335 0.2007 0.1665 0.1445 0.1362 0.1412
1 0.9265 0.9152 0.8778 0.8309 0.4416 0.2784 0.2347 0.2238 0.1715 0.1741

Notes: Low values indicate similarity. Boldfaced values correspond to the five most stable solutions from Table 5.

Fig. 4. unfolding solution for subjects and objects of the soup idea data with penalty parameters k = 0.6 and x = 20. Ellipses represent 90% bootstrap confidence regions. Lines
between points and centers of the ellipses depict biases. The gray to black clouds depict the density of the subjects’ bootstrap points. Darker shades of gray indicate higher
densities. The abbreviations used to indicate the soup ideas are explained above. Percentages indicate top 2-box scores for purchase intention (see text).
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Based on the spatial map as presented in Fig. 4 and the top 2-
box percentages of purchase intention, a marketing manager
would be in a position to select those soup ideas that, on the basis
of this concept test, seem to have the highest market potential. The
most promising soup ideas are: tomato soup T1 (top 2-box%: 66%,
highest score obtained), oriental soup O2 and French-type of soup
F2 (top 2-box in both cases: 53%, second highest score). This
combination of 3 soup ideas would comprise a set that offers an
interesting product offer to the great majority of respondents.

Conclusions: Again, one notices that default SPSS values are not
optimal in terms of stability. Moreover, the optimal values for the
parameters in this application also differ with respect to those in
the other two applications, illustrating that an optimal selection
of the parameter depends on the data set. The ellipses and density
clouds in Fig. 4 allow interpretation of several aspects of the solu-
tion. Note: For example, the cluster of tomato soups and the
associated (bootstrapped) subjects cloud. The small, near
circular partially overlapping ellipses, and the dense clouds of
(bootstrapped) subjects, indicate popularity of these soups by
many subjects as well as separation of these soups with respect
to the other soups. Finally, note that in the three applications pre-
sented, the RMSE of the optimal solution does not exceed 0.11.
Although more empirical results are required to make substantive
claims about reasonable RMSE values, our findings suggest that
RMSE values should not exceed this number by much.
7. Dimensionality

There are no general rules for determining the number of
dimensions in (non)metric unfolding. If one considers visualization
as the goal of (nonmetric) unfolding analysis, solutions involving
more than three dimensions, are not feasible. However, restricting
oneself to only two dimensions, as we did in our applications,
raises the question on how accurate such a solution is in compar-
ison to higher dimensional solutions. Moreover, given our explicit



Fig. 5. Penalized stress for nonmetric unfolding solutions of different
dimensionality.
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analysis of stability in this paper, one may wonder whether the
addition of dimensions would increase stability.

Similar to procedures in principal component analysis and re-
lated methods, one could compare solutions of different dimen-
sionality by using the corresponding fit measures. In particular,
since nonmetric unfolding minimizes penalized stress as defined
in (2), we could consider these values for different choices of
dimensions and construct a plot with penalized stress plotted
against the number of dimensions. Straightforward as this ap-
proach may seem, the selection of appropriate penalty values in
nonmetric unfolding complicates matters. The procedure outlined
in this paper finds, for a given number of dimensions, the penalty
parameter values that yield the most stable solution (in terms of
the RMSE). Repeating the procedure for different dimensions is
computationally demanding. Therefore, we propose as strategy
for selecting and assessing the dimensionality prior to optimal
selection of penalty parameters, to use starting values that are
likely to avoid degenerate solutions without being ‘‘too’’ strong.
The starting values proposed in Busing et al. (2005) based on the
result of their simulation study, roughly correspond in the new
objective function (2) to penalty values (k, x):

k ¼ 0:5 and x ¼ ð1=m2ðdÞÞ ð4Þ
Table 7
Relative mean squared errors for different penalty settings based on 1000 bootstrap samp

Notes: Five smallest values are printed in boldface. Values on the left and below the separa
the other side of the line. Values with superscripted asterisk indicate an improvement o
We use these values to assess the dimensionality. In our three
applications this corresponds, after rounding, to x = 3 for the
breakfast and soup data, and x = 20 for the donuts data. The re-
sults for the three applications are depicted in Fig. 5. For the
breakfast and soup data, adding a third dimension results in a
limited decrease in the penalized stress value and the plots sug-
gest two-dimensional solutions. For the donuts data, the results
are less pronounced but suggest a three-dimensional solution.

To study the effect of the number of dimensions on stability,
we re-analyzed the donuts and soup data using three dimensions.
For the soup data, adding a third dimension has no significant ef-
fect on the stability. The p-value corresponding to Wilcoxon’s
signed-rank test is 0.5 and the mean difference (two-dimensional
RMSE – three-dimensional RMSE) is 0.0063. For the donuts data,
the three-dimensional solutions are, on average, more stable than
the two-dimensional solution. The mean difference is 0.2096 and
Wilcoxon’s signed-rank test yields a p-value of 0.0001. However,
as can be seen in Table 7, the improvements mainly concern
‘‘bad’’ solutions. That is, the RMSEs for solutions with relatively
high RMSE values in two dimensions improve significantly but
the RMSE of the most stable three-dimensional solution, 0.0986,
is larger than the RSME of the most stable two-dimensional solu-
tion, 0.0731. In general, the stable two-dimensional solutions have
lower RMSEs than the stable three-dimensional solutions.
8. Greedy search algorithm

In marketing, one frequently encounters large data sets. If there
are many subjects (e.g., consumers) and/or many objects (e.g.,
brands) the number of parameters to be estimated increases and
the unfolding task may become computationally demanding. Ho
et al. (2010), found that calculating a two-dimensional solution
for a 500 � 500 data set with a true dimensionality of 10, and using
10 random starts, takes just over 4 min. One may infer from this
that, for such a large data set and true dimensionality, a single boot-
strap analysis with 1000 replications (without using random starts)
would take approximately 6 h and 40 min. This is not prohibitive,
but it may become so if many k and x combinations for the penalty
parameters need to be considered. Consider, for example, a full grid
search with 10 values for both k and x. Performing all bootstrap
analyses on a single computer may then require more than 27 days
(assuming that computation times for different parameter combi-
nations are on average the same). In such cases it may therefore
be worthwhile to consider a more efficient partial search over the
space of k and x.

If stability decreases more or less monotonically when the
penalty becomes either too strong or too weak, we can explore
les of the donuts data using three-dimensional solutions.

tion line are generally larger than 0.20 and/or at least twice as large as the values on
f the RMSE in three dimensions.
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parameter combinations until an increase in RMSE values occurs.
Thus, if a full grid search becomes too time consuming, we pro-
pose, the following greedy search algorithm: (1) start with some
initial values for the penalty parameters, say, k = k0 and x = x0,
and (2) move to neighboring positions on the grid until the
improvement in the relative mean-squared error measure is lar-
ger than some (small) predetermined threshold value. As initial
values (k0, x0) we use the values as defined in (5).

Applying this algorithm to the three data sets greatly reduces
the number of required bootstrap analyses. For example, if we
round x0 to the nearest integer used in the full grid search and
search over the same grid as used in our applications, we see that
for the breakfast and donuts data the solution is obtained after
only eight bootstrap analyses whereas the soup idea data require
twenty additional bootstrap analyses. Compared with the hun-
dred bootstrap analyses required for the full grid search, this
means a significant reduction in computations. Moreover, for
the donuts and soup data sets, the greedy search yields the same
solution as the full grid search. For the breakfast data the greedy
search yields a different solution (.i.e., k = 0.5 and x = 2) that,
both with respect to the configuration as well as the RMSE value,
is nearly equivalent to the optimal solution (c.f., Tables 1 and 2).

9. Summary and conclusions

Nonmetric multidimensional unfolding is a powerful and intu-
itive tool that can be applied in several settings. In this paper, we
considered two important issues in nonmetric unfolding � degen-
eracy and (in)stability of unfolding solutions � and we proposed a
new methodology to resolve these issues. We evaluated the appli-
cability and usefulness of our methodology, which relies on both
the conduct of a balanced bootstrap analysis and the calculation
of stability measures, by means of three illustrative food-related
examples. In our analyses, we found that the current SPSS default
values do not yield the most stable solution and may even lead
to degenerate solutions. The failure of the SPSS default values led
Ho et al. (2010) to fall back on a metric analysis. Our approach,
however, shows how degenerate solutions are avoided by enforc-
ing a stronger penalty.

For the analysis of large scale data, we proposed a greedy local
search algorithm that can be used to find a stable, nondegenerate
solution. Although this algorithm does not necessarily produce
the most stable solution (i.e., the optimal solution), it is likely to
yield a high quality solution, that is a solution that is close enough
to the most stable solution without requiring excessive computa-
tional effort and time.

Our approach to analyze nonmetric preference data using mul-
tidimensional unfolding is at present the only one that provides
stable, nondegenerate solutions. Thereby, it offers researchers an
important analysis tool. Researchers are now in a position to derive
and interpret spatial maps showing: (1) information on the simi-
larity or dissimilarity between various preference choice alterna-
tives (e.g., brands or products) as well as (2) the extent to which
these choice alternatives are in line with the needs as expressed
by distinct clusters of consumers. Especially choice alternatives
that are located in areas showing a high density of individual
consumers are interesting from a marketing perspective as they
are preferred by a substantial number of consumers. Such market-
ing conclusions can now be drawn without running the risk that
one’s interpretation is not legitimate due to the invalidity of the
nonmetric unfolding solution.
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